Disclosure, Learning, and Coordination

H. Henry Cao, Yuan Ma, and Dongyan Ye∗

September 15, 2014

Abstract

We analyze how informed investors can learn from each other through disclosed trades. We show that disclosure always increases market efficiency but its effect on informed investors’ profits is ambiguous. When informed investors have highly complementary signals, disclosure makes them coordinate their trades, so their expected profits are higher. Moreover, an informed investor with very imprecise information would prefer competition in the presence of disclosure as he learns more from the other informed investor than the market maker and makes more profits than he would obtain if he is the only informed investor in the market. As a result, when information acquisition is costly and endogenous, there could exist herding in information acquisition.

JEL classification: G12, G14, G18, G19.

Keywords: strategic trading, trading disclosure.

∗Cao: Cheung Kong Graduate School of Business (CKGSB), Oriental Plaza, Tower E3, 3F, One East Chang An Avenue, Beijing 100738; email: hncao@ckgsb.edu.cn. Ma: email: mayuan@mayuan.com. Ye: CKGSB, Oriental Plaza, Tower E3, 3F, One East Chang An Avenue, Beijing 100738, China; email: dyye@ckgsb.edu.cn. We thank seminar participants at Berkeley-Stanford joint seminar series, Ohio State University, University of Utah, and University of Maryland for helpful comments. Correspondence should be addressed to H. Henry Cao.
How would informed investors communicate with each other in the financial market? One possibility is that they can share some of their information with each other.1 Alternatively, they can learn from each other through publicly observable actions such as disclosure of trades. Disclosure of trades can be mandatory when the regulators require informed investors to disclose their trades afterwards, or voluntary when they commit to disclose their trades through a third party.

Huddart, Hughes, and Levine (2001, HHL) study the disclosure effects with a monopolistic informed investor. They show that disclosure increases market liquidity, improves market efficiency, and unambiguously reduces informed investors’ expected profits. Their results provide support to policy makers who argue that disclosure would help level the playing field, reduce information asymmetry and benefit small investors.2

When there are multiple informed investors in the market, they not only compete but also learn from each other. The effects of disclosure on informed investors’ strategy are complicated. How would disclosure affect market efficiency and liquidity? How would it affect learning and competition among informed investors? Will disclosure always decrease informed investors’ profits?

In a duopolistic setting, it is sensible that disclosure will reduce informed investors’ profits when they have highly correlated private signals but it is less clear otherwise. Notice that not only the market maker can learn from disclosure, informed investors also learn more about each other’s signals. For investors with complementary signals, trade disclosure can act as a communication device that affects learning among informed investors differently from that of the market maker. We examine the effects of trading disclosure on trading strategy, market efficiency and market liquidity. We also analyze its effects on learning, competition among informed investors and their expected profits. Under what conditions, if any, would an informed investor prefer competition if they can learn more from each other gradually through disclosure? If so, will informed investors herd in their decision to acquire information? That is they would analyze stocks in which other informed investors are present.3

In particular, we consider a Kyle model of two informed investors each of whom is

1See, for example, Stein (2007) and Han and Yang (2013) on information sharing.

2Corporate insiders are required to disclose their trades to the Securities and Exchange Commission (SEC). Section 16(a) of the SEC Act requires the insiders to report their trades to the Commission within two business days following the transaction.

3Lakonishock, Shleifer and Vishny (1992) find that pension funds engage in herding with a stronger effect in smaller stocks.
required to disclose his trade immediately after the trade. In discrete time, we derive a recursive formula for the equilibrium, which can be solved by numerical method. When the trading interval goes to zero, we derive a closed-form formula for the equilibrium. To determine the impact of disclosure, we compare our closed-form equilibrium formula with that obtained in Back, Cao, and Willard (2000, BCW), whose model is the same except without disclosure.

Disclosure of informed investors’ trades creates incentives for informed investors to manipulate in that they sometimes trade against their own valuation to mislead the market, so that the market maker cannot perfectly infer information from their trades. As a result, the informed investors randomize to manipulate the market maker’s belief until the last moment of trading. The mixed strategy allows informed investors to maintain an informational advantage over the market for a longer period of time. We show that the combined random components in informed investors’ trade equals in distribution to that of liquidity traders. This is intuitively appealing as informed investors and liquidity traders will each contribute to half of the trading volume. Too much randomization will cause informed investors to lose a lot from randomized trade and too little randomization will cause informed investors to lose their informational advantage too early. To camouflage themselves, informed investors randomize such that their combined trading volume equals that of liquidity traders’.

The effects of trade disclosure on market efficiency is unambiguous. Market is more efficient at all times after disclosure. As informed investors know more about each other’s signals, their valuations converge more quickly and they trade more aggressively on their information, which in turn makes the market more efficient.

The effects on expected profits of informed investors and market liquidity are more complicated. Public disclosure has three effects on informed investors’ expected profits. The first is the randomization effect. As informed investors manipulate and add noise to their own trades, they lose money, which reduces their expected profits. The second is the learning effect. With trade disclosure, due to lower noise in observed trades as each informed investor knows the random component in their own trades, informed investors learn twice more about each other than the market maker, which in turn increases their expected profits. The third is the market efficiency effect. Disclosure increases market efficiency, which reduces expected profits of informed investors.

When informed investors have very precise signals, their signals are substitutes and they won’t be able to learn from each other as much. In this case the learning effect will be less
important and disclosure decreases expected profits of informed investors. Without disclosure, when investors have very noisy signals, they tend to wait until they know more from each other before they trade aggressively. Trade disclosure can reduce the incentive to wait and make investors trade more aggressively. Informed investors learn more from disclosure than the market maker as they know their own endogenous random trades. The coordination effect could dominate other effects and result in higher expected profits of informed investors. Moreover, the coordination effect could be so strong that an informed investor makes more profits in a duopolistic setting than what he would receive in a monopolistic setting. Therefore in the presence of disclosure, an informed investor could prefer to have competition. Indeed, an informed investor can even make more money in a duopolistic setting with disclosure than what he would expect in a monopolistic market without disclosure. Notice that this never happens in the absence of disclosure. Since each informed investor has more expected profits when other informed investors are around, it implies that investors may herd on information acquisition when the decision to acquire information is endogenized. There are multiple equilibria in which either all investors acquire information or none does.

Similarly, the effect on market liquidity is also ambiguous. Randomization will reduce the informational content in the aggregate order flow and thus increase market liquidity. However, learning among investors could reduce market liquidity. The reduction of asymmetric information would increase market liquidity. As a result, market liquidity can either increase or decrease depending on the parameters and the timing of the trades.

Interestingly, disclosure also makes informed investors to trade collusively when they have uncorrelated signals. In this case, investors coordinate implicitly as their combined trades are the same as a monopolistic informed investor who has all the signals in the market. With uncorrelated signals, investors learn to become collusive and their combined trading strategy converges to that of a monopolistic investor as they get closer to the end of trading.

We extend the model to more than two informed investors. In this case, the gains from learning by informed investors over that of the market maker is reduced as now each informed investor only knows $1/N$ of the randomized noise trades. As a result, disclosure always reduces informed investors’ profits. Nevertheless, with disclosure, it is still possible for an informed investor to make more profits in an oligopolistic setting than what he would receive in a monopolistic setting when the number of informed investors is strictly less than five and they have very imprecise information. Moreover, removing one informed investor
from trading in the market can make the rest of informed investors worse off. Informed investors still herd in their decision to acquire information.

The most related research is Huddart, Hughes, and Levine (2001, HHL), which studies disclosure effect in a discrete-time Kyle model with a monopolistic informed investor. They show that the informed investor uses a mixed strategy in which the informed investor attaches a random order flow, for hiding information, to the information-based flow that is exactly the same as that in Kyle’s model. In addition, mandatory disclosure unambiguously reduces informed investor’s profits, increases market liquidity, and improves market efficiency. Since there is only one informed investor, there is neither learning nor competition among informed investors. Gong and Liu (2012) extend their results to multiple informed investors. In their model, informed investors have homogeneous information and thus as trading frequency goes to infinity, information will be revealed in opening trades and the expected profits for informed investors go to zero. Zhang (2004) shows that when the informed investor is risk averse, trade disclosure can reduce market efficiency as the risk-averse investor will be facing less price risk in the future when he unloads his positions and thus will not trade in a hurry.4

The rest of the paper is organized into sections as follows. The model is described in Section 1. Section 2 discusses the condition for equilibrium with public disclosure in a discrete-time framework and offers a closed-form formula for the equilibrium in the limit when trading periods goes to infinity. Section 3 gives comparative statistics such as the effects of the number of informed investors and the correlation of their signals on the intensity of trading, the rate of information transmission, the depth of the market, and the expected profits of informed investors. Section 5 extends the model from a duopolistic setting to a general multiple players setting. Section 6 concludes. All proofs are left to the appendices.

4The effect of disclosure rules on informed investors’ trading has also been studied by a number of authors including Fishman and Hagerty (1995) and John and Narayanan (1997). Fishman and Hagerty (1995) study a two-period model when an informed investor only possesses inside information with a certain probability. While an informed informed investor will never manipulate the market in their model, an uninformed informed investor can manipulate the market since the market may mistakenly believe that the uninformed informed investor is informed. In models with disclosure but with multiple trading periods, Chakraborty and Yilmaz (2004) show that when the market faces uncertainty about the existence of the insider in the market and when there is a large number of trading periods before all private information is revealed, long-lived informed investors will manipulate in every equilibrium. Brunnermeier (2005) shows how disclosure of intermediary public information can cause investors with short-term noisy information to manipulate the market.
1 The Model

We consider an economy with two informed investors who are required to disclose their trades based on the classic model of Kyle (1985). In our model, there is one risk-free asset and one risky asset. An announcement is made at time 1 that reveals the liquidation value of the risky asset. The risk-free rate is taken to be zero. There are 2 risk-neutral informed investors and many liquidity traders who trade for liquidity reasons. Trading takes place over time interval [0, 1). In the discrete-time version of the model, there are \(M \) periods over time [0,1), and the time between any two consecutive trading periods is \(\Delta t = 1/M \).

Let \(v \) denote the liquidation value of the risky asset at time 1. Before any trading starts, each informed investor \(i \) \((i = 1, 2)\) receives a mean-zero signal \(s^i \) at time 0. We assume the signals and the liquidation value of the risky asset have a non-degenerate joint normal distribution that is symmetric in the signals.\(^5\) More specifically, we have

\[
s^1 = \frac{v + \epsilon}{2}; \quad s^2 = \frac{v - \epsilon}{2}; \quad v = \sum_{i=1}^{2} s^i. \tag{1}
\]

The variances of \(v, \epsilon \) are denoted by \(\sigma_v^2 \) and \(\sigma_\epsilon^2 \) respectively.

Remark 1 The assumption about the information structure is made without loss of generality. Due to the assumption of normality, for any arbitrary symmetric signals, the sufficient statistic of \(s^1, s^2 \) is \(s^1 + s^2 \). Risk neutrality indicates that all investors care is the conditional expectation of \(v \) given \(s^1, s^2 \) which is a linear function of \(s^1 + s^2 \). Since the covariance of \(s^1 - s^2 \) and \(s^1 + s^2 \) is zero, we can always redefine \(v \equiv s^1 + s^2 \) and rewrite the signals in the form of equation (1).

Remark 2 Notice that our information structure allows for the signals to have negative correlation. To understand how this could happen in the economy, consider the following setting. At time zero, there is a public signal \(y \) about the stock value:

\[
y = v - \sum_{i=1}^{2} s^i. \tag{2}
\]

Prior to observing the signal \(y \), the correlation of \(s^1, s^2 \) is \(\theta \). The variance of \(s^i \) is the

\(^5\)Symmetry means that the joint distribution of the asset value and the signals \(s^1, s^2 \) is invariant to a permutation of the indices.
same across \(i \) and is denoted \(\sigma_s^2 \). \(s^i \) is independent of \(v \). Informed investor \(i \) observes the noise in the public signal, \(s^i \). In such a setting, each informed investor has information advantage over the market as they know how to interpret the public signal better.

Given \(y \), we can rewrite the asset value as

\[
v = y + \sum_{1}^{2} s^i. \tag{3}\]

Therefore given the public signal \(y \), the stock value is a sum of the signals of the informed investors. Moreover, it is straightforward to show that as \(\sigma_s^2 \) goes to infinity, the conditional correlation of \(s^i \) given public information \(y \) goes to negative 1, and as \(\sigma_s^2 \) goes to zero, the conditional correlation of \(s^i \) goes to \(\theta \).

We use \(\rho \) to denote the correlation coefficient of \(s^1 \) with \(s^2 \).

\[
\rho = \frac{\sigma_{s^1}^2 - \sigma_{\epsilon}^2}{\sigma_{s^1}^2 + \sigma_{\epsilon}^2}.
\]

In the special case of \(\sigma_{\epsilon}^2 = 0 \), \(\rho = 1 \), each informed investor has perfect information about \(v \). For convenience, we introduce the following notation

\[
\delta_0 \equiv \frac{\text{var}[v] - \text{var}[v|s^1]}{\text{var}[v]} = \frac{\text{var}^{-1}[v|s^1] - \text{var}^{-1}[v]}{\text{var}^{-1}[v|s^1]}.
\tag{4}
\]

This is a measure of the quality of private information of informed investor 1 and by the argument of symmetry, informed investor 2 as well. Specifically, \(\delta_0 \) is the “R-squared” in the linear regression of \(v \) on \(s^i \) for an arbitrary \(i \), i.e., it is the percentage of the variance in \(v \) that is explained by a single informed investor’s information. Alternatively, it is also the percentage drop in precision of informed investors to that of the market maker. It is easy to check that \(\delta_0 \) is related to \(\rho \) by the following equation

\[
\delta_0 = \frac{1}{2} + \frac{1}{2} \rho = \frac{\sigma_{s^1}^2}{\sigma_{s^1}^2 + \sigma_{\epsilon}^2}.
\tag{5}
\]

Thus, when \(\sigma_{\epsilon} \) is larger than, equal to, or smaller than \(\sigma_{\epsilon} \), \(\delta_0 \) is larger than, equal to, or smaller than 1/2, and informed investors’ signals are positively correlated, uncorrelated or negatively correlated respectively. When \(\sigma_{\epsilon} \) is small (large), each informed investor has very precise (coarse) information of the liquidation value.
In each trading period \(m \), a risk-neutral market maker receives the total order from all informed investors and liquidity traders. Based on such order flow information, the market maker adjusts the price \(P_{m-1} \) to a new price \(P_m \) at which he buys or sells the risky asset to clear the market in period \(m \). Since the market maker is assumed to be risk neutral, price \(P_m \) must be the conditional expectation given all public information. We use \(x^i_m \) to denote informed investor \(i \)'s order, and use \(z^0_m \) to denote the total order by all liquidity traders. We assume that \(z^0_m \) are serially uncorrelated and normally distributed with mean zero and variance \(\sigma^2_u \Delta t \):

\[
E[z^0_m] = 0, \quad \text{and} \quad \text{var}[z^0_m] = \sigma^2_u \Delta t, \quad \text{for all } m.
\]

For simplicity, we assume \(\sigma_u = 1 \). In addition, \(z^0_m \) is independent of all other random variables in the model. Moreover, we assume that informed investors are prevented from any market-making activities, and hence when they submit their orders in period \(m \) they have no information about the \(m \)th-period order flow from any other party.

The only difference between a model with disclosure and a model without disclosure is whether or not each informed investor is required to disclose his \(m \)th period trade immediately after all trades are completed in period \(m \). Technically, this implies the following difference in how each of the involved parties behaves in the model. Without disclosure, (1) the market maker sets his price \(P_m \) by observing the history of the aggregate order flow \(\{y_k: 1 \leq k \leq m\} \), where

\[
y_k \equiv z_k^0 + \sum_{1 \leq i \leq 2} x_k^i
\]

and (2) each informed investor \(i \) decides his trade by observing his own past order flow \(\{x_k^i: 1 \leq k < m\} \), his own signal \(s^i \), and the past price history \(\{P_k: 1 \leq k < m\} \). With disclosure, (1) the market maker sets his price by observing the breakdown of all traders’ past order flow \(\{x_k: 1 \leq k < m\} \) and \(\{z_k^0: 1 \leq k < m\} \) together with the current aggregate order flow \(\{y_m\} \); and (2) each informed investor \(i \) decides his trade by observing all traders’ past order flow \(\{x_k: 1 \leq k < m\} \) and \(\{z_k^0: 1 \leq k < m\} \), in addition to his signal \(s^i \) and the past price history \(\{P_k: 1 \leq k < m\} \). Note that in a model with disclosure, the breakdown of all the past order flow \(\{x_k: 1 \leq k < m\} \) and \(\{z_k^0: 1 \leq k < m\} \) are made public through public disclosure and price history.

The description above has focused on the discrete-time version of the model. An intuitive way to think of the continuous-time model is simply to take the limit of the discrete-time model with \(M \to +\infty \).
2 The Solution

Under the disclosure requirement, informed investors announce their trades, \(\{ x^i_m \}; i = 1, 2 \), immediately after the trade is executed. The market maker then adjusts his belief of the asset value from \(P_m \) (the market price for the risky asset in period \(m \)) to \(V_m \), which is defined to be the market maker’s estimate of the fair value of the risky asset with all the information up to and including the disclosure made at the end of period \(m \). We can think of \(V_m \) as the pseudo-price that market maker would have set for the \(m \)th period trading if he had observed informed investors’ orders before the execution of trades in the \(m \)th period. Although \(V_m \) is only a pseudo-price at which no trade ever takes place, it is important since it will be the starting point for the market maker to set \(P_{m+1} \) for the \((m + 1)\)th period of trading. In particular, in a linear equilibrium model that we will focus on, it is \(P_{m+1} - V_m \) (as opposed to \(P_{m+1} - P_m \)) that will be linear to the total order flow submitted in the \((m + 1)\)th trading period.

Let \(x^i_m \) denote the history of investor \(i \)'s trade in each past period before and including period \(m \) (i.e., \(\{ x^i_k : k = 1, \ldots, m \} \)), let \(y_m \) denote the history of the net trade before and including period \(m \) (i.e., \(\{ z^0 + \sum_{1 \leq i \leq 2} x^i_k : k = 1, \ldots, m \} \)), and let \(P_m \) denote the price history before and including period \(m \) (i.e., \(\{ P_k : k = 1, \ldots, m \} \)). With disclosure, informed investor \(i \)'s private information prior to trading in period \(m \) includes his own signal \(s^i \) and the history of all past trades and prices \(x^1_{m-1}, x^2_{m-1}, P_{m-1} \). Let

\[
x^i_m = x^i_m \left(s^i, x^1_{m-1}, x^2_{m-1}, P_{m-1} \right)
\]

represent the optimal strategy of informed investor \(i \). Let

\[
P_m = P_m \left(x^1_{m-1}, x^2_{m-1}, y_m \right)
\]

represent the optimal strategy of the market maker given the history of all orders and the current aggregate order.

Let \(X^i \) and \(P \) denote the strategy functions for informed investor \(i \) and the market maker, respectively. Given the strategy functions for informed investors and the market maker, the profit of informed investor \(i \) from trading in period \(m \) and on can be written as:

\[
\pi^i_m \left(X^1, X^2, P \right) = \sum_{k \geq m} (v - P_k) x^i_k.
\]

9
An equilibrium of the trading game exists if there is a 3-dimension vector of strategies, \((X^1, X^2, P)\) such that:

1. For any \(i = 1, 2\) and for all \(m = 1, \ldots, M\), if \(\hat{X}^i \neq X^i\),
 \[
 E \left[\pi^i_m(X^i, X^j) | s^i, x^1_{m-1}, x^2_{m-1}, P_{m-1}\right] \geq E \left[\pi^i_m(\hat{X}^i, X^j) | s^i, x^1_{m-1}, x^2_{m-1}, P_{m-1}\right]
 \]
 i.e., the optimal strategy is the best no matter which past strategies informed investor \(i\) may have played.

2. For all \(m = 1, \ldots, M\), we have
 \[
P_m = E \left[v | x^1_{m-1}, x^2_{m-1}, y_m\right],
 \]
 i.e., the market maker sets prices equal to the conditional expectation of the asset value given the order-flow history.

In this model, since investor \(i\)’s trade at period \(m\) will be disclosed afterwards, the pricing and trading strategies for the no-disclosure case cannot be an equilibrium in the new setting. To see this, suppose the informed investor follows a strategy of \(x^i_m = \beta_m \Delta t s^i + L_1(x^i_{m-1}) + L_2(x^1_{m-1}, x^2_{m-1})\) where \(L_i, i = 1, 2\) is a linear function of all public information. Then the market maker would infer
 \[
v = \sum_{1 \leq i \leq 2} \frac{x^i_m - L_1(x^i_{m-1}) - L_2(x^1_{m-1}, x^2_{m-1})}{\beta_m \Delta t}
 \]
and choose
 \[
P_{m+1} = \frac{\sum_{1 \leq i \leq 2} [x^i_m - L_1(x^i_{m-1}) - L_2(x^1_{m-1}, x^2_{m-1})]}{\beta_m \Delta t}
 \]
in the next period. Hence, in the next period, the market depth would be infinity. Understanding this, informed investors would have incentive to choose \(\hat{x}^i_m \neq x^i_m\), which is inconsistent with the proposed equilibrium strategy.

We analyze a symmetric linear equilibrium. In particular, informed investor’s trade can be written as
 \[
x^i_m = \beta_m \Delta t s^i + L_1(x^i_{m-1}) + L_2(x^1_{m-1}, x^2_{m-1}) + z^i_m, \quad (\star)
 \]
\(\text{We restrict our attention to symmetric linear equilibria.}\)
where (1) $\beta_m \Delta t s^i$ represents a private-information-based linear component, (2) $L_1(x^i_{m-1}) + L_2(x^i_{m-1}, x^j_{m-1})$ is a public-information-based linear component, and (3) z^i_m is a noise component with z^i_m being normally distributed with mean 0 and variance $\sigma_m^2 \Delta t$. Since informed investors are prevented from market-making activities, we further assume that z^i_m are independently distributed across agents. The market maker also uses linear rules for setting prices before disclosure and for updating his value estimate after disclosure. In particular,

$$P_m = V_{m-1} + \lambda_m \left(z^0_m + \sum_{1 \leq i \leq 2} x^i_m \right), \quad \text{and}$$
$$V_m = V_{m-1} + \bar{\lambda}_m \left(\sum_{1 \leq i \leq 2} x^i_m \right).$$

The preceding equations imply that the random order from liquidity traders only has a temporary effect on price formation. In particular, liquidity traders’ order in period m (i.e., z^0_m) only affects P_m but not P_k for any $k \geq m + 1$: Once the mth-period disclosure is made, the market maker immediately abandons z^0_m and adjusts his belief of asset value to V_m, which is not affected by z^0_m and will be the base for forming future prices P_k ($k \geq m + 1$).

Before stating our result, we first introduce some notation. Let F_m and F^i_m denote the information set of the market maker and informed investor i respectively after disclosure has been made in period m. Define

$$V_m \equiv E[v|F_m], \quad V^i_m \equiv E[v|F^i_m],$$
$$\Sigma_m \equiv \text{var}[v|F_m], \quad \Omega_m \equiv \text{var}[v|F^i_m], \quad \text{and} \quad \delta_m \equiv \frac{\Sigma_m - \Omega_m}{\Sigma_m}.$$

THEOREM 1 The necessary and sufficient conditions for a recursive linear symmetric equilibrium to exist are described below. For all $m = 1, \ldots, M - 1$ and for informed investors $i = 1, 2,$

$$x^i_m = \frac{\beta_m \Delta t}{2\delta_{m-1}} (V^i_{m-1} - V_{m-1}) + z^i_m$$

(6)

$$P_m = V_{m-1} + \lambda_m \left(z^0_m + \sum_{i=1}^{2} x^i_m \right)$$

(7)

$$V_m = V_{m-1} + \bar{\lambda}_m \sum_{i=1}^{2} x^i_m$$

(8)

$$\sigma_m^2 = \beta_m \Sigma_m / (2\bar{\lambda}_m)$$

(9)
\[
\lambda_m = \beta_m \Sigma_{m-1}/(\beta_m^2 \Delta t \Sigma_{m-1} + 1 + 2\sigma_m^2) \tag{10}
\]

\[
V_i^m - V_{i-1}^m = \frac{\Omega_{m-1} - \Omega_m}{\Omega_{m-1}} \left(v - V_{i-1}^m + \frac{z_i^m}{\beta_m \Delta t} \right) \tag{11}
\]

\[
V_m - V_{m-1} = \frac{\Sigma_{m-1} - \Sigma_m}{\Sigma_{m-1}} \left(v - V_{m-1} + \sum_{1 \leq i \leq 2} \frac{z_i^m}{\beta_m \Delta t} \right) \tag{12}
\]

\[
\Omega_m^{-1} = \Omega_{m-1}^{-1} + \beta_m^2 \Delta t/(\sigma_m^2) \tag{13}
\]

\[
\Sigma_m^{-1} = \Sigma_{m-1}^{-1} + \beta_m^2 \Delta t/(2\sigma_m^2) \tag{14}
\]

\[
E[\pi_i^m|F_{m-1}^i] = \alpha_{m-1}(V_i^m - V_{m-1})^2 + \zeta_{m-1} \tag{15}
\]

\[
\lambda_m = \alpha_m \bar{\lambda}_m \tag{16}
\]

\[
\bar{\lambda}_m = \frac{2\lambda_m}{1 + \lambda_m \beta_m \Delta t(1 - 1/(2\delta_{m-1}))} \tag{17}
\]

\[
\alpha_{m-1} = \alpha_m \left(1 - \frac{\beta_m^2 \Delta t \Sigma_m}{2\sigma_m^2} \left(1 - \frac{1}{2\delta_{m-1}} \right) \right)^2 \tag{18}
\]

\[
\zeta_{m-1} = \zeta_m + \alpha_m \beta_m^2 \Delta t \left(\frac{\Sigma_m}{\sigma_m^2} - \frac{\Sigma_m}{2\sigma_m^2} \right)^2 \left(\Omega_{m-1} \beta_m^2 \Delta t + \sigma_m^2 \right) \tag{19}
\]

subjecting to the boundary conditions

\[
\beta_M = \sqrt{\frac{2\delta_{M-1}}{\Sigma_{M-1} \Delta t}} \tag{20}
\]

\[
\lambda_M = \sqrt{\frac{2\delta_{M-1} \Sigma_{M-1} \Delta t}{1 + 2\delta_{M-1}}} \tag{21}
\]

\[
\alpha_{M-1} = \frac{1}{\lambda_M (1 + 2\delta_{M-1})^2} \tag{22}
\]

\[
\zeta_{M-1} = 0 \tag{23}
\]

and the second order condition

\[
\lambda_m > 0. \tag{24}
\]

PROPOSITION 1 In the special case that \(\sigma_\epsilon = \sigma_v\), the model can be solved in closed form:

\[
\lambda_m = \sqrt{\Sigma_0/2}, \quad \beta_m = M/[2\lambda_m(M - m + 1)],
\]

\[
\bar{\lambda}_m = 2\lambda_m, \quad \sigma_m^2 = (M - m)/[2(M - m + 1)],
\]

\[
\alpha_m = 1/(4\lambda_m), \quad \Omega_m = (1 - m/M)\Omega_0,
\]
\[\zeta_m = 0, \quad \Sigma_m = (1 - m/M) \Sigma_0. \]

The results in the special case that \(\sigma_e = \sigma_v \) are the same as the monopolistic model derived by HHL (2001). This is in sharp contrast to results on imperfect competition of informed investors without disclosure. Cao (1995), Foster and Viswanathan (1996), and BCW (2000) have shown that competition causes the market to be very illiquid and inefficient near the end of trade when there is no disclosure. With disclosure, we find that informed investors act in the aggregate as a monopolist when their signals are uncorrelated. In the uncorrelated-signal case, with disclosure, each informed investor knows his own random noise in the past. Consequently, each informed investor’s conditional precision will remain to be twice of that of the market maker as they learn twice as fast. If informed investors’ signals are uncorrelated to begin with, they remain conditionally uncorrelated due to public disclosure of trades after the fact. Therefore, disclosure makes informed investors coordinate with each other to maximize their profits and they act like a monopolist in the aggregate. On the contrary, without disclosure, BCW (2000) show that the conditional correlation coefficient of informed investors’ signals goes to \(-1\) even when the initial correlation coefficient is zero.

When the number of trading periods goes to infinity, the model approaches to the continuous-time model. Ignoring higher-order terms of \(\Delta t \), we have the following proposition:

PROPOSITION 2

\[
\begin{align*}
\bar{\lambda}_m &= \beta_m \Sigma_m \quad (25) \\
\lambda_m &= \beta_m \Sigma_m / 2 \quad (26) \\
\sigma_m^2 &= 1/2 \quad (27) \\
\bar{\lambda}_m &= \frac{1}{2\alpha_m} \quad (28) \\
\frac{\Delta \Omega_m^{-1}}{\Delta t} &= 2\beta_m^2 \quad (29) \\
\frac{\Delta \Sigma_m^{-1}}{\Delta t} &= \beta_m^2 \quad (30) \\
\frac{\Delta \alpha_m}{\Delta t} &= 2\alpha_m \beta_m^2 \Sigma_m \left(1 - \frac{1}{2\delta_m} \right) \quad (31) \\
\frac{\Delta \zeta_m}{\Delta t} &= -\alpha_m \beta_m^2 (2\Omega_m - \Sigma_m)^2 / 2 \quad (32)
\end{align*}
\]
In the continuous-time model, we denote by $x(t)$, $t \in [0, 1]$ a variable x_m in the discrete-time model. For example, Σ_m in the discrete-time model is now denoted by $\Sigma(t)$. Taking the limit $\Delta t \to 0$, the difference equations above converge to a set of differential equations which leads to closed-form solutions described in Theorem 2.

THEOREM 2 If $\sigma_\epsilon > 0$, i.e., informed investors’ signals are not perfectly correlated, as the number of trading rounds goes to infinity, in the limit we obtain

$$\beta(t) = \frac{\sqrt{-\Sigma'(t)'} - \Sigma(t)}{\Sigma(t)} = \frac{1}{\sigma_\epsilon(1-t)},$$

$$\lambda(t) = \frac{\sqrt{-\Sigma'(t)'} - \Sigma(t)}{2} = \frac{\sigma^2_\epsilon \sigma_\epsilon}{2[\sigma^2_v + \sigma^2_\epsilon(1-t)]},$$

$$\bar{\lambda}(t) = \sqrt{-\Sigma'(t)} = \frac{\sigma^2_\epsilon \sigma_\epsilon}{\sigma^2_v + \sigma^2_\epsilon(1-t)},$$

where $\Sigma(t)$ is specified as

$$\Sigma(t) = \frac{\sigma^2_v \sigma^2_\epsilon(1-t)}{\sigma^2_v + \sigma^2_\epsilon(1-t)},$$

In equilibrium, the expected profit of each informed investor π_D is

$$\pi_D = \frac{1}{2} \int_0^1 \lambda(t) dt = \frac{\sigma^2_\epsilon \sigma_\epsilon [\log(\sigma_v) - \log(\sigma_\epsilon)]}{2(\sigma^2_v - \sigma^2_\epsilon)}.$$

Investors’ trading intensity β is proportional to $1/\sigma_\epsilon$. This is sensible as investors will trade more cautiously as they have noisier signals. Surprisingly, λ is finite through the trading period and remains constant as long as $\sigma_v = \sigma_\epsilon$. This is in sharp contrast to the result in BCW (2000) who show that λ goes to infinity near the end of trading in the absence of disclosure.
3 Comparative Dynamics

3.1 Dynamic Trading Patterns, Market Efficiency, and Market Liquidity

In this section, we use the closed-form solution derived in the previous section to study the dynamics and comparative statics of trading, market efficiency, and market liquidity.

In most strategic trading models, the trading volume coming from informed investors is negligible compared to liquidity traders. However, when disclosure is required, informed investors’ trades contain a component that is comparable to that of liquidity traders and informed investors contribute half of the trading volume in the market with disclosure. To mix with liquidity traders, the endogenous random trades of informed investors equal in distribution to that of liquidity traders.

We next examine the comparative statics of $\Sigma(t), \beta(t), \lambda(t)$ with respect to time and the degree of noise in informed investors’ signals, as measured by σ_ϵ.

PROPOSITION 3 The variables $\Sigma(t)^{-1}, \beta(t)$ both increase with t and decrease with σ_ϵ. The market depth at time 0, $1/\lambda(0) = 2\sigma_\epsilon/\sigma_v^2$, increases with σ_ϵ and at time 1, $1/\lambda(1) = 2/\sigma_\epsilon$, decreases with σ_ϵ. The market depth $1/\lambda(t)$ increases (decreases) over time when $\sigma_\epsilon < \sigma_v$ ($\sigma_\epsilon \geq \sigma_v$).

In Figure 1A and Figure 1B, we plot $\Sigma(t)$ and $\beta(t)$ as functions of $t, \log(\sigma_v^2)$. As more information is revealed through trading and disclosure, clearly $\Sigma(t)$ will decrease over time. Similarly, as investors learn more from trading and disclosure and market becoming more efficient, the trading intensity increases over time as well. When σ_ϵ is small, informed investors trade very aggressively with each other and thus $\Sigma(t)$ is low and $\beta(t)$ is high. As shown in Figure 1A, market becomes less efficient as σ_ϵ increases. While in BCW (2000), the decrease of conditional variance is very steep and goes to infinity near the end of trading, in our model with disclosure, the conditional variance always decreases smoothly. In Figure 1B,

7 There are few exceptions in which trading volume coming from informed investors is comparable to liquidity traders. For example, informed investors in Martinez and Rosu (2013)’s model are ambiguity averse and ambiguity aversion induces informed investors to aggressively trade on their signals, so that their optimal trading strategy features a volatility component. In Foucault, Hombert, and Rosu (2012)’s model, a fast informed investor trades on his forecast of short-run price movements before the market maker reacts to news and hence informed order contains a volatility component.

8 This can be seen clearly from $2\sigma(t)^2 = 1$.

15
Figure 1A: Residual uncertainty Σ as a function of $\log(\sigma^2_t)$, t with disclosure. Figure 1B: Trading intensity β as a function of $\log(\sigma^2_t)$, t with disclosure. Figure 1C: Market depth $1/\lambda$ as a function of $\log(\sigma^2_t)$, t with disclosure.
it is clear that $\beta(t)$ decreases with σ_{ϵ}. Coarser information makes investors compete with each other less intensively.

The comparative statics of $\lambda(t)$ is more complicated. Following Kyle (1985), we use market depth, $1/\lambda(t)$, to measure market liquidity. When σ_{ϵ} is high, investors will trade very cautiously initially and only increase their trades aggressively later on. This means that the market depth decreases over time. Figure 1C plots market depth as a function of t, $\log(\sigma_{\epsilon}^2)$. With high (low) σ_{ϵ}, market depth decreases (increases) over time. When $\sigma_{\epsilon} = \sigma_v$, the market depth is a constant. When σ_{ϵ} is small, each investor is very well informed and they trade very aggressively in the beginning. Thus $1/\lambda(0)$ increases with σ_{ϵ}. Similarly, with very aggressive trading in the beginning, the market becomes more efficient later and thus $1/\lambda(1)$ is high with small σ_{ϵ}. Moreover, with small σ_{ϵ}, higher market efficiency due to aggressive trading also means that market depth will increase over time.

Disclosure not only increases market efficiency, it also affects how informed investors compete with each other. It is interesting to compare the trading strategy of informed investors in the aggregate to that of a monopolist. Define $\delta(t) \equiv (\Sigma(t) - \Omega(t))/\Sigma(t)$ as we do in the discrete-time setting $\delta_m \equiv (\Sigma_m - \Omega_m)/\Sigma_m$ and let $\rho(t)$ denote the conditional correlation of informed investor’s private valuation at time t, by the definition of $\delta(t)$, we have $\rho(t) = 2\delta(t) - 1$. We have the following results.

PROPOSITION 4 When $\sigma_{\epsilon}^2 = \sigma_v^2$, informed investors trade cooperatively like a monopolistic investor in the aggregate and their profits are maximized. Conditional correlation $\rho(t)$ of investors’ private valuation remains zero throughout the trading period.

When informed investors’ signals are uncorrelated initially, each informed investor’s conditional precision is twice of that of the market maker. As trading goes on, since each informed investor knows his own random noise trades, the variance of the noise in the other informed investor’s trades is also half of the variance of the noise in the market maker’s observation. The conditional precision of each informed investor about the risky asset value remains twice of that of the market. As a result, the conditional correlation of informed investors’ signals remains zero. Disclosure makes informed investors cooperate with each other. With uncorrelated signals, market efficiency and market liquidity are the same as if there exists a monopolistic informed investor with all the private signals in the market. Informed investors’ profits are maximized when $\sigma_{\epsilon} = \sigma_v$. Notice that in the setting without disclosure, informed investors’ profits are maximized when σ_{ϵ} is slightly larger than σ_v.

17
PROPOSITION 5 When \(\sigma^2_c \neq \sigma^2_v \), as \(t \to 1 \), \(\rho(t) \to 0 \) and informed investors’ private valuations become conditionally uncorrelated and they eventually all behave in the aggregate like a monopolistic informed investor with all the information in the economy. We have

\[
\lim_{t \to 1} \frac{\Sigma(t)}{\sigma^2_c (1 - t)} = 1, \quad \frac{\beta(t)}{1/(\sigma_c(1-t))} = 1, \quad \lim_{t \to 1} \frac{1/\lambda(t)}{2/\sigma_c} = 1.
\]

With uncorrelated signals, informed investors will be cooperative from the beginning to the end. With correlated signals, informed investors learn to become cooperative. As discussed earlier, the increase in conditional precision of informed investors is twice of that of the market maker. As learning accumulates, the ratio of the conditional precision of informed investors and that of the market maker about the asset value converges to two. The conditional correlation between informed investors’ signals converges to zero. This is drastically different from the case without disclosure. In the BCW (2000) model without disclosure, near the end of trading, the ratio of the conditional precision of informed investors and that of the market maker about the asset value converges to 1 as the increase in conditional precision goes to infinity. This holds because the noise in the price comes from the liquidity traders and no one has any extra information about the noise trades. Therefore the increase in conditional precision is the same for the market maker and informed investors. As time goes to 1, the increase in conditional precision goes to infinity and the ratio of conditional precision between informed investors and market maker goes to 1. Informed investors have little informational advantage over the market maker, the conditional correlation of informed investors’ private valuation goes to -1 and \(1/\lambda(t) \) goes to 0. On the contrary, in continuous-time trading with disclosure, investors learn to become cooperative. The conditional correlation of investors’ private valuation converges to zero and \(1/\lambda(t) \) goes to a constant.

3.2 The Effects of Disclosure

Next we compare the equilibrium with that obtained by BCW (2000) without disclosure. For comparison, \(\hat{\Sigma}(t), \hat{\beta}(t), \hat{\lambda}(t), \hat{\delta}(t), \) and \(\hat{\pi}_D \) in the BCW (2000) economy without disclosure correspond to the same parameters without hat in the economy with disclosure.
THEOREM 3 In the continuous-time trading model without public disclosure, we have

\[\hat{\Sigma}(t) = \frac{\sigma_r^2 \sigma^2 \epsilon}{\sigma_r^2 - \sigma_v^2 \log(1 - t)}, \]
\[\hat{\beta}(t) = \frac{1}{\sigma_r \sqrt{1 - t}}, \]
\[\hat{\lambda}(t) = \hat{\beta}(t) \hat{\Sigma}(t). \]

The following corollary describes how disclosure affects \(\beta(t), \Sigma(t) \).

PROPOSITION 6 The market is more efficient and informed investors’ information-based trade is more aggressive, that is

\[\frac{\Sigma(t)}{\hat{\Sigma}(t)} = \frac{\sigma_r^2 - \sigma^2 \log(1 - t)}{\sigma_r^2 + \sigma^2 t / (1 - t)} < 1, \]
\[\frac{\hat{\beta}(t)}{\beta(t)} = \frac{1}{\sqrt{1 - t}} > 1, \]

Moreover as time approaches 1, we have,

\[\lim_{t \to 1} \frac{\Sigma(t)}{\hat{\Sigma}(t)} = 0, \lim_{t \to 1} \frac{\beta(t)}{\hat{\beta}(t)} = \infty. \]

Disclosure makes the market more efficient. Since informed investors’ information-based trade is mixed with random-noise trades, they trade more aggressively with respect to their signals. This effect is most profound near the end of trading as the ratio of residual uncertainty \(\Sigma \) with and without disclosure goes to zero. Figure 2B shows the intensity of informed investors’ trading in relation to that of informed trading without disclosure. The intensity is greater when disclosure is required. The ratio of trading intensity with and without disclosure is always larger than 1 and goes to infinity near the end of trade.

As a result of more aggressive trading by informed investors and the fact that the random order from all informed investors collectively equals, in distribution, to that of liquidity traders, market becomes more efficient under the disclosure rule. This is clearly demonstrated in Figure 2A.

Next we compare market depth, \(1/\lambda(t) \) and expected profits of informed investors in the two equilibria with and without disclosure. The expected profits \(\pi_D \) are related to market
Figure 2 Figure 2A: Residual uncertainty Σ as a function of time. Figure 2B: Trading intensity β as a function of time. Figure 2C: Market depth $1/\lambda(t)$ as a function of time. Here, $\sigma_\epsilon^2 = 0.875$. The solid line is for the case with disclosure and the dashed line is for the case without disclosure.
depth as described in Theorem 2:

\[\pi_D = \frac{1}{2} \int_0^1 \lambda(t) dt. \]

Notice that \(\lambda(t) \) represents the expected losses per unit of trade for liquidity traders arriving at time \(t \). The previous relationship holds because the expected profits of informed investors equal to the expected losses of liquidity traders. The following describes the effects of disclosure on these variables.

PROPOSITION 7 As time approaches 1, we have

\[
\lim_{t \to 1} \frac{1/\lambda(t)}{1/\hat{\lambda}(t)} = \infty,
\]

Moreover, when \(\sigma_\epsilon \leq \sigma_v \), then \(1/\lambda(t) > 1/\hat{\lambda}(t) \) for \(t \in [0, 1] \). In addition, \(\pi_D < \hat{\pi}_D \).

We can rewrite the ratio of market depth into the product of three components:

\[
\frac{1/\lambda(t)}{1/\hat{\lambda}(t)} = 2 \times \frac{\hat{\beta}(t)}{\beta(t)} \times \frac{\hat{\Sigma}(t)}{\Sigma(t)}.
\]

Disclosure affects market liquidity in three ways. The first is the randomization effect which will increase market liquidity under disclosure. Other things being equal, this effect will double market liquidity. The second is the higher trading intensity under disclosure which decreases market liquidity. The third is the market efficiency effect which increases market liquidity under disclosure because of a lower residual uncertainty.

Figure 2C plots the market depth with positively correlated signals. When \(\sigma_v^2 \geq \sigma_\epsilon^2 \) the last two effects roughly offset each other except near the beginning of trade. The first effect is dominant in the early part of the trading period and market liquidity roughly doubles. In the latter part of the trading period, disclosure makes the market more efficient and the third effect is dominant which causes a higher market liquidity. Therefore, market is always more liquid with disclosure.

In brief, when the noise in informed investors’ signals is small, informed investors do not learn from each other as much. As they trade more aggressively on their perceived differences from market expectation under disclosure, market depth is higher with disclosure due to randomization and higher market efficiency. It is interesting to observe that market
depth changes over time in a pattern that is different from the no-disclosure case. Without disclosure, market depth first rises and then declines to 0 with positively correlated signals but market depth always rises with negatively correlated signals.

4 Learning from Your Competitor and Herding in Information Acquisition

When \(\sigma_\epsilon \leq \sigma_v \), informed investors have substitutive signals and they compete intensively in the presence of disclosure. When \(\sigma_\epsilon > \sigma_v \), the effects of disclosure are more subtle. On the one hand, disclosure makes investors trade more intensively. On the other hand, it also allows informed investors to learn more from each other and thus they become relatively more informed. Therefore the results obtained with substitutive signals may not carry through to the case with complementary signals.

PROPOSITION 8 For \(t > 3/4 \), there exists \(\sigma_{\epsilon}^* > \sigma_v \), such that for \(\sigma_\epsilon > \sigma_{\epsilon}^* \), that \(1/\lambda(t) < 1/\hat{\lambda}(t) \).

This is a rather surprising result. Intuitively, one would have expected that disclosure should always increase market liquidity. As discussed earlier, the effect of trade disclosure on market liquidity can be decomposed to three components: randomization effect, learning effect and the market efficiency effect. When \(\sigma_\epsilon \) is very large, each informed investor on his own knows very little about the liquidation value of the risky asset. Therefore they learn a lot from the disclosure of informed investors’ trades. Since the variance of noise per unit of time in disclosed trades is \(2\sigma^2 \) for the market maker and \(\sigma^2 \) for each informed investor, informed investors learn faster from disclosed trades than the market maker. When \(\sigma_\epsilon \) is very large, the learning from public disclosure becomes very significant and this effect dominates the other two effects, which causes the market liquidity to be higher for some \(t \).

The reduction in market liquidity means that informed investors make more profits in some trading periods with disclosure. A natural question is whether disclosure can increase expected profits of informed investors during the whole trading period, which we find possible when \(\sigma_\epsilon \) is large.

PROPOSITION 9 There exists \(\sigma_{\epsilon}^{**} > \sigma_v \), such that for \(\sigma_\epsilon > \sigma_{\epsilon}^{**} \), \(\pi_D > \hat{\pi}_D \).
The effect of disclosure on informed investors’ profits is ambiguous. Other things being equal, disclosure causes informed investors to lose half of their information-based trading profits due to randomization. This results in a reduction of informed investors’ profits when \(\sigma_\epsilon \) is small. With large \(\sigma_\epsilon \), the results can be reversed. In the latter case, informed investors learn a lot from the disclosed trades about the asset value as they each have very imprecise signals in the beginning. In addition, informed investors learn more from the disclosed trades than the market maker. The increase of precision is twice that of the market maker. Consequently, the benefit of learning by informed investors could more than offset the loss due to randomization and make them earn more profits than what they would receive in a setting without disclosure.

Alternatively, we can view disclosure as an apparatus for coordination. Notice that informed investors’ profits would be maximized if they could coordinate and trade at the same intensity as a monopolist with all the signals. When each informed investor has very imprecise signals, they trade very cautiously, far from the level of a monopolist in the case without disclosure. Disclosure of trades releases information and makes them trade more aggressively toward the level of a monopolist. Indeed as shown in Corollary 5, informed investors learn to become cooperative. The increase of trading intensity effectively coordinates their trading activity toward higher profits, and can offset the losses due to randomization when \(\sigma_\epsilon \) is small.

Disclosure makes informed investors learn from each other and cooperate. Thus it is interesting to determine how disclosure affects an informed investor’s profit with and without competition. Will an informed investor facing competition be better off? While this can never happen in a setting without trade disclosure, it is possible with trade disclosure. Let \(M \) denote a monopolist who observes \(s^1 \) and he is the only informed investor in the economy. Let \(D \) denote the same informed investor in the presence of another informed investor who observes \(s^2 \). Let \(\pi_M (\hat{\pi}_M) \) denote the expected profits of a monopolistic informed investor who observes \(s^1 \) and trade in the presence (absence) of disclosure requirement.

PROPOSITION 10 There exists \(\hat{\sigma}_\epsilon \) such that for \(\sigma_\epsilon > \hat{\sigma}_\epsilon \), \(\pi_D > \hat{\pi}_M > \pi_M \). However, in the economy without disclosure, we always have \(\hat{\pi}_M > \hat{\pi}_D \).

With very large \(\sigma_\epsilon \), informed investors have very noisy signals and are eager to learn from each other. Disclosure of trades facilitates learning among informed investors about the market value at a speed (as measured by the increase in conditional precision) twice as fast as that of the market maker. Competition always reduces an informed investor’s profit.
in the case without disclosure as informed investors learn at the same speed as the market maker. With very large σ, the benefit of learning can offset the loss due to competition and informed investors are better off with competition. Interestingly, learning from each other is so beneficial that an informed investor with disclosure and competition is better off than what he expects to receive with neither disclosure nor competition.

So far we have presented our model assuming informed investors already received signals. What is the effect of disclosure on information acquisition? Our analysis indicates that learning can create synergies in information acquisition in the presence of disclosure. Suppose that each informed investor has to spend a cost c to collect differential signals as described before and the act to collect information is observable by market participants, then we have the following herding result regarding information acquisition:

PROPOSITION 11 When $\sigma > \hat{\sigma}$ and $\pi_D > c > \pi_M$, there exist two information acquisition equilibria: (i) in the first equilibrium, no one would acquire any information; (ii) in the second equilibrium, both informed investors will acquire information.

Herding in information acquisition happens because informed investors can learn more from each other than what the market can learn from informed investors.

5 Extension

Our model can be extended to an arbitrary number of informed investors with the following modification. Assuming that each informed investor $i = 1, \ldots, N$ receives a signal in the form of

$$s^i = \frac{v + \epsilon^i}{N}$$

in addition we have

$$\epsilon^i = \eta^i - \frac{\sum_{j=1}^{N} \eta^j}{N}$$

and that $v, \{\eta^i, i = 1, \ldots, N\}$ are multi-variate normally distributed and independent with mean zero. Moreover, η^i has variance σ^2_η for all i. Let σ^2_ϵ denote the variance of ϵ, it follows that

$$\sigma^2_\epsilon = \frac{N - 1}{N} \sigma^2_\eta.$$

Notice that since the ϵ_is sum up to zero, informed investors in aggregate know the liquidation value v of the risky asset. When $N = 1$, the informed investor knows v and our model reduces
to a continuous time version of HHL (2001). For $N > 1$, let ρ denote the initial correlation coefficient of investor’s private signals, it is easy to verify that

$$\rho = \frac{\sigma_v^2 - \sigma_{v|s}^2 / (N-1)}{\sigma_v^2 + \sigma_{e|s}^2}.$$

As before, we introduce the following notation

$$\delta_0 \equiv \frac{\text{var}[v] - \text{var}[v|s^1]}{\text{var}[v]} = \frac{\text{var}^{-1}[v|s^1] - \text{var}^{-1}[v]}{\text{var}^{-1}[v|s^1]} = \frac{1}{N} + \frac{(N-1)\rho}{N}.$$ (38)

This is a measure of the quality of private information of informed investor 1 and by the argument of symmetry, other informed investors as well. Given these notations, we present the discrete-time model and continuous-time model below:

THEOREM 4 The necessary and sufficient conditions for a recursive linear symmetric equilibrium to exist are described below. For all $m = 1, \ldots, M - 1$ and for all informed investors $i = 1, \ldots, N$,

$$x_m^i = \frac{\beta_m \Delta t}{N \delta_{m-1}} (V_m^i - V_{m-1}) + z_m^i$$ (39)

$$P_m = V_{m-1} + \lambda_m \left(z_m^0 + \sum_{i=1}^N x_m^i \right)$$ (40)

$$V_m = V_{m-1} + \bar{\lambda}_m \sum_{i=1}^N x_m^i$$ (41)

$$\sigma_m^2 = \frac{\beta_m \Sigma_m}{(N \bar{\lambda}_m)}$$ (42)

$$\lambda_m = \beta_m \Sigma_m - 1 + N \sigma_m^2$$ (43)

$$V_m^i - V_{m-1}^i = \frac{\Omega_m^i - \Omega_m}{\Sigma_m} \left(v - V_{m-1}^i + \sum_{j \neq i} \frac{z_j^i}{\beta_m \Delta t} \right)$$ (44)

$$V_m - V_{m-1} = \frac{\Sigma_m - \Sigma_m}{\Sigma_m} \left(v - V_{m-1} + \sum_{1 \leq j \leq N} \frac{z_j^i}{\beta_m \Delta t} \right)$$ (45)

$$\Omega_m^{-1} = \Omega_m^{-1} + \beta_m^2 \Delta t / ((N-1)\sigma_m^2)$$ (46)

$$\Sigma_m^{-1} = \Sigma_m^{-1} + \beta_m^2 \Delta t / (N \sigma_m^2)$$ (47)

$$E[\pi_m^i | F_{m-1}^i] = \alpha_m (V_{m-1}^i - V_{m-1})^2 + \zeta_{m-1}$$ (48)

$$\lambda_m = \alpha_m \lambda_m^2$$ (49)
\[
\bar{\lambda}_m = \frac{2\lambda_m}{1 + \lambda_m \beta_m \Delta t (1 - 1/(N \delta_{m-1}))}
\]

(50)

\[
\alpha_{m-1} = \alpha_m \left(1 - \frac{\beta_m^2 \Delta t \Sigma_m}{N \sigma_m^2} \left(1 - \frac{1}{N \delta_{m-1}}\right)\right)^2
\]

(51)

\[
\zeta_{m-1} = \zeta_m + \alpha_m \beta_m^2 \Delta t \left(\frac{\Omega_m}{(N-1)\sigma_m^2} - \frac{\Sigma_m}{N \sigma_m^2}\right)^2 \left(\Omega_{m-1} \beta_m^2 \Delta t + (N-1)\sigma_m^2\right)
\]

(52)

subjecting to the boundary conditions

\[
\beta_M = \sqrt{\frac{N \delta_{M-1}}{\Sigma_{M-1} \Delta t}}
\]

(53)

\[
\lambda_M = \sqrt{\frac{N \delta_{M-1} \Sigma_{M-1}}{\Delta t}}
\]

(54)

\[
\alpha_{M-1} = \frac{1}{\lambda_M (1 + N \delta_{M-1})^2}
\]

(55)

\[
\zeta_{M-1} = 0
\]

(56)

and the second-order condition

\[
\lambda_m > 0.
\]

(57)

Similar to the case of two informed investors, the equilibrium can be solved recursively. When \(\Delta t\) goes to zero, the system converges to a set of differential equations which leads to Theorem 5.

THEOREM 5 As the trading frequency goes to infinity, we obtain closed-form solutions as follows:

\[
\beta(t) = \sqrt{-\frac{\Sigma'(t)}{\Sigma(t)}}, \quad \lambda(t) = \frac{\sqrt{-\Sigma'(t)}}{2}, \quad \bar{\lambda}(t) = \sqrt{-\Sigma'(t)},
\]

where

\[
\Sigma(t) = \begin{cases}
\sigma_\epsilon^2 (1 - t) & \text{for } \sigma_\epsilon^2 = (N-1)\sigma_\epsilon^2 \text{ or } N = 1, \\
\frac{\sigma_\epsilon^2 \sigma_\epsilon^2}{(N-1)\sigma_\epsilon^2 - \sigma_\epsilon^2} \left[((1 - B) t + B) \frac{t}{N} - 1\right] & \text{otherwise.}
\end{cases}
\]
with \(B = \left(\frac{\sigma^2}{(N-1)\sigma^2_v} \right)^{\frac{3}{N}} \). In equilibrium, the expected profit of each informed investor is

\[
\pi_N = \begin{cases} \frac{\sigma^2}{2N} & \text{for } \sigma^2 = (N-1)\sigma^2_v \text{ or } N = 1, \\ \sqrt{\frac{(3N-4)\sigma^2_v}{(N-1)(N-2)}} \frac{1 - B^{N-2}}{2|N-2|} & \text{otherwise.} \end{cases}
\] (58)

For the purpose of comparison, we restate the BCW (2000) result of continuous trading equilibrium without disclosure in the next theorem.

THEOREM 6 In the economy with \(N \) informed investors without disclosure, consider the constant

\[
k = \int_{1}^{\infty} x^{2(N-2)} e^{-\frac{2\sigma^2_v}{N\sigma^2}} dx. \] (59)

For each \(t < 1 \), define \(\hat{\Sigma}(t) \) by

\[
\int_{1}^{\hat{\Sigma}(0)/\hat{\Sigma}(t)} x^{2(N-2)} e^{-\frac{2\sigma^2_v}{N\sigma^2}} dx = kt. \] (60)

We have

\[
\hat{\beta}(t) = \left(\frac{k}{\sigma^2_v} \right)^{1/2} \left(\frac{\hat{\Sigma}(t)}{\sigma^2_v} \right)^{(N-2)/N} \exp \left\{ \frac{\sigma^2_v}{N\hat{\Sigma}(t)} \right\}, \] (61)

\[
\hat{\lambda}(t) = \hat{\beta}(t)\hat{\Sigma}(t). \] (62)

With respect to the comparative statics of the case with an arbitrary number of informed investors, we have the following results:

PROPOSITION 12 (i) For \(N = 1 \), we have \(\beta(t) = \hat{\beta}(t) \), \(\Sigma(t) = \hat{\Sigma}(t) \), \(\lambda(t) = \hat{\lambda}(t)/2 = 1/(2\sigma_v) \);

(ii) For \(N > 1 \), we have: \(\lim_{t \to 1} \frac{\beta(t)}{\hat{\beta}(t)} = \infty \), \(\lim_{t \to 1} \frac{\Sigma(t)}{\hat{\Sigma}(t)} = 0 \), and

(iii) \(\lim_{t \to 1} \frac{1/\lambda(t)}{1/\hat{\lambda}(t)} = \infty \),

(iv) The conditional variance of the asset value \(\Sigma(t) \) decreases with \(t \) and increases with \(\sigma_v \). The initial market depth \(1/\lambda(0) \) increases with \(\sigma_v \) and the market depth near the end of trading, \(1/\lambda(1) \) decreases with \(\sigma_v \). The market depth \(1/\lambda(t) \) increases over time when \(\sigma^2_v < (N-1)\sigma^2_v \) while \(1/\lambda(t) \) decreases over time when \(\sigma^2_v \geq (N-1)\sigma^2_v \);
(v) When $\sigma_e^2 = (N-1)\sigma_v^2$, informed investors trade in aggregate like a monopolistic investor and informed investors’ expected profits are maximized. Therefore, market efficiency and market liquidity are the same as if there exists a monopolistic informed investor with all the private signals in the market. Conditional correlation of investors’ private valuations remains zero throughout the trading period;

(vi) When $\sigma_e^2 \neq (N-1)\sigma_v^2$, as $t \to 1$, $\rho(t) \to 0$, informed investors’ private valuations become uncorrelated near the end of trading. They learn to cooperate and behave in aggregate like a monopolistic informed investor with all the information in the economy. We have

$$\lim_{t \to 1} \frac{\beta(t)}{1/(\sqrt{S_0(1-t)})} = 1, \quad \lim_{t \to 1} \frac{\Sigma(t)}{S_0(1-t)} = 1, \quad \lim_{t \to 1} \frac{\lambda(t)}{\sqrt{S_0/2}} = 1.$$

Here, $S_0 = \frac{(1-\rho)(1-B)\sigma_e^2}{\rho(3N-4)}$, B is defined in Theorem 5.

Notice that our results on comparative statics obtained with two informed investors broadly hold for larger N. Informed investors also contribute half of the trading volume in the market with disclosure. The conditional variance increases as investors receive noisier signals. Initial market depth is higher with noisier signals as investors trade cautiously initially. However, market depth in the end of trading will be lower with noisier signals as there will be more residual asymmetric information near the end. As a result, market depth will be decreasing with noisy signals and increasing with precise signals. Figure 3A plots informed investors’ expected profits as a function of $\log(\sigma_e^2)$. Informed investors’ profits will be maximized if they have uncorrelated signals in which case they coordinate and trade like a monopolist. Moreover, the conditional correlation goes to zero near the end of trading even when investors initially have correlated signals. Informed investors learn to be cooperative. Our numerical analysis shows that disclosure increases the intensity of informed trading and improves market efficiency and this result can be proven for t close to 1. The increase in market efficiency due to disclosure also makes the market depth higher near the end of trading. Our numerical analysis also shows that when investors’ signals are positively correlated, disclosure always increases market liquidity.

Next we consider whether informed investors can be better off in the presence of more informed investors due to enhanced learning among informed investors. Let π_N denote what an informed investor would expect to receive in a setting with N informed investors. Let $\pi_{N \to J}$ denote the profits each informed investor would obtain if $N - J$ informed investors leave the market and the other J informed investors will stay and trade in this market.
Figure 3 Figure 3A: Informed investors’ expected profit π_N as a function of $\log(\sigma^2)$ for $N = 2, 3, 4, 5$ with disclosure. Figure 3B: The ratio of informed investors’ total profits π_N with many competitive informed investors and π_M with a monopolistic investor as a function of $\log(\sigma^2)$ for $N = 2, 3, 4, 5$. Figure 3C: The ratio of informed investors’ total profits $\pi(0)$ with disclosure and without disclosure as a function of $\log(\sigma^2)$ for $N = 2, 3, 4, 5$.
PROPOSITION 13 For any \(N > 1 \), there exists \(\bar{\sigma} \) such that \(\pi_N > \pi_{N\rightarrow N-1} \) for all \(\sigma > \bar{\sigma} \). In addition, for \(1 < N < 5 \), there exists \(\hat{\sigma} \) such that for \(\sigma > \hat{\sigma} \), \(\pi_N > \pi_M \). However, in the economy without disclosure, a monopolistic informed investor is always worse off in the presence of competition, i.e., we always have \(\tilde{\pi}_M > \tilde{\pi}_N \), for all \(N > 1 \).

Just like the case with two informed investors, \(N-1 \) informed investors can benefit from the participation of one more informed investor, if they collectively learn a lot from the new participant through trading. Indeed, learning can be so beneficial that a monopolist will be better off if \(N-1 \) informed investors all participate when \(N < 5 \). However, as \(N \) goes to infinity, each informed investor’s profit goes to zero. In Figure 3B, we show numerically that for \(N = 5 \), a monopolist would prefer the other four informed investors not to participate in the market.\(^9\)

With two informed investors, it is possible that disclosure increases the aggregate profits of informed investors. We show numerically in Figure 3C that this is impossible when \(N > 2 \). With larger \(N \), each informed investor will learn at the speed \(N/(N-1) \) times that of the market maker. However \(N/(N-1) \) is decreasing in \(N \), therefore, for larger \(N \) the benefit of learning and coordination is not big enough to offset the loss due to randomization.

Learning among informed investors implies that there could exist herding in information acquisition. Consider the information acquisition game in which each potential informed investor needs to spend a cost \(c \) to acquire his private information. Then there could exist multiple information acquisition equilibria.

PROPOSITION 14 Suppose \(1 < N < 5 \). If \(\sigma > \hat{\sigma} \) and \(\pi_M < c < \pi_N \), there exist at least two information acquisition equilibria. In one equilibrium, no investor will acquire any information. In the other, all investors will acquire information.\(^10\)

With noisy and complementary information, investors learn from each other and they herd on to stocks on which there are other informed investors trading.

\(^9\)This holds also for \(N > 5 \) numerically although we cannot provide an analytical proof for this result.

\(^10\)Even if the condition doesn’t hold, for example \(N > 5 \), for \(\sigma > \hat{\sigma} \), there still exist multiple equilibria, in one equilibrium only a part of the investors acquire information and in the other all investors become informed. Assume there exists an \(L^* \in \{1, \ldots, N-2\} \) such that \(\pi_{N\rightarrow (L^*+1)} < c < \min\{\pi_{N\rightarrow L^*}, \pi_N\} \), there exist at least two information acquisition equilibria. In one equilibrium, only \(L^* \) investors become informed. In the other all investors will acquire information.
6 Conclusion

What are the effects of public disclosure of trading? In a setting with two informed investors, we show that informed investors will randomize their trades to hide their private information and to manipulate market maker’s and others’ beliefs. As a result, they sometimes trade against their own valuation. The instantaneous variance of informed investors’ trade is the same as that of liquidity traders. Similar to the single informed investor model of HHL (2001), the market is more efficient with trade disclosure.

With more than one informed investor in the market, disclosure facilitates learning among informed investors. Contrary to the model of BCW (2000) in which informed investors learn at the same speed (measured by the increase of conditional precision) as the market maker, in our model informed investors learn twice as fast as the market maker because they know the random component in their own trades. The ratio of conditional precision of informed investors to that of the market maker converges to two from above (below) when investors have positively (negatively) correlated signals. Near the end of trading, investors’ signals become conditionally uncorrelated and they trade in aggregate like a monopolist. Learning makes informed investors cooperate. If investors started with uncorrelated signals, they behave in aggregate like a monopolist throughout trading.

With very noisy signals, learning becomes so important that informed investors make more expected profits in the presence of disclosure. In addition, an informed investor could learn so much from disclosure that he makes more profits with competition than trading alone. Synergy in the gains from informed trading also implies that when there is cost in information collection, there could exist multiple information acquisition equilibria. In one equilibrium, no one would acquire information but in the other both investors would acquire information. Herding in information acquisition occurs because informed investors learn more from each other through disclosure than the market maker.

Disclosure also changes the inter-temporal patterns of the market liquidity. In the model of BCW (2000) without disclosure, informed investors’ conditional precision about asset value over that of the market maker converges to 1. Therefore conditional correlation goes to -1 and informed investors will eventually be on the other side of the market and market liquidity goes to zero as they cluster their trades near the end of trading. With precise signals, market liquidity will first increase and then decrease. With noisy signals, market liquidity always decreases over time. On the contrary, in our model, market liquidity is always finite.
When informed investors have very noisy signals they will trade more cautiously in the beginning. As time goes on, investors learn more and trade more aggressively, and market liquidity will decrease over time. With small noise in informed investors’ private signals, informed investors will trade aggressively initially, which results in a lower market liquidity that increases over time. Moreover, we show that initial market depth increases with σ_ϵ while the end of period liquidity decreases with σ_ϵ.

In the extension to three or more informed investors, each informed investor still learns more than the market maker. However the speed of learning measured by the derivative of conditional precision is $N/(N - 1)$ of that of the market maker. Thus the relative advantage of learning through disclosure for informed investors over the market maker is decreasing with N. We show that for noisy signals, the first $N - 1$ informed investors are better off if the Nth informed investor is present in the market. The reduction in the relative speed of learning causes the gains informed investors receive from learning to be lower with higher N. Nevertheless, when $N < 5$, a monopolistic informed investor still prefers the presence of all remaining $N - 1$ informed investors in the trading game when signals are very noisy, which will never happen in BCW (2000). However, for $N > 2$, disclosure always makes informed investors worse off. For larger N, potential gains through learning from each other is lower and is not enough to offset the losses due to random noise trades. When information acquisition is endogenized, due to mutual learning among informed investors, there could exist herding equilibria in which an investor will become informed only if he believes all others will become informed.

We considered only the case in which the signals have a symmetric structure. That is they all have the same correlation with each other and the same variance. In the future, it would be interesting to relax this restriction and it is possible that some informed investors benefit from disclosure while others would be worse off. Similarly, with asymmetric information structure, it is also possible that some informed investors may prefer more informed investors to learn from each other while others would be better off with less competition.

Our model provides the first example in which informed investors are better with more public information. It is worthwhile to examine if this also holds in cases of information disclosure of signals about asset value, which we leave for future research.
References

Appendices

A Proofs for Section 2

Proof of Theorem 1 We focus on proving the necessity of the claimed equations. The sufficiency of these equations can be established by reversing the necessity arguments (see the end of this proof for more details). So in the rest of this proof except in the last paragraph, we assume that a symmetric linear equilibrium exists, and we prove the claimed equations.

We first prove equations (11) to (14) simply by assuming that each informed investor follows Strategy \star. These equations will be used in the inductive proofs for other equations.

First, we can easily check the correctness of equations (11) and (12) by the fact that the expectation of a normal variable is the precision-weighted average of all received signals. Moreover, the updating rule of normally distributed variables states that posterior precision equals prior precision plus the precision of the noise of the signals. Hence, we immediately establish the correctness of equations (13) and (14).

Before proving the rest of the desired equations, we first establish the following useful lemma.

Lemma 1 Assume (1) each informed investor believes that all other informed investors follow Strategy \star, and (2) the market maker believes that all informed investors follow Strategy \star. Then,
\[\sum_{1 \leq i \leq 2} (V_m^i - V_m) = 2\delta_m (v - V_m). \]

Proof First, it is easy to check the correctness of the following mathematical identity by properties of normal variables
\[\Omega_0 = \frac{1}{2} (1 - \rho) \Sigma_0. \] (A1)

Using this relation and equations (13) and (14), we can easily check
\[\frac{\Omega_m}{\Omega_0} \rho + 1 = 2\delta_m. \] (A2)

In what follows, define
\[U_m^i \equiv E[v - s^i | F_m^i]. \]
where the expectation is computed after trade disclosures in period \(m \). Equivalently, we could have defined \(U_m^i \equiv V_m^i - s^i \).

Since the expected value of a normal variable is equal to the precision-weighted average of all received signals, we have

\[
U_m^j = \frac{\Omega_m U_0^j}{\Omega_0} + \Omega_m \sum_{1 \leq k \leq m} \left[\frac{1}{\Omega_k} \left(s^i + \frac{z_k^i}{\beta_k \Delta t} \right) \right] - \frac{\Omega_m U_0^j}{\Omega_0} \rho s^i + \sum_{1 \leq k \leq m} \left[\frac{\beta_k^2 \Delta t}{\sigma_m^2} \sum_{1 \leq i \leq 2} \left(s^i + \frac{z_k^i}{\beta_k \Delta t} \right) \right],
\]

where the second equation follows from equation (13). (It is easy to verify that equation (13) holds when each informed investor merely believes all other informed investors follow Strategy \(\ast \).) Similarly,

\[
V_m = 0 + \sum_{1 \leq k \leq m} \left[\frac{\beta_k^2 \Delta t}{2 \sigma_m^2} \sum_{1 \leq i \leq 2} \left(s^i + \frac{z_k^i}{\beta_k \Delta t} \right) \right].
\]

Summing up equation (A3) over \(j = 1, 2 \), we have

\[
\sum_{1 \leq j \leq 2} U_m^j = \frac{\Omega_m}{\Omega_0} \rho \sum_{1 \leq j \leq 2} s^j + \Omega_m \sum_{1 \leq k \leq m} \left[\frac{\beta_k^2 \Delta t}{\sigma_m^2} \sum_{1 \leq i \leq 2} \left(s^i + \frac{z_k^i}{\beta_k \Delta t} \right) \right]
= \frac{\Omega_m}{\Omega_0} \rho v + 2 \Omega_m \frac{V_m}{\sum_m} \quad \text{(by equation (A4))}
= (2\delta_m - 1) v + 2 \Omega_m \frac{V_m}{\sum_m} \quad \text{(by equation (A2)).}
\]

The last equation is only a slight variation of the equality claimed in the lemma. \(\Box \)

We have thus completed the proof of Lemma 1. Using the results established in proving the lemma, we next prove that Strategy (6) satisfies equation (\(\ast \)). In equation (6), \(x_m^i \) consists of a random component \((z_m^i) \), a component based on public information \(\frac{\beta_m \Delta t}{\delta_{m-1}} V_{m-1}^i \), and a private-information-related component \(\frac{\beta_m \Delta t}{2 \delta_{m-1}} V_{m-1}^i \). By equation (A3), the only private component in \(\frac{\beta_m \Delta t}{2 \delta_{m-1}} V_{m-1}^i \) is equal to

\[
\frac{\beta_m \Delta t}{2 \delta_{m-1}} \left(s^i + \frac{\Omega_{m-1}}{\Omega_0} \rho s^i \right) = \beta_m \Delta t s^i \quad \text{(by equation (A2)).}
\]
This proves that Strategy (6) satisfies equation (⋆). Moreover, our arguments also imply that to support a symmetric linear equilibrium, x^i_m must have the following form:

$$x^i_m - z^i_m = \frac{\beta_m \Delta t}{2 \delta_{m-1}} V^i_{m-1} + \text{a public-information-based component.} \quad (A5)$$

Using Lemma 1 and equation (6), we have

$$\sum_{1 \leq i \leq 2} x^i_m = \beta_m \Delta t \left(v - V_{m-1} + \sum_{1 \leq i \leq 2} \frac{z^i_m}{\beta_m \Delta t} \right). \quad (A6)$$

Therefore, using equation (12) we immediately obtain equation (8) and equation (9) (the derivation of equation (9) also needs equation (14)). Note that in a symmetric linear equilibrium, the value-updating rules must be of the form specified in equation (8). Our arguments in this paragraph together with equation (A5) also show that to support a symmetric linear equilibrium, equation (6) must hold.

Using equation (A6) and the rules of conditional expectation of normally distributed variables, we immediately obtain equation (7) with

$$\lambda_m = \frac{\text{cov}_{m-1} \left[v, \sum_{1 \leq j \leq 2} x^j_m + z^0_m \right]}{\text{var}_{m-1} \left[z^0_m + \sum_{1 \leq j \leq 2} x^j_m \right]} = \frac{\beta_m \Sigma_{m-1}}{\beta_m \Sigma_{m-1} + 1 + 2 \sigma_m^2}.$$

The last equation is exactly equation (10).

We next proceed to prove equations (15) to (24) by backward induction on m, starting with the last period $m = M$. As there are no more trading opportunities after the last period, the maximization problem for each informed investor i is the same as the case without disclosure that has been derived in Foster and Viswanathan (1996) and Cao (1995). In particular, we know that the expected profit function of informed investor i has the form described in equation (15) with the boundary conditions specified in equations (20) to (24).

Thus, we have completed the base step. Next, we assume equations (15) to (19) are correct for period $m + 1$ and prove them for period m. By the induction hypothesis, immediately after the mth period disclosure, the expected profits for future trades (i.e., trades
from period $m + 1$ onwards) can be written as,

$$E_i^{m}[\pi_{m+1}^i] \equiv E[\pi_{m+1}^i|E_m^i] = \alpha_m(V_m^i - V_m)^2 + \zeta_m.$$

Hence, the maximization problem of informed investor i immediately after the $(m - 1)$th period trade disclosure is:

$$\max_{x_m^i} E_m^{i-1}[x_m^i\left(v - V_{m-1} - \lambda_m\left(x_m^0 + \sum_{1 \leq j \leq 2} x_m^j\right)\right) + \alpha_m(V_m^i - V_m)^2] + \zeta_m \quad (A7)$$

where the two terms inside the squared brackets represent the profit of the mth trade and the total profit of all future trades.

For informed investor i to follow a random strategy, he must be indifferent between different values of x_m^i. Thus, the coefficients of $(x_m^i)^2$ and x_m^i in Expression (A7) must be zero. These two restrictions respectively imply

$$\lambda_m = \alpha_m\bar{\lambda}_m^2, \quad \text{and}$$

$$E_m^{i-1}[v - V_{m-1} - \lambda_m x_m^i] = 2\alpha_m\bar{\lambda}_m E_{m-1}^{i-1}\left[V_m^i - V_{m-1} - \bar{\lambda}_m x_m^i\right]. \quad (A9)$$

Note that equation (A8) is the same as equation (16). In what follows, we show that equations (A8) and (A9) together imply equation (17). On the other hand, by Lemma 1,

$$x_m^j = \beta_m \Delta t \left(v - V_{m-1} - \frac{1}{2\delta_{m-1}}(V_m^i - V_{m-1})\right) + z_m^j. \quad (A10)$$

Hence,

$$E_{m-1}^i[x_m^j] = \beta_m \Delta t \left(1 - \frac{1}{2\delta_{m-1}}\right)(V_m^i - V_{m-1})$$

Applying this relation to equation (A9), we obtain

$$\frac{1 - \lambda_m \beta_m \Delta t + \lambda_m \beta_m \Delta t/(2\delta_{m-1})}{1 - \lambda_m \beta_m \Delta t + \lambda_m \beta_m \Delta t/(2\delta_{m-1})} = 2\alpha_m\bar{\lambda}_m.$$

Now we multiply both sides of the preceding equation with the denominator of the left-hand side of the equation, and then we use equation (A8) to substitute all the $\alpha_m\bar{\lambda}^2$ terms by λ_m.

38
This leads to

\[2\alpha_m \bar{\lambda}_m = 1 + \lambda_m \left(\beta_m \Delta t - \frac{\beta_m \Delta t}{2\delta_{m-1}} \right). \]

Next, multiplying both sides of the above equation with \(\bar{\lambda}_m \) and using equation (A8) to substitute \(\alpha_m \bar{\lambda}_m^2 \) by \(\lambda_m \), we immediately obtain equation (17).

Since we have established that informed investor \(i \) is indifferent to \(x_m^i \), Expression (A7) can be simplified by setting \(x_m^i = 0 \). Thus,

\[
E_{m-1}[\pi_m^i] = \alpha_m E_{m-1}^i \left[(V_m^i - V_m)^2 \right] + \zeta_m \\
= \alpha_m \left(E_{m-1}^i [V_m^i - V_m]^2 + \alpha_m \text{var}_{m-1}^i [V_m^i - V_m] + \zeta_m \right) \tag{A11}
\]

On the other hand, since we have assumed \(x_m^i = 0 \) in the profit calculation, using the updating rule for normal variables we have

\[
V_m^i = \frac{\Omega_m}{\Omega_{m-1}} V_{m-1}^i + \frac{\Omega_{m-1} - \Omega_m}{\Omega_{m-1}} \left(v + \frac{z_m^j}{\beta_m \Delta t} \right) \\
= \frac{\Omega_m}{\Omega_{m-1}} V_{m-1}^i + \frac{\Omega_m \beta_m^2 \Delta t}{\sigma_m^2} \left(v + \frac{z_m^j}{\beta_m \Delta t} \right), \tag{A12}
\]

where the second equation follows from equation (13). Moreover, using the pricing rules by market maker and applying equation (A10), we have

\[
V_m = V_{m-1} + \bar{\lambda}_m \beta_m \Delta t \left(v - V_{m-1} - \frac{V_{m-1}^i - V_m}{2\delta_{m-1}} \right) + \bar{\lambda}_m z_m^j \\
= V_{m-1} + \frac{\beta_m^2 \Sigma_m \Delta t}{2\sigma_m^2} \left(v - V_{m-1} - \frac{V_{m-1}^i - V_m}{2\delta_{m-1}} + \frac{z_m^j}{\beta_m \Delta t} \right), \tag{A13}
\]

where the second equation follows from equation (9).

Now, using equations (A12) and (A13) and the fact that \(v \) is independent of \(z_m^j \), we have

\[
\text{var}_{m-1}^i [V_m^i - V_m] = \left(\frac{\Omega_m \beta_m^2 \Delta t}{\sigma_m^2} - \frac{\beta_m^2 \Sigma_m \Delta t}{2\sigma_m^2} \right)^2 \left(\Omega_{m-1} + \frac{\sigma_m^2}{\beta_m^2 \Delta t} \right) \tag{A14}
\]

Moreover,

\[
E_{m-1}^i [V_m^i - V_m] = V_{m-1}^i - E_{m-1}^i [V_m] \]

39
\[
\left(1 - \frac{\beta_m^2 \Sigma_m \Delta t}{2\sigma_m^2} \left(1 - \frac{1}{2\delta_{m-1}}\right)\right) (V_{m-1}^i - V_{m-1}),
\]
(A15)

here the last equation follows from equation (A13). Substituting equations (A14) and (A15) into equation (A11), we immediately see that equation (15) is correct for \(m \) with \(\alpha \) and \(\zeta \) satisfying equations (19) and (51). This completes our inductive step.

So far, we have proved all the desired equations as necessary conditions to support a symmetric linear equilibrium. In proving these equations, we have used (1) the rationality of the market maker’s pricing rules and value-updating rules, and (2) the optimality of all informed investors’ trading strategies. Moreover, by reversing these arguments, we can easily check that when these equations indeed hold, (1) the pricing rules and value-updating rules are indeed rational for the market maker, and (2) the trading strategies of all informed investors are indeed optimal. Therefore, all these equations collectively form a set of sufficient conditions to support a symmetric linear equilibrium. \(\Box \)

Numerical methods in solving the system of equations in Theorem 1

The whole recursive system of \(\alpha_m, \beta_m, \lambda_m, \Sigma_m, \Omega_m, \) and \(\zeta_m \) can be numerically solved by first conjecturing a value of \(\Omega_{M-1} \) and then solving recursively for \(\Omega_{M-2}, \ldots, \Omega_0 \). Given the conjectured \(\Omega_{M-1} \), we can compute \(\delta_{M-1} \), since the definition of \(\delta_M \) and equations (13) and (14) imply

\[
2\delta_{M-1} = 1 + \frac{\Omega_{M-1}}{\Omega_0} (2\delta_0 - 1).
\]

From \(\Omega_{M-1} \) and \(\delta_{M-1} \), we can now derive \(\Sigma_{M-1} \). From the boundary condition in equation (55), we can determine \(\alpha_{M-1} \). Now again we conjecture a value for \(\Omega_{M-2} \), which allows us to derive \(\delta_{M-2} \) and \(\Sigma_{M-2} \) as before. From equations (9) and (14),

\[
\Sigma_{M-1}^{-1} = \Sigma_{M-2}^{-1} + \tilde{\lambda}_{M-1} \beta_{M-1} \Delta t / \Sigma_{M-1}.
\]

Consequently, we obtain \(\beta_{M-1} \tilde{\lambda}_{M-1} \). Comparing equation (10) and equation (16), we arrive at

\[
\beta_{M-1} \Sigma_{M-2} / (\beta_{M-1}^2 \Delta t \Sigma_{M-2} + 1 + 2\sigma_{M-1}^2) = \tilde{\lambda}_{M-1}^2 \alpha_{M-1}.
\]

In the preceding equation, we can use the derived expression for \(\beta_{M-1} \tilde{\lambda}_{M-1} \) to substitute \(\tilde{\lambda}_{M-1} \) for \(\beta_{M-1} \), and we can use equation (9) to substitute \(\tilde{\lambda}_{M-1} \) for \(\sigma_{M-1}^2 \). Doing so results in an equation with \(\tilde{\lambda}_{M-1} \) being the only unknown. Solving the resulting equation gives a formula for \(\tilde{\lambda}_{M-1} \). Next we can derive \(\beta_{M-1} \) from \((\beta_{M-1} \tilde{\lambda}_{M-1}) / \tilde{\lambda}_{M-1}, \lambda_{M-1} \) from equation (49),
and σ^2_{M-1} from equation (9). Given the expressions for λ_{M-1}, $\bar{\lambda}_{M-1}$, β_{M-1}, and σ^2_{M-1}, we can now check whether equation (17) holds or not. If it doesn’t, we modify our initial value of Ω_{M-2} until it holds. We repeat the procedure to derive $\Omega_{M-3}, \ldots, \Omega_0$. If the derived Ω_0 is different from the initial given value, we adjust Ω_{M-1} and repeat the whole procedure until the derived Ω_0 equals to the initial given value.

Proof of Proposition 1 When $\sigma^2_v = \sigma^2_\epsilon$, we have $\rho = 0$, $\delta_m = 1/2$ from equation (A2) and $\Sigma_m = 2\Omega_m$ by the definition of δ_m. Plugging $\delta_m = 1/2$ into equation (18) gives $\alpha_m \equiv \alpha$ and combining $\Sigma_m = 2\Omega_m$, equations (19) and (23) gives $\zeta_m \equiv 0$, for all $m = 1, \ldots, M - 1$. Plugging $\delta_m = 1/2$ into equation (17) gives $\lambda_m = \bar{\lambda}_m/2$, which along with equation (16) leads to $\lambda_m = 1/(4\alpha)$.

From equations (9) and (14), we have

$$\bar{\lambda}_m = \frac{\beta_m}{2\sigma^2_m} \left(\frac{1}{\Sigma_{m-1}} + \frac{\beta^2 m \Delta t}{2\sigma^2_m} \right)^{-1}$$

which along with $\bar{\lambda}_m = 2\lambda_m$ and equation (10) leads to

$$\bar{\lambda}_m = \beta_m \Sigma_{m-1}, \text{ and}$$

(A16)

$$2\sigma^2_m = 1 - \beta^2_m \Sigma_{m-1} \Delta t = 1 - \frac{\bar{\lambda}_m^2 \Delta t}{\Sigma_{m-1}} = 1 - \frac{\Delta t}{4\alpha^2 \Sigma_{m-1}}.$$

(A17)

From equation (14), we have

$$\Sigma_m = \frac{2\sigma^2_m \Sigma_{m-1}}{\beta^2_m \Sigma_{m-1} \Delta t + 2\sigma^2_m} = \Sigma_{m-1} \left(1 - \frac{\Delta t}{4\alpha^2 \Sigma_{m-1}} \right)$$

$$= \Sigma_{m-1} - \frac{\Delta t}{4\alpha^2} = \Sigma_0 - \frac{m \Delta t}{4\alpha^2}$$

Combining equation (21), equation (22), and $\delta_m = 1/2$ gives

$$\alpha = \frac{1}{2\sqrt{\Sigma_{M-1}/\Delta t}}$$
So we have

\[\Sigma_{M-1} = \frac{\Delta t}{4\alpha^2} = \Sigma_0 - \frac{(M-1)\Delta t}{4\alpha^2}, \quad \text{and} \]

\[\alpha = \frac{1}{2\sqrt{\Sigma_0}} \quad (\text{Remember } \Delta t = 1/M). \]

\(\beta_m \) and \(\sigma_m^2 \) can be calculated from equations (A17) and (A18), which completes the proof. \(\square \)

Proof of Proposition 2 From equation (17), as \(\Delta t \to 0 \) we have \(\lambda_m = \overline{\lambda}_m/2 \) and equation (28) comes directly from equation (16).

Combining equations (9), (10) and (14) gives

\[\frac{\overline{\lambda}_m}{\lambda_m} = \frac{\beta_m(2\sigma_m^2\Sigma_{m-1})/(2\sigma_m^2 + \beta_m^2\Sigma_{m-1}\Delta t)}{2\sigma_m^2} \]

\[= \frac{1 + 2\sigma_m^2 + \beta_m^2\Sigma_{m-1}\Delta t}{2\sigma_m^2 + \beta_m^2\Sigma_{m-1}\Delta t} = 2 \]

which means \(2\sigma_m^2 = 1 \) as \(\Delta t \to 0 \) and hence equations (29) and (30).

Combining equations (9) and (10) and \(2\sigma_m^2 = 1 \) gives equations (25) and (26). Equations (31) and (32) come directly from equations (18) and (19) and \(\sigma_m^2 = 1/2 \). \(\square \)

Proof of Theorem 2

Combining equation (16), equation (21), and equation (22) gives us

\[\frac{\lambda_{M-1}^2}{\lambda_{M-1}^2}(1 + 2\delta_{M-1})\sqrt{2\delta_{M-1}\Sigma_{M-1}} = \Delta t. \]

From equation (A2), we know \(2\delta_{M-1} > \min\{1, 1 + \rho\} > 0 \). As \(\Delta t \to 0 \), \(\lambda_{M-1}/\overline{\lambda}_{M-1} = 1/2 \), we must have

\[\Sigma_{M-1} \to 0, \quad \text{or} \]

\[\overline{\lambda}_{M-1} \to +\infty. \]

(A19a)

(A19b)

42
Let $\Gamma(t) = \Sigma^{-1}(t)$, then we have

$$\beta(t) = \sqrt{\frac{d\Gamma(t)}{dt}} = \sqrt{\Gamma'(t)}, \quad \text{(by equation (30))}$$

$$\bar{\lambda}(t) = \beta(t)\Sigma(t) = \sqrt{\Gamma'(t)}/\Gamma(t). \quad \text{(by equation (25))}$$

Define $A \equiv \frac{2\rho}{(1-\rho)\Sigma(0)} = \frac{2\delta_0 - 1}{\Omega(0)} = \frac{\sigma^2_{x}-\sigma^2_{\epsilon}}{\sigma^2_{x\epsilon}}$, then we have

$$\Omega(t) = \left(\frac{2}{\Sigma(t)} + (2\delta_0 - 1)/\Omega(0)\right)^{-1} \quad \text{(by equations (29) and (30))}$$

$$= (A + 2\Gamma(t))^{-1},$$

$$1 - \frac{1}{2\delta(t)} = 1 - \frac{1}{1 + (2\delta_0 - 1)\Omega(t)/\Omega(0)} \quad \text{(by equation (A2))}$$

$$= 1 - \frac{1}{1 + A(A + 2\Gamma(t))^{-1}}$$

$$= \frac{A}{2(A + \Gamma(t))}.$$

Plugging the above equation into equation (31) gets

$$\alpha'(t) = \beta(t) \left(1 - \frac{1}{2\delta(t)}\right) = \frac{A\sqrt{\Gamma'(t)}}{2(A + \Gamma(t))}$$

And at the same time, we have

$$\alpha'(t) = \left(\frac{1}{2\beta(t)\Sigma(t)}\right)' = \left(\frac{\Gamma(t)}{2\sqrt{\Gamma'(t)}}\right)'$$

$$= \frac{1}{2} \left(\Gamma'(t)\right)^{\frac{3}{2}} - \frac{1}{2} \Gamma(t)(\Gamma'(t))^{-\frac{3}{2}} \Gamma''(t)$$

which means $\Gamma(t)$ satisfies the following ordinary differential equation

$$\frac{\Gamma''(t)}{\Gamma'(t)} + \frac{2\Gamma'(t)}{-A - \Gamma(t)} = 0 \quad \text{(A20)}$$

with initial condition $\Gamma(0) = \Sigma_0^{-1}$ and terminal condition (A19).
In the case $\rho = 1$, $A = \infty$, and hence the above equation implies\(^{11}\)

$$0 = \frac{d}{dt} [\log (\Gamma'(t))] .$$

Thus,

$$\Gamma'(t) = C_0$$

for some constant $C_0 > 0$,

which in turns implies

$$\Sigma(t) = \frac{1}{\Gamma(t)} = (C_0t + C_1)^{-1} \text{ for some constant } C_1.$$ (A21)

But there are no constants $C_0 > 0$ and C_1 which can make the above $\Sigma(t)$ satisfy either $\Sigma(1) = 0$ or $\lim_{t \to 1} \lambda(t) = \sqrt{-\Sigma'(1)} = +\infty$, as required by equation (A19). This completes the proof that a linear equilibrium does not exist for $\rho = 1$.

In the rest of the proof, we assume $\rho \neq 1$ that will ensure a finite A in the rest of the proof. Under this assumption, we prove that equation (A20) has a unique solution of $\Sigma(t)$ as described in the theorem.

By equation (A20),

$$0 = \frac{d}{dt} \left[\log \left(\Gamma'(t)(\Gamma(t) + A)^{-2} \right) \right].$$

Hence,

$$\Gamma'(t) (\Gamma(t) + A)^{-2} = C_2$$

for some constant C_2.

In the case of $\rho = 0$, we have $A = 0$. Hence, the above equation is equivalent to $\Gamma^{-2}(t)\Gamma'(t) = C_2$, which implies that $\Sigma(t) = 1/\Gamma(t)$ is linear in t. Hence, the desired formula for $\Sigma(t)$ follows immediately from the boundary condition $\Sigma(1) = 0$.

For the case of $\rho \neq 0$, we can make a change of variable as $\Gamma(t) = A\frac{R(t)}{1-R(t)}$, the above equation becomes

$$R'(t) = AC_2.$$

From this and the boundary conditions on $R(0)$ and $R(1)$, we obtain

$$\frac{1}{A\Sigma(t) + 1} = \frac{1}{A\Sigma(1) + 1} t + \frac{1}{A\Sigma(0) + 1} (1-t).$$ (A22)

\(^{11}\)To be completely formal and to avoid dividing by 0, we should have directly derived the desired equation below. But this is a straightforward exercise by using the argument for obtaining equation (A20).
Taking derivatives with respect to \(t \) in the above equation, we know that \(\Sigma'(1) \) is bounded. Hence, from the proved formula \(\bar{\lambda}(t) = \sqrt{-\Sigma'(t)} \), we know that \(\lim_{t \to 1} \bar{\lambda} \) is finite. Hence, from equation (A19), we must have \(\Sigma(1) = 0 \). Plugging \(\Sigma(1) = 0 \) into equation (A22), we immediately arrive at the claimed formula for \(\Sigma(t) \). The expressions for \(\beta(t), \lambda(t), \) and \(\bar{\lambda}(t) \) are directly followed from the formula of \(\Sigma(t) \).

The expected losses per unit of trade from noise traders arrive at time \(t, \lambda(t) \), equal to the expected profits of informed investors. Thus, we have

\[
\pi_D = \frac{1}{2} \int_0^1 \lambda(t) dt = \frac{1}{2} \int_0^1 \frac{\sigma_v^2 \sigma_\epsilon}{2[\sigma_v^2 t + \sigma_\epsilon^2 (1-t)]} dt = \frac{\sigma_v^2 \sigma_\epsilon [\log(\sigma_v) - \log(\sigma_\epsilon)]}{2(\sigma_v^2 - \sigma_\epsilon^2)}.
\]

B Proofs for Section 3

Proof of Proposition 3 From equations (33) and (36), we have \(\beta(t) = 1/\sigma_\epsilon(1-t) \) and \(\frac{1}{\Sigma(t)} = \frac{1}{\sigma_\epsilon^2} + \frac{1}{\sigma_\epsilon^2 (t+1)} \), it’s clear that both \(\Sigma(t)^{-1} \) and \(\beta(t) \) are increasing in \(t \) and decreasing in \(\sigma_\epsilon^2 \).

From equation (34), it’s obvious that \(1/\lambda(0) = 2\sigma_\epsilon/\sigma_v^2 \) increases with \(\sigma_\epsilon \) and \(1/\lambda(1) = 2/\sigma_\epsilon \) decreases with \(\sigma_\epsilon \). Moreover, rewriting the market depth \(1/\lambda(t) \) as \(2(\sigma_v^2 + (\sigma_v^2 - \sigma_\epsilon^2)t)/(\sigma_v^2 \sigma_\epsilon) \) means \(1/\lambda(t) \) increases (decreases) with \(t \) when \(\sigma_\epsilon < \sigma_v \) (\(\sigma_\epsilon \geq \sigma_v \)).

Proof of Proposition 4 When \(\sigma_\epsilon^2 = \sigma_v^2 \), we have

\[
\Sigma(t) = \Sigma(0)(1-t)
\]

and hence

\[
\beta(t) = \frac{1}{\sqrt{\Sigma(0)(1-t)}}, \quad \lambda(t) = \frac{1}{2}, \quad \bar{\lambda}(t) = 1.
\]

and the profits of informed investors are

\[
\int_0^1 \lambda(t) dt = \int_0^1 \frac{1}{2} dt = \frac{1}{2}
\]

Therefore, market efficiency, market liquidity, and expected profits of informed investors are the same as if there exists a monopolistic informed investor who possesses all private signals in the market. And from equation (29), we have \(\Omega(t) = \frac{\Sigma(0)}{2}(1-t) \) and hence
\(\delta(t) \equiv 1/2 \) for all \(t \in [0, 1] \), which means the conditional correlation between private signals \(\rho(t) \) remains 0 throughout the trading period. □

Proof of Proposition 5

When \(\sigma_c^2 \neq \sigma_v^2 \), we first have

\[
1 \leq 2\delta(t) \leq 1 + \rho \frac{\Omega(t)}{\Omega(0)} \to 1
\]

and hence \(\rho(t) \to 0 \) (as \(\delta(t) = (1 + \rho(t))/2 \)) because \(\Omega(t) \leq \Sigma(t) \to 0 \) as time \(t \) goes to 1.

Further,

\[
\lim_{t \to 1} \frac{\Sigma(t)}{\sigma_c^2(1-t)} = \lim_{t \to 1} \frac{\sigma_v^2}{\sigma_v^2 t + \sigma_c^2(1-t)} = 1,
\]

\[
\lim_{t \to 1} \frac{1}{\lambda(t)} = \lim_{t \to 1} \frac{\sigma_v^2 t + \sigma_c^2(1-t)}{\sigma_v^2} = 1. \quad \Box
\]

Proof of Theorem 3 This is Corollary 1 in BCW (2000) and its proof is in the Appendix of BCW (2000). □

Proof of Proposition 6 For \(\log(x) < x - 1 \) when \(x > 1 \) and \(\log(x)/(x - 1) \to 0 \) as \(x \to \infty \), we have \(\frac{\Sigma(t)}{\Sigma(t)} > 0 \) for all \(t \in [0, 1] \) and

\[
\lim_{t \to 1} \frac{\Sigma(t)}{\Sigma(t)} = \lim_{t \to 1} \frac{\log(1/(1-t))}{t/(1-t)} = 0.
\]

Further, the behavior of the ratio of \(\beta(t) \) and \(\hat{\beta}(t) \) comes directly from the expressions for \(\beta(t) \) and \(\hat{\beta}(t) \). □

Proof of Proposition 7 The ratio of market liquidity can be decomposed into three components:

\[
\frac{1/\lambda(t)}{1/\hat{\lambda}(t)} = \frac{2}{1} \times \frac{\hat{\beta}(t)}{\beta(t)} \times \frac{\hat{\Sigma}(t)}{\Sigma(t)} = 2 \times \sqrt{1-t} \times \frac{\sigma_v^2 + \sigma_v^2 t/(1-t)}{\sigma_v^2 - \sigma_v^2 \log(1-t)}
\]

As \(t \) approaches 1, \(\hat{\beta}(t)/\beta(t) \) goes to zero at the order of \(\sqrt{1-t} \) but \(\hat{\Sigma}(t)/\Sigma(t) \) goes to infinity at the order of \(1/[(1-t)\log(1-t)] \). Thus, we must have

\[
\lim_{t \to 1} \frac{1/\lambda(t)}{1/\hat{\lambda}(t)} = \infty.
\]
When $\sigma_\epsilon \leq \sigma_v$, we have

\[
\frac{\hat{\Sigma}(t)}{\Sigma(t)} = \frac{\sigma_\epsilon^2 + \sigma_v^2 t/(1-t)}{\sigma_\epsilon^2 - \sigma_v^2 \log(1-t)} \geq \frac{1}{(1-t)(1-\log(1-t))} \geq \frac{\sqrt{e}}{2\sqrt{1-t}},
\]

where the last inequality holds because $\sqrt{1-t}[1-\log(1-t)]$ is maximized at $t = 1 - 1/e$. It follows that

\[
\frac{1/\lambda}{1/\hat{\lambda}} \geq 2 \times \sqrt{1-t} \times \frac{\sqrt{e}}{2\sqrt{1-t}} = \sqrt{e} > 1, \quad \text{and}
\]

\[
\pi_D = \int_0^1 \lambda(t)dt < \int_0^1 \hat{\lambda}(t)dt = \hat{\pi}_D. \quad \Box
\]

Proof of Proposition 8

\[
\frac{1/\lambda(t)}{1/\hat{\lambda}(t)} = 2 \times \frac{\hat{\beta}(t)}{\beta(t)} \times \frac{\hat{\Sigma}(t)}{\Sigma(t)} = 2 \times \sqrt{1-t} \times \frac{\sigma_\epsilon^2 + \sigma_v^2 t/(1-t)}{\sigma_\epsilon^2 - \sigma_v^2 \log(1-t)}
\]

When $t > 3/4$, $2\sqrt{1-t} < 1$. Moreover, as σ_ϵ increases, $\Sigma(t)/\hat{\Sigma}(t)$ goes to 1 since informed investors have very imprecise signals and thus are reluctant to trade, which causes very little information to be revealed to the market. As a result, market is less liquid in the presence of public disclosure for large σ_ϵ, which means there exists a $\sigma_\epsilon^* > \sigma_v$, such that $1/\lambda(t) < 1/\hat{\lambda}(t)$ for $\sigma_\epsilon^* > \sigma_\epsilon$ and $t > 3/4$. \Box

C Proofs for Section 4

Proof of Proposition 9
\[
\frac{\hat{\pi}_D}{\pi_D} = \int_0^1 \frac{4(\sigma^2 - 1)/\log(\sigma^2)}{[\sigma^2 - \log(1 - t)]\sqrt{1 - t}} dt \\
\leq \int_0^1 \frac{4(\sigma^2 - 1)/\log(\sigma^2)}{\sigma^2 \sqrt{1 - t}} dt \\
= \frac{8(\sigma^2 - 1)}{\sigma^2 \log(\sigma^2)}
\]

So, we have \(\lim_{\sigma^2 \to \infty} \frac{\hat{\pi}_D}{\pi_D} = 0\), which by the definition of limit means there exists a large enough \(\sigma^*_\epsilon > \sigma_0\) such that for \(\sigma_\epsilon > \sigma^*_\epsilon\), \(\pi_D/\hat{\pi}_D > 1\). \(\square\)

Proof of Proposition 10 Redefining \(\sigma^2_\epsilon\) as \(\sigma^2_\epsilon/\sigma^2_v\), we have

\[
\frac{\pi_D}{\pi_M} = \frac{\sqrt{\sigma^2_\epsilon \log(\sigma^2_\epsilon)}}{4(\sigma^2_\epsilon - 1)} \left/ \frac{1}{2\sqrt{1 + \sigma^2_\epsilon}} \right. \\
= \frac{\sqrt{\sigma^2_\epsilon(1 + \sigma^2_\epsilon)} \log(\sigma^2_\epsilon)}{2(\sigma^2_\epsilon - 1)}
\]

Taking derivative of \(\pi_D/\pi_M\) with respect to \(\sigma^2_\epsilon\) gives

\[
\frac{\partial}{\partial \sigma^2_\epsilon} \frac{\pi_D}{\pi_M} = \frac{2(\sigma^4_\epsilon - 1) - 3(\sigma^2_\epsilon + 1) \log(\sigma^2_\epsilon)}{4(\sigma^2_\epsilon - 1)^2 \sqrt{\sigma^2_\epsilon(1 + \sigma^2_\epsilon)}}
\]

Considering the function \(2(\sigma^4_\epsilon - 1) - 3(\sigma^2_\epsilon + 1) \log(\sigma^2_\epsilon)\), its first derivative with respect to \(\sigma^2_\epsilon\) is

\[
\frac{\partial}{\partial \sigma^2_\epsilon} \left[2(\sigma^4_\epsilon - 1) - 3(\sigma^2_\epsilon + 1) \log(\sigma^2_\epsilon)\right] \\
= 4\sigma^2_\epsilon - (3 + 1/\sigma^2_\epsilon) - 3 \log(\sigma^2_\epsilon) \\
\geq 4\sigma^2_\epsilon - (3 + 1/\sigma^2_\epsilon) - 3(\sigma^2_\epsilon - 1) \\
= \sigma^2_\epsilon - 1/\sigma^2_\epsilon \geq 0, \sigma^2_\epsilon \geq 1.
\]

and its value is 0 at \(\sigma^2_\epsilon = 1\), which means \(\partial(\pi_D/\pi_M)/\partial \sigma^2_\epsilon \geq 0\) for all \(\sigma^2_\epsilon \geq 1\). And also we have the ratio of \(\pi_D/\pi_M\) grows to \(\infty\) as \(\sigma^2_\epsilon\) goes to \(\infty\),

\[
\lim_{\sigma^2_\epsilon \to \infty} \frac{\pi_D}{\pi_M} = \lim_{\sigma^2_\epsilon \to \infty} \frac{\log(\sigma^2_\epsilon)}{2} = \infty.
\]
so there is a large enough $\hat{\sigma}_\epsilon$ such that for $\sigma_\epsilon > \hat{\sigma}_\epsilon$, we have $\pi_D > \hat{\pi}_M = 2\pi_M > \pi_M$.

From equation (51) in BCW (2000) we have

$$\frac{\hat{\pi}_D}{\hat{\pi}_M} = \int_0^1 \frac{\sqrt{\sigma_\epsilon^2(1 + \sigma_\epsilon^2)/2}}{[\sigma_\epsilon^2 - \log(1-t)]\sqrt{1-t}} \, dt$$

$$\leq \int_0^1 \frac{\sqrt{\sigma_\epsilon^2(1 + \sigma_\epsilon^2)/2}}{[\sigma_\epsilon^2 + 1 - (1-t)]\sqrt{1-t}} \, dt \quad (\log(1-t) \leq -t \text{ for } t \in [0, 1])$$

$$= \int_0^1 \frac{\sqrt{\sigma_\epsilon^2(1 + \sigma_\epsilon^2)}}{[\sigma_\epsilon^2 + 1 - s^2]} \, ds \quad \text{(Change of Variable: } s = \sqrt{1-t})$$

$$= \sqrt{\sigma_\epsilon^2} \log \frac{1 + \sqrt{1 + \sigma_\epsilon^2}}{\sqrt{\sigma_\epsilon^2}}$$

$$< 1. \Box$$

Proof of Proposition 11 Because $\pi_M < c$, an investor would not acquire information if she perceives the other investor is not going to acquire information and hence there is no investor to acquire information. However, she will acquire information if she perceives the other investor to acquire information since $c < \pi_D$. In this equilibrium, all investors become informed. \Box

D Proofs for Section 5

Proof of Theorem 4 We focus on proving the necessity of the claimed equations. The sufficiency of these equations can be established by reversing the necessity arguments (see the end of this proof for more details). So in the rest of this proof except in the last paragraph, we assume that a symmetric linear equilibrium exists, and we prove the claimed equations.

We first prove equations (44) to (47) simply by assuming that each informed investor follows Strategy \star. These equations will be used in the inductive proofs for other equations.

First, we can easily check the correctness of equations (44) and (45) by the fact that the expectation of a normal variable is the precision-weighted average of all received signals. Moreover, the updating rule of normally distributed variables states that posterior precision equals prior precision plus the precision of the noise of the signals. Hence, we immediately establish the correctness of equations (46) and (47).
Before proving the rest of the desired equations, we first establish the following useful lemma.

LEMMA 2 Assume (1) each informed investor believes that all other informed investors follow Strategy \star, and (2) the market maker believes that all informed investors follow Strategy \star. Then,

$$
\sum_{1 \leq i \leq N} (V^i_m - V_m) = N\delta_m(v - V_m).
$$

Proof First, it is easy to check the correctness of the following mathematical identity by properties of normal variables

$$
\Omega_0 = \frac{N-1}{N} (1 - \rho) \Sigma_0.
$$

(D1)

Using this relation and equations (46) and (47), we can easily check

$$
\frac{\Omega_m}{\Omega_0} (N-1)\rho + 1 = N\delta_m.
$$

(D2)

In what follows, define

$$
U^i_m \equiv E[v - s^i | F^i_m]
$$

where the expectation is computed after trade disclosures in period m. Equivalently, we could have defined $U^i_m \equiv V^i_m - s^i$.

Since the expected value of a normal variable is equal to the precision-weighted average of all received signals, we have

$$
U^j_m = \frac{\Omega_m}{\Omega_0} U^j_0 + \Omega_m \sum_{1 \leq k \leq m} \left[\left(\frac{1}{\Omega_k} - \frac{1}{\Omega_{k-1}} \right) \sum_{i \neq j} \left(s^i + \frac{z^i_k}{\beta_k \Delta t} \right) \right],
$$

(D3)

where the second equation follows from equation (46). (It is easy to verify that equation (46) holds when each informed investor merely believes all other informed investors follow Strategy \star.) Similarly,

$$
V_m = 0 + \sum_{1 \leq k \leq m} \left[\frac{\beta^2_k \Delta t}{N \sigma_m^2} \sum_{1 \leq i \leq N} \left(s^i + \frac{z^i_k}{\beta_k \Delta t} \right) \right].
$$

(D4)
Summing up equation (D3) over $j = 1, 2, \ldots, N$, we have

$$\sum_{1 \leq j \leq N} U^j_m = \frac{\Omega_m}{\Omega_0} (N - 1) \rho \sum_{1 \leq j \leq N} s^j + \Omega_m \sum_{1 \leq k \leq m} \left[\frac{\beta_k^2 \Delta t}{\sigma_m^2} \sum_{1 \leq i \leq N} \left(s^i + \frac{z_i^k}{\beta_k \Delta t} \right) \right]$$

$$= \frac{\Omega_m}{\Omega_0} (N - 1) \rho v + N \frac{\Omega_m}{\sum_m} V_m \quad \text{(by equation (D4))}$$

$$= (N \delta_m - 1) v + N \frac{\Omega_m}{\sum_m} V_m \quad \text{(by equation (D2)).}$$

The last equation is only a slight variation of the equality claimed in the lemma. □

We have thus completed the proof of Lemma 2. Using the results established in proving the lemma, we next prove that Strategy 39 satisfies equation (\star). In equation (39), x^i_m consists of a random component (z_m^i), a component based on public information ($\beta_m^i \Delta t N \delta_m - 1 V_{m-1}$), and a private-information-related component ($\beta_m^i \Delta t N \delta_m - 1 V_{i, m-1}$). By equation (D3), the only private component in $\frac{\beta_m^i \Delta t}{N \delta_m - 1} V_{i, m-1}$ is equal to

$$\frac{\beta_m^i \Delta t}{N \delta_m - 1} \left(s^i + \frac{\Omega_m - 1}{\Omega_0} (N - 1) \rho s^j \right) = \beta_m^i \Delta t s^i \quad \text{(by equation (D2)).}$$

This proves that Strategy 39 satisfies equation (\star). Moreover, our arguments also imply that to support a symmetric linear equilibrium, x^i_m must have the following form:

$$x^i_m - z^i_m = \beta_m^i \Delta t \frac{N \delta_m - 1}{V_{m-1}} V^i_{m-1} + \text{a public-information-based component.} \quad \text{(D5)}$$

Using Lemma 2 and equation (39), we have

$$\sum_{1 \leq i \leq N} x^i_m = \beta_m^i \Delta t \left(v - V_{m-1} + \sum_{1 \leq i \leq N} \frac{z^i_m}{\beta_m^i \Delta t} \right). \quad \text{(D6)}$$

Therefore, using equation (45) we immediately obtain equation (41) and equation (42) (the derivation of equation (42) also needs equation (47)). Note that in a symmetric linear equilibrium, the value-updating rules must be of the form specified in equation (41). Our arguments in this paragraph together with equation (D5) also show that to support a symmetric linear equilibrium, equation (39) must hold.

Using equation (D6) and the rules of conditional expectation of normally distributed
variables, we immediately obtain equation (40) with

$$\lambda_m = \frac{\text{cov}_{m-1} \left[v, \sum_{1 \leq j \leq N} x_j^m + z_0^m \right]}{\text{var}_{m-1} \left[z_0^m + \sum_{1 \leq j \leq N} x_j^m \right]} = \frac{\beta_m \Sigma_{m-1}}{\beta_m^2 \Delta t \Sigma_{m-1} + 1 + N \sigma_m^2}.$$

The last equation is exactly equation (43).

We next proceed to prove equations (48) to (57) by backward induction on \(m \), starting with the last period \(m = M \). As there are no more trading opportunities after the last period, the maximization problem for each informed investor \(i \) is the same as the case without disclosure which has been derived in Foster and Viswanathan (1996) and Cao (1995). In particular, we know that the expected profit function of informed investor \(i \) has the form described in equation (48) with the boundary conditions specified in equations (53) to (57).

Thus, we have completed the base step. Next, we assume equations (48) to (52) are correct for period \(m + 1 \) and prove them for period \(m \). By the induction hypothesis, immediately after the \(m \)th period disclosure, the expected profits for future trades (i.e., trades from period \(m + 1 \) onwards) can be written as,

$$E^i_m \left[\pi_{m+1}^i \right] \equiv E \left[\pi_{m+1}^i | F^i_m \right] = \alpha_m (V^i_m - V_m)^2 + \zeta_m.$$

Hence, the maximization problem of informed investor \(i \) immediately after the \((m - 1)\)th period trade disclosure is:

$$\max_{x_m^i} E^i_{m-1} \left[x_m^i \left(v - V_{m-1} - \lambda_m \left(z_0^m + \sum_{1 \leq j \leq N} x_j^m \right) \right) + \alpha_m (V^i_m - V_m)^2 \right] + \zeta_m \quad \text{(D7)}$$

where the two terms inside the squared brackets represent the profit of the \(m \)th trade and the total profit of all future trades.

For informed investor \(i \) to follow a random strategy, he must be indifferent between different values of \(x_m^i \). Thus, the coefficients of \((x_m^i)^2 \) and \(x_m^i \) in Expression (D7) must be
zero. These two restrictions respectively imply

\[\lambda_m = \alpha_m \bar{\lambda}_m, \quad \text{and} \]
\[E_{m-1}^{i} \left[v - V_{m-1} - \lambda_m \sum_{j \neq i} x_{m}^{j} \right] = 2\alpha_m \bar{\lambda}_m E_{m-1}^{i} \left[V_{m}^{i} - V_{m-1} - \bar{\lambda}_m \sum_{j \neq i} x_{m}^{j} \right]. \] \tag{D8}

Note that equation (D8) is the same as equation (49). In what follows, we show that equations (D8) and (D9) together imply equation (50). On the other hand, by Lemma 2,

\[\sum_{j \neq i} x_{m}^{j} = \beta_m \Delta t \left(v - V_{m-1} - \frac{1}{N\delta_{m-1}} (V_{m}^{i} - V_{m-1}) \right) + \sum_{j \neq i} z_{m}^{j}. \] \tag{D10}

Hence,

\[E_{m-1}^{i} \left[\sum_{j \neq i} x_{m}^{j} \right] = \beta_m \Delta t \left(1 - \frac{1}{N\delta_{m-1}} \right) (V_{m}^{i} - V_{m-1}) \]

Applying this relation to equation (D9), we obtain

\[\frac{1 - \lambda_m \beta_m \Delta t + \lambda_m \beta_m \Delta t / (N\delta_{m-1})}{1 - \lambda_m \beta_m \Delta t + \lambda_m \beta_m \Delta t / (N\delta_{m-1})} = 2\alpha_m \bar{\lambda}_m. \]

Now we multiply both sides of the preceding equation with the denominator of the left-hand side of the equation, and then we use equation (D8) to substitute all the \(\alpha_m \bar{\lambda}^2 \) terms by \(\lambda_m \).

This leads to

\[2\alpha_m \bar{\lambda}_m = 1 + \lambda_m \left(\beta_m \Delta t - \frac{\beta_m \Delta t}{N\delta_{m-1}} \right). \]

Next, multiplying both sides of the above equation with \(\bar{\lambda}_m \) and using equation (D8) to substitute \(\alpha_m \bar{\lambda}^2 \) by \(\lambda_m \), we immediately obtain equation (50).

Since we have established that informed investor \(i \) is indifferent to \(x_{m}^{i} \), Expression (D7) can be simplified by setting \(x_{m}^{i} = 0 \). Thus,

\[E_{m-1}^{i} \bar{\pi}_{m}^{i} = \alpha_m E_{m-1}^{i} \left[(V_{m}^{i} - V_{m})^2 \right] + \zeta_{m} \]
\[= \alpha_m \left(E_{m-1}^{i} [V_{m}^{i} - V_{m}] \right)^2 + \alpha_m \text{var}_{m-1}^{i} [V_{m}^{i} - V_{m}] + \zeta_{m} \] \tag{D11}

On the other hand, since we have assumed \(x_{m}^{i} = 0 \) in the profit calculation, using the
updating rule for normal variables we have

\[V^i_m = \frac{\Omega^i_m}{\Omega^i_{m-1}} V^i_{m-1} + \frac{\Omega^i_{m-1} - \Omega^i_m}{\Omega^i_{m-1}} \left(v + \sum_{j \neq i} \frac{z^j_m}{\beta^m_m \Delta t} \right) \]

\[= \frac{\Omega^i_m}{\Omega^i_{m-1}} V^i_{m-1} + \frac{\Omega^i_{m-1} \beta^2_m \Delta t}{(N-1)\sigma^2_m} \left(v + \sum_{j \neq i} \frac{z^j_m}{\beta^m_m \Delta t} \right), \] \tag{D12}

where the second equation follows from equation (46). Moreover, using the pricing rules by market maker and applying equation (D10), we have

\[V_m = V_{m-1} + \bar{\lambda}_m \beta_m \Delta t \left(v - V_{m-1} - \frac{V^i_{m-1} - V^i_m}{N \delta^i_{m-1}} \right) + \bar{\lambda}_m \sum_{j \neq i} z^j_m \]

\[= V_{m-1} + \frac{\beta^2_m \Sigma_m \Delta t}{N \sigma^2_m} \left(v - V_{m-1} - \frac{V^i_{m-1} - V^i_m}{N \delta^i_{m-1}} + \sum_{j \neq i} \frac{z^j_m}{\beta^m_m \Delta t} \right), \] \tag{D13}

where the second equation follows from equation (42).

Now, using equations (D12) and (D13) and the fact that \(v \) is independent of \(\sum_{j \neq i} z^j_m \), we have

\[\text{var}^i_{m-1} [V^i_m - V_m] = \left(\frac{\Omega^i_m \beta^2_m \Delta t}{(N-1)\sigma^2_m} - \frac{\beta^2_m \Sigma_m \Delta t}{N \sigma^2_m} \right)^2 \left(\Omega^i_{m-1} + \frac{(N-1)\sigma^2_m}{\beta^2_m \Delta t} \right) \] \tag{D14}

Moreover,

\[E^i_{m-1} [V^i_m - V_m] = V^i_{m-1} - E^i_{m-1} [V_m] \]

\[= \left(1 - \frac{\beta^2_m \Sigma_m \Delta t}{N \sigma^2_m} \left(1 - \frac{1}{N \delta^i_{m-1}} \right) \right) (V^i_{m-1} - V^i_{m-1}), \] \tag{D15}

here the last equation follows from equation (D13). Substituting equations (D14) and (D15) into equation (D11), we immediately see that equation (48) is correct for \(m \) with \(\alpha \) and \(\zeta \) satisfying equations (51) and (52). This completes our inductive step.

So far, we have proved all the desired equations as necessary conditions to support a symmetric linear equilibrium. In proving these equations, we have used (1) the rationality of the market maker’s pricing rules and value-updating rules, and (2) the optimality of all informed investors’ trading strategies. Moreover, by reversing these arguments, we can easily check that when these equations indeed hold, (1) the pricing rules and value-updating
rules are indeed rational for the market maker, and (2) the trading strategies of all informed
investors are indeed optimal. Therefore, all these equations collectively form a set of sufficient
conditions to support a symmetric linear equilibrium. □

Numerical method in solving the system of equations in Theorem 4

The whole recursive system of $\alpha_m, \beta_m, \lambda_m, \Sigma_m, \Omega_m, \text{and } \zeta_m$ can be numerically solved
by first conjecturing a value of $\Omega_{M−1}$ and then solving recursively for $\Omega_{M−2}, \ldots, \Omega_0$. Given
the conjectured $\Omega_{M−1}$, we can compute $\delta_{M−1}$, since the definition of δ_M and equations (46)
and (47) imply
\[
N\delta_{M−1} = 1 + \frac{\Omega_{M−1}}{\Omega_0}(N\delta_0 - 1).
\]
From $\Omega_{M−1}$ and $\delta_{M−1}$, we can now derive $\Sigma_{M−1}$. From the boundary condition in equation (55),
we can determine $\alpha_{M−1}$. Now again we conjecture a value for $\Omega_{M−2}$, which allows us
to derive $\delta_{M−2}$ and $\Sigma_{M−2}$ as before. From equations (42) and (47),
\[
\Sigma_{M−2}^{-1} = \Sigma_{M−2}^{-1} + \lambda_{M−1}\beta_{M−1}\Delta t/\Sigma_{M−1}.
\]
Consequently, we obtain $\beta_{M−1}\lambda_{M−1}$. Comparing equation (43) and equation (49), we arrive at
\[
\beta_{M−1}\Sigma_{M−2}/(\beta_{M−1}^2\Delta t\Sigma_{M−2} + 1 + N\sigma_{M−1}^2) = \lambda_{M−1}^2\alpha_{M−1}.
\]
In the preceding equation, we can use the derived expression for $\beta_{M−1}\lambda_{M−1}$ to substitute
$\lambda_{M−1}$ for $\beta_{M−1}$, and we can use equation (42) to substitute $\lambda_{M−1}$ for $\sigma_{M−1}^2$. Doing so
results in an equation with $\lambda_{M−1}$ being the only unknown. Solving the resulting equation
gives a formula for $\lambda_{M−1}$. Next we can derive $\beta_{M−1}$ from $(\beta_{M−1}\lambda_{M−1})/\lambda_{M−1}$,
$\lambda_{M−1}$ from equation (49), and $\sigma_{M−1}^2$ from equation (42). Given the expressions for
$\lambda_{M−1}, \lambda_{M−1}, \beta_{M−1},$ and $\sigma_{M−1}^2$, we can now check whether equation (50) holds or not. If it doesn’t, we modify
our initial value of $\Omega_{M−2}$ until it holds. We repeat the procedure to derive $\Omega_{M−3}, \ldots, \Omega_0$. If
the derived Ω_0 is different from the initial given value, we adjust $\Omega_{M−1}$ and repeat the whole
procedure until the derived Ω_0 equals to the initial given value. □

Proof of Theorem 5 Before proving Theorem 5, we prove the following general version of
Proposition 2.

PROPOSITION 15 Ignoring the higher order terms of Δt, we have the following results
for \(m = 1, \ldots, M - 1 \)

\[
\frac{\Delta \Omega_{m}^{-1}}{\Delta t} = \frac{\Omega_{m}^{-1} - \Omega_{m-1}^{-1}}{\Delta t} = \frac{N\beta_{m}^{2}}{N - 1}
\]

\[
\frac{\Delta \Sigma_{m}^{-1}}{\Delta t} = \frac{\Sigma_{m}^{-1} - \Sigma_{m-1}^{-1}}{\Delta t} = \beta_{m}^{2}
\]

\[
\bar{\lambda}_{m} = \frac{1}{2\alpha_{m}}
\]

\[
\frac{\Delta \alpha_{m}}{\Delta t} = \frac{\alpha_{m} - \alpha_{m-1}}{\Delta t} = 2\alpha_{m}\beta_{m}\Sigma_{m} \left(1 - \frac{1}{N\delta_{m-1}}\right)
\]

\[
\frac{\Delta \zeta_{m}}{\Delta t} = \frac{\zeta_{m} - \zeta_{m-1}}{\Delta t} = -\alpha_{m}\beta_{m}^{2} \left(\frac{N\Omega_{m} - (N - 1)\Sigma_{m}}{N(N - 1)}\right)^{2}
\]

Proof From equation (50), as \(\Delta t \to 0 \) we have \(\lambda_{m} = \bar{\lambda}_{m}/2 \) and equation (D21) comes directly from equation (49).

Combining equations (42), (43) and (47) gives

\[
\frac{\bar{\lambda}_{m}}{\lambda_{m}} = \frac{\beta_{m}(N\sigma_{m}^{2}\Sigma_{m-1})/(N\sigma_{m}^{2} + \beta_{m}^{2}\Sigma_{m-1}\Delta t) 1 + N\sigma_{m}^{2} + \beta_{m}^{2}\Sigma_{m-1}\Delta t}{\beta_{m}\Sigma_{m-1}} = 1 + \frac{N\sigma_{m}^{2} + \beta_{m}^{2}\Sigma_{m-1}\Delta t}{N\sigma_{m}^{2} + \beta_{m}^{2}\Sigma_{m-1}\Delta t}
\]

which means \(N\sigma_{m}^{2} = 1 \) as \(\Delta t \to 0 \). So we have the total trading volume from informed investors is \(N\sigma_{m}^{2} = 1 \), which equals the trading volume from noise traders. Therefore, informed investors contribute half of the trading volume in the market with disclosure.

The proof of equations (D19) and (D20) is trivial. Equations (D22) and (D23) comes directly from equations (51) and (52) and \(\sigma_{m}^{2} = 1/N \).

Combining equation (49), equation (54), and equation (55) gives us

\[
\frac{\lambda_{M-1}}{\bar{\lambda}_{M-1}}^{2} = \frac{(1 + N\delta_{M-1})\sqrt{N\delta_{M-1}\Sigma_{N-1}}}{\Delta t} = \sqrt{\Delta t}
\]

From equation (D2), we know \(N\delta_{M-1} > \min\{1, 1 + (N - 1)\rho\} > 0 \). As \(\Delta t \to 0, \)
\[\frac{\lambda_{M-1}}{\bar{\lambda}_{M-1}} = 1/2, \text{ so must have} \]

\[\Sigma_{M-1} \to 0, \quad \text{or} \quad (\text{D24a}) \]
\[\bar{\lambda}_{M-1} \to +\infty. \quad (\text{D24b}) \]

Let \(\Gamma(t) = \Sigma^{-1}(t) \), then we have

\[\beta(t) = \sqrt{\frac{d\Gamma(t)}{dt}} = \sqrt{\Gamma'(t)}, \quad \text{(by equation (D20))} \]
\[\bar{\lambda}(t) = \beta(t)\Sigma(t) = \sqrt{\Gamma'(t)/\Gamma(t)}. \quad \text{(by equation (42))} \]

Define \(A \equiv \frac{N\rho}{(1-\rho)\Sigma_0} = \frac{N\delta_0-1}{\Omega_0} \), then we have

\[\Omega(t) = \frac{N-1}{N/\Sigma(t) + (N\delta_0 - 1)/\Omega(0)} \]
\[= \frac{N-1}{A + N\Gamma(t)}, \]
\[1 - \frac{1}{N\delta(t)} = 1 - \frac{1}{1 + \frac{N\delta_0 - 1}{\Omega_0} \Omega(t)} \]
\[= 1 - \frac{1}{1 + A \frac{N-1}{A + N\Gamma(t)}} \]
\[= \frac{(N-1)A}{N(A + \Gamma(t))}. \]

Plugging the above equation into equation (D22) gets

\[\alpha'(t) = \beta(t) \left(1 - \frac{1}{N\delta(t)} \right) = \frac{(N-1)A\sqrt{\Gamma'(t)}}{N(A + \Gamma(t))} \]

And at the same time, we have

\[\alpha'(t) = \left(\frac{1}{2\beta(t)\Sigma(t)} \right)' = \left(\frac{\Gamma(t)}{2\sqrt{\Gamma'(t)}} \right)' \]
\[= \frac{1}{2} \left((\Gamma'(t))^{1/2} - \frac{1}{2} \Gamma(t)(\Gamma'(t))^{-3/2} \Gamma''(t) \right) \]

57
which means $\Gamma(t)$ satisfies the following ordinary differential equation

$$\frac{\Gamma''(t)}{\Gamma'(t)} + \left(2 - \frac{4}{N}\right) \frac{\Gamma'(t)}{\Gamma(t)} + \frac{4(N - 1)\Gamma'(t)}{N(-A - \Gamma(t))} = 0$$ \hspace{1cm} (D25)$$

with initial condition $\Gamma(0) = \Sigma(0)^{-1}$ and terminal condition (D24).

In the case $N > 1$ and $\rho = 1$, $A = \infty$, and hence the above equation implies\(^{12}\)

$$0 = \frac{d}{dt} \left[\log \left(\Gamma'(t)\Gamma(t)^{2-\frac{4}{N}} \right) \right].$$

Thus,

$$\Gamma'(t)\Gamma(t)^{2-\frac{4}{N}} = C_0$$

for some constant $C_0 > 0$,

which in turns implies

$$\Sigma(t) = \frac{1}{\Gamma(t)} = (C_1 t + C_2)^{-\frac{1}{N-1}}$$

for some constants C_1 and C_2. \hspace{1cm} (D26)

But when $N > 1$, there are no constants $C_1 = C_0(3 - 4/N) > 0$ and C_2 that can make the above $\Sigma(t)$ satisfy either $\Sigma(1) = 0$ or $\lim_{t \to 1} \lambda(t) = \sqrt{-\Sigma(1)} = +\infty$, as required by equation (D24). This completes the proof that a linear equilibrium does not exist for $N > 1$ and $\rho = 1$.

In the rest of the proof, we assume either $\rho \neq 1$ or $N = 1$. Under these assumptions, we prove that equation (D25) has a unique solution of $\Sigma(t)$ as described in the theorem. Now, the only possible case with $\rho = 1$ happens is when $N = 1$. But when $N = 1$, there is no competing informed investors, and ρ is irrelevant. Without loss of generality, we make the additional assumption $\rho \neq 1$. This will ensure a finite A in the rest of the proof.

By equation (D25),

$$0 = \frac{d}{dt} \left[\log \left(\Gamma'(t)\Gamma(t)^{2-\frac{4}{N}} (\Gamma(t) + A)^{-\frac{4(N-1)}{N}} \right) \right].$$

Hence,

$$\Gamma'(t)\Gamma(t)^{2-\frac{4}{N}} (\Gamma(t) + A)^{-\frac{4(N-1)}{N}} = C_3$$

for some constant C_3.

In the case of $\rho = 0$, we have $A = 0$. Hence, the above equation is equivalent to

\(^{12}\)To be completely formal and to avoid dividing by 0, we should have directly derived the desired equation below. But this is a straightforward exercise by using the argument for obtaining equation (D25).
\[\Gamma(t)\Gamma'(t) = C_3, \] which implies that \(\Sigma(t) = 1/\Gamma(t) \) is linear in \(t \). Hence, the desired formula for \(\Sigma \) follows immediately from the boundary condition \(\Sigma(1) = 0 \).

For the case of \(\rho \neq 0 \), we can make a change of variable as \(\Gamma(t) = A\frac{R(t)}{1-R(t)} \), the above equation becomes

\[R(t)^{2-\frac{4}{N}} R'(t) = C_4. \]

From this and the boundary condition on \(R(0) \) and \(R(1) \), we obtain

\[
\frac{1}{A \Sigma(t) + 1} = \left(\left(\frac{1}{A \Sigma(1) + 1} \right)^{3-\frac{4}{N}} - B \right) t + B \right)^{\frac{1}{3-\frac{4}{N}}}. \quad \text{(D27)}
\]

Taking derivatives with respect to \(t \) in the above equation, we know that \(\Sigma'(1) \) is bounded. Hence, from the proved formula \(\bar{\lambda}(t) = \sqrt{-\Sigma'(t)} \), we know that \(\lim_{t \to 1} \bar{\lambda} \) is finite. Hence, from equation (D24), we must have \(\Sigma(1) = 0 \). Plugging \(\Sigma(1) = 0 \) into equation (D27), we immediately arrive at the claimed formula for \(\Sigma(t) \).

We first prove the case of \(N \neq 1 \) and \(\sigma^2_e \neq (N-1)\sigma^2_v \). From equation (48), we know that the \textbf{ex ante} expected profit of a single informed trader is

\[E\sigma_0 [\pi^1_i] = E_0[\alpha_0 (V^i_0 - V_0)^2] + \zeta_0. \]

The first term is

\[
E_0 \left[\frac{((1 + (N-1)\rho)s^i)^2}{2\lambda_0} \right] = \frac{(1 + (N-1)\rho)\Sigma_0}{2(aN A(1-B)^{-1}B^{(1+a\hat{\Sigma})})^2}. \quad \text{(D28)}
\]
and the second term is

\[\zeta(0) = \zeta(1) + \int_0^1 \frac{1}{\bar{\lambda}(u)} \left(\bar{\lambda}'(u) - \frac{N \beta(u) \Omega(u)}{N - 1} \right)^2 du \]

\[= \int_0^1 \bar{\lambda}(u) \left(1 + N \Gamma(u)/A \right)^{-2} du \]

\[= -\int_0^1 A \bar{\lambda}(u) \left(1 + N \Gamma(u)/A \right)^{-1} du \]

\[= \frac{A}{N} \left[\frac{\rho \lambda_0}{\beta_0^2} - 2 \frac{1}{N} \int_0^1 \left(1 + N \Gamma(u)/A \right)^{-1} \frac{\beta^2(u) \Sigma(u)}{1 - \Omega(u)/\Sigma(u)} du \right] \]

\[= \frac{A}{N} \left\{ \frac{\rho \lambda_0}{\beta_0^2} - 2 \frac{1}{N} \int_0^1 \frac{\beta^2(u) \Sigma(u)}{1 + \Gamma(u)/A} du \right\} \]

\[= \frac{A}{N} \left\{ \frac{\rho \lambda_0}{\beta_0^2} - \frac{4(a_N A(1 - B)^{-1} B^{\frac{2}{3}})^{\frac{1}{2}}}{NA(B - 1)} \right\} \]

\[\times \left[\frac{2B^{\frac{2}{3}} + \frac{1}{2}}{a_N^{-1} - 1} + \frac{B^{\frac{2}{3}} + \frac{1}{2}}{a_N^{-1} + 1} - \frac{B^{-\frac{1}{2}}}{3a_N^{-1} - 1} - \frac{8a_N^2 B^{\frac{2}{3}}}{(a_N^{-2} - 1)(3a_N^{-1} - 1)} \right] \]

\[(D29) \]

here, \(a_N = 3 - 4/N \) and \(B \) is defined in Theorem 5. It’s straightforward to check that the sum of equations (D28) and (D29) is exactly equation (58).

In the case of \(N = 1 \) or \(\sigma^2 = (N - 1) \sigma_v^2 \), we have \(\zeta = 0 \) and equation (D28) becomes

\[\frac{\sigma_v^2}{2\sqrt{\Sigma(0)}} = \frac{\sigma_v^2}{2\sqrt{N^2 \sigma_v^2}} = \frac{\sigma_v}{2N} \]

which completes the proof. \(\Box \)

Proof of Theorem 6 The proof is in the Appendix of BCW (2000). \(\Box \)

Proof of Proposition 12

(i) From equation (D26), when \(N = 1 \), we have \(\Sigma(t) = C_1 t + C_2 \) for some constants \(C_1, C_2 \).

And only \(C_1 = -\Sigma_0, C_2 = \Sigma_0 \) satisfies the initial condition and the condition \(\lim_{t \to 1} \Sigma(t) = 0 \) or \(\lim_{t \to 1} \hat{\lambda}(t) = +\infty \), required by equation (D24). Thus, we show

\[\Sigma(t) = \Sigma(0)(1 - t) = \hat{\Sigma}(t). \]

and it’s trivial to show \(\beta(t) = \hat{\beta}(t), \lambda(t) = \hat{\lambda}(t)/2. \)
(ii) For ease of notation, we define

\[b_{N\delta} = \frac{2(1 - \delta_0)}{N\delta_0}. \]

Rewriting \(\Sigma(t) \) as

\[\Sigma(t) = \frac{((1 - B)t + B)^{-1/a_N} - 1}{B^{-1/a_N} - 1}\Sigma(0). \]

and its derivative with respect to \(t \) as

\[\frac{\partial \Sigma(t)}{\partial t} = -\frac{\Sigma(0)(1 - B)((1 - B)t + B)^{-1-1/a_N}}{a_N(B^{-1/a_N} - 1)} \quad (D30) \]

Differentiating both sides of equation (60) gives

\[\frac{\partial \hat{\Sigma}(t)}{\partial t} = -\kappa \hat{\Sigma}(0)^{-a_N}\hat{\Sigma}(t)^{1+a_N} e^{b_{N\delta}\hat{\Sigma}(0)/\hat{\Sigma}(t)} \]

The information is gradually revealed as time flows and the public knows exactly the liquidation value \(v \) at the end of the trading period in both cases with disclosure and without disclosure. Both \(\Sigma(t) \) and \(\hat{\Sigma}(t) \) goes to 0 as \(t \to 1 \), so the L’Hospital’s Rule is applied to calculate the following limit:

\[\lim_{t \to 1} \frac{\Sigma(t)}{\Sigma(t)} = \lim_{t \to 1} \frac{\partial \Sigma(t)/\partial t}{\partial \Sigma(t)/\partial t} \]

\[= \lim_{t \to 1} \frac{-\Sigma(0)(1 - B)((1 - B)t + B)^{-1-1/a_N}/[a_N(B^{-1/a_N} - 1)]}{\kappa \hat{\Sigma}(0)^{-a_N}\hat{\Sigma}(t)^{1+a_N} e^{b_{N\delta}\hat{\Sigma}(0)/\hat{\Sigma}(t)}} \]

\[= \frac{\Sigma(0)^{a_N}(1 - B)}{\kappa a_N(B^{-1/a_N} - 1)} \lim_{t \to 1} \frac{((1 - B)t + B)^{-1-1/a_N} - 1}{\hat{\Sigma}(t)^{1+a_N} e^{b_{N\delta}\hat{\Sigma}(0)/\hat{\Sigma}(t)}} \]

\[= 0 \quad (D31) \]

The exponential function \(e^{b_{N\delta}\hat{\Sigma}(0)/\hat{\Sigma}(t)} \) grows much faster than the polynomial function \(\hat{\Sigma}(t)^{-1-1/a_N} \) as \(\hat{\Sigma}(t) \) goes to 0, so the denominator \(\hat{\Sigma}(t)^{1+a_N} e^{b_{N\delta}\hat{\Sigma}(0)/\hat{\Sigma}(t)} \) goes to \(\infty \) and the numerator \(((1 - B)t + B)^{-1-1/a_N} - 1 \) goes to 0 as time \(t \to 1 \), which proves the last equation.

Similarly, we have the following result

\[\lim_{t \to 1} \beta(t) = \lim_{t \to 1} \sqrt{-\Sigma(t)/\Sigma(t)} \]
\[
\lim_{t \to 1} \sqrt{\frac{S'/S'}{S'/\hat{S}'}} = \lim_{t \to 1} \frac{S'/\hat{S}'}{S'/S'} = \lim_{t \to 1} (\frac{S'/\hat{S}'}{S'/S'})^{-\frac{1}{2}} = \infty \quad \text{(By L'Hospital's Rule)}
\]

(iii) Similarly, we have
\[
\lim_{t \to 1} \frac{1}{\lambda} = \lim_{t \to 1} \frac{2}{\sqrt{-S'}} = \lim_{t \to 1} \frac{2}{\sqrt{\frac{S'}{\hat{S}'}}} = \infty \quad \text{(By equation (D31))}
\]

(iv) As time \(t \to 1 \), more and more information is revealed and the uncertainty about the liquidity value \(v \) decreases. This can be seen clearly from equation (D30). Given \(a_N \geq 1 \) for \(N > 1 \), \(B - 1 \) and \(B^{-1/a_N} - 1 \) take opposite signs, so we have \(\partial \Sigma(t)/\partial t < 0 \).

For \(B \) is an increasing function of \(\sigma_e \), we here prove the function's monotonicity with respect to \(B \) rather than \(\sigma_e \). Taking derivative of \(\Sigma(t) \) with respect to \(B \), we get
\[
\frac{\partial \Sigma(t)}{\partial B} \propto (1 - B^{-1-1/a_N})(1 - t) + B^{-1-1/a_N} - (t/B + 1 - t)^{1+1/a_N}
\]

The derivative of \((1 - B^{-1-1/a_N})(1 - t) + B^{-1-1/a_N} - (t/B + 1 - t)^{1+1/a_N} \) with respect to \(B \) is \((1/a_N + 1)B^{-2-1/a_N}(t + B(1 - t))^{1/a_N} - 1\), which is larger than 0 if \(B \geq 1 \) and smaller than 0 if \(B < 1 \). So \((1 - B^{-1-1/a_N})(1 - t) + B^{-1-1/a_N} - (t/B + 1 - t)^{1+1/a_N}\) reaches its minimum 0 at \(B = 1 \) and we have \(\partial \Sigma(t)/\partial B \geq 0 \) for all \(B > 0 \).
We write $\lambda(t)$ as a function of B,

\[
\lambda(t) = \sqrt{\Sigma(0)(1-B)((1-B)t+B)^{-1/a_N}} / 4a_N(B^{-1/a_N} - 1)
\]

\[
\lambda(0) = \sqrt{\Sigma(0)(1-B)B^{-1-1/a_N}} / 4a_N(B^{-1/a_N} - 1)
\]

\[
\lambda(1) = \sqrt{\Sigma(0)(1-B)} / 4a_N(B^{-1/a_N} - 1)
\]

Taking derivative of $\lambda(0)$ and $\lambda(1)$ with respect to B gives:

\[\frac{\partial \lambda(0)}{\partial B} = \frac{\Sigma(0)[(1-B)B^{1/a_N} + a_N(B^{1/a_N} - 1)]}{8\lambda(0)a_N^2B^2(1-B^{1/a_N})^2} \propto (1-B)B^{1/a_N} + a_N(B^{1/a_N} - 1)\]

\[\frac{\partial \lambda(1)}{\partial B} = \frac{\Sigma(0)B^{1/a_N-1}[1-(1+a_N)B + a_NB^{1+1/a_N}]}{8\lambda(1)a_N^2(1-B^{1/a_N})^2} \propto 1 - (1 + a_N)B + a_NB^{1+1/a_N}\]

The derivative of $(1-B)B^{1/a_N} + a_N(B^{1/a_N} - 1)$ with respect to B is $(1+1/a_N)(1-B)B^{1/a_N-1}$, which is larger than 0 if $B \leq 1$ and smaller than 0 if $B > 1$, so $\partial \lambda(0)/\partial B$ reaches its maximum 0 at $B = 1$, i.e., $\partial \lambda(0)/\partial B \leq 0$. The derivative of $1 - (1 + a_N)B + a_NB^{1+1/a_N}$ with respect to B, $(1 + a_N)(B^{1/a_N} - 1)$ is larger than 0 if $B \geq 1$ and smaller than 0 if $B < 1$, so $\partial \lambda(1)/\partial B$ reaches its minimum 0 at $B = 1$, i.e., $\partial \lambda(1)/\partial B \geq 0$.

From the definition of $\lambda(t)$, we have

\[\frac{\partial \lambda(t)}{\partial t} = \frac{\partial(-\Sigma')/\partial t}{2\lambda(t)} = \frac{\Sigma(0)(1+1/a_N)(1-B)^2((1-B)t+B)^{-2-1/a_N}}{8\lambda(t)a_N(B^{-1/a_N} - 1)} \propto 1/(1-B^{1/a_N})\]

So, $\lambda(t)$ is increasing in t when $B < 1$ ($\sigma^2_T < (N-1)\sigma^2_\epsilon$) and decreasing in t when $B \geq 1$ ($\sigma^2_T \geq (N-1)\sigma^2_\epsilon$).
(v) When $\sigma^2 = (N - 1)\sigma^2_v$, we have

$$\Sigma(t) = \Sigma(0)(1 - t)$$

and hence

$$\beta = \frac{1}{\sqrt{\Sigma(0)(1 - t)}}, \quad \lambda = \frac{1}{2}, \quad \bar{\lambda} = 1.$$

and the profits of informed investors are

$$\int_{0}^{1} \lambda(t) \, dt = \int_{0}^{1} \frac{1}{2} \, dt = \frac{1}{2}$$

Therefore, market efficiency, market liquidity, and expected profits of informed investors are the same as if there exists a monopolistic informed investor with all the signals in the market.

We have $\rho = 0$ and $\Sigma(0) = N\Omega(0)/(N - 1)$ when $\sigma^2 = (N - 1)\sigma^2_v$, so the equation

$$\frac{1}{\Sigma(t)} - \frac{1}{\Sigma(0)} = \frac{N}{N - 1} \left(\frac{1}{\Omega(t)} - \frac{1}{\Omega(0)} \right)$$

means $\delta(t) \equiv 1/N$ and hence equation (40) (i.e., $\delta(t) = (1 + (N - 1)\rho(t))/N$) in BCW (2000) means $\rho(t) \equiv 0$, that is the conditional correlation between private signals $\rho(t)$ remains 0 throughout the trading period.

(vi) When $\sigma^2 \neq (N - 1)\sigma^2_v$, we first have

$$N\delta(t) = 1 + (N - 1)\rho \frac{\Omega(t)}{\Omega(0)} \to 1$$

and hence $\rho(t) \to 0$ (from equation (40) in BCW (2000)) because $\Omega(t) \leq \Sigma(t) \to 0$ as time t goes to 1. Further,

$$\lim_{t \to 1} \frac{\Sigma(t)}{1 - t} = \lim_{t \to 1} -\Sigma'(t) \quad \text{(By L’Hospital’s Rule)}$$

$$= \frac{(1 - \rho)\Sigma(0)(1 - B)}{\rho Na_n} \lim_{t \to 1} ((1 - B)t + B)^{-1} = \frac{(1 - \rho)\Sigma(0)(1 - B)}{\rho Na_n}$$

$$= S_0$$

from here we also have $\lim_{t \to 1} \Sigma'(t) = -S_0$.

64
It’s easy to verify
\[
\lim_{t \to 1} \beta(t)(1-t) = \lim_{t \to 1} \frac{\sqrt{-\Sigma'(t)}}{\Sigma(t)/(1-t)} = \frac{\sqrt{S_0}}{S_0}, \quad \text{and}
\lim_{t \to 1} \lambda(t) = \lim_{t \to 1} \frac{\sqrt{-\Sigma'(t)}}{2} = \frac{\sqrt{S_0}}{2}.
\]

Writing the profit \(\pi(0)\) as a function of \(B\), we have
\[
\pi(0) = \sqrt{\frac{a_N \Sigma(0)}{4(N-2)^2(1-B)(B^{-1/a_N} - 1)}}.
\]

Again, taking derivative of \(a_N(B^{1/a_N} - 1) - (B - 1)B^{(1/a_N-1)/2}\) with respect to \(B\) gives \(B^{(1/a_N-3)/2} \left[B^{(1/a_N+1)/2} - (1/a_N + 1)B/2 + (1/a_N - 1)/2\right]\). The derivative of the second term \(B^{(1/a_N+1)/2} - (1/a_N + 1)B/2 + (1/a_N - 1)/2\) is \((1/a_N + 1)(B^{(1/a_N-1)/2} - 1)/2\). Given \(a_N \geq 1\), \(B^{(1/a_N-1)/2} - 1\) is negative if \(B > 1\) and positive if \(B \leq 1\), so the derivative of \(a_N(B^{1/a_N} - 1) - (B - 1)B^{(1/a_N-1)/2}\) with respect to \(B\) reaches its maximum 0 at \(B = 1\), which means it decreases in \(B\) and equals to 0 at \(B = 1\). So, \(\partial \pi(0)/\partial B\) is positive when \(B < 1\) \((\sigma_e^2 < (N-1)\sigma_v^2)\) and negative when \(B \geq 1\) \((\sigma_e^2 \geq (N-1)\sigma_v^2)\), i.e., \(\pi(0)\) reaches its maximum at \(B = 1\) \((\sigma_e^2 = (N-1)\sigma_v^2)\). \(\Box\)
Proof of Proposition 13 When one of the N informed investors (without loss of generality, assume she is the N-th trader) leaves the market, the remaining $N-1$ investors in aggregate don’t know the true value of the asset v. Instead, the variable that the $N-1$ informed investors and the market maker are interested in is informed investors’ expectation of v:

$$v_{N \rightarrow N-1} = E[v|s_1, \ldots, s_{N-1}] = \frac{N(N-1)}{(N-1)^2 + \sigma^2_v / \sigma^2} \sum_{i=1}^{N-1} s_i$$

Correspondingly, the expected profit each of the remaining $N-1$ informed investors obtains

$$\pi_{N \rightarrow N-1} = \sqrt{\sum_{N \rightarrow N-1}(0) \frac{1 - \rho}{1 - B_{N \rightarrow N-1}} \frac{1 - B_{N \rightarrow N-1}}{2(N-1)(N-1) - 2}}$$

here,

$$\Sigma_{N \rightarrow N-1}(0) = \text{var}[v_{N \rightarrow N-1}] = \frac{(N-1)^2 \sigma^2_v}{(N-1)^2 + \sigma^2_v / \sigma^2}$$

$$\sim O \left(\frac{(N-1)^2 \sigma^4_v}{\sigma^2_v} \right), \quad \sigma^2_v \rightarrow \infty$$

$$B_{N \rightarrow N-1} = \left(\frac{1 - \rho}{1 - \rho + (N-1)\rho} \right)^{3-4/(N-1)} = \left(\frac{N \sigma^2_v}{(N-1)^2 \sigma^2_v + \sigma^2} \right)^{3-4/(N-1)}$$

$$\sim O \left(N^{3-4/(N-1)} \right), \quad \sigma^2_v \rightarrow \infty.$$

Considering the limiting behavior of the ratio of π_N and $\pi_{N \rightarrow N-1}$ when $\sigma^2_v \rightarrow \infty$:

$$\lim_{\sigma^2_v \rightarrow \infty} \frac{\pi^2_N}{\pi^2_{N \rightarrow N-1}} = \lim_{\sigma^2_v \rightarrow \infty} \frac{\pi^2_N}{\pi^2_{N \rightarrow N-1}} = \frac{-\Sigma(0) \frac{1 - \rho}{\rho} (3(N-1) - 4) \sigma^2_v / (N-1)}{(N-1)^2 \sigma^2_v / (N-1)^2 (N-1) - 2(N-1))}$$

$$= \frac{(3N-4)(N-1)(N-3)^2(N-1)-1}{(3N-7)N^2(N-2)^2(1-N^{1-2/(N-1)})} > 1, \quad N \geq 4$$
In fact, \(\lim_{\sigma^2 \to \infty} \frac{\pi_N^2}{\pi_{N-1}^2} \) decreases to 1 as \(N \) goes to \(\infty \).

For the case of \(N = 3 \), following similar steps, we get

\[
\lim_{\sigma^2 \to \infty} \frac{\pi_3^2}{\pi_{3-1}^2} = \lim_{\sigma^2 \to \infty} \frac{\Sigma(0)(1 - \frac{5\sigma^2_\epsilon}{\rho \sigma^2_\epsilon})^{2/3}}{4\sigma^2_\epsilon \sigma^2_\epsilon (\log(3))^2} \]
\[
= \frac{40}{9(\log(3))^2}
= 3.68 > 1
\]

So, we have \(\pi_N/\pi_{N-1} > 1 \) as \(\sigma^2 \) grows to \(\infty \) for all \(N \geq 3 \), which means there exist a large enough \(\bar{\sigma}_\epsilon \) such that \(\pi_N > \pi_{N-1} \) for all \(\sigma_\epsilon > \bar{\sigma}_\epsilon \). The case of \(N = 2 \) is covered in the proof of Proposition 10.

Writing \(\pi_N \) and \(\pi_M \) in \(\sigma^2 \) gives us:

\[
\lim_{\sigma^2 \to \infty} \pi_N/\pi_M
= \lim_{\sigma^2 \to \infty} \sqrt{3 - 4/N} \frac{\Sigma(0)(1 - (\frac{\sigma^2_\epsilon}{\sigma^2_{N-1}})^{2/3} - (4/N))^{2/3} - (\frac{\sigma^2_\epsilon}{\sigma^2_{N-1}}) - (\frac{\sigma^2_\epsilon}{\sigma^2_{N-1}})^{3/2} - (2/N)}{2(\sigma^2_\epsilon + \sigma^2_{N-1})^{1/2}}
= \frac{\sqrt{(3 - 4/N)(N - 1)}}{N - 2}
\]

\(\sqrt{(3 - 4/N)(N - 1)/(N - 2)} \) decrease in \(N \) and equals 1.8257 at \(N = 3 \), 1.2245 at \(N = 4 \), and 0.9888 at \(N = 5 \). So, for \(N = 3, 4 \), there exists \(\hat{\sigma}_\epsilon \) such that for \(\sigma_\epsilon > \hat{\sigma}_\epsilon \), \(\pi_N > \pi_M \).

Denote by \(\hat{\pi}_N \) each of \(N \) informed trader’s expected profit without disclosure. The case of \(N = 2 \) is covered in the proof of Proposition 10. From equations (41) and (57) in BCW (2000), we have the following result for \(N \geq 3 \)

\[
\frac{\hat{\pi}_N}{\hat{\pi}_M} = \frac{\sqrt{1 + \sigma^2_\epsilon \int_1^\infty x^{-2/N} e^{-x\sigma^2_\epsilon/N} dx}}{N \left(\int_1^\infty x^{2(N-2)/N} e^{-x\sigma^2_\epsilon/N} dx \right)^{1/2}}
\]
Applying Cauchy-Schwartz Inequality, we get

\[
\int_1^\infty x^{-2/N} e^{-x\sigma^2/N} \, dx = \int_1^\infty x^{-1}\cdot x^{1-2/N} e^{-x\sigma^2/N} \, dx
\leq \left(\int_1^\infty x^{-2} \, dx \right)^{1/2} \left(\int_1^\infty x^{2(1-2/N)} e^{-2x\sigma^2/N} \, dx \right)^{1/2}
= \left(\int_1^\infty x^{2(1-2/N)} e^{-2x\sigma^2/N} \, dx \right)^{1/2}
\]

On the other hand, it is clear

\[
\int_1^\infty x^{-2/N} e^{-x\sigma^2/N} \, dx \leq \int_1^\infty e^{-x\sigma^2/N} \, dx = \frac{N}{\sigma^2} e^{-\sigma^2/N}, \quad \text{and}
\int_1^\infty x^{2(N-2)/N} e^{-2x\sigma^2/N} \, dx \geq \int_1^\infty e^{-2x\sigma^2/N} \, dx = \frac{N}{2\sigma^2} e^{-2\sigma^2/N}
\]

Combining the above inequalities gives:

\[
\frac{\hat{\pi}_N}{\hat{\pi}_M} \leq \min \left\{ \sqrt{1 + \frac{\sigma^2}{\sigma^2}}, \sqrt{\frac{2(1 + \sigma^2)}{N\sigma^2}} \right\} \leq \sqrt{\frac{1 + 2N}{N}} < 1. \quad \square
\]

Proof of Proposition 14 Because \(\pi_M < c\), an investor would not acquire information if she perceives other investors are not going to acquire information and hence there is no investor to acquire information. However, she will acquire information if she perceives the other \(N-1\) investors to acquire information since \(c < \pi_N\). In this equilibrium, all investors become informed. \(\square\)