Artificial Intelligence and Econometrics
Paper Session
Saturday, Jan. 8, 2022 3:45 PM - 5:45 PM (EST)
- Chair: Sanjog Misra, University of Chicago
Dropout Training is Distributionally Robust Optimal
Abstract
This paper shows that dropout training in Generalized Linear Models is the minimax solution of a two-player, zero-sum game where an adversarial nature corrupts a statistician’s covariates using a multiplicative nonparametric errors-in-variables model. In this game, nature’s least favorable distribution is dropout noise, where nature independently deletes entries of the covariate vector with some fixed probability δ. This result implies that dropout training indeed provides out-of-sample expected loss guarantees for distributions that arise from multiplicative perturbations of in-sample data. In addition to the decision-theoretic analysis, the paper makes two more contributions. First, there is a concrete recommendation on how to select the tuning parameter δ to guarantee that, as the sample size grows large, the in-sample loss after dropout training exceeds the true population loss with some pre-specified probability. Second, the paper provides a novel, parallelizable, Unbiased Multi-Level Monte Carlo algorithm to speed-up the implementation of dropout training. Our algorithm has a much smaller computational cost compared to the naive implementation of dropout, provided the number of data points is much smaller than the dimension of the covariate vector.Deep Learning for Individual Heterogeneity
Abstract
We propose a methodology for effectively modeling individual heterogeneity using deep learning while still retaining the interpretability and economic discipline of classical models. We pair a transparent, interpretable modeling structure with rich data environments and machine learning methods to estimate heterogeneous parameters based on potentially high dimensional or complex observable characteristics. Our framework is widely-applicable, covering numerous settings of economic interest. We recover, as special cases, well-known examples such as average treatment effects and parametric components of partially linear models. However, we also seamlessly deliver new results for diverse examples such as price elasticities, willingness-to-pay, and surplus measures in choice models, average marginal and partial effects of continuous treatment variables, fractional outcome models, count data, heterogeneous production function components, and more. Deep neural networks are well-suited to structured modeling of heterogeneity: we show how the network architecture can be designed to match the global structure of the economic model, giving novel methodology for deep learning as well as, more formally, improved rates of convergence. Our results on deep learning have consequences for other structured modeling environments and applications, such as for additive models. Our inference results are based on an influence function we derive, which we show to be flexible enough to to encompass all settings with a single, unified calculation, removing any requirement for case-by-case derivations. The usefulness of the methodology in economics is shown in two empirical applications: the response of 410(k) participation rates to firm matching and the impact of prices on subscription choices for an online service. Extensions to instrumental variables and multinomial choices are shown.JEL Classifications
- C1 - Econometric and Statistical Methods and Methodology: General
- C3 - Multiple or Simultaneous Equation Models; Multiple Variables