REGULATING CONSUMER FINANCIAL PRODUCTS:
EVIDENCE FROM CREDIT CARDS*

SUMIT AGARWAL
SOUPHALA CHOMSISENGPHET
NEALE MAHONEY
JOHANNES STROEBEL

Abstract

We analyze the effectiveness of consumer financial regulation by considering the 2009 Credit Card Accountability Responsibility and Disclosure (CARD) Act. We use a panel data set covering 160 million credit card accounts and a difference-in-differences research design that compares changes in outcomes over time for consumer credit cards, which were subject to the regulations, to changes for small business credit cards, which the law did not cover. We estimate that regulatory limits on credit card fees reduced overall borrowing costs by an annualized 1.6% of average daily balances, with a decline of more than 5.3% for consumers with FICO scores below 660. We find no evidence of an offsetting increase in interest charges or a reduction in the volume of credit. Taken together, we estimate that the CARD Act saved consumers $11.9 billion per year. We also analyze a nudge that disclosed the interest savings from paying off balances in 36 months rather than making minimum payments. We detect a small increase in the share of accounts making the 36-month payment value but no evidence of a change in overall payments.

JEL Codes: D0, D14, G0, G02, G21, G28, L0, L13, L15

*We thank the editors Lawrence Katz and Andrei Shleifer, three anonymous referees, and our discussants Effie Benmelech, Olivier de Jonghe, Brigitte Madrian, Victor Stango, Jialan Wang and Jonathan Zinman for thoughtful comments. We are grateful to John Campbell, Chris Carroll, Raj Chetty, Liran Einav, Alexander Frankel, Matthew Gentzkow, Andra Ghent, Christian Hansen, Benjamin Keys, Theresa Kuchler, Andres Liberman, Monika Piazzesi, Jesse Shapiro, Richard Thaler, Alessandra Voena, and Glen Weyl, and seminar participants at the University of Chicago, New York University, Harvard University, Harvard Business School, Duke University, Arizona State University, the University of Michigan, Texas A&M, the Philadelphia Fed, the NBER meetings in Industrial Organization, Corporate Finance, Law & Economics, and Household Finance, the Boston Fed Conference on Payment Systems, the Empirical Macro Workshop in New Orleans, the Sloan Conference on Benefit-Cost Analysis of Financial Regulation, the Bonn/Bundesbank conference for Regulating Financial Intermediaries, the CFPB, the OCC, the FDIC, Kansas University, University of Virginia, Johns Hopkins University, and the College of William and Mary for helpful comments. We thank Regina Villasmil for truly outstanding and dedicated research assistance. Mahoney and Stroebel thank the Fama-Miller Center at Chicago Booth for financial support. The views expressed are those of the authors alone and do not necessarily reflect those of the Office of the Comptroller of the Currency. Corresponding Author: Johannes Stroebel, 44 West 4th Street, New York City, NY 10012; Telephone: 650-888-3441; Email: johannes.stroebel@nyu.edu. This version: August 2014. First version: September 2013.
I INTRODUCTION

The recent financial crisis triggered a surge of interest in regulating consumer financial products (e.g., Campbell et al., 2011; Posner and Weyl, 2013). In the United States, the Dodd-Frank “Wall Street Reform and Consumer Protection Act” of 2010 established a Consumer Financial Protection Bureau to monitor and regulate mortgages, student loans, credit cards, and other consumer products. In July 2013, the European Commission followed suit and proposed new consumer financial protection legislation to simplify disclosures and tighten guidance requirements related to financial products.

Proponents of this type of regulation argue that consumer financial markets have become increasingly unfair. Firms take advantage of consumers’ behavioral biases—such as myopia, present bias, and inattention—to earn large profits, especially from unsophisticated and poor consumers. These proponents suggest that regulation and additional information can protect less sophisticated consumers and reduce aggregate borrowing costs.

Critics have expressed skepticism about the effectiveness of consumer financial regulations. While limits on hidden fees, for example, can shift surplus from more sophisticated to less sophisticated consumers (Gabaix and Laibson, 2006), there is less evidence that regulators can bring about an across-the-board reduction in consumer costs. Regulators, these critics attest, are naively playing a game of regulatory Whac-A-Mole—efforts to limit certain fees will simply lead firms to offset reduced revenue with higher prices on other product dimensions and to restrict the supply of credit (American Bankers Association, 2013). Even proponents of regulating late fees, such as Mullainathan, Barr and Shafir (2009), worry that “the reduced revenue stream to lenders from these fees would mean that other rates and fees would be adjusted to compensate.”

This paper aims to advance this debate in the context of the 2009 Credit Card Accountability Responsibility and Disclosure (CARD) Act in the United States. We analyze the effectiveness of two key aspects of the CARD Act: (i) regulatory limits on certain types of credit card fees, which became effective in February and August of 2010, and (ii) attempts to affect consumers’ repayment behavior by requiring that monthly credit card statements provide clear information on the costs of making only the minimum payment, which became effective in February 2010.

1Senator Chris Dodd, lead sponsor of the CARD Act in the U.S. Senate, has noted that “My colleague from New York, Senator Schumer, has called this ‘trip-wire pricing,’ saying the whole business model of the credit card industry is not designed to extend credit but to induce mistakes and trap consumers into debt. I think he is absolutely right, unfortunately. This is an industry that has been thriving on misleading its consumers and its customers” (U.S. Senate, 2009).
We conduct a quantitative analysis of the effects of the CARD Act’s provisions using a panel dataset on the near universe of credit card accounts held by the eight largest U.S. banks. These data, assembled by the Office of the Comptroller of the Currency (OCC), provide us with account-level information on contract terms, utilization, and payments at the monthly level from January 2008 to December 2012. We observe fees at a disaggregated level, allowing us to isolate effects on categories such as over limit fees and late fees. Our data cover 160 million consumer and small business accounts and a significant share of total industry assets during our period of study.

We estimate the intended and possible unintended consequences of the CARD Act by using a difference-in-differences research design that compares changes in outcomes over time for consumer credit cards, which were subject to the new regulations, to changes in outcomes for small business credit cards, which the law did not cover. Our strategy expands on the Consumer Financial Protection Bureau’s (2013a) analysis that also compares average outcomes for consumer and small business credit cards but does not conduct a formal difference-in-differences analysis. The identifying assumption is that, in the absence of the CARD Act, outcomes for consumer and small business accounts would have maintained parallel trends.

To argue that our identifying assumption is valid, we show that outcomes for consumer and small business credit cards move together in the pre-CARD Act period, with parallel trends in fees, interest charges, and measures of credit volume such as average daily balances (ADB), credit limits, and the number of new accounts. This is consistent with a high degree of institutional similarity between consumer and small business cards. Both types of cards are guaranteed by the personal financial assets of the account holder, and applicants for both types of cards are screened on their personal FICO scores. The main difference is that small business account holders must claim to use their cards for “business” purposes only. Banks in most circumstances do not monitor this behavior, and survey evidence indicates that a significant percentage of charges are used for personal expenditure (Federal Reserve Board of Governors, 2010).

Using this difference-in-differences strategy, we find that regulations to reduce fees were highly effective. For borrowers with a FICO score below 660, total fees declined by 5.3 percentage points of ADB, or $57.69 per account per year, led by a large decline in over limit fees (3.3 percentage points) and a smaller decline in late fees (1.5 percentage points). Account holders with a FICO score above 660 had lower pre-CARD Act fee levels, and experienced a qualitatively similar but smaller decline...
in fees (0.5 percentage points of ADB, or $7.59 per account). Combined across the low and high FICO score accounts, the CARD Act reduced overall fees by an annualized 1.6% of borrowing volume, or $22.58 per account each year. Extrapolating this number to the total outstanding credit card balances of $744 billion in the first quarter of 2010 (FRBNY, 2013) yields annual cost savings for U.S. credit card users of $11.9 billion per year.

The CARD Act also required monthly credit card statements to prominently display the cost of repaying the balance when only making minimum payments, and to compare this to the cost of repaying the balance when making payments that would pay off the balance within 36 months. The aim was to “nudge” consumers toward paying off a larger fraction of their balances and reduce their overall interest payments (Thaler and Sunstein, 2008). We find that these disclosure requirements had a small but significant effect on borrowers’ repayment behavior. The number of account holders paying at a rate that would repay the balance within 36 months increased by 0.4 percentage points on a base of 5.3%. Cyclical and seasonal variation make it hard to determine whether these account holders would have counterfactually been making higher or lower payments. We estimate as an upper bound that the nudge reduced aggregate interest payments by no more than 0.01% of ADB, or approximately $57 million per year.

We next examine possible unintended consequences of the CARD Act on credit card pricing and credit volume. We start by making the conceptual point that if markets are perfectly competitive, so that the aggregate price inclusive of all fees is forced down to marginal cost, any regulation that reduces a certain fee will be offset by a similarly sized increase in another pricing dimension. Similarly, if all fees and prices are perfectly salient, then demand is only responsive to the aggregate price, and will be unresponsive to an equally sized reduction in one fee and increase in another. This means that regulators can only be successful in lowering costs if markets are both imperfectly competitive and fees are at least partially non-salient.

We find little offsetting response in terms of pricing. Using the same difference-in-differences approach, we find no evidence of an anticipatory increase in interest charges prior to the CARD Act, and no evidence of a sharp or gradual increase following the CARD Act implementation periods. Our point estimate for the offset is approximately zero, and we can rule out an offset of greater than 61% with 95% confidence. In addition, we find no evidence of an offsetting increase in interest charge.

2 We use the term “borrow” to refer to average daily balances (ADB). As we discuss in Section II, ADB do not include purchase volume that is paid off before the end of a consumer’s grace period.
for new accounts, for which banks are less constrained in their ability to adjust contract terms, and no evidence of an increase in other sources of credit card income (e.g., interchange fees) or a reduction in measures of costs (e.g., marketing and operational expenses).³

Using the same difference-in-differences design, we estimate that the CARD Act had a precise zero effect on credit limits and ADB. We also estimate a zero effect on the number of new accounts, although our standard errors are too large to prevent us from ruling out meaningful effects in either direction. Taken together, we interpret the results as demonstrating that regulation of “hidden fees” can bring about a substantial reduction in borrowing costs without necessarily leading to an offsetting increase in interest charges or a reduction in access to credit. We think an alternative interpretation in which banks resisted raising interest rates because of concerns over future regulation is unlikely, since the industry’s main lobby group was advancing the argument that the CARD Act raised interest charges and lowered access to credit (American Bankers Association, 2013).

Our two years of post-CARD Act data do not allow us to investigate the longer-run effects of the CARD Act on industry exit or entry, or effects on margins with multi-year contracts (e.g., promotional agreements) or lumpy long-run investments (e.g., IT infrastructure and credit-scoring models). These elements are important to consider in a complete benefit-cost analysis of the regulation.

Our paper contributes to a literature analyzing credit card usage and pricing (Ausubel, 1991; Calem and Mester, 1995; Gross and Souleles, 2002; Agarwal et al., 2006; Kuchler, 2013; Stango and Zinman, 2013; Agarwal et al., 2014a), the debate about regulating consumer financial products (Campbell, 2006; Bar-Gill and Warren, 2008; Mullainathan, Barr and Shafir, 2009; Campbell et al., 2011), and a body of research that analyzes the effectiveness of nudges and default options in influencing consumer decision-making (Madrian and Shea, 2001; Thaler and Benartzi, 2004; Choi, Laibson and Madrian, 2005; Carroll et al., 2009; Keys and Wang, 2014).

We also contribute to a small literature on the CARD Act, including Debbaut, Ghent and Kudlyak (2013), who study the restriction on lending to borrowers under age 21, and Jambulapati and Stavins (2013), who like us find no evidence that banks closed credit card accounts or increased interest rates in anticipation of the CARD Act. Our study complements work by Kay, Manuszak and Vojtech (2014), who find that banks were only able to offset about 30% of the decline in revenue from the

³These findings are consistent with statements by bank executives, such as J.P. Morgan CEO Jamie Diamond, who argued that the CARD Act would cost his bank up to $750 million in annual profits, and Bank of America that said the regulations would cost it $800 million (Washington Post, 2013).
Durbin Amendment cap on debit card interchange fees.

The rest of the paper proceeds as follows: Section II provides background on the U.S. credit card industry and describes the key provisions of the 2009 CARD Act. Section III describes the data, and establishes important facts about profitability in the pre-CARD Act period sample. Section IV describes our research design and approach to conducting inference. Section V analyzes the intended effects of the CARD Act, first examining the effect on fees and then turning to the effect of the disclosure nudge. Section VI examines possible unintended effects on interest charges and credit volume. Section VII concludes. All appendix material is in an online appendix.

II CREDIT CARDS AND THE 2009 CARD ACT

II.A A Primer on Credit Cards

Account holders use credit cards to make purchases and to borrow. When an account holder carries a balance from the previous billing cycle, interest charges for the current cycle are given by

\[
\text{Interest Charges} = \text{ADB} \times \frac{\text{APR}}{365} \times \text{Days in Billing Cycle,}
\]

where the right-hand side is the product of the average daily balance (ADB), defined as the arithmetic mean of end-of-day balances over the billing cycle; the daily interest rate, defined as the annual percentage rate (APR) divided by 365; and the number of days in the billing cycle.\(^4\) Account holders who do not carry a balance into the current period have the possibility of repaying current period purchase volume without incurring interest charges. If an account holder pays off her purchase volume completely, interest charges typically fall within a “grace period” and are not assessed by the bank. If the account holder does not pay her balances in full, she is charged interest starting from the date of purchase. Account holders that fall under the grace period have no ADB in our data.

Credit limits place an upper bound on consumer purchases and borrowing. Consumers who exceed their credit limit might be assessed an over limit fee or can have transactions declined. Credit

\(^4\)The APR measure does not account for compounding. For instance, a consumer with an APR of 15% who carries an ADB of $1,000 for 12 consecutive 30-day months would have her balance grow to $1,158 = 1,000 \times (0.15/365 \times 30 + 1)^{12}

\(^5\)In the past, some credit card issuers used a method known as “double-cycle billing” to calculate interest payments. This method calculated average daily balances over two cycles, rather than just considering the current cycle. Double-cycle billing sometimes added significant interest charges to customers whose average balance varied greatly from month to month. The CARD Act banned this practice.
cards have a number of other fees that we discuss below. Credit card borrowing is not secured by collateral, though lenders may garnish wages or seize assets of account holders who default. Recovery rates are low, in part because credit card debt is junior to all forms of secured borrowing. To manage and price this default risk, most credit card issuers screen applicants using both FICO scores and internally generated risk measures. Credit cards are marketed to consumers through a number of channels, including direct mail and TV advertisements. Credit cards often provide consumers with cash back or reward points, which scale with purchase volume.

For some of our analysis, we compare outcomes for consumer credit cards (referred to in the industry as “general purpose” credit cards) and small business credit cards. These types of cards are institutionally similar. Like consumer credit cards, small business credit cards are guaranteed by the personal financial assets of the account holder, and applicants for both types of cards are screened on their personal FICO scores. Like consumer cards, small business cards have features such as rewards and are marketed by direct mail and TV advertisements. Because of the similarities in underwriting and promotion, consumer and small business credit cards are issued by the same business units of most banks, and regulators conduct joint assessments of consumer and small business credit card lending. The main difference between consumer and small business cards is that small business account holders must claim to use their cards for “business” and “commercial” purposes only. Banks in most circumstances do not monitor this behavior, and survey evidence indicates that a significant percentage of charges are used for personal expenditure (Federal Reserve Board of Governors, 2010).

II.B The 2009 CARD Act

The Credit Card Accountability Responsibility and Disclosure Act of 2009, or CARD Act, was introduced in the 111th United States Congress (H.R. 627). On April 30, 2009, it passed the House with a majority of 357-70. The Senate passed an amended version of the bill on May 19, 2009, also with an overwhelming majority (90-5). President Obama signed the bill into law on May 22, 2009.

The CARD Act primarily amended the Truth in Lending Act and instituted a number of new consumer protection and disclosure requirements for consumer credit cards. The regulation excluded

6Small business cards are also secured by firm assets. However, for many small business account holders, personal assets such as home and vehicle equity tend to be much more important than business assets.

7Congress had previously drafted consumer financial regulation that included many of the same provisions as the CARD Act. The most recent attempt was known as the “Credit Cardholders’ Bill of Rights Act of 2008,” and was introduced in the 110th Congress as H.R. 5244. The bill passed by a 312 to 112 vote in the House but was never given a vote in the Senate.
small business credits cards.8 The provisions of the CARD Act were scheduled to take effect in three phases between August 20, 2009, and August 22, 2010.

Phase 1 – August 20, 2009: The first phase of the CARD Act required banks to provide consumers with 45-day advance notice of rate increases or other significant changes to terms and conditions. It also required lenders to (i) inform consumers in the same notice of their right to cancel the credit card account before the increase or change goes into effect, and (ii) mail or deliver periodic statements for credit cards at least 21 days before payment is due.

Phase 2 – February 22, 2010: The bulk of CARD Act provisions came into effect on February 22, 2010. A key requirement was that no fees could be imposed for making a transaction that would put the account over its credit limit unless the cardholder explicitly “opts in” for the credit card company to charge such a fee. Credit card companies could choose to either decline such transactions, or to process them without charging a fee. Furthermore, an over limit fee could be imposed only once during the billing cycle in which the limit is exceeded. The CARD Act also introduced regulation detailing repayment disclosures required in monthly credit card statements. In particular, it required statements to display the following:

1. The number of months and the total cost to the consumer (including principal and interest) that it would take to pay the outstanding balance, if the consumer pays only the required minimum payments and no further advances are made;

2. The monthly payment amount that would eliminate the outstanding balance in 36 months, if no further advances are made, and the total cost to the consumer, including interest and principal payments, of repaying the full balance in this way.

Figure 1 provides an example of the way credit card statements display this information.9

The CARD Act also regulated the issuance of credit cards to borrowers below age 21, and included a restriction on interest rate increases for new transactions within the first year of opening the

8{Legislation has recently been proposed to extend the CARD Act provisions to the small business category. The Small Business Credit Card Act of 2013 (H.R. 2419), amends the CARD Act to include small business credit cards. It was introduced in the House Financial Services Committee on June 18, 2013, but as of July 2014 had not advanced.}

9{This new information might be less salient for individuals who do most of their banking online. Rather than alerting consumers to the minimum payment warnings when they log on, many banks limited the changes to monthly statements, which means cardholders have to view a PDF copy of their full statements to see the minimum payment warnings.}
account. Furthermore, it limited the application of increased rates to existing balances, except if the prior rate was temporary (e.g., an introductory rate), lasting at least six months, or if the minimum payment has not been received for 60 days. For cards with multiple interest rates (e.g., a balance-transfer and a new-purchase rate), issuers were required to apply payments to the highest-rate balances first. Finally, the CARD Act regulated payment due dates and times.10

Phase 3 – August 22, 2010: The third phase of the CARD Act further regulated the fees banks can charge by requiring them to be “reasonable and proportional.” Under the new rules, a credit card company generally cannot charge a late fee of more than $25 unless one of the previous six payments was also late (in which case the fee may be $35). Second, the late fee cannot be larger than the minimum payment. Similarly, over limit fees were capped at the actual over limit amount. An additional provision prevented issuers from charging more than one penalty fee per violation in a single billing period. The CARD Act also prohibited the charging of inactivity fees for not using the credit card for a period of time. Finally, it required lenders to re-evaluate any new rate increases every six months.11

III Data and Pre-CARD Act Industry Overview

III.A Data

Our main source of data is the Credit Card Metrics (CCM) dataset assembled by the U.S. Office of the Comptroller of the Currency (OCC). The OCC supervises and regulates nationally chartered banks and federal savings associations. In 2008, the OCC initiated a request to the nine largest banks that issue credit cards to submit data on general purpose, private label, and small business credit cards. The purpose of the data collection was to have more timely information for bank supervision.

The CCM dataset has two components. The main dataset contains account-level information on

10Credit card issuers are no longer allowed to set arbitrary deadlines for payments, and must accept payments received before 5 p.m. on the payment due date. If payments are due on a day during which lenders do not receive payments by mail (including weekends and holidays), a payment received on the next business day cannot be treated as late.

11The regulation requires, “If a creditor increases the annual percentage rate applicable to a credit card account […] based on factors including the credit risk of the obligor, market conditions, or other factors, the creditor shall consider changes in such factors in subsequently determining whether to reduce the annual percentage rate for such obligor” (12 CFR 226.59). In addition, lenders are required to “reduce the annual percentage rate previously increased when a reduction is indicated by the review.” In other words, increases in APRs as a result of increases in the federal funds rate will have to be reversed if the federal funds rate subsequently declines. The regulation also requires that existing customers have interest rates adjusted to the rate that otherwise similar new customers would be assessed.
credit card utilization (e.g., purchase volume, ADB), contract characteristics (e.g., interest rates, credit limits), charges (e.g., interest, assessed fees), and performance (e.g., chargeoffs, days overdue) for the near-universe of credit card accounts at these banks. The second dataset contains portfolio-level information for each bank on items such as operational costs and fraud expenses for the credit card portfolio managed by the bank. Both datasets are submitted monthly. Reporting started in January 2008 and continues through the present, although the reporting in the first few months of 2008 is incomplete. Due to mergers and other reporting issues, we observe entry and exit of banks during the time period.

To obtain a balanced panel of banks, while maintaining a sufficiently wide window around the CARD Act implementation dates, we drop a small bank that enters and exits the sample and restrict our time period to March 2008 to December 2011. We also restrict attention to general purpose and small business credit card accounts. Appendix Table A.I presents an overview of our sample by reporting quarter. The sample contains data from eight banks, and covers 150 million consumer accounts and 7 million small business accounts in a typically quarter.

Panel A of Table 1 shows annualized summary statistics for key account-level variables for consumer and small business accounts. For the combined sample, the average account carries an ADB of $1,347 and has an annualized purchase volume of $2,138. Multiplying by the number of accounts implies that these data account for about $210 billion in ADB, or 30% of total outstanding U.S. credit card debt over this period. The average account holder pays about $168 in interest charges per year and incurs $58 in fees, of which late fees, over limit fees, and annual fees are the largest components. Banks charge off an average $175 per account per year, and recover $6 per account per year, or 3.7% of chargeoffs. We use the term “net chargeoffs” to indicate total chargeoffs minus recoveries.

Panel B of Table 1 shows account-level averages for the variables that we construct using the

12 Our sample does not include private label cards, which can only be used at the issuing retailer’s stores, but does include affinity and co-branded cards. We exclude cards from portfolios purchased from third parties, a very small number of joint credit card accounts backed by more than one individual, and an equally small number of secured credit cards. We also drop accounts that do not report a FICO score at origination.

13 We do not restrict the analysis to a balanced panel of accounts, because doing so would require us to drop accounts, for example, that were closed in mid-sample due to delinquency, and thereby create sample selection bias.

14 ADB are somewhat higher for small business accounts than for consumer accounts, although much of this is driven by a higher average FICO score for small business accounts. Panel D of Figure 7 shows that conditional on the FICO score being below 660, which comprises our primary treatment sample, ADB are very similar across consumer and small business accounts.

15 “Chargeoffs” refer to an expense incurred on the lender’s income statement when a debt is considered long enough past due to be deemed uncollectible. For an open-ended account such as a credit card, regulatory rules usually require a lender to charge off balances after 180 days of delinquency.
portfolio data and data from other sources. (See Appendix A for details on these calculations.) Inter-
change fees are charged to merchants for processing credit card transactions and scale with purchase
volume. We assess account-level interchange income as a constant 2.0% of purchase volume, or $43
per account annually. Reward and fraud expenses correspond to about 1.4% of purchase volume on
average, or approximately $30 per account per year. We calculate operational costs as a percentage
of ADB by month in the portfolio data and estimate account-level operational costs assuming they
scale proportionally with ADB. Operational costs are $50 per account per year. Banks report the
total interest expenses for funding their credit card liabilities at the portfolio level by month. These
expenses scale with ADB and vary over time. Over the sample period, funding the average account’s
credit card receivables for one year costs banks $22.

III.B Pre-CARD Act Industry Overview

In this section we analyze data on average credit card issuer income, costs, and profits across the
FICO score distribution for the pre-CARD Act period (April 2008 to January 2010). Table 2 shows
key summary statistics on account-level credit card utilization and profitability, grouped by FICO
score at account origination. About 29.9% of accounts have FICO scores below 660, while 26.8% of
accounts have FICO scores of 760 or higher.

Panel A describes credit card capacity and utilization. Credit limits increase from $2,025 for
account holders with FICO scores below 620 to $12,400 for borrowers in the 760-799 range, and then
tail off moderately. ADB are hump-shaped in FICO score, rising from $804 for borrowers with FICO
scores below 620 to $2,029 for borrowers in the 660-719 range, before falling to $1,110 or less for
account holders with FICO scores above 760. Purchase volume rises over much of the FICO score
distribution, increasing from an annualized $730 for account holders with a FICO score below 620
to $2,892 for account holders in the 760-799 range. Overall, the share of people using credit cards to
borrow rather than to facilitate transactions is declining in FICO score.

We next examine components of profitability by FICO score. To compare across different com-
ponents of profits, we report all variables as an annualized percentage of ADB. For example, given

\footnote{About 15% of total operational costs (an annualized 0.5% of ADB) are marketing and customer acquisition expenses. Extrapolating this to the industry level suggests total industry advertising spending of about $3.75 billion. This level of spending is consistent with numbers reported in Consumer Financial Protection Bureau (2013b).}

\footnote{We use FICO score at account origination to avoid the reverse causality that could arise if an account is assigned a low FICO score precisely because it missed a payment and now has to pay a late fee. Using FICO score at origination introduces some measurement error if the object of interest is profitability by contemporaneous FICO score.}
monthly data on total fees and ADB, we calculate

\[
\text{Total fees as an annualized percentage of ADB} = \left(\frac{\text{Total fees}}{\text{ADB}} + 1 \right)^{12} - 1.
\]

For an account holder with a constant interest rate, interest charges as an annualized percentage of ADB is simply the interest rate. Our measure can thus be interpreted as an interest rate equivalent for different components of income and costs.\(^{18}\)

We define profits for a credit card account as the difference between total income and total costs. Total income for an account is the sum of interest payments, fee payments, and interchange fees. The most basic measure of total costs includes realized net chargeoffs, the cost of funds, rewards and fraud expenses, and operational costs. We call this measure realized costs.

Panel B of Table 2 examines the components of profits as a percentage of ADB. Borrowers with a FICO below 620 pay an annualized 20.6% of ADB in interest charges and 23.3% of ADB in total fees. Interest charges decline modestly by FICO score; total fees decline precipitously. Interchange income is not quantitatively important, except for the highest FICO score borrowers, who generate interchange income of more than 9.5% of ADB.\(^{19}\) Panels A and B of Figure 2 show plots of interest charges and fees by FICO score.

The main component of realized costs is net chargeoffs. During our time period, account holders with FICO scores below 620 incurred annualized net chargeoffs of 30.8% of ADB, while account holders with FICO scores of 760 and above incurred net chargeoffs of less than 6.3%. Similar to interchange income, rewards and fraud costs as a share of ADB are larger for higher FICO account holders, who generate more purchase volume per unit of borrowing. The cost of funds as a share of ADB is relatively low, at about 2.3%. Panels C and D of Figure 2 show plots of net chargeoffs and interchange income net of rewards expenses by FICO score.\(^{20}\)

The income and costs data combine to produce a U-shaped distribution of realized profits by

\(^{18}\)We use ADB as the common denominator to normalize outcomes across accounts with different levels of activity. An alternative approach would be to normalize outcomes as an annualized percent of purchase volume. Because interchange income scales with purchase volume, the resulting measure could be interpreted as converting our outcomes into interchange income equivalents. This approach seems less natural, because interchange income makes up only a small fraction of total revenue. In addition, our results that low FICO score account holders pay large fees would be even more extreme if we normalized by purchase volume instead of ADB.

\(^{19}\)This is not surprising given the ratio of purchase volume to average daily balances for different FICO score groups. The highest FICO score account holders primarily use credit cards to facilitate transactions, not to borrow. Hence, interchange income relative to overall receivables managed by the bank increases significantly as FICO rises.

\(^{20}\)We do not show the cost of funds and operational expenses because they are defined as a constant fraction of ADB.
FICO score. Account holders with FICO scores below 620 generated realized profits of 7.9% of ADB. Realized profits bottom out at -1.6% of ADB for accounts with FICO scores in the 660-719 range. They rise to above 1.5% for accounts with the highest FICO scores. Panels E and F of Figure 2 plot realized profits and the number of accounts by FICO score.

While realized profits do not account for ex ante risk, and we have insufficient time-series data to estimate risk premia across the FICO distribution, the data suggest that credit cards were a very profitable segment of the banking industry. Table 2 shows that across all FICO scores, realized profits averaged 1.6% of ADB in the pre-CARD Act period. Adjusting for taxes and bank leverage, this translates into a return on equity in excess of 10%, more than five times larger than the average financial sector return on equity during this time period. (See Appendix A.1.4 for details.) Indeed, at the same time that bank divisions making subprime home loans were losing large amounts of money, credit card issuers were earning their largest profits from the subprime segment of the market.21

IV RESEARCH DESIGN

Having established basic facts about the importance of fee revenue in the pre-CARD Act period, we turn to evaluating the intended and unintended consequences of the consumer protections that were implemented by the CARD Act. The empirical challenge is that the CARD Act was introduced shortly after the financial crisis when there was much instability in the macroeconomy, which complicates the interpretation of a simple event-study analysis.

IV.A Identification Strategy

We estimate the effects of the CARD Act using a difference-in-differences research design, where we compare outcomes for consumer credit cards (treatment group) and small business credit cards (control group) during the different phases of the CARD Act implementation. The role of the control group is to establish a counterfactual of what would have happened to consumer credit cards if the CARD Act had not been implemented. The identifying assumption is that, in the absence of the CARD Act, outcomes for consumer credit cards and small business cards would have maintained parallel trends.

21 The data show that earnings increased substantially as the economy recovered from the Great Recession. By the end of our sample in December 2011, annualized realized profits had increased from 1.6% of ABD to 5.2% of ADB, largely due to a decline in annualized net chargeoffs from a peak of a 18.8% of ADB in May 2009 to 7.8% of ADB in December 2011.
We argue that the parallel-trends assumption is likely to be valid for two reasons. First, we show that outcomes for consumer and small business credit cards move together in the pre-CARD Act period, with parallel trends in fees, interest charges, and measures of credit volume such as ADB, credit limits, and the number of new accounts. We also show that, conditional on FICO scores, consumer and small business accounts look similar on observable characteristics such as credit limits and interest charges.

The second reason is that consumer and small business cards are institutionally similar. As we discuss in Section II, both types of cards are guaranteed by the personal financial assets of the account holder, and applicants for both types of cards are screened on their personal FICO scores. Both types of cards are issued by the same business unit of most banks, and regulators conduct joint assessments of consumer and small business credit card lending. The main difference between these types of cards is that small business account holders must claim to use their cards for “business” purposes only, although banks in most circumstances do not monitor this behavior (Federal Reserve Board of Governors, 2010).

IV.B Econometric Model

We specify the econometric model at the account level. Since our panel dataset of 160 million accounts over 45 months has over 7 billion observations, we estimate the model on data collapsed to means for each bank × product type × FICO score group × month. A product type is defined as the interaction of a consumer card indicator and whether the card is co-branded, oil and gas, affinity, student, or “other.” FICO score groups are < 620, 620-659, 660-719, 720-759, 760-799, and ≥ 800. We show in Appendix B that regressions using these collapsed data recover the parameters of interest from the account-level specification.

Our baseline econometric model is a difference-in-differences specification. Let \(y_{it} \) be an outcome for account \(i \) in month \(t \). The regression specification is given by

\[
y_{it} = \alpha_t + \alpha_C 1_{i \in \text{Consumer}} + \beta_1 1_{i \in \text{Consumer}} \cdot 1_{t \in \text{Phase 2}} + \beta_2 1_{i \in \text{Consumer}} \cdot 1_{t \in \text{Phase 3}} + X'_i \alpha_X + \epsilon_{it},
\]

In the regressions, we weight the group-level observations to allow us to interpret the resulting estimates as aggregate effects. In particular, when the dependent variable is denominated as an annualized percentage of ADB (e.g., over limit fees as an annualized percentage of ADB), we weight by total ADB in each group. For other dependent variables (e.g., credit limits), we weight by the number of accounts in each group.
where α_t are month fixed effects, $1_{t \in \text{Consumer}}$ is a treated indicator that takes a value of one if the account is a consumer credit card account, X_{it} is a vector of possibly time-varying covariants, and ϵ_{it} is the error term that we assume is uncorrelated with unobserved determinants of the outcome. The indicator $1_{t \in \text{Phase 2}}$ takes a value of one for the months between the implementation of Phase 2 and the implementation of Phase 3 (March 2010 to August 2010), and the indicator $1_{t \in \text{Phase 3}}$ takes a value of one for the months after the implementation of Phase 3 (after August 2010).\footnote{We drop February 2010 and August 2010 from the sample because Phase 2 and Phase 3 came into effect partway through these months.} The time period prior to Phase 2 is the omitted group, so the coefficients can be interpreted as the differential effect relative to the pre-implementation mean. For some outcome variables, we also include a consumer account \times anticipation period interaction term to capture anticipatory responses that take place between the month the bill was passed and the month Phase 2 came into effect (May 2009 to February 2010). In these specifications, the time period prior to the passage of the law is the omitted group and the coefficients should be interpreted relative to this period.\footnote{We do not include a dummy variable for Phase 1 of the CARD Act implementation, since we do not study any of the provisions that came into effect on August 20, 2009.}

In the appendix we also present results from an alternative specification, where we allow for the coefficient on the treatment group to evolve non-parametrically by month. While this specification has less statistical power than the baseline specification, plotting the coefficients of interest over time allows us to establish whether there are spurious pre-trends in the outcomes, as well as to examine the timing of the response to the law. The regression specification with treated \times month-specific coefficients is given by

$$y_{it} = \alpha_t + \alpha_C 1_{i \in \text{Consumer}} + \sum_{t \neq \text{May 2009}} \beta_t 1_{i \in \text{Consumer}} + X_{it}' \alpha_X + \epsilon_{it}. \quad (2)$$

The coefficients of interest are the β_t’s and the omitted group is May 2009, the month when the CARD Act was signed. In the plots, we normalize the coefficient on May 2009 to the pre-CARD Act consumer account mean so that the effects can be interpreted relative to this baseline level.

IV.C Inference

We conduct statistical inference using two complementary strategies. In our first approach, we construct standard errors to account for (i) serial correlation in outcomes within accounts over time and
(ii) correlation in outcomes across accounts that have the same type of credit card and therefore have interest rates and other contract characteristics jointly determined. We specify cluster-robust standard errors at the bank × product type level. We view this approach as conservative because many banks have multiple types of co-branded cards, for example, that have contract characteristics that are adjusted individually. The number of product types varies across banks, and yields no less than 46 clusters in the regression specifications.

Our second approach is to construct p-values using a permutation test where we compare our estimate of the actual CARD Act to estimates of placebo reforms specified at other periods of time (Conley and Taber, 2011). To conduct inference on the over limit fee restriction, which applied to consumer credit cards during the 22 months between February 2010 and the end of our sample, we assign placebo over limit fee restrictions to consumer credit cards in 22 randomly selected months drawn without replacement, and estimate a placebo effect on this sample. We then compare the true effect of the fee restriction to the distribution of placebo estimates derived from 1,000 randomly constructed samples. We use an analogous approach for the other dependent variables.

V INTENDED EFFECTS

In this section, we examine the intended effects of the CARD Act. We first analyze the effects of the fee regulations and then turn to considering the effects of the disclosure nudge.

V.A Fees

The CARD Act had two primary elements that aimed to significantly reduce over limit fees and late fees (see Section II.B). Figure 3 examines the effects of these regulations by plotting average fee revenue for consumer and small business accounts over time. In each plot, the vertical axis shows mean fee revenue as an annualized percentage of ADB. The horizontal axes show months, with the vertical bars in May 2009, February 2010 and August 2010 indicating the dates when the CARD Act was signed, and when Phase 2 and Phase 3 of the provisions came into effect. Because fee payments vary substantially by FICO score (see Section III.B), we separately examine effects on accounts with FICO scores below and above 660 at origination, approximately the 30th percentile of the FICO score distribution in our data.
Panels A and B of Figure 3 examine the effects on over limit fees. In the pre-CARD Act period, over limit fees for consumer and small business accounts move together, confirming the parallel-trends identifying assumption. In February 2010, when the law required consumer accounts to “opt in” to the processing of over limit transactions, over limit fees for consumer accounts drop to virtually zero. Over limit fees for small business accounts, which were not affected by the CARD Act, trend smoothly through this implementation date.

Table 3 shows the corresponding difference-in-differences regressions for the effect on over limit fees. Column 1 shows the baseline specification that has consumer card by Phase 2 (March 2010 to August 2010) and Phase 3 (after August 2010) interaction terms, and consumer card and month fixed effects. The pre-February 2010 period is the omitted category, so that the effects can be interpreted relative to the outcomes prior to the implementation of the CARD Act. Column 2 adds bank × FICO score group fixed effects to this specification. Panel A shows outcomes for accounts with FICO scores below 660, and Panel B shows outcomes with FICO scores above this level. The point estimates indicate that over limit fees fell by 3.3 percentage points and 0.3 percentage points for low and high FICO score accounts, respectively. The estimates are highly stable across specifications and statistically distinguishable from zero at conventional levels.

Panels C and D of Figure 3 examine the effects of the CARD Act on late fees. As with over limit fees, there is no evidence of differential pre-trends for consumer and small business accounts. Late fees for consumer accounts decline in February 2010, when restrictions on which payments could be considered late became more stringent, and drop more sharply in August 2010, when the $25 maximum for late fees came into effect. The regression estimates for late fees, shown in columns 3 and 4 of Table 3, confirm these results. For accounts with FICO scores below 660, late fees decline by 1.5 percentage points over both implementation phases, from a pre-CARD Act mean of 5.9%. The drop for high FICO score account holders is 0.3 percentage points off a pre-CARD Act mean of 1.3%.

Some industry observers conjectured that credit card issuers would respond to the loss in over limit and late fee revenue by increasing other fees, and in particular annual fees. We examine this possibility in columns 5 and 6 of Table 3 by estimating difference-in-differences specifications with “other fees,” defined as all fees except late fees and over limit fees, as the dependent variable. We find no evidence for an offsetting response in other fees. However, while we observe no offsetting medium-term increase in fee revenue, we cannot assess whether firms will respond by introducing
novel fees in the long run, as theorized in Heidhues, Kőszegi and Murooka (2012).

Panels E and F of Figure 3 combine the analysis of the separate fee categories by showing the effects of the CARD Act on total fees. The corresponding coefficient estimates, shown in columns 7 and 8 of Table 3, indicate that over the implementation phases, total fees dropped by 5.3 percentage points for low FICO score accounts and by 0.5 percentage points for high FICO score accounts. Both estimates are statistically distinguishable from zero with p-values of 0.04 and 0.02, respectively.

In the appendix we show two additional pieces of supporting analysis. Appendix Figure A.IV plots the coefficients on consumer account \times month interactions from difference-in-differences regression specifications where we allow for separate coefficients of interest by month (Equation 2). These figures confirm the lack of pre-existing trends and the sharp response to the implementation of the law. In Appendix Figure A.V we show results from permutation tests where we compare our estimate of the actual effect of the CARD Act to the distribution of placebo estimates derived from 1,000 samples where “treatment” is randomly assigned (see discussion in Section IV). This alternative approach to conducting inference confirms that the drop in fee revenue was statistically significant.

The last part of this section examines the mechanisms underlying the observed drops in fee revenue. Did banks respond to the virtual elimination of over limit fees by more frequently declining over limit transactions? Panel A of Figure 4 examines this question by plotting the share of consumer and small business accounts with cycle-ending balances larger than the credit limit over time. This share of accounts declines for both types of accounts, most likely driven by the economic recovery. There is a small additional decline for consumer credit cards around the February 2010 CARD Act implementation date, suggesting that a small number of issuers chose to decline over limit transactions following the regulation. However, we continue to observe a significant number of accounts being allowed to process transactions that would take them over their credit limit.

Panel B of Figure 4 further investigates this result by showing the distribution of account utilization, defined as the ratio of cycle-ending balances to credit limits, in the year before and after the February 2010 implementation date. Even in the post-CARD Act period many credit card borrowers were allowed to exceed their credit limits, sometimes by substantial amounts. This evidence confirms that the vast majority of the decline in over limit fee revenue did not come from banks no longer processing over limit transactions, but was instead driven by banks no longer charging for processing the transaction.
Figure 3 shows that the decline in late fee revenue appears to diminish over time. To investigate this partial reversal, the bottom row of Figure 4 plots the incidence of late fees over time. Panel C shows the overall incidence of late fees for consumer and small business accounts, defined as the share of accounts that incurred a late fee. In the pre-CARD Act period, about 8% of accounts experienced a late fee each month. These values drift downward over the sample period, with similar declines for consumer and small business accounts. In particular, the plot shows no effect of the August 2010 implementation date on the frequency of late payments. This suggests consumers did not respond to the reduction in the late fee “price” by increasing the frequency of late payments.

Because the data show no decline in the incidence of late payments, the drop in late-fee revenue is attributable to a change in the fee amount. Panel D of Figure 4 examines this price effect by plotting the frequency of late fees of different dollar amounts. Recall that the CARD Act reduced late fees to $25 unless one of the previous six payments was also late, in which case a $35 fee was allowed. The plot provides evidence of a one-for-one substitution from $40 to $25 late fees in August 2010. The plot also shows a gradual substitution from $25 to $35 late fee amounts in the months after implementation, with the frequency of $35 late fees exceeding the frequency of $25 late fees by November 2010. Banks seem to have provided account holders with a “clean slate” in August 2010 with no late payments in their six-month look-back period. Over time, as the fraction of account holders with a late payment in the previous six months rose, banks were able to increase their fees to $35 for those accounts, contributing to the observed partial reversal in late fees.

The analysis above shows that the CARD Act brought about a sharp drop in fees, with drops of 5.3 percentage points of ADB for accounts with a FICO score below 660 and 0.5 percentage points of ADB for accounts with a FICO score above this level. Low and high FICO score cards make up 23.0% and 77.0% of borrowing in our data, so if we take a weighted average, we calculate a reduction of 1.6% as an annualized percentage of ADB. Given an outstanding U.S. credit card borrowing volume of $744 billion in the first quarter of 2010 (FRBNY, 2013), extrapolating to the entire market suggests the CARD Act’s fee regulation reduced borrowing costs by $11.9 billion per year.

V.B Payoff Nudge

In addition to regulating the fees that banks may charge, the CARD Act also introduced rules requiring repayment disclosures in monthly credit card statements. The aim of these disclosure re-
quirements was to provide information on the cost of only making the minimum payment, as well as information on the reduction in interest payments that could be achieved by making payments that would eliminate the balance within 36 months. Indeed, information such as the 36-month payment amount might be understood by consumers as a payment recommendation or nudge, anchoring repayment at this level (Navarro-Martinez et al., 2011). However, it is not obvious whether such a payoff nudge would actually lead to a change in repayment behavior, both because it is unclear if the nudge would be sufficiently powerful, and because prevailing repayment levels might already have been optimal.

V.B.1 Pre-CARD Act Payoff Behavior

We begin by documenting credit card payoff behavior in the pre-CARD Act period. For this analysis, we restrict the sample to consumer credit cards with a non-zero cycle-ending balance. Panel A of Figure 5 shows the share of account holders making full payments by FICO score at account origination. About 10% of borrowers with a FICO score below 620 fully repay their balance at the end of the cycle. This share rises monotonically in FICO score, with about 25% of borrowers with a FICO score of 720 and about 75% of borrowers with a FICO score above 800 making the full payment. On average, 30.1% of account holders pay their cycle-ending balance in full.\footnote{This number is similar to estimates from other sources. For example, using data from the 1995 and 1998 Survey of Consumer Finances, Laibson, Repetto and Tobacman (2007) calculate that 32.2\% of households pay their credit card bill in full each month. Note that our data are at the account level and the SCF is a household-level survey, so the numbers are not directly comparable.}

Panel B of Figure 5 shows the share of account holders making minimum payments or less by FICO score. About 40\% of borrowers with a FICO score below 620 pay the minimum or less. The number of account holders making the minimum payment or less declines monotonically in FICO score, with about 27\% of borrowers with a FICO score of 720 and 10\% of borrowers with a FICO above 800 making payments of the minimum or less. We calculate that on average 13.0\% of borrowers only make the minimum payment, and 14.7\% make payments of less than the minimum amount.

V.B.2 Payoff Nudge

The CARD Act mandates the disclosure of the monthly payment that would eliminate an account holder’s cycle-ending balance if the account holder makes 36 equal-sized payments and avoids new purchases (see Figure 1). Let T be the number of months it would take to pay off a cycle-ending
balance for a constant payment amount:\(^{26}\)

\[
T = 1 - \frac{\ln\left(1 - \frac{\text{APR}_{\text{Cycle-Ending Balance}} - \text{Payment}}{\text{Payment}}\right)}{\ln\left(1 + \frac{\text{APR}_{\text{12}}}{1}\right)}.
\]

Full repayment is indicated by \(T = 1\). At the pre-CARD Act average APR of 16.5%, \(T = 5\) implies a payment of 20.5% of the cycle-ending balance; \(T = 10\) implies a payment of 10.6% of the balance; and \(T = 83\) implies a payment of 2% of the balance, which is a typical minimum payment amount in our data. The CARD Act requires a disclosure of the payment that would result in \(T = 36\). At the average interest rate, this implies a payment of 3.7% of the cycle-ending balance. Consumer credit accounts have a median \(T\) of 15.

Figure 6 shows the distribution of months-to-payoff \(T\) in the year before and after the CARD Act for consumer and small business cards, focusing on values of \(T\) in the vicinity of 36.\(^{27}\) Following the implementation of the CARD Act, there was a small but significant increase in the share of consumer credit card holders paying the 36-month payment amount. No such change can be detected for small business card holders, who were not shown the payoff disclosure.

We use a difference-in-differences approach to quantify the impact of the nudge, comparing the change in repayment behavior before and after the February 2010 implementation date for consumer and small business credit cards. Table 4 shows the results of these regressions. Columns 1 and 2 show the effect on the share of account holders making payments close to the 36-month value \((30 \leq T \leq 38)\).\(^{28}\) The results show that the nudge increased this share by a precisely estimated 0.4 percentage points on a base of 5.3%.\(^{29}\)

\(^{26}\)This equation obtains from rearranging the standard monthly payment formula for a series of payments starting in the current month: Payment = \(\left(\frac{\text{APR}_{\text{12}}}{1 - (1 + \text{APR}_{\text{12}})^{-T}}\right)(\text{Cycle-Ending Balance} - \text{Payment})\).

\(^{27}\)There is seasonality in repayment behavior, so analyzing the 12 months before and after the CARD Act is more representative than analyzing the entire pre-CARD Act and post-CARD Act periods. Appendix Figure A.VI shows the full distribution of \(T\) in the year preceding the implementation of the CARD Act disclosure requirement, both for consumer credit cards and small business credit cards.

\(^{28}\)The choice of this range, which is asymmetric around the CARD Act mandated disclosure amount of \(T = 36\), is motivated by an inspection of Figure 6, which shows the shift of account holders to values of \(T\) within that range. We would expect increases in a small range around 36 months for a number of reasons. The most important is that we use the current interest rate for our calculation of \(T\), whereas banks are required to account for contractually determined changes in interest rates over the 36-month period. In particular, “if the interest rate in effect on the date on which the disclosure is made is a temporary rate (such as an introductory rate) that will change under a contractual provision applying an index or formula for subsequent interest rate adjustment, the creditor is required to apply the interest rate in effect on the date on which the disclosure is made for as long as that interest rate will apply under that contractual provision, and then apply an interest rate based on the index or formula in effect on the applicable billing date” (15 U.S. Code §1637).

\(^{29}\)This estimate is relatively small compared to the experimental estimates in Stewart (2009) and Navarro-Martinez et al.
Account holders were not shown the 36-month payment amount if this amount was lower than their minimum payment. This primarily occurred for accounts with low balances for which the minimum payment was set to a nominal lower bound. In column 3, we restrict the sample to account holders with more than $1,000 in cycle-ending balances. We find a larger response in this subsample, with about 0.8% of these accounts shifting to the 36-month payment amount.

Determining whether the nudge affected overall repayment behavior requires estimating whether the account holders who shifted to the 36-month payment amount would have counterfactually been making higher or lower payments. Estimating this effect is difficult because the 0.4% shift is small relative to cyclical and seasonal variation in repayments. Columns 4 to 6 show the effect of the CARD Act on the share of account holders making payments less than the nudge amount ($T > 38$). A precise 0.4 percentage point decline in this share would indicate that the nudge shifted account holders from lower payments to the 36-month amount. The estimates, however, are too imprecise to allow us to draw any conclusions. This is confirmed by the permutation tests presented in Appendix Figure A.VII, which show that the effect on the number of account holders making lower payments is small relative to normal month-on-month variation in that number.

In principle, the CARD Act could have decreased overall payments if the disclosure of the minimum payment amount had an anchoring effect and increased payments at the minimum payment level. This would be consistent with experimental evidence from Stewart (2009), who shows that presenting a minimum payment reduces overall willingness to repay. In columns 7 to 9 we test for the effect of the repayment nudge on the share of people making exactly the minimum payment. Contrary to the anchoring hypothesis, the point estimates suggest a decline of 0.2 percentage points in the share of accounts making the minimum payment on a base of 13%, but the estimates are too imprecise to allow us to draw definitive conclusions.

Although we are unable to precisely estimate the exact effect of the nudge on overall repayment behavior, we can use our estimates to construct an upper bound of the effect of the nudge on annualized interest payments. Assume that the nudge (i) shifted account holders from making no payment to paying at the 36-month value and (ii) did not affect the cycle-ending balance of these account holders. The one-month change in interest payments for account holders that shift their behavior is given

However, one caveat to interpreting our results is that we are unsure which credit card users actually saw the CARD Act disclosures. For example, payment disclosures are only required on monthly credit card statements, which are rarely viewed by individuals doing online banking. This means that while we pick up the full effect of the CARD Act regulation, we might understate the possible effect of a regulatory design that achieved wider awareness of the disclosures.
by the product of the change in the percentage of balance paid, the cycle-ending balance, and the
monthly interest rate:

\[
\Delta \text{Interest Payments} = \Delta \% \text{ of Balance Paid} \times \text{Cycle-Ending Balance} \times \frac{\text{APR}}{12}.
\]

Account holders making no payment had a pre-CARD Act average cycle-ending balance of $2,957
and an average APR of 21.7%. Plugging this average APR into Equation 3 implies a change in the
percent of balance paid from 0% to 3.7%. Taking the product of these numbers and multiplying by
12 to annualize yields an estimated $24.00 reduction in annualized interest payments for account
holders that shifted their repayment behavior in response to the nudge.

While a reduction in interest payments of this amount would be non-negligible for the account
holders that shift their behavior, the fact that few account holders respond to the nudge leads us to
estimate a small upper bound for the aggregate effect. The estimate of $24.00 annualized savings
for the 0.4% of accounts that switch translates to aggregate savings of 0.0076% (= \frac{0.4\% \times $24.00}{$1.251}) of total
ADB. If we extrapolate these results to the $744 billion national credit card market, we estimate an
upper bound for the nudge of $57 million (= $744 billion \times 0.0076\%) in annualized savings.

VI UNINTENDED CONSEQUENCES

In this section, we assess possible unintended consequences of the CARD Act, focusing on whether
lenders responded to the decline in fee revenue by increasing interest charges, or by restricting access
to credit.

From a theoretical perspective, fees will be offset if (i) markets are perfectly competitive or (ii) fees
are perfectly salient. If markets are perfectly competitive, so that aggregate price inclusive of all
fees is equal to marginal cost, any regulation that reduces a certain fee will be offset by a similarly
sized increase in another pricing dimension. If all fees and prices are perfectly salient, then demand
is only responsive to the aggregate price, and firms will adjust other prices to keep the aggregate
price unchanged. This means that regulators can only be successful in lowering aggregate borrowing
costs when markets are imperfectly competitive and fees are at least partially non-salient. We present
a model that formalizes this argument in Appendix C.

In the empirical analysis that follows, we restrict our attention to accounts with a FICO score
below 660 at origination, which experienced a decline in fees of 5.3% of ADB. Since accounts with a FICO score of at least 660 only experienced a 0.5% decline in fees, we would not expect an economically significant offset for these account holders. In the appendix, we replicate our analysis on the sample of accounts with a FICO score of 660 or higher.

VI.A Interest Charges

Panel A of Figure 7 shows mean interest charges as an annualized percent of ADB for consumer and small business accounts with a FICO score less than 660 at origination. Interest charges for both types of cards move together in the pre-CARD Act period and continue to move together over the rest of the months in the data. We find no evidence of anticipatory increases for consumer accounts after the May 2009 passage date and no evidence of any increase during the implementation periods.

Table 5 shows the corresponding difference-in-differences regressions. We show coefficients on consumer cards interacted with indicators for the Anticipation (June 2009 to January 2010), Phase 2 (March 2010 to August 2010), and Phase 3 (after August 2010) time periods. The pre-May 2009 period is the omitted category, so that the effects can be interpreted relative to interest charges prior to the passage of the CARD Act. Column 1 shows the baseline specification with the interaction terms and consumer card and month fixed effects. Column 2 adds fixed effects for bank × FICO score groups. The regression estimates confirm the finding that the CARD Act had at most a limited effect on interest charges, with point estimates of approximately zero across the different phases.

The absence of an aggregate response does not mean that interest rates were completely unresponsive to the CARD Act. Appendix Figure A.VIII shows the frequency of “upward repricing” over time, where upward repricing is defined, following Consumer Financial Protection Bureau (2013a), as an APR increase of at least 1 percentage point on a base of at least 10% in the previous month, to exclude increases that occur at the end of introductory rate periods. The figure shows a small spike in the number of accounts with APR increases in the two months prior to the CARD Act. This suggests that banks were reacting to the CARD Act, but that the competitive environment and the

30 Interest charges are the total interest payments made by the borrower. This is a better measure for the cost of credit than APRs, because most accounts have a number of different APRs applying to different types of transactions (e.g., balance transfers, cash advances) that are in place simultaneously. Interest charges aggregate across these different APRs to provide a measure of the weighted average cost of credit.

31 Appendix Figure A.IX, which plots the coefficients on consumer account × month interactions from a difference-in-differences specification (Equation 2), further confirms that interest charges do not rise to offset the 5.3 percentage point decline in fee revenue, shown by a horizontal line in the figure.
non-salience of fees limited the aggregate significance of the response.

Columns 3 and 4 convert the estimates of the change in interest changes into an implied offset, which we calculate as the interest charge estimates from columns 1 and 2 divided by the Phase 3 estimate of the drop in fee revenue from Table 3 with the same controls. The standard errors and corresponding p-values for the offset are calculated using the Delta Method assuming no covariance in the error terms. The Phase 3 estimates provide the longest adjustment period and represent our preferred estimates of the medium-run effects of the law. The Phase 3 estimate of -0.09 from column 4 allows us to rule out offset effects of greater than 0.61 with 95% confidence.

Credit card issuers in principle have wide latitude to increase interest rates on account holders. The CARD Act somewhat reduced this flexibility with a set of provisions that came into effect in August 2009, which (i) required lenders to notify consumers 45 days in advance of rate changes and (ii) limited lenders’ ability to change interest rates on existing accounts, in particular in the first year after origination. Lenders, of course, could announce rate changes 45 days in advance, so the main practical effect of this provision was to make rate increases more salient and to slow down the implementation of rate increases. Nevertheless, we examine interest charges for new accounts to provide additional evidence from a setting where banks face fewer constraints in their pricing.

Appendix Table A.II shows difference-in-differences estimates of the effect on interest charges as a percentage of ADB for new accounts. Columns 1 and 2 repeat the estimates on the set of all accounts with FICO scores below 660 from Table 5 for reference. Columns 3 and 4 show estimates for the sample of low FICO score new accounts, defined as accounts in their first full month since origination. Interest charges for new accounts are noisy because promotional rates and marketing campaigns by a single bank can have a meaningful effect on monthly outcomes. However, the estimates clearly indicate that interest charges for new accounts did not rise by the 5.3 percentage points needed to offset the reduction in fee revenue. The preferred Phase 3 estimate with all controls, shown in column 4, takes on a value of 0.17, and we can reject an increase of the full 5.3 percentage point amount with a p-value below 0.01.

Panel A of Appendix Figure A.X shows interest charges as an annualized percentage of ADB for

32 We use the Phase 3 fee estimate from column 7 of Table 3 to construct the offset estimates in column 3, and the Phase 3 fee estimate from column 8 of Table 3 to construct the estimates in column 4.

33 In Appendix D we provide ancillary evidence on this estimate using a restriction on the relationship between the offset and the “pass-through rate” of a cost shock that we derive from our model. This approach to estimating offsets is discussed in greater detail in Agarwal et al. (2014b).
account holders with FICO scores of 660 or above. This figure provides a placebo test for the interest charge response. Since fee revenue barely declines for high FICO score account holders, a large change in interest charges would suggest that there are other contemporaneous effects that are not being captured by the difference-in-differences specification. The plot shows no evidence of a differential effect of the CARD Act on high FICO score consumer accounts. Columns 5 to 6 of Appendix Table A.II show difference-in-differences regression specifications that confirm this finding.

VI.B Total Income and Costs

The reduction in fee revenue and the lack of an offsetting interest charge response suggest that the CARD Act reduced banks’ total income. Recall from Section III.B that we define total income as the sum of fee payments, interest payments, and interchange fees. While the evidence discussed above shows a drop in fees and no change in interest charges, the reduction in fee revenue could lead to a “waterbed effect” where credit card issuers offset the reduction in fees with higher interchange fee revenue from merchants.

Columns 5 and 6 of Table 5 examine this directly by showing difference-in-differences specifications for the sample of low FICO score accounts with total income as a percentage of ADB as the dependent variable. The point estimates show a Phase 3 drop in total income of 6.5 percentage points, similar to the 5.3 percentage point decline in fees. Appendix Figure A.II shows that interchange income as a share of purchase volume was a stable 2% over the entire time period. Thus the combination of the decline in fee revenue and flat interest charges and interchange income translates directly into a decline in total income from low FICO score account holders.

Another way banks could mitigate their exposure to the CARD Act is by reducing their spending on awards, marketing, or other credit card costs. We examine this potential response by estimating difference-in-differences specifications where the dependent variable is costs excluding chargeoffs, defined using information on the cost of funds, rewards and fraud expenses, and operational costs. The estimates, shown in columns 7 and 8 of Table 5, show no evidence of an economically significant decline in costs. However, this does not rule out that the decline in profitability will lead to a medium-term decline in banks’ investment on IT infrastructure and credit-scoring models.

34We exclude contemporaneous chargeoffs because they are not controlled in the short term by actions taken by credit card issuers.

35As an additional piece of evidence, Appendix Figure A.I shows that the ratio of rewards and fraud expenses to interchange income was constant over the sample and therefore that these costs were approximately constant.
VI.C Credit Volume

In this final part of the paper, we examine the effects of the CARD Act on the equilibrium volume of credit, as measured by credit limits, new accounts, and ADB. Panel B of Figure 7 shows mean credit limits for consumer and small business cards with a FICO score below 660 at origination. Columns 1 and 2 of Table 6 present the corresponding regressions specifications, which have credit limit as the dependent variable, and are otherwise identical to the interest charge regressions (columns 1 and 2 of Table 5). The plot and regressions provide clear evidence that the CARD Act did not bring about a differential reduction in credit limits for consumer accounts. The preferred Phase 3 point estimate from column 2 of Table 6 indicates an increase in consumer account credit limits of $114 or approximately 5% of the $2,808 pre-CARD Act mean. We can rule out a drop in credit limits of greater than than $722, or 26% of the pre-CARD Act mean, with 95% confidence.

Panel C shows plots for the number of new consumer and small business accounts with a FICO score below 660. The number of new accounts is measured as a percentage of the average pre-CARD Act number of accounts in the data.36 Originations of consumer and small business accounts follow a strong U-shaped pattern over the time period. Both types of accounts drop in parallel between the start of our sample (April 2008) and the depth of the financial crisis (early 2009) before recovering over the final two years of our sample period. The month-to-month numbers exhibit considerable noise, reflecting the fact that the percentage of new accounts can be shifted by large promotional or marketing campaigns at a single bank. However, the preferred Phase 3 point estimate of 0.09 from column 4 of Table 6 indicates that there is virtually zero differential change in the percentage of new consumer accounts, although the standard error of 0.23 prevents us from ruling out meaningful effects in either direction.

Panel D shows mean ADB for consumer and small business accounts with FICO scores below 660 at origination. There is no evidence of a differential change in consumer credit card ADB. The regression estimates in Columns 5 and 6 of Table 6 confirm this result.

In the appendix, we present three additional pieces of evidence on the volume of credit. Appendix Figure A.X plots mean credit limits, new accounts, and ADB for consumer and small business accounts with a FICO score of 660 or above. Appendix Figure A.IX plots the coefficients on

36We use the average pre-CARD Act level of accounts as the denominator, instead of the contemporaneous number of accounts, to minimize noise that arises from bank decisions to write off accounts in blocks, which makes the denominator drop in discrete increments over time.
the consumer account \times month interactions from a difference-in-differences regression specification (Equation 2) for the sample of accounts with a FICO score below 660. Appendix Figure A.XI shows analogous plots for the sample of accounts with FICO scores of 660 or above. The plots provide a more granular view of the month-to-month variation and confirm our finding of no volume response.

The non-response of credit volume is fully consistent with the model in Appendix C. The lack of price offset suggests that fees are non-salient to consumers and that consumers are only responsive to the interest rate. Since interest charges are unchanged, from the perspective of the borrower, the cost of borrowing does not change and there is no change in the demand for credit. Since firms continue to make money by lending to consumers, equilibrium credit volume is also unchanged.

VII CONCLUSION

The recent financial crisis has focused considerable attention on regulating consumer financial products, with the newly-created CFPB and other federal agencies given an explicit mission to “promote fairness and transparency for mortgages, credit cards, and other consumer financial products and services.” We agree with Campbell et al. (2011) that an important priority for economic research is to “evaluate both potential and existing regulations to determine whether interventions actually deliver the desired improvements in the metrics for success.”

This paper aims to take a step in this direction, by providing a quantitative analysis of the impact of the CARD Act, which introduced significant changes to the regulation of credit cards. We find that the CARD Act successfully reduced borrowing costs, in particular for borrowers with the lowest FICO scores. We find no evidence for offsetting increases in other costs or a decline in credit volume. In addition, we find that the disclosure requirements of the CARD Act had a small but significant impact on borrowers’ repayment behavior. Our two years of post-CARD Act data do not allow us to investigate the longer-run effects of the CARD Act on industry exit or entry, or effects on margins with multi-year contracts (e.g., promotional agreements) or lumpy long-run investments (e.g., IT infrastructure and credit-scoring models).
REFERENCES

Federal Reserve Board of Governors. 2010. “Report to the Congress on the Use of Credit Cards by Small Businesses and the Credit Card Market for Small Businesses.”

Washington Post. 2013. “J.P. Morgan’s Dimon says new laws have hurt his company.”
Figure 1: Payoff Disclosure

<table>
<thead>
<tr>
<th>If you make no additional charges using this card and each month you pay ...</th>
<th>You will pay off the balance shown in this statement in about ...</th>
<th>And you will end up paying an estimated total of ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only the minimum payment</td>
<td>10 years</td>
<td>$3,284</td>
</tr>
<tr>
<td>$62</td>
<td>3 years</td>
<td>$2,232 (Savings of $1,052)</td>
</tr>
</tbody>
</table>

Note: Figure provides an example of the disclosure statement on monthly credit card reports required by the CARD Act.
Figure 2: Pre-CARD Act Profit Components by FICO Score

(A) Interest Charge Income

(B) Fee Income

(C) Net Chargeoffs

(D) Interchange Income – Rewards Expenses

(E) Realized Profits

(F) Number of Accounts

Note: Figure shows revenue and cost components, realized profits, and number of accounts for consumer credit cards by FICO score at origination binned in groups of 5. Revenue and cost components, and realized profits, are measured as an annualized percentage of ADB. Number of accounts are per reporting month. Realized profits are the difference between revenues (interest charges, fees, and interchange income) and costs (net chargeoffs, cost of funds, operational expenses, and fraud and rewards expenses). The sample is restricted to the pre-CARD Act period, defined as April 2008 to January 2010.
Figure 3: Over Limit, Late and Total Fees

(A) Over Limit Fees: FICO < 660

(B) Over Limit Fees: FICO ≥ 660

(C) Late Fees: FICO < 660

(D) Late Fees: FICO ≥ 660

(E) Total Fees: FICO < 660

(F) Total Fees: FICO ≥ 660

Note: Figures show over limit fees (top row), late fees (middle row), and total fees (bottom row) as an annualized percentage of ADB for account holders with a FICO score less than 660 at origination (left column) and a FICO score of at least 660 at origination (right column). The sample period is April 2008 to December 2011. Vertical lines are plotted in May 2009, February 2010, and August 2010, the date when the bill was signed and the two key implementation dates of the CARD Act, respectively.
Figure 4: Account Utilization and Late Payments

(A) Account Utilization: Percent Over Limit

(B) Account Utilization for Consumer Accounts

(C) Late Payments: Percent Late

(D) Late Fee Levels for Consumer Accounts

Note: Figures show information on account utilization and late payments. Panel A shows the percentage of consumer and small business accounts with cycle-ending balances exceeding the credit limit in each month. Panel B shows the distribution of cycle-ending balances as a share of the credit limit for consumer credit cards in the year before (dashed black line) and after (solid blue line) the February 2010 CARD Act implementation date. Panel C shows the percentage of consumer and small business accounts with positive late fees in each month. Panel D shows the percent of consumer accounts with late fees of $25, $35, $45, and an “other” category that combines all other positive levels. The $25 category is defined as accounts with late fees in the $21 to $25 range, the $35 category as accounts with late fees in the $31 to $35 range, and the $40 category as accounts with late fees in the $36 to $40 range. The sample period is April 2008 to December 2011. Vertical lines are plotted in May 2009, February 2010, and August 2010, the date when the bill was signed and the two key implementation dates of the CARD Act, respectively.
Figure 5: Pre-CARD Act Payoff Distribution

(A) Full Payoff

(B) Minimum Payment or Less

Note: Figure shows payoff behavior by FICO score at origination in the pre-CARD Act period, defined as April 2008 to January 2010. Panel A shows the share of account-months making the full payment. Panel B shows the share of account-months making the minimum payment or less. The sample excludes accounts that have a zero cycle-ending balance.

Figure 6: Months-to-Payoff (T)

(A) Months-to-Payoff: Consumer Accounts

(B) Months-to-Payoff: Small Business Accounts

Note: Figure plots distributions of months-to-payoff (T) in the year before (dashed black line) and after (solid blue line) the February 2010 CARD Act implementation date. Months-to-payoff (T) is the number of months it would take to pay off the cycle-ending balance if the account holder makes constant payments and makes no new purchases, and is calculated using Equation 3. We present the distribution for T between 10 and 60. The “share of account-months” is top-coded at 1% to focus on the distribution around the CARD Act target payoff amount ($T = 36$). Panel A shows the distribution for consumer credit cards, Panel B for small business credit cards.
Figure 7: Interest Charges and Credit Volume: FICO < 660

Panel A shows interest charges as an annualized percentage of ADB. Panel B shows credit limits. Panel C shows new accounts measured as a percentage of the average total pre-CARD Act number of accounts. Panel D shows average daily balances. All panels focus on account holders with a FICO score below 660 at origination, and display monthly averages for consumer and small business credit cards. The sample period is April 2008 to December 2011. Vertical lines are plotted in May 2009, February 2010, and August 2010, the date when the bill was signed and the two key implementation dates of the CARD Act, respectively.
Table 1: Summary Statistics

Panel A: Using Account-level Data (Annualized $ per Account)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Combined Sample</th>
<th>Consumer Credit Cards</th>
<th>Small Business Credit Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std Dev</td>
<td>Mean</td>
</tr>
<tr>
<td>Average Daily Balance</td>
<td>$1,346.55</td>
<td>$2,887.52</td>
<td>$1,319.55</td>
</tr>
<tr>
<td>Purchase Volume</td>
<td>$2,138.07</td>
<td>$10,675.03</td>
<td>$1,946.90</td>
</tr>
<tr>
<td>Interest Charges</td>
<td>$168.05</td>
<td>$448.29</td>
<td>$165.31</td>
</tr>
<tr>
<td>Total Fees</td>
<td>$57.64</td>
<td>$230.77</td>
<td>$57.72</td>
</tr>
<tr>
<td>Annual Fee</td>
<td>$6.47</td>
<td>$63.95</td>
<td>$6.58</td>
</tr>
<tr>
<td>Balance Transfer</td>
<td>$3.96</td>
<td>$124.93</td>
<td>$3.98</td>
</tr>
<tr>
<td>Cash Advance</td>
<td>$4.19</td>
<td>$85.67</td>
<td>$4.32</td>
</tr>
<tr>
<td>Debt Suspension</td>
<td>$8.10</td>
<td>$61.94</td>
<td>$8.37</td>
</tr>
<tr>
<td>Late Fee</td>
<td>$24.39</td>
<td>$104.06</td>
<td>$24.18</td>
</tr>
<tr>
<td>Not Sufficient Funds</td>
<td>$0.54</td>
<td>$18.20</td>
<td>$0.53</td>
</tr>
<tr>
<td>Other Fees</td>
<td>$1.48</td>
<td>$52.12</td>
<td>$1.46</td>
</tr>
<tr>
<td>Over Limit</td>
<td>$8.51</td>
<td>$61.68</td>
<td>$8.29</td>
</tr>
<tr>
<td>Total Chargeoffs</td>
<td>$174.82</td>
<td>$4,619.83</td>
<td>$167.65</td>
</tr>
<tr>
<td>Principal</td>
<td>$144.14</td>
<td>$4,243.99</td>
<td>$138.06</td>
</tr>
<tr>
<td>Interest and Fees</td>
<td>$30.68</td>
<td>$710.90</td>
<td>$29.59</td>
</tr>
<tr>
<td>Recovery</td>
<td>$6.49</td>
<td>$469.39</td>
<td>$6.34</td>
</tr>
<tr>
<td>Repayment*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum or less</td>
<td>26.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full or more</td>
<td>30.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Using Portfolio-level Data (Annualized $ per Account)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Note on Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interchange Income</td>
<td>$42.76</td>
<td>2% of Purchase Volume</td>
</tr>
<tr>
<td>Rewards + Fraud Expense</td>
<td>$29.93</td>
<td>1.4% of Purchase Volume</td>
</tr>
<tr>
<td>Cost of Funds</td>
<td>$22.49</td>
<td>Share of ADB (Time Varying)</td>
</tr>
<tr>
<td>Operational Costs</td>
<td>$49.70</td>
<td>Share of ADB (Time Varying)</td>
</tr>
<tr>
<td>Collection</td>
<td>$5.81</td>
<td>Share of ADB (Time Varying)</td>
</tr>
<tr>
<td>Marketing + Acquisition</td>
<td>$7.31</td>
<td>Share of ADB (Time Varying)</td>
</tr>
<tr>
<td>Other Operational Cost</td>
<td>$36.58</td>
<td>Share of ADB (Time Varying)</td>
</tr>
</tbody>
</table>

Note: Panel A shows summary statistics for key variables for the combined sample of consumer and small business accounts, and separately for consumer and small business accounts. Panel B reports additional variables that are constructed by combining account-level measures of ADB and purchase volume with information from the portfolio-level data. Values are calculated using all account-months in the sample period. Operational expenses include expenses for marketing and acquisition, collections, servicing, card-holder billing, processing payments, card issuing and administration. See note on construction and Appendix A for more details. Except for ADB and repayment statistics, values are annualized. The sample period is April 2008 to December 2011. All variables are inflation-adjusted to 2012 using the CPI-U.

*These statistics are calculated on the sample of account-months with positive cycle-ending balances.
Table 2: Pre-CARD Utilization and Realized Profits by FICO Score

<table>
<thead>
<tr>
<th>FICO Score Range</th>
<th>Total</th>
<th><620</th>
<th>620-659</th>
<th>660-719</th>
<th>720-759</th>
<th>760-799</th>
<th>800+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Accounts</td>
<td>100.0%</td>
<td>17.3%</td>
<td>12.6%</td>
<td>24.6%</td>
<td>18.6%</td>
<td>19.2%</td>
<td>7.6%</td>
</tr>
</tbody>
</table>

Panel A: Capacity and Utilization (Annualized $ per Account)

<table>
<thead>
<tr>
<th>Category</th>
<th>Total</th>
<th><620</th>
<th>620-659</th>
<th>660-719</th>
<th>720-759</th>
<th>760-799</th>
<th>800+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Limit</td>
<td>$8,042</td>
<td>$2,025</td>
<td>$3,546</td>
<td>$7,781</td>
<td>$11,156</td>
<td>$12,400</td>
<td>$11,390</td>
</tr>
<tr>
<td>Average Daily Balance</td>
<td>$1,410</td>
<td>$804</td>
<td>$1,469</td>
<td>$2,029</td>
<td>$1,797</td>
<td>$1,110</td>
<td>$486</td>
</tr>
<tr>
<td>Purchase Volume</td>
<td>$1,820</td>
<td>$730</td>
<td>$1,019</td>
<td>$1,651</td>
<td>$2,306</td>
<td>$2,892</td>
<td>$2,282</td>
</tr>
</tbody>
</table>

Panel B: Realized Profits (% of ADB)

<table>
<thead>
<tr>
<th>Category</th>
<th>Total</th>
<th><620</th>
<th>620-659</th>
<th>660-719</th>
<th>720-759</th>
<th>760-799</th>
<th>800+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Income</td>
<td>25.0%</td>
<td>45.7%</td>
<td>31.5%</td>
<td>21.0%</td>
<td>16.9%</td>
<td>17.1%</td>
<td>19.9%</td>
</tr>
<tr>
<td>Interest Charges</td>
<td>14.3%</td>
<td>20.6%</td>
<td>19.2%</td>
<td>15.2%</td>
<td>11.8%</td>
<td>9.3%</td>
<td>7.6%</td>
</tr>
<tr>
<td>Total Fees</td>
<td>7.6%</td>
<td>23.3%</td>
<td>10.9%</td>
<td>4.1%</td>
<td>2.5%</td>
<td>2.4%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Interchange Income</td>
<td>3.2%</td>
<td>1.8%</td>
<td>1.5%</td>
<td>1.7%</td>
<td>2.6%</td>
<td>5.4%</td>
<td>9.5%</td>
</tr>
<tr>
<td>Net Chargeoffs</td>
<td>15.6%</td>
<td>30.8%</td>
<td>23.4%</td>
<td>15.8%</td>
<td>9.7%</td>
<td>6.3%</td>
<td>4.7%</td>
</tr>
<tr>
<td>Cost of Funds</td>
<td>2.3%</td>
<td>2.4%</td>
<td>2.3%</td>
<td>2.2%</td>
<td>2.2%</td>
<td>2.2%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Rewards and Fraud</td>
<td>2.2%</td>
<td>1.3%</td>
<td>1.0%</td>
<td>1.2%</td>
<td>1.8%</td>
<td>3.7%</td>
<td>6.5%</td>
</tr>
<tr>
<td>Operational Costs</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Collection</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Marketing + Acquisition</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Other Operational Cost</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
<td>2.5%</td>
</tr>
<tr>
<td>Realized Profit</td>
<td>1.6%</td>
<td>7.9%</td>
<td>1.3%</td>
<td>-1.6%</td>
<td>-0.2%</td>
<td>1.5%</td>
<td>3.1%</td>
</tr>
</tbody>
</table>

Note: Table shows income and cost components for consumer accounts during the pre-CARD Act period, defined as April 2008 to January 2010. The first column shows averages over all accounts; the other columns show averages by FICO score at account origination. Net chargeoffs are the sum of principal and interest/fees chargeoffs minus recoveries. Panel B shows values as annualized percent of average daily balances. All dollar variables are inflation-adjusted to 2012 using the CPI-U.
Table 3: Fees Restrictions: Difference-in-Differences Regressions

<table>
<thead>
<tr>
<th></th>
<th>Over Limit Fees (1)</th>
<th>Over Limit Fees (2)</th>
<th>Late Fees (3)</th>
<th>Late Fees (4)</th>
<th>Other Fees (5)</th>
<th>Other Fees (6)</th>
<th>Total Fees (7)</th>
<th>Total Fees (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: FICO < 660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer X Phase 2</td>
<td>-3.30**</td>
<td>-3.27**</td>
<td>-0.61</td>
<td>-0.57</td>
<td>-0.70</td>
<td>-0.62</td>
<td>-4.61**</td>
<td>-4.46**</td>
</tr>
<tr>
<td></td>
<td>(1.50)</td>
<td>(1.52)</td>
<td>(0.42)</td>
<td>(0.38)</td>
<td>(0.46)</td>
<td>(0.41)</td>
<td>(2.25)</td>
<td>(2.22)</td>
</tr>
<tr>
<td></td>
<td>[0.03]</td>
<td>[0.04]</td>
<td>[0.15]</td>
<td>[0.14]</td>
<td>[0.13]</td>
<td>[0.14]</td>
<td>[0.05]</td>
<td>[0.05]</td>
</tr>
<tr>
<td>Consumer X Phase 3</td>
<td>-3.37**</td>
<td>-3.33**</td>
<td>-1.41*</td>
<td>-1.47**</td>
<td>-0.57</td>
<td>-0.52</td>
<td>-5.35**</td>
<td>-5.32**</td>
</tr>
<tr>
<td></td>
<td>(1.52)</td>
<td>(1.53)</td>
<td>(0.76)</td>
<td>(0.69)</td>
<td>(0.45)</td>
<td>(0.37)</td>
<td>(2.67)</td>
<td>(2.55)</td>
</tr>
<tr>
<td></td>
<td>[0.03]</td>
<td>[0.03]</td>
<td>[0.07]</td>
<td>[0.04]</td>
<td>[0.21]</td>
<td>[0.17]</td>
<td>[0.05]</td>
<td>[0.04]</td>
</tr>
<tr>
<td>Pre-CARD Act, Consumer Mean</td>
<td>3.77</td>
<td>3.77</td>
<td>5.85</td>
<td>5.85</td>
<td>5.05</td>
<td>5.05</td>
<td>14.68</td>
<td>14.68</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.32</td>
<td>0.73</td>
<td>0.10</td>
<td>0.84</td>
<td>0.04</td>
<td>0.87</td>
<td>0.11</td>
<td>0.84</td>
</tr>
<tr>
<td>Panel B: FICO ≥ 660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer X Phase 2</td>
<td>-0.30***</td>
<td>-0.30***</td>
<td>-0.07</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.07</td>
<td>-0.45***</td>
<td>-0.45***</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.11)</td>
<td>(0.07)</td>
<td>(0.07)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.14)</td>
<td>(0.15)</td>
</tr>
<tr>
<td></td>
<td>[0.01]</td>
<td>[0.01]</td>
<td>[0.32]</td>
<td>[0.26]</td>
<td>[0.43]</td>
<td>[0.49]</td>
<td>[0.00]</td>
<td>[0.00]</td>
</tr>
<tr>
<td>Consumer X Phase 3</td>
<td>-0.25**</td>
<td>-0.26**</td>
<td>-0.25***</td>
<td>-0.30***</td>
<td>0.06</td>
<td>0.07</td>
<td>-0.45**</td>
<td>-0.49**</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.12)</td>
<td>(0.08)</td>
<td>(0.10)</td>
<td>(0.08)</td>
<td>(0.07)</td>
<td>(0.20)</td>
<td>(0.20)</td>
</tr>
<tr>
<td></td>
<td>[0.04]</td>
<td>[0.04]</td>
<td>[0.00]</td>
<td>[0.00]</td>
<td>[0.46]</td>
<td>[0.32]</td>
<td>[0.03]</td>
<td>[0.02]</td>
</tr>
<tr>
<td>Pre-CARD Act, Consumer Mean</td>
<td>0.40</td>
<td>0.40</td>
<td>1.27</td>
<td>1.27</td>
<td>1.50</td>
<td>1.50</td>
<td>3.17</td>
<td>3.17</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.23</td>
<td>0.69</td>
<td>0.11</td>
<td>0.73</td>
<td>0.19</td>
<td>0.52</td>
<td>0.16</td>
<td>0.72</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>6,986</td>
<td>6,986</td>
<td>6,986</td>
<td>6,986</td>
<td>6,986</td>
<td>6,986</td>
<td>6,986</td>
<td>6,986</td>
</tr>
</tbody>
</table>

Main Effects
- Consumer Card FE
- Month FE

Additional Covariates
- Bank FE X FICO Score Group FE

Controls: All Panels

Note: Table shows coefficients from difference-in-differences regressions that compare fees for consumer credit cards (treatment group) and small business cards (control group) during the different phases of the CARD Act implementation. The dependent variables are shown as an annualized percent of ADB and are calculated in the same manner as the values in Panel B of Table 2. We define Phase 2 as March 2010 to August 2010 and Phase 3 as the months after August 2010. The period prior to February 2010 is the omitted group, so the coefficients can be interpreted as the differential effect relative to the pre-implementation period. The sample period is April 2008 to December 2011. The regressions are estimated on data aggregated to the bank × product type × FICO score group × month level, and weighted by total ADB in each group. A product type is defined as the interaction of the consumer card indicator and whether the card is co-branded, oil and gas, affinity, student, or “other.” FICO score groups are: <620, 620-659, 660-719, 720-759, 760-799, and ≥800. Standard errors clustered by bank × product type are shown in parentheses and the associated p-values are shown in brackets. There are 46 such clusters in Panel A and 47 clusters in Panel B. Significance levels: * (p<0.10), ** (p<0.05), *** (p<0.01).
Table 4: Payoff Nudge: Difference-in-Differences Regressions

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Standard Error</th>
<th>Additional Covariates</th>
<th>Sample Restrictions</th>
<th>Pre-CARD Act, Consumer Mean</th>
<th>R-Squared</th>
<th>Number of Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>Consumer X Phase 2</td>
<td>0.39**</td>
<td>0.38**</td>
<td>0.75**</td>
<td>0.03</td>
<td>-0.15</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
<td>(0.17)</td>
<td>(0.34)</td>
<td>(1.23)</td>
<td>(1.07)</td>
<td>(1.29)</td>
</tr>
<tr>
<td></td>
<td>[0.05]</td>
<td>[0.03]</td>
<td>[0.03]</td>
<td>[0.98]</td>
<td>[0.89]</td>
<td>[0.72]</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Card FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Month FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Additional Covariates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank FE X FICO Score Group FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sample Restrictions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excluding Accounts with Balance < $1,000</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-CARD Act, Consumer Mean</td>
<td>5.31</td>
<td>5.31</td>
<td>7.19</td>
<td>35.35</td>
<td>35.35</td>
<td>47.78</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.08</td>
<td>0.87</td>
<td>0.78</td>
<td>0.06</td>
<td>0.90</td>
<td>0.88</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>10,433</td>
<td>10,433</td>
<td>10,433</td>
<td>10,433</td>
<td>10,433</td>
<td>10,433</td>
</tr>
</tbody>
</table>

Note: Table shows estimates from difference-in-differences regressions of payoff behavior for consumer credit cards (treatment group) and small business cards (control group) around the implementation of the payoff nudge. In columns 1 to 3, the dependent variable is the percent of account holders that make a payment corresponding to the target CARD Act payment nudge amount (30 ≤ T ≤ 38). In columns 4 to 6, the dependent variable is the percent of account holders that make payments smaller than the CARD Act payment nudge amount (T > 38). In columns 7 to 9, the dependent variable is the percent of account holders that make exactly the minimum payment. The sample period is April 2008 to December 2011. The regressions are estimated on data aggregated to the bank × product type × FICO score group × month level, and weighted by the number of accounts in each group. A product type is defined as the interaction of the consumer card indicator and whether the card is co-branded, oil and gas, affinity, student, or “other.” FICO score groups are <620, 620-659, 660-719, 720-759, 760-799, and ≥ 800. In columns 3, 6 and 9, the sample is restricted to accounts with a cycle-ending balance larger than $1,000. Standard errors clustered by bank × product type are shown in parentheses and the associated p-values are shown in brackets. There are 47 such clusters in the sample. Significance levels: * (p<0.10), ** (p<0.05), *** (p<0.01).
Table 5: Interest Charge Offset: Difference-in-Differences Regressions (FICO < 660)

<table>
<thead>
<tr>
<th></th>
<th>Interest Charges Offset</th>
<th>Total Income</th>
<th>Costs Excluding Chargeoffs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Consumer X Anticipation</td>
<td>0.25</td>
<td>0.29</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(1.40)</td>
<td>(1.40)</td>
<td>(0.26)</td>
</tr>
<tr>
<td></td>
<td>[0.86]</td>
<td>[0.84]</td>
<td>[0.86]</td>
</tr>
<tr>
<td>Consumer X Phase 2</td>
<td>0.22</td>
<td>0.17</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(2.31)</td>
<td>(2.26)</td>
<td>(0.43)</td>
</tr>
<tr>
<td></td>
<td>[0.92]</td>
<td>[0.94]</td>
<td>[0.92]</td>
</tr>
<tr>
<td>Consumer X Phase 3</td>
<td>-0.34</td>
<td>-0.48</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>(2.03)</td>
<td>(1.89)</td>
<td>(0.38)</td>
</tr>
<tr>
<td></td>
<td>[0.87]</td>
<td>[0.80]</td>
<td>[0.87]</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Card FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Month FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Additional Covariates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank FE X FICO Score Group FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pre-CARD Act, Consumer Mean</td>
<td>19.14</td>
<td>19.14</td>
<td>N/A</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.06</td>
<td>0.78</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Table shows coefficients from difference-in-differences regressions that compare outcomes for consumer credit cards (treatment group) and small business cards (control group) during the different phases of the CARD Act implementation. We define the Anticipation period as the months between the passage of the bill in May 2009 and the implementation of Phase 2 in February 2010. We define Phase 2 as March 2010 to August 2010 and Phase 3 as the months after August 2010. The period prior to April 2009 is the omitted group, so the coefficients can be interpreted as the differential effect relative to pre-CARD Act period. The sample is restricted to accounts with FICO scores below 660 at origination. The sample period is April 2008 to December 2011. The regressions are estimated on data aggregated to the bank × product type × FICO score group × month level, and weighted by total ADB in each group. A product type is defined as the interaction of the consumer card indicator and whether the card is co-branded, oil and gas, affinity, student, or “other.” FICO score groups are < 620, 620-659, 660-719, 720-759, 760-799, and ≥ 800. Standard errors clustered by bank × product type are shown in parentheses and the associated p-values are shown in brackets. There are 46 such clusters in Panel A and 47 clusters in Panel B. Significance levels: * (p<0.10), ** (p<0.05), *** (p<0.01).
Table 6: Credit Volume: Difference-in-Differences Regressions (FICO < 660)

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>Credit Limits ($)</th>
<th>New Accounts (% of Pre-CARD Act Level)</th>
<th>Average Daily Balances ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Consumer X Anticipation</td>
<td>124.31</td>
<td>40.62</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>(153.63)</td>
<td>(163.42)</td>
<td>(0.11)</td>
</tr>
<tr>
<td></td>
<td>[0.42]</td>
<td>[0.80]</td>
<td>[0.09]</td>
</tr>
<tr>
<td>Consumer X Phase 2</td>
<td>229.37</td>
<td>101.72</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(285.74)</td>
<td>(295.80)</td>
<td>(0.17)</td>
</tr>
<tr>
<td></td>
<td>[0.43]</td>
<td>[0.73]</td>
<td>[0.90]</td>
</tr>
<tr>
<td>Consumer X Phase 3</td>
<td>291.23</td>
<td>113.95</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(326.38)</td>
<td>(309.64)</td>
<td>(0.21)</td>
</tr>
<tr>
<td></td>
<td>[0.38]</td>
<td>[0.71]</td>
<td>[0.71]</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer Card FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Month FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Additional Covariates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank FE X FICO Score Group FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pre-CARD Act, Consumer Mean</td>
<td>2,807.88</td>
<td>2,807.88</td>
<td>0.76</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.00</td>
<td>0.74</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Note: Table shows coefficients from difference-in-differences regressions that compare measures of credit volume for consumer credit cards (treatment group) and small business cards (control group) during the different phases of the CARD Act implementation. Columns 1 and 2 show regressions with credit limits as the dependent variable. Columns 3 and 4 show regressions with new accounts as a percentage of the pre-CARD Act average number of accounts as the dependent variable. Columns 5 and 6 shows regressions with average daily balances as the dependent variable. We define the Anticipation period as the months between the passage of the bill in May 2009 and the implementation of Phase 2 in February 2010. We define Phase 2 as March 2010 to August 2010 and Phase 3 as the months after August 2010. The period prior to April 2009 is the omitted group, so the coefficients can be interpreted as the differential effect relative to pre-CARD Act period. The sample is restricted to accounts with FICO scores below 660 at origination. The sample period is April 2008 to December 2011. The regressions are estimated on data aggregated to the bank × product type × FICO score group × month level, and weighted by the number of accounts in each group. A product type is defined as the interaction of the consumer card indicator and whether the card is co-branded, oil and gas, affinity, student, or “other.” FICO score groups are < 620, 620-659, 660-719, 720-759, 760-799, and ≥ 800. Standard errors clustered by bank × product type are shown in parentheses and the associated p-values are shown in brackets. There are 46 such clusters in the sample. Significance levels: * (p<0.10), ** (p<0.05), *** (p<0.01).
A.1 Constructing Revenue and Cost Measures

In our data, a number of important revenue and cost measures for credit cards are not observed at the account level, but only at the credit card portfolio level. These include the cost of funds, operational expenses, interchange income, rewards expenses, and fraud expenses. Since most of these measures broadly scale with either average daily balances (cost of funds, operational expenses) or purchase volume (interchange income, rewards, and fraud), we can use the information in the portfolio-level data to construct account-level measures of these variables. At the portfolio level, banks also report “daily average managed receivables,” but not total monthly transaction volume.

A.1.1 Cost of Funds

The cost of funds is the interest rate paid by financial institutions for the funds that they deploy in their business. The cost of funds also varies across banks, depending, amongst other things, on their ability to raise funds in the interbank market. Banks report “total interest expense accrued for the month to fund credit card receivables” in the portfolio-level data. This allows us, for every bank and month, to calculate the annualized cost of funding one dollar of credit card lending. The top panel of Figure A.I shows the average of this cost of funds measure across banks. The cost of funds declined markedly over our sample period, with particularly steep drops in 2008, as the federal funds rate declined to zero. The graph also shows the 11th District Cost of Funds Index (COFI), a monthly weighted average of the interest rates paid on checking and savings accounts offered by financial institutions operating in the states of Arizona, California and Nevada. This index is widely seen as a measure of the refinancing costs of U.S. financial institutions. Reassuringly, it moves closely with the cost of funds derived from the credit card portfolio data. For every account, we calculate the cost of
funding that account’s receivables by multiplying the average daily balances with the cost of funds for the corresponding bank and month.

A.1.2 Operational Costs

At the portfolio level, we also observe banks reporting three other components of cost. These are collection expenses, which include the costs incurred to collect problem credit; marketing / acquisition and card processing costs, which include the costs to acquire, advertise, and promote and process credit cards; and other expenses, which include costs for servicing, cardholder billing, processing interchange, processing payments, card issuing, authorizations, card administration and outside services/outsourcing. We combine these three expense categories into the category “operational costs.” For each month, we calculate the ratio of these operational costs to the average daily managed receivables. This ratio is shown in the middle panel of Figure A.I. We use the smoothed version of this series to assign a corresponding “operational cost” to every account by multiplying the average daily balances with the operational expense ratio for the corresponding month.

A.1.3 Interchange Income, Rewards and Fraud Expenses

Three other components of credit card profitability are also reported at the portfolio level: interchange income and rewards and fraud expenses. At the account level, these measures are likely to scale with total purchase volume rather than with average daily balances. Unfortunately, we do not observe a measure of total purchase volume at the portfolio level. While there is some heterogeneity in interchange fees, average interchange income for the issuing bank is roughly 2% of overall volume (GAO, 2009). Hence, we assess interchange income at the account level to be 2% of purchase volume. The portfolio-level data show that expenditures for rewards and fraud make up about 70% of interchange income (see the bottom panel of Figure A.I). Therefore, we assess reward and fraud expenses at the account level to be $0.7 \times 2\% = 1.4\%$ of purchase volume. To validate the approach of choosing interchange income as a constant fraction of purchase volume, we conduct the following analysis: First, we use the account-level data to calculate, for every month, the ratio of purchase volume to average daily balances (see top panel of Figure A.II). Next, we combine this ratio with the portfolio-level data to impute a total purchase volume for the entire credit card portfolio. Finally, we construct the ratio of interchange income to this imputed purchase volume at the portfolio level (see bottom panel of Figure A.II). The ratio is constant at 2% over the entire sample period.
A.1.4 Return on Equity

In Section III.B we discuss the profits realized by credit card lenders in the pre-CARD Act period, estimating that credit cards generated a net profit of 1.6% of ADB. After adjusting for the average tax rate for U.S. commercial banks of 32% (Lee and Rose, 2010), this translates into a Return on Assets of 1.1%, where \(\text{Return on Assets (ROA)} = \frac{\text{Earnings}}{\text{Assets}} \). This is very high relative to measures of average industry profitability. The top panel of Appendix Figure A.III shows total U.S. commercial banking sector ROA over the 2000 to 2013 period. Average ROA is 0.2% during the pre-CARD Act period, and 1% over the entire period. This implies an ROA for the credit card portfolio of about five times the industry average during the pre-CARD Act period. The bottom panel of Appendix Figure A.III shows the leverage of the U.S. commercial banking sector. Given an ROA of over 1% and average leverage of about 10, this suggests a return on equity (ROE) for credit card lending of about 10%.

B Econometric Model

We estimate the parameters of the econometric model on data collapsed to groups that represent the full interaction of the categorical variables in the data. This means, in practice, that we estimate the model on data collapsed to means for each bank \(\times \) product type \(\times \) FICO score group \(\times \) month. A product type is defined as the interaction of a consumer card indicator and whether the card is co-branded, oil and gas, affinity, student, or “other.” FICO score groups are \(< 620, 620-659, 660-719, 720-759, 760-799, \) and \(\geq 800 \). Let \(g \) denote these groups. Using this subscript, we can write the difference-in-differences specification (Equation 2 in the main text) as

\[
y_{igt} = \alpha_t + \alpha_C 1_{g \in \text{Consumer}} + \beta_1 1_{g \in \text{Consumer}} \cdot 1_{t \in \text{Phase 2}} + \beta_2 1_{g \in \text{Consumer}} \cdot 1_{t \in \text{Phase 3}} + X'_{gt} \alpha_X + \epsilon_{igt},
\]

where the \(g \) subscripts on \(1_{g \in \text{Consumer}} \) and \(X_{gt} \) indicate these variables vary, respectively, at the group and group \(\times \) month level. This specification is identical to the hierarchical regression model:

\(^1\)Our measure of net profits subtracts out financing costs and other expenses. The other adjustment one might want to make is to include some of the purchase volume that gets repaid at the end of the period. This value would not show up in ADB, but would still be part of the bank’s assets during the month. Table II shows that this adjustment would not make a large quantitative difference. An upper bound on the assets we would miss is the total purchase volume divided by 2 (i.e., assuming that it gets built up evenly throughout the month). Since the number presented in Table II is annualized, including purchase volume in the total assets would add about $75 or about 6% to total assets. This is an upper bound on the total amount, since the fraction of purchase volume that is not repaid at the end of the month might already be included in average daily balances.
\[y_{igt} = \lambda_{gt} + v_{igt} \]

\[\lambda_{gt} = a_t + a_C 1_{g \in \text{Consumer}} + \beta_1 1_{t \in \text{Phase 2}} + \beta_2 1_{t \in \text{Phase 3}} + X'_{gt} \alpha + \mu_{gt}, \]

where the first equation is a regression of the account-level outcomes on group × month fixed effects, and the second equation is a difference-in-differences specification with these fixed effects as the dependent variable. The account-level error is defined as the sum of errors from the hierarchical model: \(e_{igt} = \mu_{gt} + v_{igt} \). We can estimate the group × month fixed effects \(\hat{\lambda}_{gt} \) by collapsing the data to the group level. Given these estimates, we can recover the coefficient of interest with a difference-in-differences regression with these groups fixed effects as the dependent variable:

\[\hat{\lambda}_{gt} = a_t + a_C 1_{g \in \text{Consumer}} + \beta_1 1_{t \in \text{Phase 2}} + \beta_2 1_{t \in \text{Phase 3}} + X'_{gt} \alpha + \mu_{gt} + \bar{v}_{gt}. \]

This regression has two errors terms: the error \(\mu_{gt} \) that represents unobserved determinants of the outcome at the group × month level and the error \(\bar{v}_{gt} = \hat{\lambda}_{gt} - \lambda_{gt} \) in the prediction of the fixed effect. In the regressions, we weight the group-level observations to allow us to interpret the resulting estimates as aggregate effects. In particular, when the dependent variable is denominated as an annualized percentage of ADB (e.g., over limit fees as an annualized percentage of ADB), we weight by total ADB in each group. For other dependent variables (e.g., credit limits), we weight by the number of accounts in each group.

\section{Theoretical Model}

In this appendix we present a model to formalize the intuition discussed in Section VI. The model shows that the extent to which an increase in fee limits is offset and credit supply is adjusted is determined by (i) the degree of competition in the market and (ii) the salience of the regulated fee.

\subsection{Setting}

Consider a setting in which \(n \) symmetric firms compete to offer a credit card with a salient price \(p_1 \) (e.g., interest rate) and a potentially non-salient price \(p_2 \) (e.g., over limit fee).\(^2\) Since firms are identical, they charge the same prices in equilibrium. Aggregate demand is given by the function

\(^2\)See Stango and Zinman (2014) and Bar-Gill and Bubb (2012) for discussions of the salience of credit card fees.
q(p_1 + \psi p_2), where \psi \in [0, 1] parameterizes the degree of salience of p_2. A value of \psi = 1 indicates perfect salience; a value of \psi = 0 indicates that consumers are completely oblivious to p_2. Following Heidhues, Kőszegi and Murooka (2012), we assume there is a maximum \bar{p}_2 that is determined by regulation or some other factor.

Firms have identical costs structures, which include both the cost of financing consumer lending and the cost of default. Assume for now that lending to consumers has constant marginal costs c. In Appendix C.4, we show that the results are similar when we allow for marginal costs to vary, as they would in an environment with adverse or advantageous selection.

It is optimal for firms to set the potentially non-salient price p_2 to the maximum allowable amount \bar{p}_2. Following Weyl and Fabinger (2013), we characterize the first order condition for the salient price p_1 as

\begin{equation}
(1) \quad p_1 + p_2 - c = \theta \mu (p_1 + \psi p_2),
\end{equation}

in which the markup of price over marginal cost is set equal to the product of a market competitiveness parameter \(\theta \in [0, 1]\), which indexes the degree of competition in the market (see Bresnahan, 1989), and an absolute markup function \(\mu (p_1 + \psi p_2) \equiv -q q' \), which is the markup that would be charged by a monopolist.

The specification is flexible and nests a number of standard cases. Perfect competition is given by \(\theta = 0 \) and simplifies the first order condition to the standard “price equals marginal cost” condition \(p_1 + p_2 = c \). Monopoly is given by \(\theta = 1 \) and simplifies the equation to the Lerner Index for optimal pricing \(\frac{p_1 + p_2 - c}{p_1} = \frac{1}{\epsilon_{p_1}} \), where \(\epsilon_{p_1} \) is the aggregate elasticity of demand. Cournot competition is given by \(\theta = 1/n \), where \(n \) is the number of firms.

Our use of the term salience follows Chetty, Looney and Kroft (2009) to characterize the reduced “visibility” of the price. We are agnostic over whether this limited salience arises from a behavioral micro-foundation (e.g., inattention, myopia) or a non-behavioral model of consumer behavior (e.g., higher search costs on this dimension).

Alternatively, one could specify demand as a function of \(q(p_1 + \psi(p_2)) \), where \(\psi(\cdot) \) is increasing and convex and has the property \(\psi'(\bar{p}_2) = 1 \). This would result in the firm setting \(p_2 = \bar{p}_2 \) in equilibrium.

To see this, suppose a firm sets a \(p_2 < \bar{p}_2 \). The firm can increase profits by decreasing the salient price by \(\psi dp_2 \) and increasing the non-salient price by \(dp_2 \). This pricing change has no effect on demand because \(q(p_1 - \psi dp_2 + \psi(p_2 + dp_2)) = q(p_1 + \psi p_2) \) but raises total profits by \((1 - \psi) dp_2 q(p_1 + \psi p_2) > 0 \). This means that \(p_2 < \bar{p}_2 \) cannot be an equilibrium. If \(p_2 \) is perfectly salient (\(\psi = 1 \)), the equilibrium is described by a single price \(\psi^* = p_1 + p_2 \) and firms are indifferent between all combinations of \(p_1 \) and \(p_2 \) that sum to this \(\psi^* \), including the combination with \(p_2 = \bar{p}_2 \).

The second order condition for \(p_1 \) is \(\theta \mu' < 1 \). We assume that at the optimal price this condition is satisfied.

See Weyl and Fabinger (2013) and Mahoney and Weyl (2013) for discussions of the micro-foundations of this specification.
C.2 Pricing Offset

Consider a regulation that decreases the maximum allowable price \bar{p}_2. We want to know how much of the decline in p_2 is offset by an increase in p_1. For small changes in p_2, this offset is given by $\omega \equiv -\frac{dp_1}{dp_2}$. We will say there is full offset if $\omega = 1$ and no offset if $\omega = 0$.

Assume that θ and ψ are invariant to the price. Totally differentiating the first order conditions (Equation 1) with respect to p_2 and rearranging yields

\[
\omega = \frac{1 - \psi \theta \mu'}{1 - \theta \mu'},
\]

where we have suppressed the arguments of μ for notational simplicity. To gain intuition for the offset formula, consider two special cases.

Special Case 1. (Perfect Competition) If there is perfect competition ($\theta = 0$), then a limit on p_2 will be fully offset by an increase in p_1 ($\omega = 1$).

Since competition drives price to marginal cost, any decrease in p_2 must be fully offset by an increase in p_1 to maintain zero markup in equilibrium.\(^8\)

Special Case 2. (Perfect Salience) If p_2 is perfectly salient ($\psi = 1$), then a limit on p_2 will be fully offset by an increase in p_1 ($\omega = 1$).

If p_2 is perfectly salient, consumers view both prices as equivalent and firms can maintain their desired level of demand by increasing p_1 one-for-one with the decline in p_2.

Intuitively, the offset can be less than one-for-one when there is both imperfect competition ($\theta > 0$) and imperfect salience ($\psi < 1$). Taking derivatives of Equation 2 with respect to θ and ψ yields the following proposition:

Proposition 1. (Offset) The offset is converging toward full ($\omega \rightarrow 1$) as (i) the market becomes more competitive ($\theta \rightarrow 0$) and (ii) p_2 becomes more salient ($\psi \rightarrow 1$).

The offset is converging from below for many standard parameterizations of demand, but can also converge from above for some parameterizations. Technically, the offset converges from below when $\mu' < 0$ or equivalently if log demand is concave, since $(\log q)'' = \mu' / \mu^2 < 0 \iff \mu' < 0$.\(^9\)

\(^8\)In our model, perfect competition implies that price equals marginal costs. However, Parlour and Rajan (2001) show that in more complex settings, even credit markets with free entry can sustain positive profits for lenders.

\(^9\)Fabinger and Weyl (2013) prove that $\mu' < 0$ if demand is linear or if it is based on an underlying willingness-to-pay distribution that is normal, logistic, Type I Extreme Value (logit), Laplace, Type III Extreme Value, or Weibull or Gamma with shape parameter $\alpha > 1$. They show that $\mu' > 0$ if demand is based on a willingness-to-pay distribution that is Pareto (constant elasticity), Type II Extreme Value, or Weibull or Gamma with shape parameter $\alpha < 1$. They show that μ switches from $\mu' < 0$ to $\mu' > 0$ for a log-normal distribution of willingness-to-pay.
C.3 Volume Response

The model also provides guidance on how the equilibrium volume of credit will respond to a regulation that decreases the maximum allowable price p_2. For small changes in p_2, this volume effect is given by $\nu \equiv -\frac{dq}{dp_2}$. Totally differentiating q with respect to p_2 and using the identities $\omega = -\frac{dp_1}{dp_2}$ and $\frac{\partial q}{\partial p_1} = \psi \frac{\partial q}{\partial p_2}$ to simplify yields:

$$\nu = \frac{\partial q}{\partial p_1} (\omega - \psi).$$

The quantity response is largest (in absolute value) when p_2 is non-salient ($\psi = 0$) and markets are competitive ($\theta = 0$) because firms fully offset the p_2 decline ($\omega = 1$, see Special Case 1) but consumers only observe the increase in p_1 and reduce their demand accordingly. There is no quantity response when p_2 is perfectly salient ($\psi = 1$) because even though firms fully offset the p_2 decline ($\omega = 1$, see Special Case 2), consumers observe this one-for-one tradeoff between p_2 and p_1 and do not change their demand. More broadly, the volume response is increasing in the size of the offset (ω) and decreasing in the salience of the non-salient price (ψ).

C.4 Fee Offset with Selection

The composition of the borrower pool may not be invariant to the prices charged, and changing the price might attract either higher or lower marginal cost consumers (Agarwal et al., 2014a).\(^1\) To allow for such adverse or advantageous selection, we allow aggregate marginal costs $c'(q)$ to depend on aggregate demand q. Adverse selection at the industry level is indicated by decreasing aggregate marginal costs: $c''(q) < 0$; advantageous selection is indicated by increasing aggregate marginal costs: $c''(q) > 0$.

When a single firm lowers its price, it attracts consumers that are new to the market and consumers who are already purchasing the product from competing firms. The share of consumers firm i captures from its competitors is given by the aggregate diversion ratio: $A = -\sum_{j \neq i} \frac{\partial q_j / \partial p_i}{\partial q_i / \partial p_j}$, the sum of consumers lost by firms $j \neq i$ divided by the consumers gained by firm i.\(^1\)

We assume that consumers acquired from competitors are not selected and have costs equal to industry average cost: $\frac{c(q)}{q}$. Marginal costs for a single firm $c'_i(q_i)$ are the weighted sum of marginal

\(^1\)Similarly, changing the price might have a direct impact on costs. For example, if high prices increase debt levels and thereby increases the probability of default.

\(^1\)We thank Glen Weyl for suggesting this approach to modeling selection.
costs for consumers that are new to the market and marginal costs for consumers that are attracted from other firms:

\[
\begin{align*}
\frac{c'_i(q_i)}{q_i} &= (1 - A) c'(q) + A \frac{c(q)}{q}.
\end{align*}
\]

It is convenient to characterize the demand curve faced by a single firm in terms of aggregate demand and the aggregate diversion ratio:

\[
1 - A = 1 - \sum_{j \neq i} \frac{\partial q_j}{\partial q_i} = \frac{\partial q_i}{\partial p_i} - \sum_{j \neq i} \frac{\partial q_j}{\partial p_i} = \frac{q'_i}{q'_i} \iff q'_i = \frac{q'}{1 - A},
\]

where \(q'\) is the derivative of aggregate demand with respect to the price \(p_1\) of a single firm \(i\). The first order condition for \(p_1\) is given by

\[
\begin{align*}
p_1 + p_2 - c'_i(q_i) &= \theta \mu(p_1 + \psi p_2),
\end{align*}
\]

with the conduct parameter \(\theta \in [0,1]\) and markup term \(\mu(p_1 + \psi p_2)\) as previously defined. The second order condition for \(p_1\) is \(\theta \mu' + c'' q' < 1\). We assume that at the optimal price this condition is satisfied. For small changes in \(p_2\), we can calculate pass-through by totally differentiating the first order condition:

\[
\begin{align*}
\frac{dp_1}{dp_2} + 1 - c''(q_i) q'_i \left[\frac{dp_1}{dp_2} + \psi \right] &= \theta \mu'(p_1 + \psi p_2) \left[\frac{dp_1}{dp_2} + \psi \right].
\end{align*}
\]

Substituting \(c'' = (1 - A)c''\) and \(q'_i = \frac{q'}{1 - A}\) and rearranging gives us the pass-through formula:

\[
\omega = \frac{1 - \psi \left[\theta \mu' + c'' q' \right]}{1 - \left[\theta \mu' + c'' q' \right]},
\]

where we have suppressed the arguments of \(c, q,\) and \(\mu\).

The offset \(\omega\) is increasing in the term \(c'' q'\). With downward sloping demand \(q' < 0\), this means that the offset is relatively larger when there is adverse selection \((c'' < 0)\) and relatively smaller when there is advantageous selection \((c'' > 0)\). The reason the offset is larger with adverse selection is that a higher \(p_1\) brings in higher marginal cost consumers, requiring a further increase in price.

Under what conditions is the offset less than full? The second order condition \(\theta \mu' + c'' q' < 1\)
restricts the numerator and denominator to be positive. For \(\psi \in (0, 1) \), it follows that

\[
\omega < 1 \iff \theta \mu' + c'' q' < 0.
\]

Under what conditions is the offset increasing in competition? Differentiating the pass-through formula yields

\[
\frac{d\omega}{d\theta} = \frac{[1 - \theta \mu' - c'' q'] [-\psi \mu'] - [1 - \psi \theta \mu' - \psi c'' q'] [-\mu']}{[1 - \theta \mu' - c'' q']^2},
\]

which simplifies to

\[
\frac{d\omega}{d\theta} = \frac{\mu' [1 - \psi]}{[1 - \theta \mu' - c'' q']^2}.
\]

Since the denominator is always positive, for \(\psi \in (0, 1) \) we have

\[
\frac{d\omega}{d\theta} < 0 \iff \mu' < 0,
\]

where recall that increasing competition is indicated by a lower value of \(\theta \).

Under what conditions is the offset increasing in salience? Differentiating the pass-through formula gives us:

\[
\frac{d\omega}{d\psi} = -\frac{[\theta \mu' + c'' q']}{1 - [\theta \mu' + c'' q']^2}.
\]

Since \(\theta \mu' + c'' q' < 0 \) is implied by the second order condition, it follows that

\[
\frac{d\omega}{d\psi} > 0 \iff \theta \mu' + c'' q' < 0.
\]

\[\text{D Ancillary Evidence from Pass-Through}\]

The theoretical model in Appendix C allows us to establish a link between the offset of a reduction in the non-salient price and the pass-through of an increase in marginal costs, which we can use to test the consistency of our theoretical and empirical results.

Let \(\rho \equiv \frac{dp}{dc} \) denote the pass-through of a increase in marginal costs. Differentiating the first order
conditions of the model without selection (Equation 1) with respect to \(c \) yields
\[
\rho = \frac{1}{1 - \theta \mu'}.
\]
We can then write the offset as a function of the pass-through rate:

\[
(15) \quad \omega = \rho + \psi (1 - \rho).
\]

When \(p_2 \) is non-salient (\(\psi = 0 \)), the offset is equal to the pass-through rate (\(\omega = \rho \)). When \(p_2 \) is fully observed (\(\psi = 1 \)), the offset is full (\(\omega = 1 \)). Intuitively, banks will pass through the decrease in fee revenue by at least as much as a marginal cost shock, and by more if the change in fees is salient.

This equation is useful because it places restrictions on the relationship between the offset \(\omega \), pass-through rate \(\rho \), and salience parameter \(\psi \). In a related paper, Agarwal et al. (2014b) argue \(\rho \) and \(\psi \) are “sufficient statistics” that can be used to estimate the consumer benefits from regulating hidden fees in a wide range of settings, and illustrate the applicability of this approach by assessing a hypothetical regulation of airline baggage fees.

In this context, we can use this equation to provide ancillary evidence for our estimate of the offset. Ausubel (1991) examines the time-series correlation between the cost of funds and interest rates in the credit card market. He finds that interest rates are extremely sticky, with credit card issuers passing through essentially zero of the large changes in the cost of funds over the 1980s time period. Similarly, there is significant evidence that late fees and over limit fees have only limited salience to consumers (Sunstein, 2006; Bar-Gill and Warren, 2008; Mullainathan, Barr and Shafir, 2009; Stango and Zinman, 2014). If we assume, as a starting point, that banks pass through \(\rho = 0.1 \) of changes in the cost of funds and a salience parameter of \(\psi = 0.1 \), the model indicates that every dollar in fee reduction, credit card issuers will increase prices by about 19 cents (\(\omega = \rho + \psi [1 - \rho] = 0.1 + 0.1[1 - 0.1] = 0.19 \)), a value that is squarely within the confidence interval of our offset estimate.

References

Figure A.1: Portfolio Data

Note: Figure shows plots of cost components by month. The top panel shows the cost of funds, calculated as the annualized interest expense ("total interest expense accrued for the month to fund credit card receivables") as a share of average daily managed receivables for that month. It also shows the 11th District Cost of Funds Index (COFI). The middle panel shows the share of annualized operational expenses (including marketing and acquisition, collections, servicing, cardholder billing, processing payments, and card issuing and administration) as a share of average daily managed receivables. The bottom panel shows the share of rewards and fraud expenses as a ratio of the interchange income. These figures are constructed using the monthly general purpose credit card portfolio-level data. Numbers are averages across banks.
Figure A.II: Interchange Income

Note: Figure shows ratio of purchase volume to ADB (top panel) and ratio of interchange income to purchase volume (bottom panel). The top panel is constructed from account-level data. The bottom panel is constructed by taking the information from the top panel to scale the portfolio-level information on ADB to get a portfolio-level of measure of purchase volume. Total interchange income is also reported at the portfolio level.
Figure A.III: U.S. Commercial Banking Sector: ROA and Leverage

(A) Return on Assets (ROA)

(B) Leverage

Note: Panel A shows the average Return on Assets (ROA) in percent for all insured U.S. Commercial Banks (FRED Series USROA) as reported by the Federal Financial Institutions Examination Council. Panel B reports the leverage (Total Assets / Total Equity) for all insured U.S. Commercial Banks (the inverse of FRED Series EQTA). The shaded bars in Panel A and bolded line in Panel B depict the pre-CARD Act period covered in Table II.
Figure A.IV: Regression Coefficients: Over Limit Fees, Late Fees, and Total Fees

(A) Over Limit Fees: FICO < 660
(B) Over Limit Fees: FICO ≥ 660
(C) Late Fees: FICO < 660
(D) Late Fees: FICO ≥ 660
(E) Total Fees: FICO < 660
(F) Total Fees: FICO ≥ 660

Note: Figure shows the coefficients on consumer account × month interactions from a difference-in-differences regression (Equation 2 in the main text) with over limit fees (top row), late fees (middle row) and total fees (bottom row) as an annualized percentage of ADB as the dependent variable. We normalize the coefficient on the month when the bill was signed to the pre-CARD Act consumer account mean. We include fixed effects for consumer account, month, and bank × FICO score group. The sample period is April 2008 to December 2011. Vertical lines are plotted in May 2009, February 2010, and August 2010, the date when the bill was signed and the two key implementation dates of the CARD Act, respectively. Standard errors are clustered at the bank × product type level, with capped bars showing 95% confidence intervals.
Figure A.V: Fees: Permutation Tests

(A) Over Limit Fees

(B) Late Fees

(C) Total Fees

Note: Figure shows results of permutation tests where we compare our estimate of the actual CARD Act to the distribution of placebo estimates derived from 1,000 samples where “treatment” is randomly assigned. Panel A examines over limit fees, and compares the actual Phase 2 estimate (solid line) to a distribution of placebo Phase 2 estimates. Panels B and C examine late fees and total fees, and compare the actual Phase 3 estimates (solid lines) to distributions of placebo Phase 3 estimates. See Section IV for additional details.
Figure A.VI: Distribution of Months-to-Payoff (T) in Pre-CARD Act Period

(A) Consumer Credit Cards

(B) Small Business Credit Cards

Note: Figure shows histograms of months-to-payoff (T) in the year preceding the CARD Act, defined as February 2009 to January 2010. Months-to-payoff (T) is the number of months it would take to pay off the cycle-ending balance if the account holder makes constant payments and makes no new purchases, and is calculated using Equation 3 in the main text. The variable T is top-coded at 99 months with $T = 100$ denoting account holders that make no payment. Panel A shows the distribution for consumer credit cards. Panel B shows the distribution for small business credit cards.
Figure A.VII: Payoff Behavior: Permutation Tests

(A) Share Nudge Range ($30 \leq T \leq 38$)

(B) Share Less than Nudge Range ($T > 38$)

(C) Share Minimum Payment

Note: Figure shows results of permutation tests where we compare our estimate of the actual CARD Act to the distribution of placebo estimates derived from 1,000 samples where “treatment” is randomly assigned. Panel A examines the share of accounts making a payment in the nudge range ($30 \leq T \leq 38$), Panel B the share of accounts making payments smaller than the nudge range ($T > 38$), and Panel C examines the share of accounts making exactly the minimum payment. All graphs compare the actual Phase 2 estimate (solid line) to a distribution of placebo Phase 2 estimates. See Section IV for additional details.
Figure A.VIII: Upward Repricing

Note: Figure shows the share of consumer accounts with upward repricing over time. Following Consumer Financial Protection Bureau (2013), upward repricing is defined as an APR increases of at least 1 percentage point from a base of at least 10% in the previous month, to exclude increases that occur at the end of introductory rate periods. The sample period is January 2008 to April 2013. Vertical lines are plotted in May 2009, February 2010, and August 2010, the date when the bill was signed and the two key implementation dates of the CARD Act, respectively.
Figure A.IX: Regression Coefficients: Interest Charges and Credit Volume: FICO < 660

Note: Figures show the coefficients on consumer account × month interactions from a difference-in-differences regression (Equation 2 in the main text). The dependent variables are interest charges as an annualized percentage of ADB (Panel A), credit limits (Panel B), new accounts measured as a percentage of average total pre-CARD Act number of accounts (Panel C), and average daily balances (Panel D). All panels focus on account holders with a FICO score below 660 at account origination. We normalize the coefficient on the month when the bill was signed to the pre-CARD Act consumer account mean. We include fixed effects for consumer account, month, and bank × FICO score group. The sample period is April 2008 to December 2011. Vertical lines are plotted in May 2009, February 2010, and August 2010, the date when the bill was signed and the two key implementation dates of the CARD Act, respectively. Standard errors are clustered at the bank × product type level, with capped bars showing 95% confidence intervals.
Figure A.X: Interest Charges and Credit Volume: FICO \geq 660

(A) Interest Charges

(B) Credit Limits

(C) New Accounts

(D) Average Daily Balances

Note: Panel A shows interest charges as an annualized percentage of ADB. Panel B shows credit limits. Panel C shows new accounts measured as a percentage of average total pre-CARD Act number of accounts. Panel D shows average daily balances. All panels focus on account holders with a FICO score of at least 660 at account origination, and display monthly averages for consumer and small business credit cards. The sample period is April 2008 to December 2011. Vertical lines are plotted in May 2009, February 2010, and August 2010, the date when the bill was signed and the two key implementation dates of the CARD Act, respectively.
Figure A.XI: Regression Coefficients: Interest Charges and Credit Volume: FICO ≥ 660

(A) Interest Charges

(B) Credit Limits

(C) New Accounts

(D) Average Daily Balances

Note: Figures show the coefficients on consumer account × month interactions from a difference-in-differences regression (Equation 2 in the main text). The dependent variables are interest charges as an annualized percentage of ADB (Panel A), credit limits (Panel B), new accounts measured as a percentage of average total pre-CARD Act number of accounts (Panel C), and average daily balances (Panel D). All panels focus on account holders with a FICO score of at least 660 at account origination. We normalize the coefficient on the month when the bill was signed to the pre-CARD Act consumer account mean. We include fixed effects for consumer account, month, and bank × FICO score group. The sample period is April 2008 to December 2011. Vertical lines are plotted in May 2009, February 2010, and August 2010, the date when the bill was signed and the two key implementation dates of the CARD Act, respectively. Standard errors are clustered at the bank × product type level, with capped bars showing 95% confidence intervals.
<table>
<thead>
<tr>
<th>Quarter</th>
<th>Banks</th>
<th>Consumer</th>
<th>Small Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>8</td>
<td>146,791,168</td>
<td>7,422,173</td>
</tr>
<tr>
<td>Q3</td>
<td>8</td>
<td>149,206,816</td>
<td>7,520,410</td>
</tr>
<tr>
<td>Q4</td>
<td>8</td>
<td>150,897,312</td>
<td>7,509,002</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>8</td>
<td>156,140,112</td>
<td>7,441,551</td>
</tr>
<tr>
<td>Q2</td>
<td>8</td>
<td>153,784,576</td>
<td>7,398,919</td>
</tr>
<tr>
<td>Q3</td>
<td>8</td>
<td>151,710,160</td>
<td>7,248,530</td>
</tr>
<tr>
<td>Q4</td>
<td>8</td>
<td>150,692,000</td>
<td>7,037,414</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>8</td>
<td>148,839,584</td>
<td>6,945,099</td>
</tr>
<tr>
<td>Q2</td>
<td>8</td>
<td>148,081,888</td>
<td>6,874,883</td>
</tr>
<tr>
<td>Q3</td>
<td>8</td>
<td>147,366,704</td>
<td>6,586,668</td>
</tr>
<tr>
<td>Q4</td>
<td>8</td>
<td>145,080,128</td>
<td>6,432,164</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>8</td>
<td>145,119,552</td>
<td>6,382,301</td>
</tr>
<tr>
<td>Q2</td>
<td>8</td>
<td>145,631,632</td>
<td>6,366,402</td>
</tr>
<tr>
<td>Q3</td>
<td>8</td>
<td>147,312,352</td>
<td>6,499,508</td>
</tr>
<tr>
<td>Q4</td>
<td>8</td>
<td>137,829,936</td>
<td>6,573,073</td>
</tr>
</tbody>
</table>

Note: Table shows the number of consumer and small business accounts by quarter for the sample period, defined as Q2 2008 to Q4 2011.
Table A.II: Interest Charges for New and High FICO Score Accounts: Difference-in-Differences Regressions

<table>
<thead>
<tr>
<th></th>
<th>FICO < 660</th>
<th></th>
<th>FICO ≥ 660</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Accounts</td>
<td>New Accounts</td>
<td>All Accounts</td>
<td>New Accounts</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Consumer X Anticipation</td>
<td>0.25</td>
<td>0.29</td>
<td>-2.83</td>
<td>-1.25</td>
</tr>
<tr>
<td></td>
<td>(1.40)</td>
<td>(1.40)</td>
<td>(2.03)</td>
<td>(1.40)</td>
</tr>
<tr>
<td></td>
<td>[0.86]</td>
<td>[0.84]</td>
<td>[0.17]</td>
<td>[0.38]</td>
</tr>
<tr>
<td>Consumer X Phase 2</td>
<td>0.22</td>
<td>0.17</td>
<td>-4.50*</td>
<td>-3.19**</td>
</tr>
<tr>
<td></td>
<td>(2.31)</td>
<td>(2.26)</td>
<td>(2.22)</td>
<td>(1.13)</td>
</tr>
<tr>
<td></td>
<td>[0.92]</td>
<td>[0.94]</td>
<td>[0.05]</td>
<td>[0.01]</td>
</tr>
<tr>
<td>Consumer X Phase 3</td>
<td>-0.34</td>
<td>-0.48</td>
<td>1.25</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>(2.03)</td>
<td>(1.89)</td>
<td>(3.10)</td>
<td>(1.75)</td>
</tr>
<tr>
<td></td>
<td>[0.87]</td>
<td>[0.80]</td>
<td>[0.69]</td>
<td>[0.92]</td>
</tr>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Effects</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Additional Covariates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank FE X FICO Score Group FE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pre-CARD Act, Consumer Mean</td>
<td>19.14</td>
<td>19.14</td>
<td>7.69</td>
<td>7.69</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.06</td>
<td>0.83</td>
<td>0.05</td>
<td>0.71</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>3,447</td>
<td>3,447</td>
<td>3,447</td>
<td>3,447</td>
</tr>
</tbody>
</table>

Note: Table shows coefficients from difference-in-differences regressions that compare interest charges as an annualized percentage of ADB for consumer credit cards (treatment group) and small business cards (control group) during the different phases of the CARD Act implementation. We define new accounts as accounts in their first full month after account origination. We define the Anticipation period as the months between the passage of the bill in May 2009 and the implementation of Phase 2 in February 2010. We define Phase 2 as March 2010 to August 2010 and Phase 3 as the months after August 2010. The period prior to May 2009 is the omitted group, so the coefficients can be interpreted as the differential effect relative to outcomes prior to the passage of the CARD Act. The sample period is April 2008 to December 2011. The regressions are estimated on data aggregated to the bank \times product type \times FICO score group \times month level, and weighted by total ADB in each group. A product type is defined as the interaction of the consumer card indicator and whether the card is co-branded, oil and gas, affinity, student, or “other.” FICO score groups are <620, 620-659, 660-719, 720-759, 760-799, and ≥800. Standard errors clustered by bank \times product type are shown in parentheses and the associated p-values are shown in brackets. There are 46 such clusters in columns 1 to 4 and 47 clusters in columns 5 to 8. Significance levels: * (p<0.10), ** (p<0.05), *** (p<0.01).