Climate Variability and International Migration: The Importance of the Agricultural Linkage

Ruohong Caia,1, Shuaizhang Fengb, c Mariola Pytlikovád, e Michael Oppenheimera, f

aWoodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544; bSchool of Economics, Shanghai University of Finance and Economics, Shanghai 200433, China; cDepartment of Economics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; dKORA, The Danish Institute of Local Governmental Research, Købmagergade 22, 1150 Copenhagen K, eVSB-Technical University Ostrava, Faculty of Economics, Sokolská tr. 33, Ostrava.; and fGeosciences, Princeton University, Princeton, NJ 08544.

1To whom correspondence should be addressed.
Address:
411A Robertson Hall
Princeton University
Princeton, NJ 08544
Phone: 609-258-9897
E-mail: ruohongc@princeton.edu.

Keywords: international migration | climate variability | agricultural productivity

SOCIAL SCIENCES: Sustainability Science

Author contributions: R.C., S.F., M.P., and M.O. designed research; R.C., S.F., M.P., and M.O. performed research; R.C., S.F., and M.P. analyzed data; and R.C., S.F., M.P., and M.O. wrote the paper.

The authors declare no conflicts of interest.
Abstract. While there is considerable interest in understanding the climate-migration relationship, particularly in the context of concerns about global climatic change, little is known about underlying mechanisms. We analyze a unique and extensive set of panel data characterizing annual bilateral international migration flows from 163 origin countries to 42 OECD destination countries covering the last three decades. We find a positive and statistically significant relationship between temperature and international outmigration only in the most agriculture-dependent countries, consistent with the widely-documented adverse impact of temperature on agricultural productivity. Specifically, each 1 °C increase in temperature implies a 5% increase in outmigration from agricultural countries. In addition, migration flows to current major destinations are especially temperature-sensitive. However, the sensitivity of outmigration to climate may be due to a country’s being poor, since most agricultural countries are also relatively poor. To address this concern, using an instrumental variables approach, we further estimate the effect of climate-driven cereal yield shocks on outmigration and find a significant effect only in agricultural countries, thus providing more direct evidence on the role of agriculture as the intermediate linkage between climate and international migration. Policies to address issues related to climate-induced international migration would be more effective if focused on the agriculture-dependent countries and especially people in those countries whose livelihoods depend on agriculture.
Significance Statement. Previous regional studies have generated mixed results about the effects of climate on human migration, as climate may interact with many region-specific factors. However, adequate global scale migration data which might reveal universal, underlying mechanisms driving climate-induced international migration are generally unavailable. Based on a comprehensive panel dataset on international migration, we provide robust evidence that temperature has positive effects on outmigration only in agricultural countries, indicating the important role of agriculture in the climate-migration linkage. Migration flows to current major destinations are characterized by the highest temperature sensitivity. The findings suggest that policies to address issues related to climate-induced international migration would be most effective if focused on the agriculture-dependent countries.
Climate change has become an increasing global concern as its current and future impacts are understood in greater detail (1). One widely cited response to such impacts is the potential for large-scale displacement of segments of human population (2–4). Among all climate-induced migrants, those crossing the political borders would be a matter of particular concern as both receiving and sending countries are affected. Identification of the mechanisms underlying the climate-migration relationship would be useful to national governments and international agencies developing policies to manage migration flows. Despite growing interest from policymakers and the general public, the quantitative literature on weather- and climate-induced migration is still in its infancy.*

There is a large literature on the determinants of human migration that encompasses several disciplines. Income maximization is usually considered to be one of the most important driving forces for human migration (5–10). Simply put, a potential migrant is assumed to compare the income differences between origin and several destinations and the cost of migration, and select a destination which maximizes income. The income maximization framework can be extended to utility maximization in order to incorporate non-pecuniary determinants of migration (6, 11), such as cultural and linguistic distance, political pressures, conflicts and wars, networks of family and friends, educational and social benefits, immigration policies, and amenities (7, 8, 11, 12–16).

During recent decades, the migration literature has paid more and more attention to climatic and environmental factors, such as sea level rise, environmental degradation, weather-related crop failures, and extreme weather events (2, 4, 17–20). The empirical results so far are mixed – while many studies support a significant relationship between migration and climatic factors such as natural disasters, temperature, and precipitation (10, 20, 21–23, SI Literature Review), some researchers find that climate is an inconsequential factor compared to other drivers of migration (24, * While we acknowledge the difference between climate and weather, the terms “climate” and “weather” will be used interchangeably in this paper. Our analysis is performed with annual temperature and precipitation for the period of 1980-2010.}
The apparent inconsistencies between the outcomes of various studies arise partly because such studies are mostly context-specific – they differ in the measurements of climate factors, geographic regions covered, and the time frames of study. The effects of climate on human migration are likely to be heterogeneous across time and space, as climate may interact with region-specific factors, such as other environment conditions, socio-economic, cultural and lifestyle characteristics, and social networks (26).

To move this literature forward and gain a more complete picture of the climate-migration relationship, one can either continue to accumulate such context-specific evidence or conduct the analysis at a more aggregate level and focus on the most important linkage(s). This paper takes the second approach, and considers agriculture to be a possible intermediate link between climate and (international) migration. We do so for the following reasons. First, a large body of literature has already established a significant sensitivity of crop yields to climatic changes, especially temperature increases (27–29). Second, agriculture is an important economic sector in many countries, especially in the developing world, where a large proportion of the population still directly depends on agriculture for a living. Thus it is a plausible hypothesis that agriculture plays an important role in the climate-migration relationship.

Due to data limitations, most previous studies on the determinants of migration relied on analyses of migrants moving from one origin country to one destination (22, 30) or from multiple origin countries to one destination (7, 31–33). More recently, researchers have begun to rely on multi-country bilateral migration data, which increases the quantity of data and facilitates drawing for more general conclusions (8, 14–16). Nevertheless, its application in the climate-migration studies remains limited. Reuveny and Moore used a cross-sectional data of bilateral international migration flows to 15 OECD destination countries in the late 1980s and 1990s to investigate the effects of environmental degradation, e.g., weather-related natural disasters (21). Beine and Parsons
used a panel of bilateral migration for the period of 1960-2000 to study the impact of climatic change (9). Their dataset has only five panels of foreign population stock data based on the last five completed censuses. Their migration flow data are approximated by the change in migration stocks for each decade. In this study, we use a more comprehensive bilateral annual migration dataset covering 42 OECD destination countries and 163 origin countries over the period of 1980-2010 to study the climate-migration relationship.

We first estimate a reduced-form model (Materials and Methods) that links origin country weather variations to its international outmigration, while controlling for an important migration determinant – income (approximated by GDP per capita) – as well as unobserved time-invariant country-pair factors and country-specific time trends. To investigate the role of agriculture, interaction terms between weather and agricultural dependence are included in the regression.† We find that the effect of temperature on outmigration is positive and statistically significant only in the most agriculture-dependent countries. Because most agriculture-dependent countries are also relatively poor, we use the instrumental variables approach to provide more direct evidence on the agricultural linkage to rule out the alternative hypothesis that the sensitivity of outmigration to climate is due to a country’s being poor per se. We estimate the yield-migration relationship, using temperature and precipitation as instruments for cereal yields (see 22, 23, and Materials and Methods). We find that outmigration is highly responsive to climate-induced yield shocks, but only in agricultural countries. Our results thus suggest that, globally, agriculture is an important intermediate link between climate and international migration. It should be noted that the relation between the sensitivity of past migration to climate and weather variability and future migration due

† In our baseline specification, agricultural dependence is defined as a dummy variable, where the top 25% agriculture-dependent countries are assigned with 1, and the remaining countries are assigned with 0. Agriculture-dependent countries (or agricultural countries, used interchangeably in our paper) are defined as those with relatively high share of agriculture value added in GDP.
to long term climate change is uncertain. Here we focus on the former which provides insights on current motivations for migration while potentially informing projections of the latter.

Empirical Results

Theoretical Model Implications. The theoretical model we developed (see *Materials and Methods* for details) predicts that, for countries that are more agriculture-dependent, an adverse climate change would trigger more outmigration. Furthermore, if amenities are not adversely affected by climate, then for non-agricultural countries, changes in climate would not trigger outmigration.

The Reduced-form Regression Results. We first present the results of our baseline specification (*Materials and Methods*). In Model 1 of Table 1, we regress the natural logarithm of migration rate (migration flow from one origin country to one destination country divided by the origin country population) on contemporaneous temperature and precipitation of origin countries. In Model 2 of Table 1, the interaction terms between weather and agricultural dependence are included to test if the weather effect is different between the top 25% agriculture-dependent countries and the remaining countries. In our preferred specification (Eq. 7 in *Materials and Methods*) in Model 3 of Table 1, we further include the natural logarithm of lagged GDP per capita for both origin and destination countries. All three models contain a set of country-pair fixed effects and the origin and destination country specific linear time trends. A positive and significant coefficient estimate for the interaction term suggests that the temperature effects are significantly different between agricultural and non-agricultural countries – and more likely to induce significant outmigration from agricultural countries. Specifically, based on Model 3 of Table 1, each 1 °C increase in temperature implies a 5% increase in the outmigration from the top 25% agricultural countries (significant at the 1% level), as compared to only 0.4% increase (statistically insignificant) in outmigration from the
remaining countries. This is in line with Marchiori et al. who also found that weather in agricultural countries induces outmigration (10). As shown in Models 2 and 3 of Table 1, our results hold whether we control for GDP per capita or not.

In Table 2, we present a number of robustness checks for the coefficient of the interaction term between temperature and agricultural dependence. Our main results are qualitatively the same whether we use different control variables (Panels A-F), different regression techniques (Panel G), different dependent and independent variables (Panels H and I), or slightly different samples (Panels J-L). When conducting robustness checks, we also allow different thresholds for the definition of agricultural countries – the top one-third (33%), top one-fourth (25%), and top one-fifth (20%) countries with higher share of agriculture value added in GDP, as shown in different columns in Table 2. In general, the differential temperature effects for agricultural countries become larger in magnitude and more statistically significant when a higher threshold is set to identify agricultural countries, as we go from column (1) to (3) in Table 2. The results are thus consistent with the idea that more agricultural countries are more likely to experience outmigration when temperature rises, as shown in the theoretical model (Materials and Methods).

The contemporaneous temperature effects become slightly weaker but still significant when the lagged terms up to five years are also included in the model (Panels A and B). This implies that temperature may have some lagged effects on outmigration as it may take time to stimulate some of international migration flow. Migration flows may be largely determined by the existing co-ethnic networks, i.e. networks of family members, friends and people of the same origin that have already lived in a host country (14, 34). In Panel C, we use migration stock (foreign population from country i residing in country j) as a proxy for migrant networks and find that our results still hold. We also use the lagged dependent variable – the natural logarithm of lagged migration rate as one of the independent variables (Panel D), since the migration rate may be serially correlated. Again,
we obtained a similar estimate as our baseline specification. This specification in Panel D could also be viewed as an alternative way to control for migrant networks as Panel C.

In Panel E, the temperature effects are still positive and significant when we include an origin country-specific quadratic time trend, which controls for some nonlinear determinants of migration trending over time for each origin country. We used country-pair fixed effects in the baseline specification, while the separate country fixed effects for origin and destination countries were chosen as baseline specifications in some other studies (8, 15). In Panel F, we control for the separate country fixed effects and other variables such as distance between the most populated cities, common language, colonial tie, and common border which were not included in the model with country-pair fixed effects since they were absorbed by country-pair fixed effects (15). With this alternative fixed effects specification, the temperature effects are still positive and significant for all definitions of agriculture-dependent countries.

In panel G, we run a weighted least squares regression using the natural logarithm of origin country’s total population as weights. We found that the results are very similar to our baseline results. We further use the natural logarithm of migration flow (Panel H), instead of the natural logarithm of migration rate, as dependent variable. The results are very similar to the baseline specification. Instead of estimating the contemporaneous temperature effects, we estimate the effects of the lagged temperature in Panel I, and find the lagged response of migration flow to temperature variability, which is consistent with our expectation based on Panels A and B.

We also study if the results are driven by specific countries or country pairs. During the past three decades, 85 million (50 million) out of 108 million migrants are occurred in the top 5% (1%) migration routes (from one country to another) by the size migration flow (SI Text). Now we remove the data from the top 5% (1%) migration routes in Panel J (Panel K) and find that the temperature effects are still positive and significant across all three definitions of agriculture
dependence. In addition, about 11% of all the country pairs do not have any migration flows. In Panel L, we drop those zero migration flows from the sample. The coefficient estimates for the interaction term remain positive and statistically significant.

We include temperature and precipitation variables in the baseline specification, due to their frequent use in the literature. We do not interpret the precipitation coefficients here, since statistical methods appear more reliable for temperature variables (35); this may be explained by the fact that precipitation has higher spatial variability and thus is less well captured than temperature by the relatively coarse climate data (36), e.g., country-level in our study. However, it is still necessary to control for precipitation in our model since it is a possible confounding factor, which may be correlated with both temperature (independent variable) and migration (dependent variable).

We further study the role of different destination countries in climate-induced migration. In Table 3, we split the sample into four quartiles determined by the popularity of destination countries (based on migration stock) for each origin country. We find that our main results – positive temperature effects on outmigration from agricultural countries – are only detected in the migration routes to their top 25% migration destination countries as in column (4) in Table 3. The results imply that temperature tends to intensify migration mostly in the already established migration routes, while it has insignificant effect on migration to the countries which are previously not major destinations. This finding is in line with previous hypotheses that climate change will affect existing migration routes (37–39).

Two-Stage Least Squares Regression Results. The finding of a positive and statistically significant relationship between temperature and outmigration only for agricultural countries is quite revealing, but does not yet provide a definite answer on whether agriculture played an
important intermediate role, as many agricultural countries are also very poor. To rule out a poor-country effect, one needs to provide more direct evidence on the role of agriculture.

In this subsection, we estimate the relationship between cereal yields (an indicator of agricultural productivity) and international outmigration. To deal with the biases caused by omitted variables, we use temperature and precipitation to instrument for cereal yields and use the fixed-effects two-stage least-squares (FE-2SLS) to estimate the Eq. 8 and 9 (Materials and Methods). To the extent that weather factors are exogenous, the FE-2SLS is consistent; see Feng, Krueger, and Oppenheimer (22) and Feng and Oppenheimer (23) for more discussion of this point.

Tables S2 and 4 contain the first and second stage results of the instrumental variables approach for four country groups categorized based on the agricultural dependence. Cereal yields are found to be negatively associated with outmigration only in the top 25% agricultural countries (Table 4, column 4), suggesting that cereal yields appear to be an important factor for migration from such countries, consistent with earlier studies (22, 23, 40). In particular, the estimated elasticity of outmigration rate with respect to cereal yields in the top 25% agricultural countries is about -2.4. To put the number in perspective, for a country with 0.1% annual outmigration rate, a 10% reduction in cereal yields would raise the annual outmigration rate by around 24%, or to 0.124%. Table 4 also shows that the FE-2SLS estimates are substantially different from the OLS estimates and more negative, which implies that the unobserved omitted variables jointly determining cereal yields and migration would bias the OLS estimates towards zero.

A concern for the instrumental variables approach is the weak instrument. In Table S2, although F-statistics of the instruments in the first stage are all significant at the 5% level, all of them are less than 10, a value usually used as a rule of thumb to detect weak instruments (41). However, this rule of thumb is only for regular standard errors while we report robust standard errors clustered at the country level in this study. On the other hand, the slightly low F-statistics
reported here might be due to imprecise measurements of weather and yields. Country-level data are relatively coarse for both weather and cereal yields; thus the correlation between them is expected to be less significant than is the case when finer subnational data are used. The slightly low F-statistics could also be due to the possible nonlinear relationship between temperature and yields (28). Furthermore, cereal includes multiple crops such as corn, rice, wheat, and many more, which have different growing seasons, and also different sensitivities to weather variations. Additional noise is thus introduced when pooling them together, as we do in this paper.

Another, probably more serious, concern is whether or not our exclusion restriction is valid. If weather also affects migration through channels other than cereal yields, the FE-2SLS estimates would still be biased. For instance, if people have a direct preference to live in less hot areas, our FE-2SLS estimates would be biased upward in absolute value. If this is the case, we would expect a negative and significant coefficient even for non-agricultural countries, i.e., non-agricultural countries serve as a control group in our empirical methodology. However, this is not the case. As shown in Table 4, for less agriculture-dependent countries (columns 1-3), we cannot reject the null of zero coefficients. This is also consistent with our findings reported in Table 1, which shows no reduced-form relationship between temperature and outmigration for non-agricultural countries.

In Table 5, we conduct several robustness checks for the coefficient of cereal yields in the second stage of instrumental variables approach. In Table 5, we only report the coefficient for agricultural countries as we reported in column (4) in Table 4. In addition to the FE-2SLS results, we also perform the fixed-effects limited-information maximum-likelihood (FE-LIML) estimations. The results are quite robust to various model specifications. First, to alleviate concerns regarding weak instruments, we use either only temperature or only precipitation as the instrument, as it is well known in the econometrics literature that the use of fewer instruments reduces the possible weak instrument bias (42). The results are shown in Panels A and B in Table 5. The result using
temperature as the only instrument is quite similar to the baseline specification. When precipitation is used as the only instrument, the coefficient is slightly smaller (but still significant at 10%), as the average precipitation data at the country level may not be reliable.

In Panel C, we use the lagged (one-year) weather variables and cereal yields in the regression. In Panel D, we include GDP per capita as an additional control variable, as income is frequently used as a main explanatory variable in studies of international migration. In Panel E, we try an alternative definition of migration, using the natural logarithm of migration flows rather than the natural logarithm of migration rate as the dependent variable. In all these cases, the coefficient estimate remains negative and statistically significant.

Lastly, instead of using only the top 25% agricultural countries as in the baseline specification, we use the top 33% and top 20% agricultural countries in Panels F and G in Table 5, respectively. The estimated coefficients are very close to the baseline results, suggesting that the threshold for agricultural dependence that we use is not the key.

Discussion

In this study, we have employed an empirical approach to quantify the effects of weather variations on global bilateral international migration flows. The results show that temperature has positive and statistically significant effects on outmigration, but only from agriculture-dependent countries. Our results are robust to alternative model specifications. Therefore, among the intermediate links between weather and international migration, agriculture appears to be an important factor.

While our results suggest that significant climate-induced international outmigration only happens in agriculture-dependent countries, the consequences may be substantial – we further find that climate-induced migration specifically enlarges the flow in already established migration routes, potentially presenting challenges to major migrant-receiving countries, mostly
industrialized. Studies such as this one could provide a basis for advanced consideration of policies to address the consequences (both positive and negative) of potential increases in immigration due to climate change. Our results provide some guidance to those developing policies to anticipate and manage these flows by focusing attention on agriculture-dependent countries and especially people in those countries whose livelihoods depend on agriculture. Agricultural adaptation, which builds resilience and enhances farmers’ earnings capacities, may reduce incentives to migrate. Diversifying livelihoods for those who now depend on agriculture, such as by encouraging off-farm work, urbanization or structural upgrading, also has the potential to reduce migration.

Most previous studies are region-specific, thus generating mixed results when taken together and less likely to identify a universal underlying mechanism for the climate-induced international migration. Based on a comprehensive international migration dataset, this study provides robust empirical evidence that agriculture is an important factor influencing climate-induced international migration for the past three decades. Future research should further test our results as additional migration and climate/weather data becomes available. While we perform the analysis using the reduced-form model and instrumental variables approach, alternative methods and tools should also be used to study these relationships where appropriate.
Materials and Methods

Data. We use a unique dataset on bilateral international migration flows collected by M. Pytlikova, containing immigration flows and stocks of foreigners in 42 OECD destination countries from 163 countries during the period of 1980-2010.‡ It was collected by writing to selected national statistical offices of OECD countries to request detailed information on immigration flows and foreign population stocks in their respective country, sorted by origin country. Although our dataset presents substantial progress over similar datasets used in past research (8, 14-16), it is not without limitations. First, the dataset is unbalanced, with missing migration flows and stocks for some countries in some years. However, missing observations become less of a problem for more recent years (Table S3). Second, as in the other existing datasets (15), different countries use different definitions of an immigrant (Table S4). Nevertheless, both types of measurement errors are unlikely to be correlated with weather patterns and cause biases to our parameter estimates. Besides, by using country-pair fixed effects, we only explore variation over time within each country pair, therefore different definitions of an immigrant should not be a concern here.

Cereal yields and the share of agriculture value added in GDP were collected from the World Bank (http://databank.worldbank.org). The purchasing power parity converted GDP Per Capita at 2005 constant prices was obtained from the Penn World Tables version 7.0 (43). Global gridded monthly mean temperature and total precipitation data from 1980 to 2010 were collected from NASA–Modern Era Retrospective Analysis for Research and Applications (NASA-MERRA) with a resolution of 2/3 degrees in longitude and 1/2 degrees in latitude, and then aggregated to be country-level population-weighted, so that the weather conditions for populated regions within a country are given more weights (44). Data are available upon request.

‡ The original OECD migration dataset by Pedersen, Pytlikova and Smith covers 22 OECD destination and 129 origin countries over the period of years 1989-2000 (14). The dataset has been extended further to cover 30 OECD destinations, all origin countries and years 1980-2010 by Adsera and Pytlikova (16).
Theoretical Model. Suppose there is a fictitious country (FC), which is a small open economy compared with the rest-of-the-world (ROTW). Initially FC is populated by a mass normalized to 1. The utility of person k in FC is:

$$U_k = w + p + a_k$$ \[1\]

where w is the wage, p is the deterministic part of the non-pecuniary utility, and a_k is the individual deviation from the average non-pecuniary utility. To simplify the theoretical model, we assume all the people in the country have the same wage. By construction the expectation of a_k is 0, with cumulative distribution function $F(.)$. The higher a_k, the more person k prefers to remain in FC.

Suppose now we allow people from FC to migrate to ROTW (but not otherwise). Let the wage level in ROTW be w_r. For simplicity, we assume that people originally from FC do not enjoy any non-pecuniary utility in ROTW. Thus, a person k would have the utility level of just w_r in ROTW. Alternatively, one can consider $p + a_k$ as the utility premium for person k to live in FC.

To migrate from FC to ROTW, a person must also incur a cost of c. Thus the equilibrium condition for any person k to remain in FC is:

$$w + p + a_k \geq w_r - c$$ \[2\]

The marginal person l is defined as the one who is just indifferent between living in FC and migrating to ROTW, i.e., for person l,

$$w + p + a_l = w_r - c$$ \[3\]

Thus, in the equilibrium, the total population in FC is $N = 1 - F(a_l)$, where a_l is implicitly defined as in Eq. 3.

Suppose in FC, the aggregate production function is $Y = [\alpha A + (1 - \alpha)B]K^{\beta}N^{1-\beta}$, where K is capital, N is total labor force, which equals the total population for simplicity, A is the productivity of agricultural sector, B is the productivity of non-agricultural sector, and we have the
assumption that \(B > A \), i.e., non-agricultural sector is more productive. \(\alpha \) is the proportion of agricultural sector in the economy. \(\beta \) is the output elasticity of capital, and \(1 - \beta \) is the output elasticity of labor.

If the labor market is competitive, the real wage should equal the marginal productivity of labor. Thus the equilibrium wage level in FC is determined by the following first order condition:

\[
w = \frac{\partial Y}{\partial N} = (1 - \beta)[\alpha A + (1 - \alpha)B]\left(\frac{K}{N}\right)^\beta
\]

[4]

Now, let’s consider how climate change affects outmigration from FC. Let \(C \) stand for the adverse climate factors. Based on empirical findings of Dell et al. (2012), we assume climate affects the productivity of agricultural sector but not that of non-agricultural sector, i.e., \(\frac{\partial A}{\partial C} < 0 \) and \(\frac{\partial B}{\partial C} = 0 \).§ We also allow the possibility that adverse climate condition would affect people’s expected amenities in FC, and \(\frac{\partial p}{\partial C} \leq 0 \).

Rewrite Eq. 3, we have:

\[
(1 - \beta)[\alpha A(C) + (1 - \alpha)B]\left(\frac{K}{N(C)}\right)^\beta + p(C) + F^{-1}(1 - N(C)) = w_e - c
\]

[5]

Take derivatives with respect to \(C \) in both sides of Eq. 5,

\[
\frac{dN}{dC} = \frac{(1 - \beta)\alpha \frac{\partial A}{\partial C}\left(\frac{K}{N}\right)^\beta + \frac{\partial p}{\partial C}}{(1 - \beta)\beta[\alpha A + (1 - \alpha)B]\left(\frac{K}{N}\right)^\beta\left(\frac{V}{N}\right) + F^{-1}(1 - N(C))}
\]

[6]

According to Eq. 6, we have the following results:

§ We make the assumption that climate does not affect non-agricultural sectors for simplification. In reality, climate change may have effects on non-agriculture sectors (40).
(a) \(\frac{dN}{dC} < 0 \), i.e., adverse climate change would induce a decline in population, or outmigration from the country. This is assuming that \(\alpha = 0 \) (no agricultural sectors) and \(\frac{\partial p}{\partial C} = 0 \) (climate has no effects on amenities) do not hold simultaneously;

(b) For countries that are more agriculture-dependent, i.e., with larger \(\alpha \), an adverse climate change would trigger more outmigration. This follows as \(A < B \);

(c) If amenities are not adversely affected by climate, i.e., \(\frac{\partial p}{\partial C} = 0 \), then for non-agricultural countries (with \(\alpha = 0 \)), changes in climate would not trigger any outmigration (\(\frac{dN}{dC} = 0 \)).

Empirical Model. To empirically test the main implications of the theoretical model, we estimate the following fixed-effects regression:

\[
\ln M_{ijt} = \beta_0 + \beta_1 T_{MP_i} + \beta_2 P_{CP_i} + \delta_1 T_{MP_i} \ast A_i + \delta_2 P_{CP_i} \ast A_i + \varphi x_{i,t-1} + \theta_j + d_{i,year_t} + d_{j,year_t} + \epsilon_{ijt}
\]

[7]

where \(\ln M_{ijt} \) denotes the natural logarithm of migration rate, i.e., migration flow from origin country \(i \) to destination country \(j \) divided by the population of the origin country \(i \) at time \(t \). \(T_{MP_i} \) represents the population-weighted annual average of monthly mean temperature in the origin country \(i \) in degree Celsius. **\(P_{CP_i} \)** represents the population-weighted annual average of monthly precipitation.

** We use annual average temperature and precipitation data, since we focus on international migration and Piguet, Pécoud, and De Guchteneire summarized that “rapid onset phenomena lead overwhelmingly to short-term internal displacements rather than long-term or long-distance migration”(18). However, rapid onset extreme events also affect the annual average weather data. For instance, a heat wave increases the average temperature, and flooding increases the total precipitation of a particular year. Since international migration is more likely to be permanent as compared to internal migration, the model by construction intends to
total precipitation in the origin country i in millimeters. A_i is a dummy variable that equals 1 if the origin country i is defined as agriculture-dependent, 0 otherwise. $x_{i,t-1}$ and $z_{j,t-1}$ are other control variables specific to origin country i and destination country j, respectively, such as the natural logarithm of GDP per capita, which are commonly accepted as the main determinant of migration. The lagged value of GDP per capita is employed to address possible reverse causality that migration flow affects destination countries’ income (8). θ_{ij} denotes country-pair fixed effects, which capture time-invariant unobserved characteristics between two specific countries, such as distance, historical and cultural ties, linguistic distance, and many more. Using country-pair fixed effects, we only explore variation over time within each country pair. $d_{i,year_t}$ and $d_{j,year_t}$ denote origin and destination country-specific linear time trend, which control for factors evolving over time within specific countries, such as urbanization, employment possibilities, welfare schemes, migrant networks or immigration policy schemes. ϵ_{ijyt} denotes the error term. In our empirical work, we always report robust standard errors clustered at the country-pair level to allow for within-country-pair correlation of the error term. $\beta_0, \beta_1, \beta_2, \delta_1, \delta_2, \phi$, and φ are parameters to be estimated. The key parameters of interest are δ_1 and δ_2, which capture the differential weather effects in agriculture-dependent countries versus the other countries.

To provide more direct evidence on the role of agriculture as the intermediate linkage between weather and outmigration, we follow an empirical strategy similar to Feng, Krueger, and

†† In studies of climate impact on agriculture, growing season weather variables are usually used. However, for cereal yields (including corn, rice, wheat, and many more) from all the countries, growing seasons are rather diverse, so annual weather variables are a better choice.
Oppenheimer (22) and Feng, Oppenheimer and Schlenker (40) and estimate the elasticity of migration with respect to cereal yields. Our FE-2SLS regression model is as follows:

\[
\ln Y_i = \beta_0 + \beta_1 TMP_i + \beta_2 PCP_i + f_i + d_i \text{year} + \epsilon_i \tag{8}
\]

\[
\ln M_i = \gamma_0 + \gamma_1 \ln Y_i + h_i + c_i \text{year} + \mu_i \tag{9}
\]

In the first stage, the natural logarithm of cereal yields, \(\ln Y_i \), is regressed on annual average of monthly mean temperature and monthly total precipitation. In the second stage, the natural logarithm of outmigration rate is regressed on predicted cereal yields from the first stage. \(f_i \) and \(h_i \) denote country fixed effects, \(d_i \text{year} \) stand for the origin country-specific linear time trends. Unlike the reduced-form model shown in Eq. 7, in the FE-2SLS specification, we aggregate outmigration to all destination countries for each origin country.
ACKNOWLEDGEMENTS. We thank conference participants at the Heartland Environmental & Resource Economics Workshop at the University of Illinois at Urbana-Champaign, and the 5th NORFACE Migration Conference for extensive comments. We thank colleagues in Princeton University for helpful discussions and comments. Cai and Oppenheimer gratefully acknowledge support from the High Meadows Foundation. Feng’s research is supported by Program for New Century Excellent Talents in University (NCET-12-0903) of the Ministry of Education of China. Pytliková’s research is supported by the NORFACE Migration Program.
References:

Table 1. Climate and international migration: the reduced-form regression

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0.011**</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Temperature × Agriculture</td>
<td>0.047***</td>
<td>0.046***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.013)</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>0.0003</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0002)</td>
<td>(0.0002)</td>
</tr>
<tr>
<td>Precipitation × Agriculture</td>
<td>0.0012***</td>
<td>0.0012**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.0005)</td>
<td></td>
</tr>
<tr>
<td>Log of lagged origin GDP per capita</td>
<td>-0.360***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log of lagged destination GDP per capita</td>
<td>1.081***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country-pair fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Origin and destination country-specific linear time trend</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>95,712</td>
<td>95,712</td>
<td>95,712</td>
</tr>
<tr>
<td>Number of origin countries</td>
<td>163</td>
<td>163</td>
<td>163</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.9369</td>
<td>0.9369</td>
<td>0.9374</td>
</tr>
<tr>
<td>Temperature effect in agriculture-dependent countries</td>
<td>0.050***</td>
<td>0.050***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
<td></td>
</tr>
</tbody>
</table>

Dependent variable is the natural logarithm of migration rate from origin country i to destination country j. Temperature and precipitation variables are measured in country i. The dummy variable “Agriculture” in the interaction term is defined where the top 25% agriculture-dependent countries are assigned with 1, and the remaining countries are assigned with 0. Robust standard errors clustered by country pairs are reported in parentheses. *** p<0.01; ** p<0.05; * p<0.1.
Table 2. Robustness checks for the reduced-form model

<table>
<thead>
<tr>
<th>Panel</th>
<th>Definition</th>
<th>Top 33%</th>
<th>Top 25%</th>
<th>Top 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline specification</td>
<td></td>
<td>0.019* (0.011)</td>
<td>0.046*** (0.013)</td>
<td>0.055*** (0.013)</td>
</tr>
<tr>
<td>Panel A: Controlling for lagged one year temperature and precipitation</td>
<td>0.008 (0.010)</td>
<td>0.031** (0.012)</td>
<td>0.042*** (0.013)</td>
<td></td>
</tr>
<tr>
<td>Panel B: Controlling for lagged temperature and precipitation (up to five years)</td>
<td>0.005 (0.011)</td>
<td>0.028** (0.013)</td>
<td>0.041*** (0.014)</td>
<td></td>
</tr>
<tr>
<td>Panel C: Controlling for the log of lagged migration stock</td>
<td>0.019* (0.011)</td>
<td>0.044*** (0.013)</td>
<td>0.052*** (0.014)</td>
<td></td>
</tr>
<tr>
<td>Panel D: Controlling for the log of lagged one year migration rate</td>
<td>0.013 (0.009)</td>
<td>0.025** (0.010)</td>
<td>0.027*** (0.010)</td>
<td></td>
</tr>
<tr>
<td>Panel E: Controlling for origin country-specific quadratic time trend</td>
<td>0.012 (0.010)</td>
<td>0.031*** (0.012)</td>
<td>0.043*** (0.013)</td>
<td></td>
</tr>
<tr>
<td>Panel F: Controlling for both origin and destination country fixed effects</td>
<td>0.050*** (0.013)</td>
<td>0.076*** (0.016)</td>
<td>0.079*** (0.017)</td>
<td></td>
</tr>
<tr>
<td>Panel G: Regressions weighted by the natural logarithm of origin country population</td>
<td>0.022*** (0.011)</td>
<td>0.049*** (0.013)</td>
<td>0.057*** (0.014)</td>
<td></td>
</tr>
<tr>
<td>Panel H: Using the natural logarithm of migration flows as dependent variable</td>
<td>0.020* (0.011)</td>
<td>0.046*** (0.013)</td>
<td>0.053*** (0.013)</td>
<td></td>
</tr>
<tr>
<td>Panel I: Using lagged temperature and precipitation as independent variable</td>
<td>0.029**** (0.011)</td>
<td>0.038*** (0.013)</td>
<td>0.037*** (0.014)</td>
<td></td>
</tr>
<tr>
<td>Panel J: Dropping observations with top 5% country pairs by migration flows</td>
<td>0.020* (0.011)</td>
<td>0.047*** (0.013)</td>
<td>0.054*** (0.013)</td>
<td></td>
</tr>
<tr>
<td>Panel K: Dropping observations with top 1% country pairs by migration flows</td>
<td>0.019* (0.011)</td>
<td>0.046*** (0.013)</td>
<td>0.055*** (0.013)</td>
<td></td>
</tr>
<tr>
<td>Panel L: Dropping observations with zero migration flows</td>
<td>0.028** (0.012)</td>
<td>0.060*** (0.015)</td>
<td>0.066*** (0.017)</td>
<td></td>
</tr>
</tbody>
</table>

The coefficients of the interaction term between temperature and agricultural dependence are reported here. Each column represents different definitions of agricultural countries, where the top 33%, top 25%, or top 20% agriculture-dependent countries are assigned with 1, and the remaining countries are assigned with 0. In Panel F, control variables such as distance between the most populated cities, common language, colonial tie, and common border are included in the model, since these country-pair variables are no longer controlled for without country-pair fixed effects. Robust standard errors clustered by country pairs are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Table 3. Temperature effects by popularity of migration routes between origins and destinations

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0.019</td>
<td>0.003</td>
<td>-0.001</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.010)</td>
<td>(0.009)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Temperature × Agriculture</td>
<td>0.020</td>
<td>-0.007</td>
<td>0.028</td>
<td>0.063***</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.019)</td>
<td>(0.021)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>-0.001**</td>
<td>-0.000</td>
<td>0.001**</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Precipitation × Agriculture</td>
<td>0.001</td>
<td>0.001*</td>
<td>0.002*</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Origin and destination log of lagged GDP per capita</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country-pair fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Destination and origin country-specific linear time trend</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>17,923</td>
<td>24,898</td>
<td>29,398</td>
<td>33,807</td>
</tr>
<tr>
<td>Number of id</td>
<td>1,677</td>
<td>1,844</td>
<td>1,821</td>
<td>1,882</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.9000</td>
<td>0.8855</td>
<td>0.8887</td>
<td>0.9302</td>
</tr>
</tbody>
</table>

We split the sample into four quartiles determined by the popularity of destination countries (based on migration stock) for each origin country, where column (1) only includes destination countries with small migration stock from each origin country, and column (4) only includes destination countries with large migration stock from each origin country. Robust standard errors clustered by country pairs are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Table 4. The second stage results: International migration and cereal yields

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log of origin cereal yields</td>
<td>Panel A: FE-OLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.016</td>
<td>-0.270**</td>
<td>-0.141</td>
<td>-0.548**</td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.115)</td>
<td>(0.137)</td>
<td>(0.201)</td>
</tr>
<tr>
<td>Log of origin cereal yields</td>
<td>Panel B: FE-2SLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4.772</td>
<td>2.107</td>
<td>-1.859</td>
<td>-2.405**</td>
</tr>
<tr>
<td></td>
<td>(20.650)</td>
<td>(1.542)</td>
<td>(1.218)</td>
<td>(0.974)</td>
</tr>
<tr>
<td>Country FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country-specific time trend</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Countries</td>
<td>40</td>
<td>39</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Observations</td>
<td>1,158</td>
<td>1,125</td>
<td>1,069</td>
<td>1,138</td>
</tr>
</tbody>
</table>

The dependent variable is the natural logarithm of total outmigration rate from one country to all the countries. Columns 1-4 are four country groups divided by the lower quartile, median, and the upper quartile in terms of the share of agriculture value added in GDP, where column (1) represents the least agriculture-dependent countries, and column (4) represents the most agriculture-dependent countries. Robust standard errors clustered by country are reported in parentheses. *** p<0.01; ** p<0.05; * p<0.1.
Table 5. Robustness checks for the instrumental variables results

<table>
<thead>
<tr>
<th></th>
<th>F statistic (Prob > F) in the first stage</th>
<th>Coefficients of cereal yields in the second stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FE-2SLS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE-LIML</td>
</tr>
<tr>
<td>Baseline specification</td>
<td>6.34</td>
<td>-2.405**</td>
</tr>
<tr>
<td></td>
<td>(0.0043)</td>
<td>-2.405**</td>
</tr>
<tr>
<td></td>
<td>(0.974)</td>
<td>(0.974)</td>
</tr>
<tr>
<td>Panel A: Using only temperature as instrument</td>
<td>9.99</td>
<td>-2.423**</td>
</tr>
<tr>
<td></td>
<td>(0.0031)</td>
<td>-2.423**</td>
</tr>
<tr>
<td></td>
<td>(0.967)</td>
<td>(0.967)</td>
</tr>
<tr>
<td>Panel B: Using only precipitation as instrument</td>
<td>10.13</td>
<td>-2.375*</td>
</tr>
<tr>
<td></td>
<td>(0.0029)</td>
<td>-2.375*</td>
</tr>
<tr>
<td></td>
<td>(1.159)</td>
<td>(1.159)</td>
</tr>
<tr>
<td>Panel C: Using lagged yield and climate variables</td>
<td>5.33</td>
<td>-3.029**</td>
</tr>
<tr>
<td></td>
<td>(0.0093)</td>
<td>-3.131**</td>
</tr>
<tr>
<td></td>
<td>(1.245)</td>
<td>(1.312)</td>
</tr>
<tr>
<td>Panel D: Also controlling for origin country GDP per capita</td>
<td>6.50</td>
<td>-3.326**</td>
</tr>
<tr>
<td></td>
<td>(0.0036)</td>
<td>-2.330**</td>
</tr>
<tr>
<td></td>
<td>(0.945)</td>
<td>(0.947)</td>
</tr>
<tr>
<td>Panel E: Using the natural logarithm of migration flows</td>
<td>6.34</td>
<td>-2.468**</td>
</tr>
<tr>
<td></td>
<td>(0.0043)</td>
<td>-2.468**</td>
</tr>
<tr>
<td></td>
<td>(0.967)</td>
<td>(0.967)</td>
</tr>
<tr>
<td>Panel F: Using the top 33% agricultural countries</td>
<td>8.59</td>
<td>-2.098**</td>
</tr>
<tr>
<td></td>
<td>(0.0006)</td>
<td>-2.157**</td>
</tr>
<tr>
<td></td>
<td>(0.833)</td>
<td>(0.869)</td>
</tr>
<tr>
<td>Panel G: Using the top 20% agriculture countries</td>
<td>5.95</td>
<td>-2.561**</td>
</tr>
<tr>
<td></td>
<td>(0.0067)</td>
<td>-2.609**</td>
</tr>
<tr>
<td></td>
<td>(0.964)</td>
<td>(0.992)</td>
</tr>
</tbody>
</table>

The coefficients reported in this table are for the most agriculture-dependent countries, as we reported in column (4) in Table 4. Panels A – E are based on the top 25% agricultural countries. Robust standard errors clustered by country are reported in parentheses. *** p<0.01; ** p<0.05; * p<0.1.
Supporting Information

SI Literature Review

Climate and Human Migration. Many studies found a significant influence of climate on human migration. Using unbalanced panel data, Barrios, Bertinelli, and Strobl found that rainfall is likely to affect rural-to-urban migration in sub-Saharan Africa (45). Feng, Krueger, and Oppenheimer, and Feng and Oppenheimer used a Mexican state-level panel data of migration flows, and found a significant semi-elasticity of migration from Mexico to the United States with respect to climate-driven changes in crop yields (22, 23). Gray and Mueller showed that crop failures driven by rainfall deficits have a strong effect on mobility in Bangladesh, while flooding only has a modest effect (20). Using a country-level panel data of sub-Saharan Africa, Marchiori, Maystadt, and Schumacher found that weather anomalies increase internal and international migration through both amenity (direct effect) and economic geography (indirect effect) channels (10).

In contrast, some other studies have not found a significant role for climate. Based on a survey conducted in Tuvalu, Mortreux and Barnett showed that the vast majority of potential migrants do not consider climate change as a possible reason for leaving the country (24). Naudé also reported that natural disasters do not have significant effects on international migration across sub-Saharan African countries (25). However, these studies did not consider possible indirect impact of climate through income differences and other channels. For example, in the survey data used by Mortreux and Barnett, migrants might not be aware of the possibility that climate change also implicitly contributes to socio-economic shocks which directly affect migration, and thus do not cite climate change as a reason to leave (24). When discussing the insignificant effects of natural disasters on migration, Naudé also acknowledged that natural disasters may affect conflict and job opportunities and, as such, have an indirect impact on migration (25).
SI Text

Summary Statistics. Our migration data covers 163 origin countries, and 42 of them are also destination countries, with a total of 95,712 observations during the period of 1980-2010. On average, for an origin country, a total number of about 1,077 people migrate to another specific country during a specific year. During the period of 1980-2010, there were in total about 108 million people migrating to another country; among them, about 85 million (50 million) people migrated through the top 5% (1%) migration routes by country pairs. Table S1 presents more detailed information about our dataset. We observe that non-agricultural countries on average have higher outmigration rates. This may be due to the fact that most of agricultural countries are also poor, which usually have limited out-migration flows due to poverty constraints (7, 14, 46–48). GDP per capita and cereal yields are lower for agricultural countries. Agricultural countries have on average higher temperatures as they are more likely to be located in lower latitude regions than non-agricultural countries. Agricultural countries also tend to have higher precipitation.
Table S1. Summary statistics

<table>
<thead>
<tr>
<th></th>
<th>Four equal-sized country groups</th>
<th>All countries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Total outmigration (millions)</td>
<td>38.6</td>
<td>24.0</td>
</tr>
<tr>
<td>Total outmigration in top 5% migration routes (millions)</td>
<td>30.8</td>
<td>18.6</td>
</tr>
<tr>
<td>Total outmigration in top 1% migration routes (millions)</td>
<td>17.8</td>
<td>10.4</td>
</tr>
<tr>
<td>Average annual outmigration rate</td>
<td>0.18%</td>
<td>0.30%</td>
</tr>
<tr>
<td></td>
<td>(0.18%)</td>
<td>(0.38%)</td>
</tr>
<tr>
<td>GDP per capita (2005 US dollar)</td>
<td>23438</td>
<td>8635</td>
</tr>
<tr>
<td></td>
<td>(13771)</td>
<td>(6299)</td>
</tr>
<tr>
<td>Cereal yields (Kilogram per hectare)</td>
<td>3709</td>
<td>2594</td>
</tr>
<tr>
<td></td>
<td>(2076)</td>
<td>(1569)</td>
</tr>
<tr>
<td>The percentage of agriculture, value added in GDP</td>
<td>3.55%</td>
<td>10.14%</td>
</tr>
<tr>
<td></td>
<td>(2.22%)</td>
<td>(4.36%)</td>
</tr>
<tr>
<td>Monthly mean temperature (Degree Celsius)</td>
<td>15.712</td>
<td>18.485</td>
</tr>
<tr>
<td></td>
<td>(8.806)</td>
<td>(7.634)</td>
</tr>
<tr>
<td>Monthly total precipitation (Millimeters)</td>
<td>60.195</td>
<td>101.828</td>
</tr>
<tr>
<td></td>
<td>(39.230)</td>
<td>(77.894)</td>
</tr>
</tbody>
</table>

Columns 1-4 are four country groups divided by the lower quartile, median, and the upper quartile in terms of the share of agriculture value added in GDP, where column (1) represents the least agriculture-dependent countries, and column (4) includes the most agriculture-dependent countries. Column (5) represents all the countries. Standard deviations are in parentheses.
Table S2. The first stage results: Cereal yields and climate

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-0.000</td>
<td>-0.037**</td>
<td>-0.026**</td>
<td>-0.030**</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.012)</td>
<td>(0.009)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001**</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>1,158</td>
<td>1,125</td>
<td>1,069</td>
<td>1,138</td>
</tr>
<tr>
<td>Number of Countries</td>
<td>40</td>
<td>39</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.323</td>
<td>0.471</td>
<td>0.373</td>
<td>0.488</td>
</tr>
<tr>
<td>F statistics</td>
<td>0.02</td>
<td>4.72</td>
<td>4.87</td>
<td>6.34</td>
</tr>
<tr>
<td>Prob > F</td>
<td>0.9785</td>
<td>0.0148</td>
<td>0.013</td>
<td>0.0043</td>
</tr>
</tbody>
</table>

The dependent variable is the natural logarithm of cereal yields. Columns 1-4 are four country groups divided by the lower quartile, median, and the upper quartile based on the share of agriculture value added in GDP, where column (1) represents the least agriculture-dependent countries, and column (4) represents the most agriculture-dependent countries. Robust standard errors clustered by country are reported in parentheses. *** p<0.01; ** p<0.05; * p<0.1.
Year	USA	AUT	BEL	BGR	CAN	CHE	CHL	CYP	CZE	DEU	DNK	ESP	EST	FIN	FRA	GBR	GRC	HRV	HUN	IRL	ISL	ISR	ITA			
2010	162	163	164		124	163	164	107	165	160																
2009	161	163	160	164	126	140	131	163	164	107	164	160	26													
2008	159	163	159	164	164	126	140	164	134	163	164	107	164	160	113	21				164	130	164	149	162		
2007	160	163	90	163	164	126	140	162	136	163	164	107	163	160	115	19				163	165	120	12	149	157	
2006	162	163	91	164	126	140	162	135	163	164	102	163	160	114	32					163	165	122	2	149	159	
2005	158	163	82	164	126	140	162	129	163	164	101	163	160	101	107					163	161	111	1	149	161	
2004	160	163	68	164	126	140	162	136	163	164	100	163	160	101	163	100	163	100				2	149	161		
2003	159	163	67	164	126	140	162	132	163	164	105	163	160	119	102					163	161	111	2	149	159	
2002	158	163	67	164			160	131	163	164	105	160	120	92						161	102	2	149	160		
2001	160	163	67	164			117	107	76	164	100	160	121	97						161	105	2	149	158		
2000	158	163	67	164			161	104	75	164	164	160	121	103						161	104	2	149	160		
1999	159	163	67	164			102	163	164	164	112	160	112	103						161	104	2	149	158		
1998	155	163	67	164	117	163	164	164	164	164	160	164	107	161	116	106	2	149	42	160						
1997	157	163	52	164	105	163	164	38	160	112	160	107	161	116	106						2	149	160			
1996	156	163	52	164	110	163	164	53	160	112	49	163	108	2	149	157										
1995	152	52	164	111	163	164	38	160	112	50	162	109	2	149	46											
1994	152	52	164	102	163	164	38	160	113	25	163	109	2	149	31											
1993	147	45	164	93	163	164	38	160	37	163	97	2	149	31												
1992	148	45	164	159	164	43	160	43	163	103	2	149	31													
1991	137	45	164	144	164	41	160	48	163	92	2	149	31													
1990	134	45	164	41	164	41	160	38	161	95	2	149	31													
1989	132	46	164	100	164	41	160	31	92	2	149	31														
1988	127	24	164	100	164	41	160	38	95	2	149	31														
1987	134	26	164	100	164	41	160	29	95	2	149	31														
1986	132	26	164	100	164	41	160	33	99	2	149	31														
1985	134	26	164	100	164	41	160	34	90	18	31															
1984	131	26	164	100	164	160																				
1983	139	26	164	100	164	160																				
1982	136	26	164	100	164	160																				
1981	26	164	100	164	160																					
1980	26	164	100	164																						

Each cell in the table represents the numbers of origin countries for a given destination country in a particular year in our dataset.
Table S3. Country-Year coverage migration flows, Cont.

<table>
<thead>
<tr>
<th>Year</th>
<th>JPN</th>
<th>KOR</th>
<th>LTU</th>
<th>LUX</th>
<th>LVA</th>
<th>MEX</th>
<th>MLT</th>
<th>NLD</th>
<th>NZL</th>
<th>POL</th>
<th>PRT</th>
<th>ROM</th>
<th>RUS</th>
<th>SVK</th>
<th>SVN</th>
<th>SWE</th>
<th>TUR</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>163</td>
<td>131</td>
<td>160</td>
<td>162</td>
<td>163</td>
<td>113</td>
<td>136</td>
<td>163</td>
<td>164</td>
<td>163</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>164</td>
<td>55</td>
<td>164</td>
<td>130</td>
<td>163</td>
<td>117</td>
<td>163</td>
<td>162</td>
<td>163</td>
<td>111</td>
<td>138</td>
<td>163</td>
<td>164</td>
<td>163</td>
<td>164</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>163</td>
<td>54</td>
<td>164</td>
<td>135</td>
<td>164</td>
<td>116</td>
<td>162</td>
<td>162</td>
<td>163</td>
<td>163</td>
<td>132</td>
<td>70</td>
<td>163</td>
<td>164</td>
<td>163</td>
<td>163</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>162</td>
<td>27</td>
<td>163</td>
<td>132</td>
<td>163</td>
<td>116</td>
<td>164</td>
<td>162</td>
<td>162</td>
<td>163</td>
<td>163</td>
<td>132</td>
<td>163</td>
<td>163</td>
<td>164</td>
<td>163</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>161</td>
<td>10</td>
<td>163</td>
<td>131</td>
<td>163</td>
<td>160</td>
<td>162</td>
<td>162</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>109</td>
<td>28</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>10</td>
<td>10</td>
<td>163</td>
<td>129</td>
<td>163</td>
<td>161</td>
<td>162</td>
<td>162</td>
<td>163</td>
<td>163</td>
<td>116</td>
<td>26</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>164</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>10</td>
<td>10</td>
<td>163</td>
<td>128</td>
<td>163</td>
<td>164</td>
<td>162</td>
<td>162</td>
<td>163</td>
<td>163</td>
<td>116</td>
<td>28</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>164</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>10</td>
<td>10</td>
<td>163</td>
<td>123</td>
<td>163</td>
<td>163</td>
<td>160</td>
<td>162</td>
<td>162</td>
<td>163</td>
<td>163</td>
<td>116</td>
<td>28</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>10</td>
<td>10</td>
<td>162</td>
<td>116</td>
<td>161</td>
<td>163</td>
<td>162</td>
<td>163</td>
<td>163</td>
<td>116</td>
<td>26</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>164</td>
<td>163</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>10</td>
<td>10</td>
<td>162</td>
<td>111</td>
<td>162</td>
<td>163</td>
<td>161</td>
<td>162</td>
<td>163</td>
<td>163</td>
<td>116</td>
<td>28</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>164</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>14</td>
<td>10</td>
<td>162</td>
<td>114</td>
<td>162</td>
<td>118</td>
<td>158</td>
<td>162</td>
<td>163</td>
<td>163</td>
<td>105</td>
<td>26</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>14</td>
<td>162</td>
<td>117</td>
<td>162</td>
<td>118</td>
<td>158</td>
<td>162</td>
<td>163</td>
<td>163</td>
<td>105</td>
<td>26</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>14</td>
<td>104</td>
<td>161</td>
<td>162</td>
<td>163</td>
<td>14</td>
<td>131</td>
<td>163</td>
<td>22</td>
<td>146</td>
<td>141</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>14</td>
<td>101</td>
<td>159</td>
<td>161</td>
<td>163</td>
<td>14</td>
<td>131</td>
<td>163</td>
<td>22</td>
<td>151</td>
<td>135</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>14</td>
<td>102</td>
<td>160</td>
<td>162</td>
<td>163</td>
<td>13</td>
<td>131</td>
<td>163</td>
<td>22</td>
<td>148</td>
<td>134</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>14</td>
<td>97</td>
<td>156</td>
<td>162</td>
<td>163</td>
<td>13</td>
<td>131</td>
<td>145</td>
<td>152</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>14</td>
<td>90</td>
<td>158</td>
<td>162</td>
<td>163</td>
<td>10</td>
<td>130</td>
<td>151</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>14</td>
<td>97</td>
<td>148</td>
<td>162</td>
<td>163</td>
<td>10</td>
<td>131</td>
<td>142</td>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>11</td>
<td>88</td>
<td>137</td>
<td>161</td>
<td>163</td>
<td>10</td>
<td>131</td>
<td>131</td>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>11</td>
<td>83</td>
<td>139</td>
<td>161</td>
<td>163</td>
<td>9</td>
<td>130</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>11</td>
<td>86</td>
<td>138</td>
<td>162</td>
<td>163</td>
<td>9</td>
<td>127</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>11</td>
<td>88</td>
<td>137</td>
<td>162</td>
<td>163</td>
<td></td>
<td>121</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>7</td>
<td>86</td>
<td>138</td>
<td>162</td>
<td>163</td>
<td></td>
<td>121</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>7</td>
<td></td>
<td>161</td>
<td>163</td>
<td></td>
<td></td>
<td>124</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>7</td>
<td></td>
<td>105</td>
<td>163</td>
<td></td>
<td></td>
<td>121</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>7</td>
<td></td>
<td>163</td>
<td>163</td>
<td></td>
<td></td>
<td>114</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>7</td>
<td></td>
<td>163</td>
<td>163</td>
<td></td>
<td></td>
<td>110</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>7</td>
<td></td>
<td>163</td>
<td>163</td>
<td></td>
<td></td>
<td>109</td>
<td>164</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
<td>162</td>
<td></td>
</tr>
</tbody>
</table>

Each cell in the table represents the numbers of origin countries for a given destination country in a particular year in our dataset.
<table>
<thead>
<tr>
<th>Destinations</th>
<th>Definition of “foreigner” based on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Country of Birth</td>
</tr>
<tr>
<td>Austria</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Belgium</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Canada</td>
<td>Country of Birth</td>
</tr>
<tr>
<td>Chile</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Denmark</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Estonia</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Finland</td>
<td>Citizenship</td>
</tr>
<tr>
<td>France</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Germany</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Greece</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Hungary</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Iceland</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Ireland</td>
<td>Country of Birth</td>
</tr>
<tr>
<td>Israel</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Italy</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Japan</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Korea</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Latvia</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Lithuania</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Malta</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Mexico</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Country of Birth</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Last Permanent Residence</td>
</tr>
<tr>
<td>Poland</td>
<td>Country of Origin</td>
</tr>
<tr>
<td>Portugal</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Romania</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>Country of Origin</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Spain</td>
<td>Country of Origin</td>
</tr>
<tr>
<td>Sweden</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Citizenship</td>
</tr>
<tr>
<td>Turkey</td>
<td>Citizenship</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Citizenship</td>
</tr>
<tr>
<td>United States</td>
<td>Country of Birth</td>
</tr>
</tbody>
</table>