Credit Booms and Macroprudential Policies in LICs

Joseba Martinez, Pau Rabanal, D. Filiz Unsal

AEA Meetings 2016

January 5, 2016
Motivation and Goals

- Financial deepening and inclusion much needed in LICs
- Periods of credit expansion often (but not always) end in crisis
 - Why do ‘bad booms’ happen?
 - Recognize a bad boom as it is happening?
 - Turn a bad boom into a good boom?
 - => Role for macroprudential (or micro-) policy?

- Our focus is exclusively on private, intermediated credit
- LICs face larger obstacles to policy implementation:
 - Informational requirements
 - Institutional hurdles
- Goal: build a model that is tailored to analysis of LIC credit markets and macroprudential policy
- Think about implementability of macroprudential policy in LIC context
Motivation: Credit Markets in LICs

- One size does NOT fit all
- Pathologies are not unique to LICs - but more severe
- Some common features:
 - Information scarce and asymmetrically distributed
 - Uncompetitive funding and loan markets
 - Large exogenous shocks
 - Real economy
 - Liquidity/financial shocks
 - Limited enforcement of contracts
 - Frictional spot markets, limited price discovery
 - Low proportion of economy’s wealth held in liquid form
 - Limited lending capacity
 - Dollarization
 - Role of foreign banks
Motivation: Empirics of Credit Booms in LICs

 - Surges in capital inflows are associated with credit booms
 - Domestic and external factors play a role in driving credit booms
- Gorton and Ordoñez (2015)
 - Booms start with an increase of total factor productivity (TFP) and labor productivity (LP), such growth falls much faster subsequently for bad booms
- Credit standards: countercyclical (IMF staff reports)

Credit standards, bank competition, business cycle: Ruckes (2004), Dell’Ariccia and Marquez (2006)

Good and bad booms: Mendoza and Terrones (2008), Gorton and Ordoñez (2015)

Micro empirics: Beaman, Karlan, Thuysbaert, Udry (2015)

The Model

- A simple static model of frictional financial intermediation
- *Extensive margin* of credit - new projects/plants/firms
- Profit maximizing entrepreneurs and bankers

Entrepreneurs:
- Have idea and wealth - but not enough to start project
- Can choose to apply for loans and if successful, start a firm
- Alternatively, invest their wealth in best possible alternative
- Some are intrinsically better (ideas have higher expected NPV), but they all look the same
- Entrepreneurs know which type they are

Bankers:
- Hold wealth in liquid form
- Have lending technology

Contracts:
- Bankers make loans (size, rate) to entrepreneurs
- Borrower fails to pay: banker seizes firm
- No recourse to entrepreneurs outside wealth
Entrepreneurs:

- Endowed with wealth w
- Technology: invest $k > w$ to yield R^s w.p. p^i, R^f w.p. $1 - p^i$
- $i \in \{b, g\}; p^g > p^b$
- $p^g R^s + (1 - p^g) R^f > \rho^b k > p^b R^s + (1 - p^b) R^f$
- Mass θ of good entrepreneurs and $1 - \theta$ bad
- Entrepreneurs can store wealth at rate ρ^e
Banks:
- Mass B of bankers
- Each banker can originate one loan per period
- Bankers’ opportunity cost of funds: ρ^b

Baseline model:
- $B < \theta$ - there are fewer loans available than good projects
- Bankers endowed with liquidity L at cost ρ^e
- Liquidity not lent out stored at ρ^b
Model: Alternative Interpretations

- Setup accommodates range of macro contexts
- $\rho^b (\rho^e)$ is bankers’ (entrepreneurs’) opportunity cost of funds
 1. Bank has L units of domestic currency liquidity. Entrepreneurs earn ρ^e on bank deposits, government bonds yield ρ^b.
 2. L is in USD, ρ^e is onshore USD depo rate and ρ^b is offshore USD depo rate
 3. Dollarized economy, bank can borrow abroad at ρ^b
 4. Parent bank funds domestic subsidiary at ρ^b
Model: Loan Contract

- Loan contract is a pair \((r, y)\), where \(y\) is entrepreneurs contribution to project (equity)
- \(l = k - y; \ w \leq y \leq w\)
- Limited liability for entrepreneurs:

\[
\max(R^i - r(k - y), 0), \ i \in \{s, f\}
\]

With \(R^f < r(k - w)\), entrepreneur expected profit:

\[
\pi^{e,i} = p^i(R^s - r(k - y)) + \rho^e(w - y)), \ i \in \{b, g\}
\]

- Participation constraint:

\[
\pi^{e,i} \geq \rho^e w
\]

- Entrepreneurs’ surplus:

\[
S^{e,i}(r, y) = \pi^{e,i} - \rho^e w = p^i(R^s - r(k - y)) - \rho^e y
\]
Model: Loan Contract

- Limited liability for entrepreneurs \implies bank payoff:
 \[\min(r(k - y), R^i), \quad i \in \{s, f\} \]

- Expected profit from a loan (r, y)
 \[\pi^b = p^j r(k - y) + (1 - p^j) R^f + \rho^b(L - (k - y)) \]

- $j \in \{b, g, p\}; \quad p^p = \theta p^g + (1 - \theta) p^b$

- Participation constraint:
 \[\pi^b \geq \rho^b L \]

- Banks’ surplus:
 \[S^{b,j}(r, y) = \pi^b - \rho^b L = p^j r(k - y) + (1 - p^j) R^f - \rho^b(k - y) \]
Credit market is a sequential game

First stage: entrepreneurs decide whether to apply for loans or not
- Applying for a loan costs ϵ (non-pecuniary cost)

Second stage: bankers are randomly matched with applicants
- Bank offers a contract (r, y) to its potential borrower

Third stage: entrepreneurs accept or reject contract
- If reject, entrepreneur (bank) stores her wealth (liquidity)
- If accept, project is activated, entrepreneur stores $w - y$ and bank stores $L - (k - y)$
Model: Surplus sharing

- How is \((r, y)\) determined in a match?
- Interested in studying effect that surplus distribution has on equilibrium
- Intuitively: more competitive credit market, lower share of surplus bankers keep
- Surplus sharing rule: banker sets \(r\) such that it gets \(\eta \in (0, 1)\) of expected surplus from a match
- In equilibrium, \(y\) will be set to either maximize match surplus or screen bad entrepreneurs
Three possible equilibria (from best to worst):

1. Only good projects funded ("good" boom - separating)
2. Both types of projects funded on same terms ("bad" boom - pooling)
3. No credit

Bad projects are negative NPV so no separating equilibrium where both types borrow
Equilibrium: Joint Surplus

- Surplus at a screening equilibrium:
 \[S^g(y) \equiv S^{b,g} + S^{e,g} = p^g R^s + (1 - p^g) R^f - \rho^b k + (\rho^b - \rho^e) y \]

- Surplus at a pooling equilibrium:
 \[S^p(y) \equiv S^{b,p} + \theta S^{e,g} + (1 - \theta) S^{b,g} = p^p R^s + (1 - p^p) R^f - \rho^b k + (\rho^b - \rho^e) y \]

- Assume:
 \[p^p R^s + (1 - p^p) R^f > \rho^b k \]

- \(p^p < p^g \) so surplus at pooling is lower than at separating \(\forall y \)

- \(\rho^b > \rho^e \implies \) joint surplus maximized at \(y = w \)

- \(\rho^b < \rho^e \implies y = 0 \)
Max and min interest rates as function of y implied by participation constraints

$S^{e,i} = 0, \ i \in \{b, g\}$:

$$\bar{r}^i(y) = \frac{R^s}{k - y} - \frac{\rho^e y}{p^i(k - y)}$$

$S^{b,j} = 0, \ j \in \{g, p\}$:

$$r^j(y) = \frac{\rho^b}{p^j} - \frac{1 - p^j}{p^j} \frac{R^f}{k - y}$$

Equilibrium interest rate:

$$r^j(y, \eta) = (1 - \eta)r^j(y) + \eta \bar{r}^j(y)$$
Equilibrium: Interest Rate

Graph showing the relationship between interest rates and a variable y.
Equilibrium: Interest Rate

Separating

Pooling

r^g

r^p

r^b

r^g

r^g

r^p

r^p

r^p

r^p
Solve the credit market game by backward induction

Look for symmetric, pure strategy Bayesian Nash equilibria

Final stage is straightforward: entrepreneur type i accepts (r, y) if it satisfies participation constraint:

$$p^i(R^s - r(k - y)) - \rho^e y \geq 0$$

<table>
<thead>
<tr>
<th>(Good Applies, Bad Applies)</th>
<th>(r^s, y^s)</th>
<th>(r^p, y^p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Yes, No)</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>(Yes, Yes)</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>(No, No)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(No, Yes)</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>
Equilibrium: Contracting Stage

- Assume that both a screening and pooling equilibrium are feasible (necessary conditions hold)
- If both types apply for loan, when do bankers offer pooling contract?
 - Bad entrepreneur rejects the screening contract by definition \(\Rightarrow \) if borrower is bad, banker stores and earns zero surplus
 - If all apply, matched entrepreneur is good w.p. \(\theta \)
 - If both apply, pooling contract \((r^p, y^p)\) offered if:
 \[
 S^{b,p}(r^p, y^p) > \theta S^{b,g}(r^s, y^s)
 \]
- If the condition is satisfied, both types apply and \((r^p, y^p)\) is equilibrium contract
- If violated, only good apply and \((r^s, y^s)\) is equilibrium contract
- Why? Applying is costly, so bad only apply if probability of getting a loan is \(> 0 \)
Results

1. No credit equilibrium:

\[r^g(y) \geq \bar{r}^g(y) \quad \forall \quad y \in [\underline{w}, \overline{w}] \iff NPV^G < 0 \quad \text{and} \quad w < \underline{w} \]

2. If \(\rho^b > \rho^e \), equilibrium is always separating with \(y = w \)

3. \(y = \underline{w} \) at all pooling equilibria

4. If \(\rho^b < \rho^e \), equilibrium may be pooling or separating.

5. Pooling less likely as:
 1. \(\eta \) increases
 2. \(\rho^e \) decreases
 3. \(w \) increases
 4. \(\rho^b \) ambiguous
Results

- Bad booms in the yellow area, good booms in the blue
- From left to right: bankers keep more of the surplus
- Finding: lower competition lowers the probability of a bad boom
Macroprudential Policy

- Relationship between opportunity cost of funds for bankers and entrepreneurs determines existence of inefficient credit boom
- How do these vary with:
 - The business cycle
 - Global financial cycles
 - Domestic liquidity conditions
 - Monetary policy
- Exact answers will depend on macro context in which micro model is embedded
Macroprudential Policy: General Findings

- **Micro-prudential:**
 - Loan-level leverage limits very effective in turning a bad boom into a good boom
 - High informational requirement for implementation?

- **Capital requirements:**
 - Capital requirements work similarly to increasing η
 - Higher capital requirements can reduce probability of bad booms

- **Limits on loan growth (caps on banking licenses or loans)**
 - Will prevent bad booms - but at the cost of any credit growth

- **Monetary policy**
 - Interest rate targets dominate quantity targets from financial stability perspective
 - Control over opportunity cost of funds to banking sector effective tool for financial stability
 - Comes at cost of reducing volume of loans