Sensitivity Analysis
Paper Session
Sunday, Jan. 8, 2023 8:00 AM - 10:00 AM (CST)
- Chair: Timothy Christensen, New York University
Included and Excluded Instruments in Structural Estimation
Abstract
We consider the choice of instrumental variables when a researcher’s structural model may be misspecified. We contrast included instruments, which have a direct causal effect on the out- come holding constant the endogenous variable of interest, with excluded instruments, which do not. We show conditions under which the researcher’s estimand maintains an interpretation in terms of causal effects of the endogenous variable under excluded instruments but not under included instruments. We apply our framework to estimation of a linear instrumental variables model, and of differentiated goods demand models under price endogeneity. We show that the distinction between included and excluded instruments is quantitatively important in simulations based on an application. We extend our results to a dynamic setting by studying estimation of production function parameters under input endogeneity.The Effect of Omitted Variables on the Sign of Regression Coefficients
Abstract
Omitted variables are a common concern in empirical research. We show that "Oster's delta" (Oster 2019), a commonly reported measure of regression coefficient robustness to the presence of omitted variables, does not capture sign changes in the parameter of interest. Specifically, we show that any time this measure is large--suggesting that omitted variables may be unimportant--a much smaller value can actually reverse the sign of the parameter of interest. Relatedly, we show that selection bias adjusted estimands can be extremely sensitive to the choice of the sensitivity parameter. Specifically, researchers commonly compute a bias adjustment under the assumption that Oster's delta equals one. Under the alternative assumption that delta is very close to one, but not exactly equal to one, we show that the bias can instead be arbitrarily large. To address these concerns, we propose a modified measure of robustness that accounts for such sign changes, and discuss best practices for assessing sensitivity to omitted variables. We demonstrate this sign flipping behavior in an empirical application to social capital and the rise of the Nazi party, where we show how it can overturn conclusions about robustness, and how our proposed modifications can be used to regain robustness. We implement our proposed methods in the companion Stata module regsensitivity for easy use in practice.On Quantile Treatment Effects, Rank Similarity, and the Variation of Instrumental Variables
Abstract
This paper investigates how certain relationship between observed and counterfactual distributions plays a role in the identification of distributional treatment effects under endogeneity, and shows that this relationship holds in a range of nonparametric models for treatment effects. To motivate the new identifying assumption, we first provide a novel characterization of popular assumptions restricting treatment heterogeneity in the literature, specifically rank similarity. We show the stringency of this type of assumptions and propose to relax them in economically meaningful ways. This relaxation will justify certain parameters (e.g., treatment effects on the treated) against others (e.g., treatment effects for the entire population). It will also justify the quest of richer exogenous variation in the data (e.g., the use of multiple instrumental variables). The prime goal of this investigation is to provide empirical researchers with tools for identifying and estimating treatment effects that are flexible enough to allow for treatment heterogeneity, but still yield tight policy evaluation and are easy to implement.JEL Classifications
- C10 - General
- C54 - Quantitative Policy Modeling