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AEA Lectures Chicago, January 2012
Lecture 2, Monday, January 9, 8:30 am-10:00 am

Linear Panel Data Models

These notes cover some recent topics in linear panel data models. They begin with a
“modern” treatment of the basic linear model, and then consider some embellishments, such as
random slopes and time-varying factor loads. In addition, fully robust tests for correlated
random effects, lack of strict exogeneity, and contemporaneous endogeneity are presented.
Section 4 discusses methods for estimating dynamic panel data models without strictly
exogenous regressors. Recent methods for estimating production functions using firm-level
panel data are summarized in Section 5, and Section 6 provides a unified treatment of

estimation with pseudo-panel data.

1. Overview of the Basic Model
Most of these notes are concerned with an unobserved effects model defined for a large
population. Therefore, we assume random sampling in the cross section dimension. Unless
stated otherwise, the asymptotic results are for a fixed number of time periods, T, with the
number of cross section observations, N, getting large.
For some of what we do, it is critical to distinguish the underlying population model of
interest and the sampling scheme that generates data that we can use to estimate the population

parameters. The standard model can be written, for a generic i in the population, as
Yit = e+ X +Ci+ Ui, t=1,...,T, (1.1)

where 1 is a separate time period intercept (almost always a good idea), Xi: is a 1 x K vector of
explanatory variables, c; is the time-constant unobserved effect, and the {u;; : t = 1,...,T} are

idiosyncratic errors. Thanks to Mundlak (1978) and Chamberlain (1982), we now know that, in
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the small T case, viewing the c; as random draws along with the observed variables is the
appropriate posture. Then, one of the key issues is whether c; is correlated with elements of X;;.
It probably makes more sense to drop the i subscript in (1.1), which would emphasize that
the equation holds for an entire population. But (1.1) is useful to emphasizing which factors
change only across t, which change only change across i, and which change across i and t. It is
sometimes convenient to subsume the time dummies in Xit.
Ruling out correlation (for now) between uj; and Xit, a sensible assumption is
contemporaneous exogeneity conditional on ¢; :
E(uixi,ci) =0,t=1,...,T. (1.2)
This equation really defines B in the sense that, under (1.1) and (1.2),
E(yitlXit, Ci) = 1t + XitP + Ci, (1.3)
so the p; are partial effects holding fixed the unobserved heterogeneity (and covariates other
than xy).
As is now well known, B is not identified only under (1.3). Of course, if we add
Cov(xit,ci) = 0 for any t, then B is identified and can be consistently estimated by a cross
section regression using a single time period t, or by pooling across t. But usually the whole
point in having panel data is to allow the unobserved effect to be correlated with time-varying
Xit.
We can allow general correlation between c¢; and X; = (Xi1, Xi2, ..., Xjr) if we add the

assumption of strict exogeneity conditional on c;:
E(uitlxila Xi2! e !XiTl Cl) = 0! t = l! e !Tl (1'4)

which can be expressed as
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E(yitXit, ..., XiT,Ci) = E(Yit|Xit, Ci) = 1t + XitP + Ci. (1.5)
If the elements of {x;; : t = 1,..., T} have suitable time variation, B can be consistently
estimated by fixed effects (FE) or first differencing (FD), or generalized least squares (GLS) or
generalized method of moments (GMM) versions of them. The fixed effects, or within

estimator, is the pooled OLS estimator in the equation
Vit = it + X + Uie, t = 1,...,T,
where Vit = yit — T* ZLl yir is the deviation of y;; from the time average, i and similarly for
Xit. Consistency of pooled OLS (for fixed T and N — oo) essentially requires rests on
ZIT:l E(Xi:lit) = ZIT:l E(Xjuit) = 0, which means the error uj; should be uncorrelated with X
for all r and t. The FD estimator is pooled OLS on
Ayit = Ot + AXitf + AU, t = 2,..., T,

where §; = n — nv1. Sufficient for consistency is E(AXj;Auit) = 0. See Wooldridge (2010,
Chapter 10) for further discussion.

If FE or FD are used, standard inference can and should be made fully robust to
heteroskedasticity and serial dependence that could depend on the regressors (or not). These
are the now well-known “cluster” standard errors (which we discuss in detail in the notes on
cluster sampling). With large N and small T, there is little excuse not to compute them. Even if
GLS is used with an unrestricted variance matrix for the T — 1 vector Au; (in the FD case) or
the T — 1 vector U; (where we drop one time period), the system homoskedasticity assumption,
for example, in the FE case, E(U;0j|%;) = E(0;u;), need not hold, and so a case can be made
for robust inference.

(As an aside, some call (1.4) or (1.5) “strong” exogeneity. But in the Engle, Hendry, and
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Richard (1983) work, strong exogeneity incorporates assumptions on parameters in different
conditional distributions being variation free, and that is not needed here.)

The strict exogeneity assumption is always violated if x;; contains lagged dependent
variables, but it can be violated in other cases where X; 1 is correlated with uj; — a “feedback
effect.” An assumption more natural than strict exogeneity is sequential exogeneity condition
on ci:

E(uitXi1, Xi2, ..., Xit,Ci) = 0, t =1,...,T

or

E(yitXi1, ..., Xit, Ci) = E(Yit[Xit,Ci) = nt + XitP + Ci.
This allows for lagged dependent variables (in which case it implies that the dynamics in the
mean have been completely specified) and, generally, is more natural when we take the view
that {x;;} might react to shocks that affect yi.. Generally, B is identified under sequential
exogeneity. First differencing and using lags of x;; as instruments, or forward filtering, can be
used in simple 1V procedures or GMM procedures. (More later.)

If we are willing to assume c; and x; are uncorrelated, then many more possibilities arise
(including, of course, identifying coefficients on time-constant explanatory variables). The

most convenient way of stating the random effects (RE) assumption is

E(cilxi) = E(ci),
although using the linear projection in place of E(ci|x;) suffices for consistency (but usual
inference would not generally be valid). Under (1.8), we can used pooled OLS or any GLS

procedure, including the usual RE estimator. Fully robust inference is available and should

generally be used. (Note: The usual RE variance matrix, which depends only on ¢ and o3,

(1.6)

(1.7)

(1.8)
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need not be correctly specified! It still makes sense to use it in estimation but make inference
robust.)

It is useful to define two correlated random effects assumptions:
L(cilXi) = v + Xi&, (1.9)
which actually is not an assumption but a definition. For nonlinear models, we will have to
actually make assumptions about D(cj|Xi), the conditional distribution. Methods based on (1.9)

are often said to implement the Chamberlain device, after Chamberlain (1982).

Mundlak (1978) used a restricted version, and used a conditional expectation:
E(cilxi) = v + Xi§, (1.10)
where Xj = T Zthl Xit. This formulation conserves on degrees of freedom, and extensions are
useful for nonlinear models.
If we write ¢i = v + Xi§ + aj or ¢; = v + X; + a; and plug into the original equation, for
example
Yit = N + Xit + X;§ + @i + Uit (1.11)
(absorbing v into the time intercepts), then we are tempted to use pooled OLS, or RE
estimation because E(ai + uit|x;) = 0. Either of these leads to the FE estimator of B, and to a
simple test of Ho : & = 0. Later, when we discuss control function methods, it will be handy to
run regressions directly that include the time averages. (Somewhat surprisingly, we obtain the
same algebraic equivalence using Chamberlain’s more flexible devise. That is, if we apply
pooled OLS to the equation yit = n¢ + XitP + X, &, +...+Xit&; + &i + Uit, the estimate of B is
still the FE estimator, even though the &, might change substantially across t. Of course, this

estimator is not generally efficient, and Chamberlain shows how to obtain the efficient
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minimum distance estimator. See also Wooldridge (2010, Chapter 11).)

Some of us have been pushing for several years the notion that specification tests should be
made robust to assumptions that are not directly being tested. That is, if a test has no
asymptotic power for detecting violation of certain assumptions, the test should be modified to
have proper asymptotic size if those assumptions are violated. Much progress has been made in
the theoretical literature, but one still sees routine use of Hausman (1978) statistics that
maintain a full set of assumptions under the null hypothesis. (Ironically, this often happens in
studies where traditional inference about parameters is made fully robust.) Take a leading case,
comparing random effects to fixed effects. Once we maintain (1.4), which is used by FE and
RE, the key assumption is (1.8), that is, we are interested in finding evidence of whether c; is
correlated with x;. Of course, the FE estimator is consistent (for the coefficients on
time-varying covariates) whether or not c; is correlated with x;. And, of course, we need make
no assumptions about Var(ui|xi, ¢i) for consistency of FE. Further, RE is consistent under
(1.8), whether or not Var(vi|x;) has the random effects structure, where vi; = ¢; + Ujt. (In
addition to (1.4) and (1.8), sufficient are Var(ui|xi,ci) = o4l and Var(ci|x;) = Var(c;).) In
fact, we might be perfectly happy using RE under (1.8) even though it might not be the
asymptotically efficient estimator. Therefore, for testing the key assumption (1.8), we should
not add the auxiliary assumptions that imply RE is asymptotically efficient. Moreover, as
should be clear from the structure of the statistic (and can be shown formally), the usual form
of the Hausman statistic has no systematic power for detecting violations of the second
moment assumptions on Var(vi|x;). In particular, if (1.4) and (1.8) hold, the usual statistic
converges in distribution to some random variable (not chi-square in general), regardless of the

structure of Var(vi|xi).
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To summarize, it makes no sense to report fully robust variance matrices for FE and RE but
then to compute a Hausman test that maintains the full set of RE assumptions. The
regression-based Hausman test from (1.11) is very handy for obtaining a fully robust test, as
well as for using the proper degrees of freedom in the limiting distribution. Specifically,
suppose the model contains a full set of year intercepts as well as time-constant and

time-varying explanatory variables:
Vit = gM+Ziy +Wid +Ci + Ui, t = 1,...,T.

Now, it is clear that, because we cannot estimate y by FE, it is not part of the Hausman test
comparing the RE and FE estimates. What is less clear, but also true, is that the coefficients on
the aggregate time variables, i, cannot be included, either. (RE and FE estimation only with
variables that change across t are identical.) In fact, we can only compare the M x 1 estimates
of 8, say §re and Sge. If we include fj . and i We introduce a nonsingularity in the

asymptotic variance matrix. The regression based test, from the pooled regression
Yit ON gy, Zi, Wi, Wi, t =1,...,T; i =1,...,N,

makes this clear (and also makes it clear that the are only M restrictions to test). Mundlak
(1978) suggested this test and Arellano (1993) described the robust version.. Unfortunately, the
usual form of the Hausman test does not make it easy to obtain a nonnegative test statistic, and
it is easy to get confused about the appropriate degrees of freedom in the chi-square
distribution. For example, the “Hausman” command in Stata includes year dummies in the
comparison between RE and FE; in addition, the test maintains the full set of RE assumptions
under the null. The most important problem is that unwarranted degrees of freedom are added

to the chi-square distribution, often many extra df, which can produce seriously misleading
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p-values.

2. New Insights Into Old Estimators
In the past several years, the properties of traditional estimators used for linear models,
particularly fixed effects and its instrumental variable counterparts, have been studied under
weaker assumptions. We review some of those results here. In these notes, we focus on models
without lagged dependent variables or other non-strictly exogenous explanatory variables,
although the instrumental variables methods applied to linear models can, in some cases, be

applied to models with lagged dependent variables.

2.1. Fixed Effects Estimation in the Correlated Random Slopes Model

The fixed effects (FE) estimator is still the workhorse in empirical studies that employ
panel data methods to estimate the effects of time-varying explanatory variables. The
attractiveness of the FE estimator is that it allows arbitrary correlation between the additive,
unobserved heterogeneity and the explanatory variables. (Pooled methods that do not remove
time averages, as well as the random effects (RE) estimator, essentially assume that the
unobserved heterogeneity is uncorrelated with the covariates.) Nevertheless, the framework in
which the FE estimator is typically analyzed is somewhat restrictive: the heterogeneity is
assumed to be additive and is assumed to have a constant coefficients (factor loads) over time.
Recently, Wooldridge (2005) has shown that the FE estimator, and extensions that sweep away
unit-specific trends, has robustness properties for estimating the population average effect
(PAE) or average partial effect (APE).

We begin with an extension of the usual model to allow for unit-specific slopes,
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Vit = Ci + Xitbi + Uit (2.1)
E(U|I|X|,C|,b|) = O!t = 11---1T1 (2'2)

where bj is K x 1. Rather than acknowledge that b; is unit-specific, we ignore the
heterogeneity in the slopes and act as if b; is constant for all i. We think ¢; might be correlated
with at least some elements of X;;, and therefore we apply the usual fixed effects estimator. The
question we address here is: when does the usual FE estimator consistently estimate the
population average effect, p = E(bj).

In addition to assumption (2.2), we naturally need the usual FE rank condition,
T
rank Y E(Xi%i) = K. (2.3)
t=1

Write b; = B + d; where the unit-specific deviation from the average, d;, necessarily has a zero

mean. Then
Yit = Ci + Xitp + Xitdi + Uit = Ci + XitP + Vit (2.4)
where vt = X;id; + Uj;. A sufficient condition for consistency of the FE estimator along with
(2.2)is
E(XVi) = 0,t =1,...,T. (2.5)
Along with (2.2), it suffices that E(Xj;%itd;i) = 0 for all t. A sufficient condition, and one that is
easier to interpret, is
E(bil%i) = E(bi) =B, t=1,....T. (2.6)

Importantly, condition (2.6) allows the slopes, bj, to be correlated with the regressors Xit
through permanent components. What it rules out is correlation between idiosyncratic

movements in X;.. We can formalize this statement by writing Xjt = f; + ri,t = 1,...,T. Then
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(2.6) holds if E(bi|ri1, riz2,...,rit) = E(bi). So b; is allowed to be arbitrarily correlated with the
permanent component, f;. (Of course, xit = f; + rit is a special representation of the covariates,
but it helps to illustrate condition (2.6).) Condition (2.6) is similar in spirit to the Mundlak
(1978) assumption applied to the slopes (rather to the intercept):

E(bi|Xi1, Xi2,...,Xit) = E(bi|Xi)

One implication of these results is that it is a good idea to use a fully robust variance matrix
estimator with FE even if one thinks idiosyncratic errors are serially uncorrelated: the term
Xitd; is left in the error term and causes heteroskedasticity and serial correlation, in general.

These results extend to a more general class of estimators that includes the usual fixed

effects and random trend estimator. Write
Vit = Wiai + Xithbi + Ui, t=1,...,T (2.7)

where w; is a set of deterministic functions of time. We maintain the standard assumption (2.2)
but with a; in place of c;. Now, the “fixed effects” estimator sweeps away a; by netting out w;
from X;t. In particular, now let X;; denote the residuals from the regression X;: on
wy,t=1,...,T.

In the random trend model, w; = (1,t), and so the elements of x;; have unit-specific linear
trends removed in addition to a level effect. Removing even more of the heterogeneity from
{xity makes it even more likely that (2.6) holds. For example, if Xj; = f; + hit + rj;, then b; can
be arbitrarily correlated with (f;, h;). Of course, individually detrending the x;: requires at least
three time periods, and it decreases the variation in X compared to the usual FE estimator. Not
surprisingly, increasing the dimension of w; (subject to the restriction dim(w;) < T), generally
leads to less precision of the estimator. See Wooldridge (2005) for further discussion.

Of course, the first differencing transformation can be used in place of, or in conjunction

10
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with, unit-specific detrending. For example, if we first difference followed by the within
transformation, it is easily seen that a condition sufficient for consistency of the resulting

estimator for B is
E(bilAXit) = E(bj), t=2,...,T, (2,8)
where AXir = AXit — AX are the demeaned first differences.

Now consider an important special case of the previous setup, where the regressors that

have unit-specific coefficients are time dummies. We can write the model as
Vit = XitB-l-ntCi +ui,t=1,...,T, (29)

where, with small T and large N, it makes sense to treat {n; : t = 1,...,T} as parameters, like
B. Model (2.9) is attractive because it allows, say, the return to unobserved “talent” to change
over time. Those who estimate, say, firm-level production functions like to allow the
importance of unobserved factors, such as managerial skill, to change over time. Estimation of
B, along with the 7, is a nonlinear problem. What if we just estimate B by fixed effects? Let

we = E(ci) and write (2.9) as
Yit = @t + Xitf + ndi + Ui, t = 1,..., T, (2.10)
where a: = niuc and di = ¢i — uc has zero mean In addition, the composite error,
Vit = n:di + Ujt, is uncorrelated with (Xi1, X2, ..., Xir) (as well as having a zero mean). It is easy
to see that consistency of the usual FE estimator, which allows for different time period
intercepts, is ensured if
Cov(Xi,ci) =0,t=1,...,T. (2.11)

In other words, the unobserved effects is uncorrelated with the deviations Xit = Xit — Xi.

If we use the extended FE estimators for random trend models, as above, then we can

11
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replace X;: with detrended covariates. Then, ¢; can be correlated with underlying levels and
trends in X;; (provided we have a sufficient number of time periods).

Using usual FE (with full time period dummies) does not allow us to estimate the n:, or
even determine whether the n; change over time. Even if we are interested only in B when c;
and x;; are allowed to be correlated, being able to detect time-varying factor loads is important
because (2.11) is not completely general. It is useful to have a simple test of
Ho : 2 = n3 =...= nt with some power against the alternative of time-varying coefficients.
Then, we can determine whether a more sophisticated estimation method might be needed.

We can obtain a simple variable addition test that can be computed using linear estimation
methods if we specify a particular relationship between c; and x;. We use the Mundlak (1978)

assumption
Ci =y +X&+a;. (2.12)
Then
Yit = My + XieP + meXi& +miai + Uie = o + XieP + X,.E + ALK& + ai + A + Ui, (2.13)
where At = ny — 1 for all t. Under the null hypothesis, A: = 0,t = 2,..., T. If we impose the
null hypothesis, the resulting model is linear, and we can estimate it by pooled OLS of y;; on

1,d24,...,dTy, Xit, X; across t and i, where the dr; are time dummies. A variable addition test

that all A are zero can be obtained by applying FE to the equation
Vit = a1 + a202¢ +...+a1dTy + XitP + 1202¢(%i€) +. .. +A1dT (X&) + errory, (2.14)

and test the joint significance of the T — 1 terms d2¢(Xi€), ..., dT:«(Xi&). (The term ;€ would
drop out of an FE estimation, and so we just omit it.) Note that >‘<i& is a scalar and so the test as

T — 1 degrees of freedom. As always, it is prudent to use a fully robust test (even though, under

12
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the null, A:a; disappears from the error term).

A few comments about this test are in order. First, although we used the Mundlak device to
obtain the test, it does not have to represent the actual linear projection because we are simply
adding terms to an FE estimation. Under the null, we do not need to restrict the relationship
between c; and x;. Of course, the power of the test may be affected by this choice. Second, the
test only makes sense if & = 0; in particular, it cannot be used in a pure random effects
environment. Third, a rejection of the null does not necessarily mean that the usual FE
estimator is inconsistent for B: assumption (11) could still hold. In fact, the change in the
estimate of B when the interaction terms are added can be indicative of whether accounting for
time-varying n. is likely to be important. But, because ?, has been estimated under the null, the
estimated B from (1.14) is not generally consistent.

If we want to estimate the n. along with B, we can impose the Mundlak assumption and
estimate all parameters, including &, by pooled nonlinear regression or some GMM version.
Or, we can use Chamberlain’s (1982) less restrictive assumption. But, typically, when we want
to allow arbitrary correlation between c¢; and x;, we work directly from (2.9) and eliminate the
ci. There are several ways to do this. If we maintain that all n; are different from zero then we
can use a quasi-differencing method to eliminate c;. In particular, for t > 2 we can multiply the

t — 1 equation by n«/n«1 and subtract the result from the time t equation:

Yit — (Md/Mea)Yie1 = [Xit—(nt/nt—l)xi,t—l]ﬁ + [iCi — (M/Me-1)NeaCi] + [Uie — (Me/M=1)Uir1]
= [Xit—=(e/Me-1)Xit-1]B + [Uit — (Me/Me-t)Uia], t > 2.

We define 0y = ndn:1 and write
Vit — O0tyit1 = (Xit = OXi1)B+eir, t=2,...,T, (2.15)

where ejr = Ui — 0:Ui 1. Under the strict exogeneity assumption, ej; is uncorrelated with every

13
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element of x;, and so we can apply GMM to (2.15) to estimate g and (02, ...,07). Again, this
requires using nonlinear GMM methods, and the ej; would typically be serially correlated. If
we do not impose restrictions on the second moment matrix of u;, then we would not use any
information on the second moments of e;; we would (eventually) use an unrestricted weighting
matrix after an initial estimation.

Using all of x; in each time period can result in too many overidentifying restrictions. At
time t we might use, say, zit = (Xit, Xit1), and then the instrument matrix Z; (with T — 1 rows)
would be diag(zi,, ..., zir). An initial consistent estimator can be gotten by choosing weighting
matrix (N2 Z:il ZiZi)™. Then the optimal weighting matrix can be estimated. Ahn, Lee, and
Schmidt (2001) provide further discussion.

If Xi; contains sequentially but not strictly exogenous explanatory variables — such as a
lagged dependent variable — the instruments at time t can only be chosen from (Xit1,...,Xi1).
Holtz-Eakin, Newey, and Rosen (1988) explicitly consider models with lagged dependent
variables; more on these models later.

Other transformations can be used. For example, at time t > 2 we can use the equation

NeaYit — NtYit1 = (MeaXie — NeXie1)B+ €, t=2,...,T,
where now ej; = ne1Uit — NtUi1. This equation has the advantage of allowing n: = 0 for some
t. The same choices of instruments are available depending on whether {x;} are strictly or

sequentially exogenous.

2.2. Fixed Effects IV Estimation with Random Slopes

The results for the fixed effects estimator (in the generalized sense of removing

14
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unit-specific means and possibly trends), extend to fixed effects IV methods, provided we add
a constant conditional covariance assumption. Murtazashvili and Wooldridge (2007) derive a
simple set of sufficient conditions. In the model with general trends, we assume the natural
extension of Assumption FEIV.1, that is, E(uitzi,ai,bi) = 0 for all t, along with Assumption
FEIV.2. We modify assumption (2.6) in the obvious way: replace Xi: with Zj;, the

individual-specific detrended instruments:
E(bilZi) = E(bi) =B, t=1,...,T (2.16)

But something more is needed. Murtazashvili and Wooldridge (2007) show that, along with the

previous assumptions, a sufficient condition is
Cov(%it, bilZi) = Cov(Xit,bi),t = 1,...,T. (2.17)

Note that the covariance Cov(Xi;, bi), a K x K matrix, need not be zero, or even constant across
time. In other words, we can allow the detrended covariates to be arbitrarily correlated with the
heterogeneous slopes, and that correlation can change in any way across time. But the
conditional covariance cannot depend on the time-demeaned instruments. (This is an example
of how it is important to distinguish between a conditional expectation and an unconditional
one: the implicit error in the equation generally has an unconditional mean that changes with t,
but its conditional mean does not depend on Zi;, and so using Z;; as IVs is valid provided we
allow for a full set of dummies.) Condition (2.17) extends to the panel data case the
assumption used by Wooldridge (2003) in the cross section case.

We can easily show why (2.17) suffices with the previous assumptions. First, if
E(di|Zzit) = 0 —which follows from E(bi|Zit) = E(b;) —then Cov(Xi, di|Zit) = E(Xidi|Zit), and

so E(Xidi|Zit) = E(Xitdi) = y« under the previous assumptions. Write X;:di = y + rit Where

15



Imbens/Wooldridge, AEA Lecture Notes 2, January *12

E(riilZzii) = 0,t = 1,...,T. Then we can write the transformed equation as

Vit = XitP + X di + Uie = Vit = Xt + e + it + Ui, (2.18)
Now, if xj; contains a full set of time period dummies, then we can absorb . into Xi;, and we
assume that here. Then the sufficient condition for consistency of IV estimators applied to the
transformed equations is E[Z;,(rit + Uit)] = 0,.and this condition is met under the maintained
assumptions. In other words, under (2.16) and (2.17), the fixed effects 2SLS estimator is
consistent for the average population effect, . (Remember, we use “fixed effects” here in the
general sense of eliminating the unit-specific trends, a;.) We must remember to include a full
set of time period dummies if we want to apply this robustness result, something that should be
done in any case. Naturally, we can also use GMM to obtain a more efficient estimator. If b;
truly depends on i, then the composite error ri; + Ui is likely serially correlated and
heteroskedastic. See Murtazashvili and Wooldridge (2007) for further discussion and
simulation results on the performance of the FE2SLS estimator. They also provide examples
where the key assumptions cannot be expected to hold, such as when endogenous elements of

Xit are discrete.

3. Behavior of Estimators without Strict Exogeneity
As is well known, both the FE and FD estimators are inconsistent (with fixed T, N - o0)
without the conditional strict exogeneity assumption. But it is also pretty well known that, at
least under certain assumptions, the FE estimator can be expected to have less “bias” (actually,
inconsistency) for larger T. One assumption is contemporaneous exogeneity, (1.2). If we

maintain this assumption, assume that the data series {(Xit,Uit) : t = 1,..., T} is “weakly

16
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dependent” — in time series parlance, integrated of order zero, or 1(0) — then we can show that

plim B = B+ O(T) (3.1)
plim B, = B+ O(1). (3.2)

In some special cases — the AR(1) model without extra covariates — the “bias” terms can be
calculated. But not generally. The FE (within) estimator averages across T, and this tends to
reduce the bias.

Interestingly, the same results can be shown if {x;; : t = 1,...,T} has unit roots as long as
{uit} is 1(0) and contemporaneous exogeneity holds. But there is a catch: if {ui} is (1) — so
that the time series version of the “model” would be a spurious regression (yi: and X;: are not
cointegrated), then (3.1) is no longer true. And, of course, the first differencing means any unit
roots are eliminated. So, once we start appealing to “large T” to prefer FE over FD, we must
start being aware of the time series properties of the series.

The same comments hold for IV versions of the estimators. Provided the instruments are
contemporaneously exogenous, the FEIV estimator has bias of order T-1, while the bias in the
FDIV estimator does not shrink with T. The same caveats about applications to unit root
processes also apply.

Because failure of strict exogeneity causes inconsistency in both FE and FD estimation, it
is useful to have simple tests. One possibility is to obtain a Hausman test directly comparing
the FE and FD estimators. This is a bit cumbersome because, when aggregate time effects are
included, the difference in the estimators has a singular asymptotic variance. Plus, it is
somewhat difficult to make the test fully robust.

Instead, simple regression-based strategies are available. Let wj; be the 1 x Q vector, a

subset of x;; suspected of failing strict exogeneity. A simple test of strict exogeneity,
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specifically looking for feedback problems, is based on

Yit = Nt + Xitp + Wi10+Ci +eir, t=1,..., T -1

Estimate the equation by fixed effects and test Ho : 8 = 0 (using a fully robust test). Of course,

the test may have little power for detecting contemporaneous endogeneity.
In the context of FEIV we can test whether a subset of instruments fails strict exogeneity
by writing
Yit = e+ Xiefp + hizad+Ci+eir, t =1,...,T—1,

where hj; is a subset of the instruments, zi.. Now, estimate the equation by FEIV using
instruments (z;,, hit.1) and test coefficients on the latter.
It is also easy to test for contemporaneous endogeneity of certain regressors, even if we

allow some regressors to be endogenous under the null. Write the model now as
Yitn = Zind1 + Yjp®1 + YiY, + Cir + Uin,

where, in an FE environment, we want to test Ho : E(yjsUin) = 0. Actually, because we are
using the within transformation, we are really testing strict exogeneity of y;.,, but we allow all
variables to be correlated with ci;. The variables y;,, are allowed to be endogenous under the
null — provided, of course, that we have sufficient instruments excluded from the structural
equation that are uncorrelated with ujy in every time period. We can write a set of reduced

forms for elements of y,;; as
Yiz = Zitllz + Ciz + Vi,

and obtain the FE residuals, Vig = ;5 — 24I13, where the columns of ITs are the FE estimates

of the reduced forms, and the double dots denotes time-demeaning, as usual. Then, estimate
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the equation
Yin = Zind1 + yitzal + yitS’Yl + 1\7it3P1 + €rroriu (3.7)

by pooled 1V, using instruments (Zit, V.5, Vitz). The test of the null that y,, is exogenous is just
the (robust) test that p, = 0, and the usual robust test is valid without adjusting for the
first-step estimation.

An equivalent approach is to define ¥i = V., — zilIs, where IT5 is still the matrix of FE
coefficients, add these to equation (3.5), and apply FE-1V, using a fully robust test. Using a
built-in command can lead to problems because the test is rarely made robust and the degrees

of freedom are often incorrectly counted.

4. Instrumental Variables Estimation under Sequential Exogeneity

We now consider IV estimation of the model
Yit = Xitp +Ci + Ui, t =1,...,T, (4.1)
under sequential exogeneity assumptions. Some authors simply use
E(xjsui) =0,s =1,...,t,t =1,...,T. 4.2)

As always, Xit probably includes a full set of time period dummies. This leads to simple

moment conditions after first differencing:
E(Xj;Auig) =0,s=1,...,t-1;t=2,...,T. (4.3)
Therefore, at time t, the available instruments in the FD equation are in the vector x{; ;, where
Xf = (Xit, Xi2, . .., Xit). (4.4)

Therefore, the matrix of instruments is simply
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Wi = diag(Xf, X%, ..., XP1_1), (4.5)

which has T — 1 rows. Because of sequential exogeneity, the number of valid instruments
increases with t.

Given W, it is routine to apply GMM estimation. But some simpler strategies are available
that can be used for comparison or as the first-stage estimator in computing the optimal

weighting matrix. One useful one is to estimate a reduced form for Ax;: separately for each t.

So, at time t, run the regression Ax;; on X, 4, 1 = 1,...,N, and obtain the fitted values, @it. Oof
course, the fitted values are all 1 x K vectors for each t, even though the number of available

instruments grows with t. Then, estimate the FD equation
Ayit = AXitB+AUit, t= 2,...,T (46)

by pooled IV using instruments (not regressors) @it. It is simple to obtain robust standard
errors and test statistics from such a procedure because the first stage estimation to obtain the
instruments can be ignored (asymptotically, of course).

One potential problem with estimating the FD equation by Vs that are simply lags of X is
that changes in variables over time are often difficult to predict. In other words, Ax;; might
have little correlation with x?;_;, in which case we face a problem of weak instruments. In one
case, we even lose identification: if Xjt = At + Xir1 + it where E(€it|Xit1,...,Xi1) = 0 —that is,
the elements of x;; are random walks with drift — then E(AXit|Xit-1,...,Xi1) = 0, and the rank
condition for 1V estimation fails.

If we impose what is generally a stronger assumption, dynamic completeness in the

conditional mean,

E(uitXit, Yit1Xit1,...,Yi1, Xi1,Ci) =0, t=1,...,T, 4.7)
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then more moment conditions are available. While (4.7) implies that virtually any nonlinear
function of the x;; can be used as instruments, the focus has been only on zero covariance
assumptions (or (4.7) is stated as a linear projection). The key is that (4.7) implies that
{uit : t=1,...,T} is a serially uncorrelated sequence and uj; is uncorrelated with c; for all t. If
we use these facts, we obtain moment conditions first proposed by Ahn and Schmidt (1995) in
the context of the AR(1) unobserved effects model; see also Arellano and Honoré (2001). They
can be written generally as

E[(AYir1 — AXie1B) (Vi —xiB)] =0,t=3,...,T. (4.8)
Why do these hold? Because all uj; are uncorrelated with c;, and {Ui1,...,Uj1} are
uncorrelated with ¢; + Uit. SO (Uit-1 — Uir2) iS uncorrelated with (ci + uit), and the resulting
moment conditions can be written in terms of the parameters as (4.8). Therefore, under (4.7),
we can add the conditions (4.8) to (4.3) to improve efficiency — in some cases quite
substantially with persistent data.

Of course, we do not always intend for models to be dynamically complete in the sense of
(4.7). Often, we estimate static models or finite distributed lag models — that is, models without
lagged dependent variables — that have serially correlated idiosyncratic errors, and the
explanatory variables are not strictly exogenous and so GLS procedures are inconsistent. Plus,
the conditions in (4.8) are nonlinear in parameters.

Arellano and Bover (1995) suggested instead the restrictions
Cov(AXj,ci) =0, t=2,...,T. (4.9)

Interestingly, this is the zero correlation, FD version of the conditions from Section 2 that

imply we can ignore heterogeneous coefficients in estimation under strict exogeneity. Under
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(4.9), we have the moment conditions from the levels equation:
E[AXi (Vi —a—XiB)] =0,t=2,...,T, (4.10)

because yit — Xitp = Cj + Uit and uj is uncorrelated with x;; and X; 1. We add an intercept, «,
explicitly to the equation to allow a nonzero mean for c;. Blundell and Bond (1999) apply
these moment conditions, along with the usual conditions in (4.3), to estimate firm-level
production functions. Because of persistence in the data, they find the moments in (4.3) are not
especially informative for estimating the parameters. Of course, (4.9) is an extra set of
assumptions.

The previous discussion can be applied to the AR(1) model, which has received much

attention. In its simplest form we have
it = pYir1 +Ci+ Ui, t =1,...,T, (4.11)

so that, by convention, our first observation ony is att = 0. Typically the minimal assumptions

imposed are
E(yisuit) =0,s=0,...,t—-1,t=1,...,T, (4.12)
in which case the available instruments at time t are wit = (Yio, ..., Yit2) in the FD equation
AYit = pAYir1 + Aui, t = 2,...,T. (4.13)
In other words, we can use
Elyis(Ayit — pAYit-1) =0,s=0,...,t-2, t=2,...,T. (4.14)

Anderson and Hsiao (1982) proposed pooled IV estimation of the FD equation with the single
instrument yi:, (in which case all T — 1 periods can be used) or Ayi (in which case only

T — 2 periods can be used). We can use pooled IV where T — 1 separate reduced forms are
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estimated for Ay as a linear function of (yio,...,Yiw2). The fitted values @i‘t_l, can be used

as the instruments in (4.13) in a pooled 1V estimation. Of course, standard errors and inference

should be made robust to the MA(2) serial correlation in Auj:. Arellano and Bond (1991)

suggested full GMM estimation using all of the available instruments (yio, ..

estimator uses the conditions in (4.12) efficiently.

Under the dynamic completeness assumption

E(Uitlyit1,Yit2,---,Yio,Ci) = 0,

the Ahn-Schmidt extra moment conditions in (4.8) become

E[(AYit-1 — pAYir2) Vit — pYir1)] =0,t=3,...,T.

Blundell and Bond (1998) noted that if the condition
Cov(Ayiz, ci) = Cov(Yi1 — Yio,Ci) = 0
is added to (4.15) then the combined set of moment conditions becomes

E[AYit1(Yit —a — pYyit1)] =0,t=2,...,T,

.,Yit-2), and this

which can be added to the usual moment conditions (4.14). Therefore, we have two sets of

moments linear in the parameters. The first, (4.14), use the differenced equation while the

second, (4.18), use the levels. Arellano and Bover (1995) analyzed GMM estimators from

these equations generally.

As discussed by Blundell and Bond (1998), condition (4.17) can be interpreted as a

restriction on the initial condition, yi. To see why, write

Yi1 — Yio = pYio + Ci + Ui1 — Yio = (1 — p)Yio + Ci + Ui1. Because uj; is uncorrelated with c;,

(4.17) becomes
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Cov((1 - p)yio +Ci,Ci) = 0. (4.19)

Write yio as a deviation from its steady state, ¢i/(1 — p) (obtained for |p|< 1 by recursive

substitution and then taking the limit), as
Yio = Ci/(1 — p) +rip. (4.20)
Then (1 - p)yio + Ci = (1 — p)rio, and so (4.17) reduces to
Cov(rip,ci) = 0. (4.21)

In other words, the deviation of yi, from its steady state is uncorrelated with the steady state.
Blundell and Bond (1998) contains discussion of when this condition is reasonable. Of course,
itis not for p = 1, and it may not be for p “close” to one. On the other hand, as shown by
Blundell and Bond (1998), this restriction, along with the Ahn-Schmidt conditions, is very
informative for p close to one. Hahn (1999) shows theoretically that such restrictions can
greatly increase the information about p.

The Ahn-Schmidt conditions (4.16) are attractive in that they are implied by the most
natural statement of the model, but they are nonlinear in the parameters and therefore more
difficult to use. By adding the restriction on the initial condition, the extra moment condition
also means that the full set of moment conditions is linear. Plus, this approach extends to
general models with only sequentially exogenous variables, as in (4.10). Extra moment
assumptions based on homoskedasticity assumptions — either conditional or unconditional —
have not been used nearly as much, probably because they impose conditions that have little if
anything to do with the economic hypotheses being tested.

Other approaches to dynamic models are based on maximum likelihood estimation or

generalized least squares estimation of a particular set of conditional means. Approaches that
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condition on the initial condition yio, an approach suggested by Chamberlain (1980), Blundell
and Smith (1991), and Blundell and Bond (1998), seem especially attractive. For example,

suppose we assume that
D(Yitlyit-1,Yit2,--.,Yi1, Yio,Ci) = Normal(pyit1 + Ci,0d), t = 1,2,...,T.
Then the distribution of (yii,...,Yir) given (Yio = Yo,Ci = €) is just the product of the normal
distributions:
.
[ [0l = pyes - ©)oul.

t=1

We can obtain a usable density for (conditional) MLE by assuming

cilyio ~Normal(¢po + EoYio, 03).

The log likelihood function for a random draw i is

.
log {I_w (H(llcu)W)[(Yit — pYit1 —C)loy]. ) (Loa)gl(c — po — é:OYio)/O’a)dC}.
t=1

Of course, if the log likelihood represents the correct density of (yii,...,Yir) given yio, the
MLE is consistent and /N -asymptotically normal (and efficient among estimators that
condition on yjo).

A more robust approach is to use a generalized least squares approach, where E(y;lyio) and
Var(y;lyio) are obtained, and where the latter could even be misspecified. Like with the MLE
approach, this results in estimation that is highly nonlinear in the parameters and is used less
often than the GMM procedures with linear moment conditions. See Blundell and Bond (1998)
for further discussion.

The same kinds of moment conditions can be used in extensions of the AR(1) model, such
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as
Vit = pYit-1 + Zity + Ci + Ui, t=1,...,T.

If we difference to remove c;, we can then use exogeneity assumptions to choose instruments.

The FD equation is
Ayit = pAyi,t—l + AZit’Y + AUit, t= 1, . ,T,

and if the z;; are strictly exogenous with respect to {uji,...,uir} then the available instruments
(in addition to time period dummies) are (zi,VYit2,.-.,Yio). We might not want to use all of z;
for every time period. Certainly we would use Azj;, and perhaps a lag, Azj-1. If we add
sequentially exogenous variables, say hi, to (11.62) then (hijt1, ..., hi1) would be added to the
list of instruments (and Ahj; would appear in the equation). We might also add the Arellano
and Bover conditions (4.10), or at least the Ahn and Schmidt conditions (4.8).

As a simple example of methods for dynamic models, consider a dynamic air fare equation

for routes in the United States:
Ifarei; = 6 + p Ifarei1 + y conceni; + Cj + Ui,

where we include a full set of year dummies. We assume the concentration ratio, conceny, is
strictly exogenous and that at most one lag of Ifare is needed to capture the dynamics. The data
are for 1997 through 2000, so the equation is specified for three years. After differencing, we

have only two years of data:
Alfareir = nt + pAlfarej 1 + yAconcen;: + Aui, t = 1999, 2000.

If we estimate this equation by pooled OLS, the estimators are inconsistent because Alfarej 1
is correlated with Aui; we include the OLS estimates for comparison. We apply the simple

pooled IV procedure, where separate reduced forms are estimated for Alfare;;_;: one for 1999,
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with Ifare; > and Aconcenj; in the reduced form, and one for 2000, with Ifare;,, Ifarein3 and
Aconceni; in the reduced form. The fitted values are used in the pooled IV estimation, with
robust standard errors. (We only use Aconcen;; in the 1V list at time t.) Finally, we apply the
Arellano and Bond (1991) GMM procedure. The data set can be obtained from the web site for

Wooldridge (2010), and is called AIRFARE.RAW.

Dependent Variable: | Ifare
) ) 3)
Explanatory Variable | Pooled OLS | Pooled 1V | Arellano-Bond
Ifare_; —-.126 .219 .333
(.027) (.062) (.055)
concen .076 .126 152
(.053) (.056) (.040)
N 1,149 1,149 1,149

As is seen from column (1), the pooled OLS estimate of p is actually negative and
statistically different from zero. By contrast, the two IV methods give positive and statistically
significant estimates. The GMM estimate of p is larger, and it also has a smaller standard error
(as we would hope for GMM).

The previous example has small T, but some panel data applications have reasonably large
T. Alvarez and Arellano (2003) show that the GMM estimator that accounts for the MA(1)
serial correlation in the FD errors has desirable properties when T and N are both large, while
the pooled IV estimator is actually inconsistent under asymptotics where T/N - a > 0. See

Arellano (2003, Chapter 6) for discussion.

27



Imbens/Wooldridge, AEA Lecture Notes 2, January *12
References

Ahn, S.C. Y.H. Lee, and P. Schmidt (2001), “GMM Estimation of Linear Panel Data
Models with Time-Varying Individual Effects,” Journal of Econometrics 101, 219-255.

Ahn, S.C. and P. Schmidt (1995), “Efficient Estimation of Models for Dynamic Panel
Data,” Journal of Econometrics 68, 5-27.

Alvarez, J. and M. Arellano (2003), “The Time Series and Cross-Section Asymptotics of
Dynamic Panel Data Estimators,” Econometrica 71, 1121-1159

Anderson, T.W. and C. Hsiao (1982), “Formulation and Estimation of Dynamic Models
Using Panel Data,” Journal of Econometrics 18, 47-82.

Arellano, M. (1993), “On the Testing of Correlated Effects with Panel Data,” Journal of
Econometrics 59, 87-97.

Arellano, M. (2003), Panel Data Econometrics. Oxford University Press: Oxford.

Arellano, M. and S.R. Bond (1991), “Some Tests of Specification for Panel Data: Monte
Carlo Evidence and an Application to Employment Equations,” Review of Economic Studies
58, 277-297.

Arellano, M. and O. Bover (1995), “Another Look at the Instrumental Variable Estimation
of Error Components Models,” Journal of Econometrics 68, 29-51.

Arellano, M. and B. Honoré (2001), “Panel Data Models: Some Recent Developments,” in
Handbook of Econometrics, Volume 5, ed. J.J. Heckman and E. Leamer. Amsterdam: North
Holland, 3229-3296.

Blundell, R. and S.R. Bond (1998), “Initial Conditions and Moment Restrictions in
Dynamic Panel Data Models,” Journal of Econometrics 87, 115-143.

Blundell, R. and S.R. Bond (2000). “GMM Estimation with Persistent Panel Data: An

28



Imbens/Wooldridge, AEA Lecture Notes 2, January *12

Application to Production Functions,” Econometric Reviews 19, 321-340.

Chamberlain, G. (1982), “Multivariate Regression Models for Panel Data,” Journal of
Econometrics 1, 5-46.

Chamberlain, G. (1984), “Panel Data,” in Handbook of Econometrics, Volume 2, ed. Z.
Griliches and M.D. Intriligator. Amsterdam: North Holland, 1248-1318.

Engle, R.F., D.F. Hendry, and J.-F. Richard (1983), “Exogeneity,” Econometrica 51,
277-304.

Hausman, J.A. (1978), “Specification Tests in Econometrics,” Econometrica 46,
1251-1271.

Heckman, J.J. and V.J. Hotz (1989), “Choosing among Alternative Nonexperimental
Methods for Estimating the Impact of Social Programs: The Case of Manpower Training,”
Journal of the American Statistical Association 84, 862-874.

Holtz-Eakin, D., W. Newey, and H.S. Rosen (1988), “Estimating Vector Autoregressions
with Panel Data,” Econometrica 56, 1371-1395.

Mundlak, Y. (1978), “On the Pooling of Time Series and Cross Section Data,
Econometrica 46, 69-85.

Murtazashvili, 1. and J.M. Wooldridge (2007), “Fixed Effects Instrumental Variables
Estimation in Correlated Random Coefficient Panel Data Models,” Journal of Econometrics
142, 539-552.

Robinson, P.M. (1988), “Root-n Consistent Semiparametric Regression,” Econometrica 55,
931-954.

Semykina, A. (2006), “A Semiparametric Approach to Estimating Panel Data Models with

Endogenous Explanatory Variables and Selection,” mimeo, Florida State University

29



Imbens/Wooldridge, AEA Lecture Notes 2, January *12

Department of Economics.

Verbeek, M. and T.E. Nijman (1993), “Minimum MSE Estimation of a Regression Model
with Fixed Effects from a Series of Cross-Sections,” Journal of Econometrics 59, 125-136.

Wooldridge, J.M. (2003), “Further Results on Instrumental Variables Estimation of
Average Treatment Effects in the Correlated Random Coefficient Model,” Economics Letters
79, 185-191.

Wooldridge, J.M. (2005), “Fixed-Effects and Related Estimators for Correlated
Random-Coefficient and Treatment-Effect Panel Data Models,” Review of Economics and
Statistics 87, 385-390.

Wooldridge, J.M. (2010), Econometric Analysis of Cross Section and Panel Data, second

edition. MIT Press: Cambridge, MA.

30



“WAY) JO SUOISIOA NJND PUe STD
Se [[oMm se ‘() SUIOUudILJIP ISIJ 10 () SI091J0 poxy Aq pojewinso
A[JuQISISuod 9q ued ¢ ‘UoneLIeA oW J[qEINS SeY {7 ‘T =1 : X} J] o

(©) 1o g+l = (o Ix|HOT = (xM0g
se passaIdxo 9q ued yorym

) LT =70 = (Pocux e uxcux|in)g
210 Uo [puUOLIPUOD

A712u230X2 101438 QWINSSE !0 puB #X UIIM]OQ UONB[III00 AUB MO[[B O] @

‘payuSpI
std uoyy ‘g = (Y2#X)a0) ppe am J *(7) 1opun AJuo poyrudpI Jou St g e
‘paxyy ‘o Suipoy s109]9 Tended are ‘g oy,

(€) 1o+ a:x + 1 = Qbﬁx_mbm

sarjdur yorym

) LT =100 = (oxin)g
o uo
Jpuonpuod (rauadoxa snoauv.ioduiajuoo st uondwnsse dAOBIIE UY o
((HAnX) yyim Suofe meIp wopuel

® ST /D "pojewns? 9q ued jey) (woy) Jo 7) siojowered are /it oY e

*SIOLIQ oneIdUASOIprore {7 < "1 =7 : “n}
o} pUR 109JJ9 PIAIISqOUN JUBISUOD-OWIT) Y} ST ‘0 ‘so[qeLreA A10jeue[dxo
J0 10309A ) x [ ® sI #x 9doorojur porrad own djeredas e st ‘i e
(D LT =1 Yn+ o+ gix+ i =0d
‘vonerndod oy} Ul 7 J1UN OLIOUAS B IO @
"Bursearour J uo paseq dre suonewrxoldde swos ygnoyje ‘saLos auin
[[BWUS PUB UOI}OIS SSOID ABIB] B JWINSSE JOA0D ‘DOSIMIDY)O PAJRIS SSI[U[) @

I9POIN 21Seq Y} JO MAIAIBAQ '|

Kyouddoxy [enuonbog 1opun uonjewnsy Al v
K110u030X7 1011 INOYIIM SIOJBWIISH JO JOIARYQY "€
s103eWNSH P[O O] SIYSISUT JUIIY ‘T

[OPOIA J1Seq 93} JO MIIAIAQ |

7107 Arenue( ‘03eo1y)) ‘SAIMOd] VAV

KySI0AIUN) 9)8)S UBSIYIIIA
93pUPIOO M JOf

S[OPOIA B1B(T [dURJ JBAUIT :7 9INj0d |
SOLIQWOU0IF] UOI}09S-SSOI))




(199732 orqPady,,) 17X

ur sogueyo asned #n ur soFueyd JI 0s[e Inq ‘so[qeLieA juopuddop
Ppo33e] sureluod #X J1 paie[ola SAem[e SI AJI0U9F0X0 Jo11S :AIIOUdT0X
JOLIS JO SUOIB[OIA JNOqe ALIOM 0} 9ARY ‘(T Pue .1 YIM UOAT e

"J0U S0P H "sporrad

own) Juede(pe Ul $)SIXd BIEp Jey) SaImbar (T ‘sased padue[equn U e

C <. usym (g4 pue

T UI SOTOUDISISUOOUT JUSIOJJIP ASNED [[IM AJIOUSF0X9 JOLIS JO oIN[Ie e
IHIX pue X 17X aIm pajeoLIodun

SI #n jet)) ‘A[owreu ‘A310ua30X9 Jo11s JO puly & saumbar os[e g e

"SOOURIYJIP 1S11J oY} U0 SO pajood s1 10jewnsd (14 YL

G— = (IM1212).0400) “pare[orrodun AJ[erias st {#n} j1 ‘ojdwexos
104 171 — n = 9 ‘SIOLId PAOUSIILJIP Y UL AJIONSBPIYSOINAY (L) LT =1y + gy = 4y
PUE UOT)R[A1I0D [RIISS 0) ISNQOI 9OUIOJUI OB P[NOYS e :Q0UQISIJIP 1SI1J 0} ST D QAOWIAI 0} ABM OATIBUISNE UY e
9 S
{#n} ur 9ouspuadapur
[eLIOS puE AJIO1ISEPISOWOY SOWINSSE 90UIOJUI (ISNQOIUOU)
‘dix — 14 = 1o
m -0 Jensn,, o3 ng "(uoumsnlpe  WoOpaalJ-Jo-sa2139p,, 1odoid oy
O} 10J SIOLIO PIBPUR)S SSO[SUIUBIUW 0) SPEI UOIIB[OLIOD [eLIOS AIenIqIe
[}im) 9oudIojul pue sio11o piepue)s 1odoid apraoid saSesoed pauue)) e
MO[[e 0} SIOLIO pIEpUB)S A} . IAISN[D,, 03 1dwoye ue :[opow Jedul] oy} »
“(9) uo g0 pajood st g, uo os pue A’ oL — " = L aaoym
Ul UQAQ 9[qNOI) 0) PLO] UBD 9)BWIISO 0) s1ojowered se L0 o) Suneai] e £
"SI01I0 pIEpUB)S ,ISNqoI 1)sn[d,, andwod ©) LT =0 g =

01 JOU 9SNOXd J[NI] ST AIAY) <7 [[ewus pue \ d3Ie[ PIA “douopuddop

[BLIOS pue AJI013SBPASI01)Y 03 3SNqoI1 AJ[1J 9OUIIJUI BN e

:(#X ur sorwwnp dwn qIlosqe)

2 AOWAI 0} SATBIOAR OUWIT) WOIJ SUONEBIAID O} SISN JOJBWNS H YL o




cl
() = (x[)g
uoyM 10 93Ie[ SI 2.0/2.0 USYM IO ] d3Ie] YIIM H.J 0} 9SO[J 9q UBD Y e
o[ @orzoL+1
() ﬁ$ -1=0
U1
pue #n + !0 = 4 010Uym
(1 14 — "4+ g('x0 - "x) = 14— "4

‘ejep pauedwop-awn-Isenb

uo J03BWNSY SO pajood e se pandwod oq ued Y MOUS UB)) e

[T

‘uonduwnsse sy

JO SUOnE[OIA 0} }SNQOI A[[NJ dpew 9q OS[e UBd doudIJul gy ng {1}
ur douopuadapul [e119s pue Aj1onsepaysowoy st uondwnsse [eurwiou
9y [, ‘sarenbs jseo| pazijeIouas eIA “n + !5 ‘10119 9)1sodwod oy ul

UOTJB[Q1I0J BIIOS I} JOJ SHUNOIIL PUB ULID} JOLID Y] UT ‘0 SOABI] T e

(on ()7 = (x[P2)g

st uondwnsse  S1091J0 wopuel,, A3 oY, e

01

*K319u030%0 [enuonbas 1opun paynuapI st ¢ ‘A[[eIoudn) e

"POIB[ALI0D A[[BLIDS 9q UBDd {1} “1+1Z Yjim

P9IL[OII00 9q O} #11 SYO0YS SMO[[E INq ‘SOIUERUAP SB[ PAINQLISIP JOA1I0D
sorjdunr AyrouoSoxa Tenuonboes uoyy (071z¢ - 17124Z) = #X ‘Aes ‘I o
{#n} ul UONB[OLIOD [BLIIS JNO SNI AJIUSF0X? [enuanbas

‘(sSe[ pue #z s9[qeLrea 1oyjo sdeyrod pue) 1774 surejuod “x Jj| e

" 17X 03 74 03 SY[O0YS WOIJ JYOeqPad) N0 d[NI JOU S0P Ing

‘SOTWRUAP J991109 JO WLIOJ Urelrdd & sasodwr A310u030x9 [eruanbag e

“oBqPa9J 19Y)0 pue sa[qeLieA juopuadop po3Se| 10J SMO[[Y
6) (X = (X Ux|n)g
‘[opow Jeaul] 9y) Sururejurewr ‘1o
(8) LT =200 = (Potxtrux x|ty

10 uo uonipuods Qrouadoxa pruanbag e




91

‘S[opoul Jeauljuou
J10J JUQTUIAUO0D K194 21 (X[*2)(7 = (*X|*2)(7 se yons suondwnssy e
'Q JO JojRwNSO . oY) [enbo
yog ‘0 = (’x[#n + ‘)7 osnedaq gy 10 STO parood ojdde ued om pue
91) U+ 0+ PM+ QM+ AMZ+ WS+ A =2

uonenbo ye[puny oy} 308 USY) PUB ‘D + M + /A = 0 J1Im oM

Sl

J1 = 1
nx _KN (oL = X o10ym
(1) X+ A = (x[2)g
UOISIOA PIIOLISAI € Pasn (8/61) B[PUNIA e

"(Z861) UrepIdqUIRYD) IR 0149p

UID]LQUIDY ) ) PA[RD UJO ST SIY L, “(L/X " UXUX) = /X o1oym

(€1) X+ M = (x['2)7

(s 10+ QMM+ Mz + WS = :uonoafoxd reaur] & Jo uonIuyap dyj sasn jsnf
uonenbd oyl Uy e saty oy [, ‘suondwnsse (YD) $192ffo wiopuv.1 pajpja.L105 0M} UL e
14! ¢l

“q1 pue gy Suuredwos 3s9) uewsney] 10y suoneordur sey U = 7l o

v

(ST0

pajood = §T0d 210ym) 7074 = T4 pue 10Uy = 1Yy = Py uayy
o+ + Mz + W3S =14

J1 :soouereambs oreiqas[e jueyrodwr owos e

‘(uone[21109
019z 1se9[ Je 10) (‘2)7 = (*X|'2)7 MoyIIm Ju)SISuodUL SI 3 g e
"SOJBLIBAOD

UIATBA-OWIT) POUBIWIOP SUIN)-T Ie 'Xg — #X = #X o1
Surkiea-owry paueawop swn-isenb oy a1e ‘xg — # #X Q1oUyM

N/ -LOXX)F) 30

~ '~

NA-[OXIX0F]70

(g)amap
(1 g)way

‘suondwnsse gy JO 19 [[NJ 9y} JopU() e
“q By} JUIIOIJO dI0W A[[erue)sqns 9q ue)) (q) ‘S9[qerrea

JUEJSUOI-OWI] JO UOISN[OUI SMO[[e Y (©) ¥ JO SOSeIUBADY e




0¢C

00°00T 965 % | TR3OL
............... + o
00°00T 00752 6711 | 0002
00°SL 00°5¢ 61’1 | 6661
00°0S 00752 6711 | 8661
00752 00752 671’1 I 1661
\\\\\\\\\\\\\\\ + o
‘uny JusoIed ~bexg | 000z ‘6661
| ‘8661 ‘L66T
Iesk gey -
veLe 56 STE8 TT9 ShL 686 96G¥ | 3astp
T S09T" SEVI6T” 67TT0T9" 965% | usduod
(44 LE TGT88 L 896L°8LT 96G¥ | oxey
........................................................ S,
xe UTH ‘ASQ P3S uesR sao | ®Tgetaep

1STP USOUOD SIeJ UMS *

SS®TTW UT ‘2dUe3STP b0o6% Jut astp
Iysuq = b0'6% 3eOT3F usou0d
(91e3)bOT bo 6% 2eOTT °1e31
$ ‘@xey Aem-suo -bae b0 6% JuTt saeJ
TegeT aTgeTien ToqeT JewIog adA3 sweu oTgeTIeA

snTea Aerdstp sbeiols

ISTP USDUOD ©IeJT SIRI S°P *

61

o+ 1o+ sipied + Ysipitd + Huaouoolg + o = "aapfj
V1A TIVIAIY PaIeD “{/sip] pue
(“s1p)30] = !81p] SAQRIIBA JUBISUOI-IWII} AU} PUB SIIWWIND JBIA dIe
SOJBLIBAOD JOU}() ‘I 9NOI J0J ON)I UOTIRIIUIIUOD O} 120102 ST J[qBLIBA
K1oyeue[dxa Aoy oy pue (7a.4pf)30] = #a.pfj s1 74 ‘)00 ysnoiyy
L661 sTedk oy pue syno1 1e 'S’ 6411 = N 104 “ATIINVXA

81

*00) ‘So1IST)eIS dAIESOU 193 UB)) 'ISNQOIUOU JIB S)S9) Y} pue (PAIUN0d
aIe so[qeLIeA dw 91839133k oy}) SuoIM U0 Al fp Y} :SAJBWIISI
aredwoo A30011p 1By} S9INpadold 159} UBWISNEH Pauued JO A1eMm 9 e
‘(*Z U0 SJUAIDYFI0D

o Sunoxdiojur ur uonnes Asn pnoys) /M pue o Ud9M)dq UOIB[OLIOD

SuImo[[e 9[IyM !Z U0 SJUIIONJO0I dJeWINSS 0) S sMO[[e (£ ]) uonenby e

L1

A4y pue P you ‘(sioyowered py) 74Q pue 7¥Q dredwod A[Uo UBD M e
"UOTIEWINSd Ty I0JJB JUSIIE)S P[BA ISNQOI A[[nJ & Juisn ¢ = 9 : 077 1s9)
LD m§+.NB+M.~>|>+WN§>+>.~N+:~M+\>Hm\m

uonenbs oy Uy “qJ pue Y Surredwos 1s9) uBWISNEH

1snqor A[ny & 9yndwos 03 Ased 31 sayyewr uorzenbo yepunjy oYL o




14

19

(T n 03 enp ooueTieA JO UOTIORIF) 58888668° | oux
98T1590T" | = ewbts
Tr8EE6TE" | n ewbTs
+
166087 L SPES ¥ 00070 89°L 9996608 S002zZ 9 | suoo
L8%690T" 2SLY680° 00070 €072 9LS7¥00" Z12860° | 004
TLIPSGVO" 9296L20° 00070 vz 8 825¥¥00° 86899¢€0° | 664
||||||||||||||||||| sttt LP0CTED" 8EVLETO" 00070 S0 S 7yS7v00° €7LVZ20" | 864
(T n 03 °onp edUBTIBA IO UOT3DBIJ) 58888668° | oux 986€€T” 87€6090° 00070 €2°§ 85€98T0° 709%L60° | bs3stpT
98T1590T" | = ewbts 1€6689€ -~ T6TGEE T- 10070 9" €- 9€8V9VC" 1260258 - | 3ISTPT
T78EERTE" | n eubts L06609C" 29669GT" 00070 88°L L62G920" G€6680C" | usouoo
60C7T0°8 108627 " ¥ 00070 0879 L90FPT6" S0022Z"9 | suoo [Teazs3ur -3Juod %G6] |zl<a z t1Id Tp3as "3900 | sxeyt
6€060T" 678€L80" 00070 8L LT T¥2SS00° ¢12860° | 004
8VL9V0" LTE9920" 00070 ST L 8TETS00° 86899¢€0° | 664 _
S0090€0° 8FEVTO" 00070 [4728) T9FTV00" €7LVZ20" | 864 00000 = ¢TUS < qoad (psumsse) 0 = (X ‘T n)xzoo
SLEGIET” €€86L50° 00070 78 v LTFT0ZO0" 709%L60° | bsistot Zr 09¢€T = (9) ZzTuyo PTEM ueTssnes~ T N S309IFS wopuey
15088T€"— 6LEGBE"T- 20070 €17 €~ 20602LC" 1260258 - | 3ISTPT
6E6LT6C" €6192T" 00070 S6°F 6S7ZCv0" GE668OC” | usouoo 14 = Xeu 0€07 "0 = TTBISAO
+ 0"y = bne 9LTy 0 = usdm3laq
[TeAZS3UT *JUOD %G6] |z |<d z tI1Id p3Is  "390D | sxe3T 12 = utw :dnoxb zad sqo 8YET"0 = uTtyltm :bs-y
1snqoy |
6VIT = sdnoxb jo Ioquny pT :oTgeTtiea dnoin
(PT UT sI93sSnTd 6yIT I0J poisnlpe -Ixd *pP3Is) 96G¥ = sqo O Isqumny uoTsssIbal STIH SIO9IIS-Wopury
(pT)a923snTo a1 ‘Q0A 664 86A bsisTpT 2STPT ueouod o1eIT HoIlx * 21 ‘00& 66K 86A DbsSISTPT ISTPT ULDOUOD 2IeIT HoI3lx *
(44 IC
788EE0"L TEIFBE"S 00070 9L 7T Ly290Cy " 8G260C°9 | suoo
STOvLCT” S8EECLO” 00070 TT°L ZEVOFTO" L8660 | 004
CLLESY0" 22€0T0° L0070 oLz €TP0PTO" 9678LED” | 664
€€G9870° 970%900" ~ EET'0 0S°T 6T70VTIO0" 7PC11C0” | 864
- €9802¢T" 6256€80° 00070 65°0T GG2L600" 96T0€0T" | bsastot
TGT866°L 79€0Ch " ¥ 00070 1879 TGGLTTG " 86260279 | suoo GECTO0S9 " - LLOEST T- 00070 €07 L- €L282T" 009106 - | 3STPT
€6760TT" 906L880° 00070 69°LT 69%9500° L8660 | 004 20L06TH" SOLTTIOE" 00070 86°TT T6900€0° €02T09¢" | usouod
2108%0° 2L89LT0" 00070 TeETL S6LTS00° 96%8LED” | 664 +
LT92620" TLB6ZTIO" 00070 60°G 7LPTP00" 7pCT1Z20" | 864 [Teazs3ur -3Juod %G6] [3[<a 3 T1Id TpP3s "390D | sxe3zT
SPLGZHT® L797E90" 00070 T1°9 2091020° 96T0€0T" | bs3stoT
82€089€ "~ 89TGEY " 1- 10070 [408 vovetTLT” 7009706 - | 3ISTPT
2600GLY " STECSVC” 00070 ST°9 966850 €02T09€" | usouod T99€€" = IS 300Y €T6PFP06T" G6GF VLEP60°GLS | Te3loL
+ 7507 0 = paaenbs-y [py +
[Teazs3ul -Juo0d %G6] [3<a 3 134 Cp3is "390D | =ae3T 29070 = pazenbs-y ZIT9EZETT" 68SF 9TS0FP9°6TS | Tenprssy
Isnqod | 000070 = 4 < qoad 960€C¥C 65 9 8G8ESY"GSE | TOPOW
81°€2S = (68Sv ‘9 )4 +
(PT UT sI93SnTd 6pIT I03J peisnfpe 'IId "pP3s) 965% = sqo Jo IsqunN SW IpP ss | soanog

(pT)a93snTo ‘00A 664 864 bsSIASTPT ASTPT usdOUOD 21eIT Hox

004 664 864 bsisTpT 2ASTPT uLdUOD 21eIT Hox -




8¢

oyl 103 pojaodex entea-d 8yl "ino
ST 919Ul "STgeTIeA USOUOD oYyl uo 3snl psseq 3s93 1

H211X¥ WOIT pauTRIqO
HoI11X WOIJ pPauTeIqo

*30231100UT
3 3ou ‘3se3

(93TuTyep 2aT3TSOd 30U

S0¥0°0
00°0T

(g-a) [(1-) (g A-a A)] . (g-q)

{Of ISpun JUSTOTIIS
/ey pue O ILSpUN JUSISTSUOD = (

‘eH I9pun 13

ST OT3ST3els axenbs-Tyo 4 *
03 UOT]1DTIISOI BUO ATUO 4 *
H 3sngoauou syl sT STUL x °

€087LST €~

LZT0°/T0%0° - TP °
ST & A-0 A)
= ZTyo<qoid

= (p)ZTuo

OTjewe3sAS 30U SIUSTOTIISOD UT SOUSISIFTP :OH 1S9

US3STSUOOUT = g

__as
((d A-9 p)betp) 3abs

€077000" -
80€000 "~
G8GE000°
SYETOVO" -

s0usI9IITA
(g-q)

212860° LTLLLEO" | 004
86899€0° 618€9€0" | 664
€VLPZZ0" 82€8220° | 864k
5€6680C" 65889T" | usduod
e
°1 q °3 g |
(q) () |
———- S3USTOTJISO0D —----—

o1 q ®I q uewsney °

LT

91 q 2103S sa3jewrlsd

21 ‘00L& 664 86A bs3sTpT ISTPT usdU0D 21T boijix Tnb

9] q 9103s seojewrise

9 ‘00& 664 86K bsisSTpT 2ASTPT uedu0d 21T boilx Tnb

tTTOU oYY x
Iapun mCOHUQEﬂwmm d¥d 9yl JO TTe suTrTeluTew 3eYyl 3s9] UPWSNEH 9yl oS0 3ISIATI  °

9t

(T n o3 onp ooueTies JO UOTIORII)  6EH9TEV6 | oyx
98T1690T" | ° ewbts
9LT68EEY" | 1 ewbTs

LGGTTO0"S P0TS68° ¥ 000°0 T6°99T  S9.9620°  TEE€G6°p | suod
GELGBOT” 8696980° 000°0 9L"LT 7S0G500°  LTLLL6O" | 004
(4422 0N §12€920° 000°0  0T°L GLZIS00"  6T8€9€0" | 664
LOOOTEOD" 6799%10" 000°0  8%°S €91%00" 82€8220° | 864
(peddoap) | bsisTpT
(peddoap) | 3STPT
586859¢2° P6T8TLO" T00°0  Th°€ L8GY6V0"  65889T" | usouod
[TeaZ®3UI "JUOD 566] [31<d 3 *IIE CPIS 390D | sxe3T
1snqoy |
(PT UT SI93SNTO gpTT 103 po3sn(pe "IId "P3Is

(pT) 70380TO 3

“00£& 66K 86A Dbs3STPT ISTPT ULDOUOD 2IeIT Hoialx *

¢

000070 = d < goidg 06°9€ = (eppe ‘8FIT)A 10=T n TTe 3Byl 3593 4
(T n 03 onp ooueTieA JO UOTIORIF) 6€V9TER6 | oux
98T1590T" | = ewbts
9LT68EEY" | 1 ewbTs
+
G8T686°F 9LVLTE T 000°0  L8°0LZ 698Z8T0°  TEEES6'V | suoo™
£L0590T" 9€0680° 000°0 ¥6°1C GGGPY00°  LTLLL6O" | 004
850TSHO" 6L59L20" 000°0 81°8 G6VPV00°  6T8£9€0" | 664
LO9STEO” 870TF10" 000°0 €T°S SISPF00°  8Z€8ZZO” | 864
(peddoap) | bsistpT
(peddoap) | 3sTPT
zzs9ce” 6S6TTTT" 000°0  FL'S T0T¥620°  65889T° | usouoo
[Teaz®3ur -3U0D 2G6] [31<a 3 TIIg "P3Is T390D | ®ae3T
00000 = 4 < qoia €£02°0- = (ax ‘T n)Izod
T9°pET = (Evpe‘p)d
7 = Xeu €800°0 = TTBISA0
0¥ = bae 9LG0°0 = ussmiaq
13 = utw :dnoxb zad sqo ZGET'0 = UutylTM :bs-y
6VIT = sdnoxb jo Ioquny pT :oTgertaes dnoin
96G¥H = SO JO IJIsqunpN CO‘.mmww.HUw.H ACﬂEHﬂBV S108JJ°-pPsXTa

°I ‘00£f 66K 86A DbsS31STPT ISTPT ULDOUOD 2IeIT HoI3lxX *




81

[43

(‘e1R1S Ul ZHSIATIX UI J[B[IBAR QOUIJUI

1SNQOI A[[n,) 103BWNS AT OYd SOAIS SIY T "STTST pojood se yons
I T =1+ gix =1(

0} spoyiowr AJ A[ddy ‘sjuownisur pouBowop-owl} 9q 'z — #Z = 7719 e

“12 pue /X U09M]2q UOIIB[ALI0 O} UOIppE

ul /1 pue #X udam)aq UONEB[ILIOD :A)IQUdF0pus snoduelodwajuod

MOV "S}109JJ0 PAAIISqOUN [IIM SPOYJOW A QUIqUIOD UE)) o

$199JJ1 PIXI] PUE SI[BLIE A [BIUIWNIISU

RS

‘UOTIRWTISS HY UT SSTURTIRA JURISUOD-SWTY ITWO 03 TNJuIey AIsa , °
o9 ued 3T ‘snyl 691" ‘SIBWTISS HI SU) MOTS] AemM MOU ST S3PWTISS FY SYL x °

(T'n 03 onp eoueTIEA JO UOTIORIF)  60ET99€6° | oux

98TTG90T" | © eubts
TL8ZV60F" | n ewbts

€66€£80°G 8LITLG ¥ 00070 LT 9LT 825820 980820°§ | suoo

TTGZLOT" PP19G680° 000°0 Ly LT L6TSS00° 8ZEV960° | 004

¥LSSPO" LI9TESCO" 00070 9879 8L9TS00" €GPPSED” | 664

v9€TCEDN” €60L5T0" 00070 L S L06TF00" 6226€20° | 864

88T90€T" 92869€0" -~ vLZ0 60" T Z9GLZV0" T8T89¥70" | usouod

[TeaTsaul -Juod %G6] |z |<a z TaId Cp3s "3900 | sxe1T

3Isnqod |
(PT UT sx93sSnTO §TIT I0F pajsnlpe "IIF "pPIs)
6FTT = sdnoxb Jo asquny pT :eTgeTaea dnoin

9657 = Sqo JO Isquiny uoTsssrbar STH SI09IIS-wWopurRy
(pT)a23snTo a1 ‘Q0A 66A 8gA usouUOD =aeIT boxlx -

(@Y UT 90UB]STP I0J TOIJUOD J0U Op M JT JByUM x °

0¢

.OCOM#W Se jou 3ng :._Oﬂuomw.ﬁwmﬁ B TTT3S —--- Z9°C ST OT3sT3E]3S 3 3JIsngox |yl 0§ x °
(T n 03 onp ooueTieA JO UOTIORII) 58888668 | oUI
98T1690T" | o ewbts
Ty8€E6TE" | n ewbTs
900566 L €LLOZY ¥ 000°0 1879 60T8TT6"  688L0C°9 | suod
959680T" LL16980" 00070  GL'LT ZL0SS00"  LTLLLEO" | 004
67EVIVO0” 682€£920° 000°0  60°L Z621500°  618E9€0° | 664
LP660€0" 80L9FTO" 000°0  8%°G €V9TV00"  8ZEBZZO” | 864
POTVEYT” 889¢790° 000°0 IS TI6T020°  9ZP8EOT" | bs3stpT
L86VSLE ~  T9ECTHE T~ 100°0  PE'€E- LE9TZLT®  L626806°- | 3ISTPT
99r9€LE" L2Z9€50" 600°0 29°C €0P9T80°  9VE9ETT” | aequeduod
6L28592" 68TLO" 10070 TP€E 67LP6F0"  65889T" | usduod
+
[TeaZ®3UI "JUOD 3G6] Iz1<d z *IIE CPIS  TF90D | ®xe3yT
1snqoy |

(PT UT sI93snTd gHIT I0F paisnlpe *IIF “P3s)
(PT) a23SNT2 @1 ‘004 664 864 DSISTPT IASTPT ILQUSOUOD USDUOD =1eIT boxax -
(pT)Ag ‘(ueDOuUOD)UueLBW = IBQUIDOUOD usba *

IXTIJeW 9OUPTILAOD-SDUBRTIEA FY Ul JO SUOTILTOTA 01 1SNQOT 4 *
ATTnI ST pue 1ybTI Jp @yl s31ebh 3T :I93318Q ST 3IS9] POseq-uoTssaibax oyl y *

6¢C

LT000 = ZTyo<goad
6876 =
(8-q) [(T-)v(d A-9 A) ], (d-9) = (T)ZTuo

oT71ews1sAS 10U SIUSTOTIISOD UT 9OUSISIITP :OH :3S9T
H5131X WOIJ PSUTEIQO {OH ISpun JUSTOTIIS ‘BH ISPUN JUSISTSUOOUT = ¢

H219% WOIF poUTe3qo {PH PUBR O ISPUN JUSISTSUOD =

PT000° €0PF000° - Z12860° LTLLLEO" | 004
6L60000" 80€000° - 86899€0° 6T8E9€0" | 664
PTT000" §85€000° €VLPZZO0" 82€8220° | 864
L6SLTTO" SPETORO - G€6680Z° 65889T" | usouod

+

ol ERNERES $ 344l 31 q 23 q |

((g A-9 p)betp) 3abs (g-a) (g) (a) |

———— S]U9TOTJJIO0D ————

*9TEOS IBTTWIS B UO SIB SJUSTOTIFS0D Y3 3eY3 OS SS[JeTIes
INOA HuTTeds I9pTsuod ATgrssod pue pejdosdxsun HbutyjAue I0J SIOJWTISS
InoA jo 3ndano syl sutwexy -3s23 ay3 burtindwoo sweTgoid g Aew s18Yyl I0
‘1oedxe noA 1eymM ST STY1 2Ins aq ! (f) pPeIsel buTeq SIUSTOTIISO0D JO IaqUNU
syl Tenbs jou ssOp (I) XTIJew SDOUBTIEA POOUSISIITP oYl JO Ul 9yl :930N

oxowewbhTs ‘o1 q oF g uewsney °

*I03BWTISS JUSTOTIFS ATSATIRTSI Syl JO XTIJBW SYJ SSSN PUBWWOD IXSU SYL x *
*Jp buoam jo weTqoxd SYl SSATOS IOJPWTISS XTIJeW SOUBTIEA Sues oyl burspn x °




9¢

[ > (/M)WIp paou ‘A[[eIduan) e

‘("4 “'y) Y poje[ar1od AJLenIqIe aq ued q

U “a + 71 4 'J = “X J[ 'POAOWISI SPUSI) IBAUI] JLJ10ads-1Tun pey dALY
#X JO SJUSWIAD AY) MOU PuB () = ‘M ‘[9powW pudJ} WOPURI Y} U] @
X woly ‘m 1no Jumau £q ‘e Keme Jurdooms

0] SI9JAI J{ MON ‘dwil) JO SUOOUNJ OIISTUITLIdNAP JO 39S B ST /M dI9UYM
(T LT =1 Mg+ e =

QLIA "SIOJBWINISI JJ JO SSE[O [eIOUIS 0IOW € 0} SPUIXH e

93

(@) = (Hatreaiale)g
Juspoy (1) uoy L (L ‘1 = 240+ 'y = #x j1 ‘opdwrexa
10, “syusuodwod Jusueunrdd ySnoiy) #x SI0SSAIZOI Y} YIIM PIIR[ILIOD

9q 03 “/q ‘sado[s oy} SMO[[Y "SOIBLIEAOD PIUBIWP-OW Y} dIe #X dIoym
(12) L1 =1 = (g = ("xl'q)g

SI ‘UONIPUO0d Juel g4 [ensn ay) pue () = (‘2 “!x|#n)g

M Juole “J01ewnsd g AU} JO Aoud)SISU0d I0J UOHIPUOD JUIIOLINS Y o

143

LA = ¢ 909330 o3eroae uonendod

U} 91BWNISY ATJUSISISUOD JOJBWNISI H ] [Bnsn Y} SOOP UM e
"101eWIISY H [ensn Ajdde om X yjim poje[orIod 9q

JYSTW ‘0 UIy} Inq 7 [[€ J0J JUBISUOD SI /q JI SB JOB dA\ [ X Y SI /q 910ym

(02) ‘I =20 = (Pqoxin)g
Am: QX+ o = nf

‘sodors
o13100ds-11UN J0J MO[[€ 0} [9POW [BNSn JY) JO UOISUI)XO UB IIPISUO))

siojews3 pio o3u| SHYBISU| JuadaY g

133

"AIHY Pue ATHA
Surredwos 3593 3snqoI AN B SI () = 9 © 077 JO 1593 ISNQOI A[[N] V @
"("Z°12) SAT Suisn
1o+ Q7 + M+ gix = 14
01 A1 SuiA[dde 03 juoreanbs st 103eWNSd AT YL @
L =100 = (Poflize e cuzcizPin)g
:{#n} 01300dsa1 yym uondwnsse A} 1oud30x3 JO11S

© SUTRJUTRW JNq /'Z PUE ‘2 UdIM)q UOTJB[IIIOD A1eNIqIe SMO[[E ATH




01%

c — ANBAKNNT..“:N_NQVM

‘0 = (!mLxX ‘- UX|'D) 7 pue (10J09A MOIB) (PMIX) = 'y a1oUym

6¢

"9JOIOSIP Ik /X JO SJUIWI[O SNOUdFopud
UUM J1SI[BIIUN ST INQ #X Snonunuod Joj pjoy ued (£z) uondunssy e
“papnjoul SI sarwwnp

owmn Jo 308 [[1g & papraoxd (‘q)7 = ¢ 10J JUISISUOD ST ATH,] ‘UYL,

1 u ! _1
(0€) P, -+ g = 79U} uo puadop JoUUEd IOUBLIBAOD PUONIPUOD ], "PIIOLISAIUN
A@Nv D+ %A-—i - ;ﬁv +0 =10 ¢ ¢ ¢
ST “('q“"'X)A0) ‘XLI)eW 9OUBLIBAOD [BUONIPUOIUN XLIJBW Y X Y YL
(82) Hp 410 +1qX + i = 4
(Lo L =g x)a0) = (Mzl'qx)a0)
:(s9yeLIBAOO FUIAIRA-OWIN)
ownsse os[e
JO safeIoA® oW} AY)) ‘X pue (dwn I9A0 9FurYD JOU OP YoIym) ‘A ‘Aes
‘510108] PaAIsqo uo puadap ‘q sadofs oy 1yIaYM 235 01 159) [dwIS e (92) L1 =1 g = (g = ("Hoa
sado[S wopugy pIReR.LI0) 10] SUnNSI I, M SUoly e
8¢ LE
(s0) 0= ('qevzin)g

('q*'e)
Uo [RUBOIIPUOD SNOUIZ0XI AJJOLIS I8 SJUSWNIISUL I} SWINSSY @
IX IIM paJR[aLI00 9q ued ‘q sadofs oy,
LT =1 Mn+lgEX + e = A
[opow sodoys
WOPUEI [BISUAS ) UI SSOUISNQOL JWOS ABY OS[e SPOYIoW A[H] @

AT Jo ssoumsnqoy

“q 0} Je[Iuis uajjo
aIe SA)BWNS U yy Ypim Fuofe ¢ Sjewnsd 0) WD JESUI[UOU 3Sh Ue)) e
A.VNV L1 =10 = ANDCNMV\»Q_U
s1 /L1 oY) $910US1 JRY) J0JBWINSI FJ JO AOUI)SISUOD 10J JUSIIJNS
(€2 L =14 M+ gix = 1A

: *li ‘speof 103083 SulAreA-own ym sjopow 0} Ajdde ue) e




144
LOVTO = ZTUo < qoag
Ly"S = (€ )zZTud
0 = usouodbspT (£ )
0 = usduodpPT (Z )
0 = u®duodgd (T )
uSOUOObSPT USOUOOPT USOUODQD 3S37
*G6Z0° ST USDUOD I0F ©S ISNUOIUON «
|||||||||||||||||||||||||||||||||||||||| JER— IR
6699€8°8 €G6GTLO "~ 7S0°0 €6°T 99szLT T ¢55C8ET T | suoo
62€80T" 1226980 00070 88°LT T9%500° 9G29L60° | 004
1606670 £L008G620" 00070 6679 86C1500° 6758G€0° | 664
GOTTTIED" 29287 10° 00070 €6°G ZySTv00” 78962¢¢0" | 864
voLOZLT" 6979120~ 82170 [4BmS T027670° LYT1ZSLO" | bsistpT
SEPEILB” LTZSGL T~ €1S°0 G970~ 88CETLY " 89€v6Er "~ | 3ISTPT
7CEILST” LETGET ~ 088°0 ST°0 7L897LO" LLYZTTO" | usduoobspt
6689%9°1 €L8GVT C- €9L°0 0€°0- GTLOE6G " 6987662 — | ueouoopt
6091859 " 70LOTES - 7€8°0 1270 608€E0E" £€G7S€90° | usouooqo
€6659G° TILETSC - 15770 SLT0 670580C" T6CLST® | queouoo
966G659¢C° 88680L0° 10070 6€°€ G§699670° 6v2891" | usouod
[TeAZ®3UI "JUOD 5G6] lzl<d z *1xg 'pPIS  "390D | exeyT
3Isnqoy |

(PT UT SI93SNTO pTT I0F peisnlpe "IId "Pis)

(pT) 2938072 21 ‘004 664 g6k
bs3sTPT 3STPT USOUOODSPT USOUOOPT USDUODCD QUSDUOD USDUO0D 91eJT Hoxlx

1974

US0U0Dy (£LZ Gy - bsasTpT) usouodbspT usb

E@UEOUX.A@m@.@ - UWAUHV = US0UO0dpPT usb
:@UEOU«Aﬁw. - Qu8dU0D) = USDdUO0DQD usb
€8G59G6°29 6LLEL"O0C 8689CL°8 LYLLZ SV 96G¥ | bsastpt
LS8606 "L LLBESS ¥ LLTE6SY9 " 2879699 965V | 3sTPT
1666 " z98T1" T7L888T" 67TT0T9" 9657 | qusouod
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ S I
XeR UTH *a2d "P3IS uesn sqo | eTqetIep

bs3sTpPT 3ISTPT QUODUOD wns

(PT)AQq ‘(usdUOD)UESW = qUBOUOD U2ba

‘uonedrddy arejny A TdINVXA

[4%

*(S1001J0 UBOW JUBM J1 II JIOM

9q j0u Aew Inq) 91qrssod s1 /p#X 10J SJUNOIIE Je1]) I0JRWIIS SO V @
*(3snqou ANy opew 9q P[NOYS IOUIIJUI ‘WNIUIL

B J® ‘0S) /p”X 210u3I P[NOM JI YSNOYI[E ‘00} ‘S)09JJ0 WOPURI SN UR)) o
™" A._i — )] ‘suonoerdur oy oM uonenbs oyy

uo g, 03 Ieprurs oq jysru (30930 pageroe uonendod) ¢ jo sorewnso
o1 y3noy} uoAd JueolIugIs 9q JY3Iw SUOOBINUI Y [, ‘SUOIIOBIdUL

oy jou ng (" — /q) sorowdr yorym ‘] AqQ (1€) SISO USAD UE)) o

I

‘S0 pajood asn pue (a8eroae ofdures) y yim i ooeydor oonoeid Uy e

X 3O SJUQWIALR M i — /g JO sjuSWS[d JorINUI sUBSW SNl Yorgm

(1¢) “Un 4+ pPX + o +
ux @ (-] +g"'x + A" - 1) + /0 = A

‘e1qa3[e WOS IOV e




\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ R R
7€8800°S ZLO0TZ8 ¥ 00070 2L 2ot 88F8LF0" €G67T6° 7 | suoo

(peddoap) | 004
8T209%0° 8G0T920" 00070 TT°L 7SL0500° 8€909¢€0° | 664
£888820° GELTZZTIO" 00070 98°F TpECV00” 6085020 | 864
SP18520° €999LGT - 6GT°0 v 1- 8LSLIV0" 6526590~ | T1dusouod
2216500 ° 7S8806T" 00070 Sv°§ L6LYSO" 886€86C" | usouod
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| S
[Teazs3ur *3uod %G6] [31<a 1 TIIE CpP3s “390D | ®xeIT

Isnqoy |

(PT UT sx93snTO 6HTIT I0F pajsnlpe "Ii¥ "pPis
00000 = d < gqoxg 6762°0- = (dx ‘T n)IToo
€9°6¢ = (8PTT'F) A
€ = xew LPE0"0 = TTeRI2A0
0°¢ = bae GEGO 0 = usamilag
€ = utw :dnoxb zad sqo 8GG0'0 = UTYlTM :bs-yg
67TT = sdnoib jo Isquny PT :aTqeTaea dnoin
LbbE = Sqo JO Isquiny uoTssaIbeI (UTYITM) S3IO8IIS-PoxXTd

(pT)a23snTo 8 ‘00A 664 86A& Tdusdouod usoOuU0D SaeIT HaI3IX
000Z > Ie9K FT [T+U Juedouod = Tdusoucd usb *
Ie9k pT 23I0S

Ly

‘0 = Q : 0z71s9) pue (porrad awn ise] oy JuIsoy)

$309JJ° paxy %@ ﬁOC&SUO Jp) djewnSy “#X JO 1asqns © ST 7 M dIoyMm
(23] 1P 410 + QIVIM + gix + 'l = 1A

:S9JBLIBAOD UI (3[0BQPIDJ J0) AJIOUSS0XI J011S JO JIe[ J0J 159} o[dwIs o

%

‘Juopuadap Apeam st {#n}

pue snousgoxa A[snodueiodwauod a1e sJuUSWNNSUL JI |7 I9PIO0 JO Seiq
sey ] :SUOISIOA SI[BLIBA [BJUSWINLIISUI JOJ P[OY SUOISN[OUOD JWES e
"$J001 JIUN AUB S9JBUILID JI 9SNBIOQ JAIIORIIE SI (I ony) JoFuo|

ou sI (z¢) uay) ‘(pagv.132ju100 Jou d1e #X pue “A) uolssoigar snornds

B SI_ [opoul,, SILIds awn oy Jey) os — ()] St {#n} J1 :3edAe0 jueproduwl] o
(. diysuonerar Sunei3oyuroo,, € st “n + 10 + ¢"x = A)

‘sp1oy A3ouagoxa snosuerodurauos pue (()] st {#n}

Se SUO[ Sk S]001JIuN Sey {7 """ ] =1 : “X} JISploy [[1IS (7€) INSAY e

St
(€€) ‘(Do +9¢ = ¢ " Nund
(T¢) (-0 +4¢ = ¢ *Nund

moys ued ¢ Juopuadop Aeam,, s

{11 =1 (*n#x)} ownsse pue () = (*0#X|#n)7 Urejurew oM JJ e
“IOIIP ued (7 JO uonouny

Se) sa1oud)IsIsuodul Jng “uonduwnsse AJI0UF0Xd J0LIS Y} INOYIM

(00 « N I PIXIJ YIIM) JUIISISUOOUI IR SIOJRWNS (I PUB HJ 3 Y1og e

Ayauabox3 3o13S JnOYHM si0jew}sy Jo Joineyag ‘€




[4S

‘uonenba oy ur popnjour st sydooioyur
183K JO 138 [y © UAYM S[IB} Al PUE Y@ = (*xV)7 = (7x|"xv)7 uop
0= AQN?..&\Ex:\“.;_fvm
ny 4+ 191X + /@ = #X
J1 “remnonaed
u - IX qim UonR[aII00 [N SeY 4XY UdyM W[qoId JUSWIN)SUI Yeom

B WOIJ JOJJns ued AT Aq uonienba (4 a3 Sunewnsd 03 yoeordde Auy e

IS

Xy (s10S8s91391 jJ0u) syudwnsul Juisn A pojood £q
N

LT =y +gixy = My
uonenba (] oY) 21eWNSH o
17x £q o[qerorpaxd
Apuarolgyns sI #Xy 9Ins 9wl 0) dwir) poos € SI SIY [, Xy ‘sonfea
PoNIy oY} urelqo pue ‘N < 1 = 1 <17Ix uo #Xy uoIssaIgor oy uni
‘2 own e ‘0§ 7 yoed 10J A[ojeredos #Xy J0J WIOJ PAONPAI € 9JewNSH |

((ININD wof pa3oadxa 9q ued Jeym 99s 03 Jsed] Je) A391ens [dwis o

0¢

‘uonewnse NJND Ajdde 03 ounnoy "smoi | — 7 sey yorgm
(X GxUx)Sop = T
SI SJUSWINN)SUL JO XLew Y[ (X " " ‘UXUX) = “X 10JO9A oY}

ur o1e uorenba (4 9y} UT SJUSWNISUI J[GR[TBAR O} 7 QW) J© ‘QI0JIIY T,
.an.-.nN — N MAH INn..-nﬁ — M.nc — ANNN\NQHMxvm

:SUTOUQIOIIIP 1SI1J o} SUOIIIPUOD Judwow Jduwrs 03 Sped[ SIy [, e

(%

7> sqeo = (#nsx)ao)
W0} JOYBaM o) )M £q 193 UBd oM ‘AOUQISISUOD 10] ‘A[[endY e
LY =70 = (Pocux o IX X in) g
uondunsse A)1ou030x9 [eryuanbas ay} 1opun
L =19+ +gix =4
[9pOW 9y} JO UOTIBUWINS A] JOPISUOD MOU IA\ @

Aysuabox3 jenpuanbag Japun uonjewnys3 Al ¥




9¢

-Surpeadde ssof st yorym

‘0 = (Po""aop
OWINSSE 0} 9ABY P[NOM dM MOU OS pue

n1y + ' = Xy

uoyy I + 'Y + 'y = #X Kes YJup [Im Y[em wopuel e st {*X} J] e

S¢

“JUQIOIJINS ST
T =10 = (Pota)ao)
0s pue 4y = Xy uoy, {1} ‘ss9001d juapuadap A[yeam e 1o
ny 4+ .w = X
smof[oy {#x} asoddng e
LT =150 = (2xy)ao)

SUOIIOLIISAI A} PeIISUI PISAZ3NS (61 ) I9A0H PUB OUB[[AIY e

14

‘s1ojowrered

Ul JeauI[uou a1e SuonIpuod juawow enxy (1) ‘ssouojoduos

OIWBUAD OWINSSE 0] JUBM 10U OP UJO oA (1) :soeqmel( e
0= [(@x -1, (dxy - 1Y) )7

A

I0J “ejep o) JO suorouny Ieaur] SuIs() "9[qe[IBAL dIe SUOIPUOD

juowow d1ow Auew ‘uondwnsse ssoudle[dwod drueukp Ay} OPU() o

€S

1714 popnjoul J0U SOOp #X uayMm

OAIIOLISAI 00} UYO SI YIIyM {/72} Ul UONJR[QLIOD [BLIOS JNO SO[NY
0 = (Pocuxcude X ITILnx)in) g

:ueaw oy ur ssoudjo[dwoo

oTwRUAp SUINSSE AQ PAUTe}qo I8 SUONILISIT JUSWOW IO\ e




09

T2 > 8% = (17vd - ray) g
‘L7 = 1 I10j oS
LU= 1= =500 = ("ntOg
a1e pasodunr suondwnsse [ewrurw oy} ‘A[[eo1dA ] o
LY =19+ o+ 17Ad = A

‘[opowr (1) Vv odwis o

6S

(IND
Wo)SAS,, Po[[ed MON)) "Suonenba/spotiad s} [[8 $S010€ UOLB[O1I0D

A1eniqie mo[[e o} Xxijew Suny3rom [e1oudd e yim NJND 9S() e

[ 1@ x—0—4xy]g )

[(dux — 0 - v)xy]y
[(d2'xy — 24y) LX)

\ [(uxy — vdy) Vx]g )

8¢

71Xy Ul PIOURIQJJIP 9q 1SN 953y} Uy} (P[NOYS 1) S)091J0 Jedk
sopnyoul #X JI ‘S[9AQ] pue (I Ul SUONIPUOD SUIXIW OI8 dM 9SNeIdH e
*,(,g ‘) s1owered

o} Ul JeQUI| 1€ SUONIPUOD JUSWOW [y "Uonenba . oy} ur SUonIpuod

JUSWOW 9y} YIIM FUO[E SUONIPUOD JUIWOW MU IS} ISN ULD I\ @

LS

LT =0'0= [(@'x -0 xv]g
A+ gix+0 =14
uonenba s[oAd] oy ul ‘s1jowered o) JO SULID) UT USPLIM
‘SUONIPUOD JUSWOW JABY dM OS Pue ‘"X — 0 — 4 = "n+ (0 —12) = a4
1By SMOUS ‘0 — g#X — 44 = #n Suroe[doy e
Lt =10 = "+ (0 -1 xvig
SOAIS SUONIPUOd I9A0g-oue[[ary snjd A1o1uagoxa [enuanbas

udyl, "(Y2)g = 0197 (Pasn 9q SUOHIPUOD JUITOW MU JY) UBD MOH e




¥9

"SAT UMO JISY} SE J0B SAIWUWND W) ‘[ensn sy e

0= [Wz—171dd — 0 —"4)"zy]q
0= [Wz- 171 — 0 - )17V
:STOAJ]
o} UO SUOHIPUOD JUSWOW ‘7 ¢*** ‘7 = 7 I0J ‘asn JYJIW [[1IS oM ‘PUY
‘7 owm Je uonenba @4 oyp ur {04 T} ym

Suore ‘SAT se {1z 17z} osn ued ‘snouddoxo A1J01ns 10u st {#Z} I e

€9

"S[OAQ] UI SUOT}IPUOD JUSWOW PPE [[1}S UED PUB

‘T < y A *snouaoxa Apotns are ) JI SAT UMO SE #Zy dsn ue)) e
LT =1y + May + 171dyd = Hdy
! osn pue
LT =1 U+ o+ Mz + 171dd = 1A

Se yons ‘opowt (1)YV oY} JO SUOISUIXH e

9

(21e)S Apea)s © SI a1y}

owmnsse 03 J1 1 onsIeal moy ‘ouo sayoeordde d sy :wo[qoid [enusjod e

'SS 9U} YIIM PIIB[OIIOOUN SI 9Je)S APeo)s it woif /4 Jo uonerAsp Y],
0 = (12°00)a0)

SI UONIPUOD BN)X Ay} Uy ], “0ht + (d — [)//o = 04

se “(JrwI] 9y SuIye) UdY) PUB UONNISNS JAISINIAIL Aq

[ >|d| 105 paurejqo) (d — 1)//o “9yels Apeals S} WOIJ UOIBIAJD B St 0/A

QUIAN 04 “UOTIIPUOD [RIIIUT O} UO UOTILNSAI B sk Pjoxdajur oq ue)) e

19

"SUOTIIPUOD JUITOUW [ensn ) 0) PAppe 9q ULd YoIgm
0= [(17Md — o —r)17Mdy]g
w0 = (P20t 1A ) 77 0) pIppe S
0 = (oo —110)aoy = (1o 1dy)ao)

uonIpuood aYy) J1 1Byl pamoys (8661) puog pue [jopunig

*Ajrun 01 95070 ST d UdUM SJUSWINISUT JBOM WOIJ IOHNS Ued ‘Uredy e




89

STGELG " TrEVEE™ T 00070
8Z%98L0" 6€T90° 00070
LLTTLTO" 9625200° 80070
T09929T" 8C¥8970" -~ 8LC"0
TIE66ET” LLBLYTO" GT0°0
[TeATS3UI *JUOD %G6] [3[<a
(PT UT sI93SnTd 6pIT I03F paisnlpe
000070 = 4 < qoag
18786 = (8v11'%)a
IS = xew
0°¢ = bae
€ = uTtw :dnoxb zad sqo
6VIT = sdnoxb jo Ioquny
LybE = sqo Jo zsquny
(pT) 293

668959876° | oux
96855060 | o eubts
6021688€" | n ewbrs
R
LS"8Z 8G882Z9T" 8C6ES9" T | suoo
¢6°GT L96€EF00" 79T00L0" | 004
9 ¢ 9LTLEOD” 9€28600° | 664
80°T £€68€ES0" 9806LS0" | usouod
€7°¢ €T68T€0° 76GELLO" | T ®xeIT
S
3 tIIg "Pas *JL0D | sxeIT
3snqoy |
*IIF P3IS)
16G9°0 = (9 ‘T n)IIod
7T0G°0 = TTRISA0
€988°0 = usdM3=q
G09T"0 = UuTy3lTM :bs-y
pT :oTgeTtaea dnoin
uoTSsS21691 (UTYITM) SI0D9JIS-POXTA
snTo °3F ‘004 g6A& usouoD T oieI[ SarIT boiix

SToa®T 9yl uo mJj -burtpesTstu AIsa sT uorienbs pedusIsIITIP 9Yl UO STO POTOOd

L9

‘peserq

pIemumop TTT3S ST 3ng

‘133139 SS0p «

9€16890"

€8VLEQ" -
90TL6LT"
9090%L0"

CEL6SSO” 000°0 76781
Tv2eLs0 - 0000 7 6-
€9LTLZO — 8%1°0 SP°T
- 6€L88LT — 00070 €L T
[Teazoqur " Juod %G6] [3]<a 3

(PT UT sx83SNTO 6HTT I0F pejsnlpe *Ixx

89TT"
169070
000070
8€°9¢€
862C

= S 300d
= paxenbs-9
= d < qoag
= (8p11 ‘€ )4
= SO JO Isqumny

(pT) 203807

LL6ZEOO"  PEPFZI0” | suoo
(peddoap) | 004

80€0500°  9EGELKO” | 664

92ZL2S0°  TL9ZILO® | usoUoOP

p0OTL9Z0"  €L9F9TT - | T ®aeITp

*IxE CPIS 390D | exeITp

3snqoy |
‘p3s)

uoTsssIbal IeSUTT

‘00& 664& usouoop T oieITP SaRITP Hox *

99

(pe3easusb ssniea buTssTtu
USdUOD P = USDUODDP

(po3ea8Usb senTea bursstu
°IeITP'T = T °IeITP

(po3erousb senTea bursstw
2IRIT'P = 2IBITD

67TT)
usb

8622)
usb

67TT)
usb

S9

6¥1°1

6¥1°1

6v1°l

6v1°1

N

(0v0") (950" (€507 (€50
498 9Cl” 8S0° 9L0° Uaouos

(50" (290" (ze0) (L207)
€ee 61C LLO 9ZI1 - 1=a.0f]
puog-oue[[a1y | (dd) AIPI[ood | A4 | (Ad) STO pajood | 1eA ‘[dxg

(¥) (¢) (2) (1
aunf] | 1A doQg
"+ 10 4 "uaouod L + 1Haupfid + 1o = aupfj
1109139

ony1oads-o3noa & yyim [opow drweui( opdwexy VI TAIV ALV @




CL

SuoO  :piepuels
uotienbs [eAST I0J SIUSWNIISUT
004°a 664°a usduOD'Q :pIEPUEIS
21e3T" (*/2) T :9dA3-WWD
uotienbs pPsOUSISIITP J10J SIUSWNIISUT

IL

*quedTITUbTS ATTEOT3ISTIRAS 4 °

8271587 € T8ISL"C 00070 LTIl 905028¢" 6T970€°€ | suoo pue aaT3Tsod o1 STQeTIBA USDUOD Y3l pue Per syl yloq ‘AIdd UYITM x °
€CSVTILO" €0TPPSO” 00070 87 FT GLVEVOO" €T€6290° | 004
967CET0" 9906200 - 0TZ"0 S¢°1 9TZTv00" STLTS00" | 664 -
Szheoee” 98€9€L0" 00070 08°¢ L0S66€E0° 90F6TST” | usduod YT oIeyTp 004 usduoop rsjuswunI3lsur
659000V " 1602522° 000°0 LO'9 pZI8¥S0"  GGE9ZEE” | 11 T °IeJTp :pajuUsSWNIISUI
| exeIT
........................................... -t i TLL8STO" 6758000 - 8L0°0  9L'T 6€92700°  TTTSL0OO® | suod
[Teazs3jur *3uod %G6] |z [<a z TIIF TpP3as "390D | ®xe3IT 6C26L€90" TLLGEBEOD" 00070 €18 72€900° GBETSO0" | 004
SEL69ET” VL6GSTO0" S§20°0 vz e STH950° 7582921 | ueouoop
s3Tnssx de3ls-auo €8290%¢" €L6€L60" 000°0  €5°€ PP86T90°  82ZT061Z° | 1 exe3yTp
0000°0 = ZTYD < qoag +
291y = (F)ZTU® PTEM L = s3jusWNI}SUT JO ISCUNN [TeAZ23Ul *JUOD %G6) |3 1<d 3 cIId *pIs  "390D | exe3ITP
1snqoy |
4 = Xeuw
z = bae (PT UT sI83SnTO 61T I03F peisnlpe "Ixd 'P3is)
z = uTw :dnoxb zad sqo
Ieek :oTgeRTIRA BWT] 62521 = ASW 3004
6VTT = sdnoxb o Iequny pT :eTgeTraea dnoin . = paxenbs-9
8622 = Sqo JO ISqunN UOTIBWTISS eiep-Toued OTWeudkp puog-oueTT9IY 000070 = d < goad
€0°¥C = (8p1T ‘¢ )4
00A 66& uUSDOUOD SIRIT PUOGEIX * 8622 = Sqo JO Isqumny uoTSsaIba1 (STSZ) SOTJeTIRA TRIUSWNIISUTL
‘yoeoxdde WWO puog PuUE OUBTTSIY 9Y3} 9SN MON x * (PT)x93SNTO ‘(Y[ @aeJ[p = [ ©IeITP) (00K uSdOUOOP I[P HoIAT *
0L 69
(epew sabueyd Te2I FTT)
00& IT Q0UT ®IeJTp = Y[ oIejTp ooe(dsi * (pojeIouUsb senTea BUTSSTW 867Z)
(senTea pe213TI {paumsse gx uotldo)
(pojeasusb senTes DHUTSSTW [phE) 66Ul o1eITpP 30Tpoad *
664 IT g6UT ©IBITP = YT oIeJTp usb -
(pojeasusb sentea buTssTW [HHE) 69L80CL" 70G0LGG" 00070 0€°GT T67LTIVO" LE968EY" | suoo
(senTea pe33TF ‘paunsse gqx uot3do) 279890 - 6902282"~ T00°0 2z e- €¥ZPPS0°  byZpGLI'- | usouUOOp
00uT eaeITp 30Tpead * Z056G0T" -  €16Z8ET"- 000°0  28'¥I-  LIFZ800'  L0ZTZZT'- | g ®IeyT
+
‘poTiad SWT1 ISYITS UT SIUSWNIISUT YeSM JO SOUSPTAS ON x ° [TeAToqUI "JUOD %G6] |31<a k! s1I1g "Pas *390D | T sxeITP
8L766€Z" 222v1L0" 000°0 €9°¢ STV62V0°  GL9GGT" | suoo 90821 = ASH 3004 GLLSES6TO" 8FTIT 6E£IG0€v 2z | Te3on
€PSECOT - LOV6T6C — 00070 80 ¥ 9€TEBYO" SLPTIL6T - | usouoop 9091°0 = paaenbs-y [py +
Z16v2T" 9G€0%20" 700°0 06°C L0LGZ0" 8ELYYLO" | € ®ae3T 129170 = paxenbs-y L9€00F9TO" 9FTT 20Z8V6L°8T | Tenprssy
TL8T8YO0 - S6VELST - 00070 69°€- 98T8L20" €89L20T°- | Z ®1B3IT 000070 = d < qoxg 789Y8LI8 T ¢ 69€69G€9°€ | TePOW
St 78011 = (9vIT ‘C )4 +
[TeAZS3UT *JUOD %G6] [31<a 3 tIId p3Is  "390D | T =xe3ITP 6VTT = sqo Jo IsqunN SW IpP ss | soanog
66A& JT usdUODP Z °IeJT [ °IeyTp Hbei *
20121 = ASH 3004 8LZ€90ST0" 8FTIT 9€¥9262°LT | Te3or
8.20°0 = peaxenbs-y [py + (po3easusb senTes HUTSSTW [FHE)
€0€0°0 = poxenbs-y L68YF9¥TO" GPTT 990¥89L°9T | Tenpissy 2IeJT €T = ¢ °xey[ usbh -
000070 = 4 < qoad TG9SPLYLT" € 2569€2vCS” | TepoW
€6°TT = (SPTIT ‘€ )4 + (pejeaausb sentea butsstu 8677)
6VTT = sqo 3o IaqunN SW IP ss | @oanog 21e3T°2T = ¢ °Iej[ ush -

00& IT usduOOpP ¢ oaRIT 7 oaeI[ T oaej[p box *

*suoTsseibax

obels-3saTJ buTsn sjuswnilsut Hburtieasusb ‘AT AIL «




Imbens/Wooldridge,AEA Lecture Notes 4, January 12

AEA Lectures Chicago, January 2012
Lecture 4, Monday, January 9, 1:00 pm-2:30 pm

Cluster Sampling and Difference-in-Differences
These notes consider estimation and inference with cluster samples and samples obtained
by stratifying the population. The main focus is on true cluster samples, although the case of
applying cluster-sample methods to panel data is treated, including recent work where the sizes
of the cross section and time series are similar. Wooldridge (2003, extended version 2006)

contains a survey, but more recent work is discussed here.

1. The Linear Model with Cluster Effects

This section considers linear models estimated using cluster samples (of which a panel data
set is a special case). For each group or cluster g, let {(Vgm,Xg,zem) : m = 1,..., Mg} be the
observable data, where M, is the number of units in cluster g, yq» IS a scalar response, x, is a
1 x K vector containing explanatory variables that vary only at the group level, and z,, is a

1 x L vector of covariates that vary within (as well as across) groups.

1.1 Specification of the Model

The linear model with an additive error is
Vem = 0+ Xgf+Zgmy +Vem,m = 1,... . Mg;2 =1,...,G. (1.1)

Our approach to estimation and inference in equation (1.1) depends on several factors,
including whether we are interested in the effects of aggregate variables (S) or
individual-specific variables (y). Plus, we need to make assumptions about the error terms. In

the context of pure cluster sampling, an important issue is whether the v, contain a common
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group effect that can be separated in an additive fashion, as in
Vem = Cg+Ugm,m = 1,..., My, (1.2)

where ¢, is an unobserved cluster effect and u,,, is the idiosyncratic error. (In the statistics
literature, (1.1) and (1.2) are referred to as a “hierarchical linear model.”) One important issue
is whether the explanatory variables in (1.1) can be taken to be appropriately exogenous.
Under (1.2), exogeneity issues are usefully broken down by separately considering c, and u .

Throughout we assume that the sampling scheme generates observations that are
independent across g. This assumption can be restrictive, particularly when the clusters are
large geographical units. We do not consider problems of “spatial correlation” across clusters,
although, as we will see, fixed effects estimators have advantages in such settings.

We treat two kinds of sampling schemes. The simplest case also allows the most flexibility
for robust inference: from a large population of relatively small clusters, we draw a large
number of clusters (G), where cluster g has M, members. This setup is appropriate, for
example, in randomly sampling a large number of families, classrooms, or firms from a large
population. The key feature is that the number of groups is large enough relative to the group
sizes so that we can allow essentially unrestricted within-cluster correlation. Randomly
sampling a large number of clusters also applies to many panel data sets, where the
cross-sectional population size is large (say, individuals, firms, even cities or counties) and the
number of time periods is relatively small. In the panel data setting, G is the number of
cross-sectional units and M, is the number of time periods for unit g.

A different sampling scheme results in data sets that also can be arranged by group, but is
better interpreted in the context of sampling from different populations are different strata

within a population. We stratify the population into into G > 2 nonoverlapping groups. Then,
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we obtain a random sample of size M, from each group. Ideally, the group sizes are large in
the population, hopefully resulting in large M,. This is the perspective for the “small G” case

in Section 1.3.
1.2. Large Group Asymptotics

In this section | review methods and estimators justified when the asymptotic
approximations theory is with The theory with G — oo and the group sizes, M,, fixed is well
developed,; see, for example, White (1984), Arellano (1987), and Wooldridge (2010, Chapters
10, 11). Here, the emphasis is on how one might wish to use methods robust to cluster
sampling even when it is not so obvious.

First suppose that the covariates satisfy
E(emlxg,zem) =0,m =1,... . Mg;g=1,...,G. (1.3)

For consistency, we can, of course, get by with zero correlation assumptions, but we use (1.3)
for convenience because it meshes well with assumptions concerning conditional second
moments. Importantly, the exogeneity in (1.3) only requires that z,,, and v, are uncorrelated.
In particular, it does not specify assumptions concerning v, and zg, for m # p. As we saw in
the linear panel data notes, (1.3) is called the “contemporaneous exogeneity” assumption when
m represents time. Allowing for correlation between v, and z,,,m # p is useful for some
panel data applications and possibly even cluster samples (if the covariates of one unit can
affect another unit’s response). Under (1.3) and a standard rank condition on the covariates,
the pooled OLS estimator, where we regress yg, on 1,xq,zgm,m = 1,...,Mg;g = 1,...,G, is
consistent for A = (a, B',7")’ (as G — o with M, fixed) and /G -asymptotically normal.
Without more assumptions, a robust variance matrix is needed to account for correlation

within clusters or heteroskedasticity in Var(vgn|xg,zem), Or both. When v, has the form in
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(1.2), the amount of within-cluster correlation can be substantial, which means the usual OLS

standard errors can be very misleading (and, in most cases, systematically too small). Write 7

as the M, x (1 + K + L) matrix of all regressors for group g. Then the

(1+K+L)x (1+K+ L) variance matrix estimator is

G 176 -1
m(iPOLS) = (Z W, Wg> (Z VeV W, ) (Z W,w, )
g=1 g=1

where V4 is the M, x 1 vector of pooled OLS residuals for group g. This asymptotic variance
is now computed routinely using “cluster” options.

Pooled OLS estimation of the parameters in (1.1) ignores the within-cluster correlation of
the vg,; even if the procedure is consistent (again, with G — o and the M, fixed), the POLS
estimators can be very inefficient. If we strengthen the exogeneity assumption to

EWen|xg,Zg) =0m=1,... Mg;g=1,...,G,
where Z, is the M, x L matrix of unit-specific covariates, then we can exploit the presence of
cg in (1.2) in a generalized least squares (GLS) analysis. With true cluster samples, (1.5) rules
out the covariates from one member of the cluster affecting the outcomes on another, holding
own covariates fixed. In the panel data case, (1.5) is the strict exogeneity assumption on
{zgm : m =1,...,M,} that we discussed in the linear panel data notes The standard random
effects approach makes enough assumptions so that the M, x M, variance-covariance matrix

of vy = (Ve1,Ve2,...,Ven,)" has the so-called “random effects” form,
Var(vg) = 6%y jm, + 0ilu,,

where jy, is the Mg x 1 vector of ones and 1, is the M, x M, identity matrix. In the standard

setup, we also make the “system homoskedasticity” assumption,

(1.4)

(1.5)

(1.6)
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Var(velxg, Zg) = Var(vg).

It is important to understand the role of assumption (1,7): it implies that the conditional
variance-covariance matrix is the same as the unconditional variance-covariance matrix, but it
does not restrict Var(vg); it can be any M, x M, matrix under (1.7). The particular random
effects structure on Var(v,) is given by (1.6). Under (1.6) and (1.7), the resulting GLS
estimator is the well-known random effects (RE) estimator.

The random effects estimator Az is asymptotically more efficient than pooled OLS under
(1.5), (1.6), and (1.7) as G — oo with the M, fixed. The RE estimates and test statistics are
computed routinely by popular software packages. Nevertheless, an important point is often
overlooked in applications of RE: one can, and in many cases should, make inference
completely robust to an unknown form of Var(ve|xg, Zs).

The idea in obtaining a fully robust variance matrix of RE is straightforward and we
essentially discussed it in the notes on nonlinear panel data models. Even if Var(velx,, Z;) does
not have the RE form, the RE estimator is still consistent and /G -asymptotically normal under
(1.5), and it is likely to be more efficient than pooled OLS. Yet we should recognize that the
RE second moment assumptions can be violated without causing inconsistency in the RE
estimator. For panel data applications, making inference robust to serial correlation in the
idiosyncratic errors, especially with more than a few time periods, can be very important.
Further, within-group correlation in the idiosyncratic errors can arise for cluster samples, too,

especially if underlying (1.1) is a random coefficient model,
Yem = O+ Xgf +ZgnVg+Vemm =1,...,.Mg;g=1,...,G.

By estimating a standard random effects model that assumes common slopes y, we effectively

(1.7)

(1.8)
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include z,, (v — ¥) in the idiosyncratic error; this generally creates within-group correlation
because zg (Y, — v) and zg, (v, — ) will be correlated for m # p, conditional on Z,. Also, the
idiosyncratic error will have heteroskedasticity that is a function of z,,. Nevertheless, if we
assume E(yqlXe, Zg) = E(ye) = y along with (1.5), the random effects estimator still
consistently estimates the average slopes, y. Therefore, in applying random effects to panel
data or cluster samples, it is sensible (with large G) to make the variance estimator of random
effects robust to arbitrary heteroskedasticity and within-group correlation.

One way to see what the robust variance matrix looks like for Az is to use the pooled OLS
characterization of RE on a transformed set of data. For each g, define
0, = 1 — {U[1 + M,(62/62)]+2, where 62 and 62 are estimators of the variances of ¢, and

ugm, respectively. Then the RE estimator is identical to the pooled OLS estimator of
Yem — ég)_/’g on(1- ég)l (1- ég)ngzgm - égzgam =1,... ;Mg;g =1,...,G;

see, for example, Hsiao (2003). For fully robust inference, we can just apply the fully robust
variance matrix estimator in (1.4) but on the transformed data.

With panel data, it may make sense to estimate an unrestricted version of Var(v,),
especially if G is large. Even in that case, it makes sense to obtain a variance matrix robust to
Var(vemlxe, Zg) #+ Var(vg), as the GEE literature does. One can also specify a particular
structure, such as an AR(1) model for the idiosyncratic errors. In any case, fully robust
inference is still a good idea.

In summary, with large G and relatively small ,, it makes sense to compute fully robust
variance estimators even if we apply a GLS procedure that allows Var(v,) to be unrestricted.

Nothing ever guarantees Var(vgm|xq, Zs) = Var(v,). Because RE imposes a specific structure

(1.9)
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on Var(vg), there is a strong case for making RE inference fully robust. When ¢, is in the error
term, it is even more critical to use robust inference when using pooled OLS because the usual
standard errors ignore within-cluster correlation entirely.

If we are only interested in estimating y, the “fixed effects” (FE) or “within” estimator is
attractive. The within transformation subtracts off group averages from the dependent variable

and explanatory variables:
Yem — Vg = Zen —Zg)y +Ugm —tigym =1,..., Mg, g =1,...,G,

and this equation is estimated by pooled OLS. (Of course, the x, get swept away by the
within-group demeaning.) Under a full set of “fixed effects” assumptions — which, unlike
pooled OLS and random effects, allows arbitrary correlation between ¢, and the z, —
inference is straightforward using standard software. Nevertheless, analogous to the random
effects case, it is often important to allow Var(ue|Z,) to have an arbitrary form, including
within-group correlation and heteroskedasticity. For panel data, the idiosyncratic errors can
always have serial correlation or heteroskedasticity, and it is easy to guard against these
problems in inference. Reasons for wanting a fully robust variance matrix estimator for FE
applied to cluster samples are similar to the RE case. For example, if we start with the model
(1.8) then (zgm — Zg) (v — v) appears in the error term. As we discussed in the linear panel data
notes, the FE estimator is still consistent if E(yg|zg1 —Zg,...,Zgm, —Zg) = E(Yg) = 7, an
assumption that allows y . to be correlated with z,. Nevertheless, ug,, ug, Will be correlated for

m # p. A fully robust variance matrix estimator is

G 176 -1
it - (B2 ) (Lraaz (L2
g=1 g=1

(1.10)

(1.11)
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where Z, is the matrix of within-group deviations from means and i, is the M, x 1 vector of
fixed effects residuals. This estimator is justified with large-G asymptotics.

One benefit of a fixed effects approach, especially in the standard model with constant
slopes but ¢, in the composite error term, is that no adjustments are necessary if the c, are
correlated across groups. When the groups represent different geographical units, we might
expect correlation across groups close to each other. If we think such correlation is largely
captured through the unobserved effect c,, then its elimination via the within transformation
effectively solves the problem. If we use pooled OLS or a random effects approach, we would
have to deal with spatial correlation across g, in addition to within-group correlation, and this
is a difficult problem.

The previous discussion extends immediately to instrumental variables versions of all
estimators. With large G, one can afford to make pooled two stage least squares (2SLS),
random effects 2SLS, and fixed effects 2SLS robust to arbitrary within-cluster correlation and
heteroskedasticity. Also, more efficient estimation is possible by applying generalized method

of moments (GMM); again, GMM is justified with large G.
1.3. Should we Use the “Large” G Formulas with “Large” M,?

Until recently, the standard errors and test statistics obtained from pooled OLS, random
effects, and fixed effects were known to be valid only as G —» oo with each M, fixed. As a
practical matter, that means one should have lots of small groups. Consider again formula
(1.4), for pooled OLS, when the cluster effect, c,, is left in the error term. With a large number
of groups and small group sizes, we can get good estimates of the within-cluster correlations —
technically, of the cluster correlations of the cross products of the regressors and errors — even

if they are unrestricted, and that is why the robust variance matrix is consistent as G - oo with
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M, fixed. In fact, in this scenario, one loses nothing in terms of asymptotic local power (with
local alternatives shrinking to zero at the rate G™2) if ¢, is not present. In other words, based
on first-order asymptotic analysis, there is no cost to being fully robust to any kind of
within-group correlation or heteroskedasticity. These arguments apply equally to panel data
sets with a large number of cross sections and relatively few time periods, whether or not the
idiosyncratic errors are serially correlated.

What if one applies robust inference in scenarios where the fixed M,, G — oo asymptotic
analysis not realistic? Hansen (2007) has recently derived properties of the cluster-robust
variance matrix and related test statistics under various scenarios that help us more fully
understand the properties of cluster robust inference across different data configurations. First
consider how his results apply to true cluster samples. Hansen (2007, Theorem 2) shows that,
with G and M, both getting large, the usual inference based on (1.4) is valid with arbitrary
correlation among the errors, v, within each group. Because we usually think of v, as
including the group effect c,, this means that, with large group sizes, we can obtain valid
inference using the cluster-robust variance matrix, provided that G is also large. So, for
example, if we have a sample of G = 100 schools and roughly M, = 100 students per school,
and we use pooled OLS leaving the school effects in the error term, we should expect the
inference to have roughly the correct size. Probably we leave the school effects in the error
term because we are interested in a school-specific explanatory variable, perhaps indicating a
policy change.

Unfortunately, pooled OLS with cluster effects when G is small and group sizes are large
fall outside Hansen’s theoretical findings: the proper asymptotic analysis would be with G

fixed, M, — oo, and persistent within-cluster correlation (because of the presence of ¢, in the
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error). Hansen (2007, Theorem 4) is aimed at panel data where the time series dependence
satisfies strong mixing assumptions, that is, where the correlation within each group g is
weakly dependent. Even in this case, the variance matrix in (1.4) must be multiplied by

G/(G - 1) and inference based on the 71 distribution. (Conveniently, this adjustment is
standard in Stata’s calculation of cluster-robust variance matrices.) Interestingly, Hansen finds,
in simulations, that with G = 10 and M, = 50 for all g, using the adjusted robust variance
matrix estimator with critical values from the 751 distribution produces fairly small size
distortions. But the simulation study is special (one covariate whose variance is as large as the
variance of the composite error).

We probably should not expect good properties of the cluster-robust inference with small
groups and very large group sizes when cluster effects are left in the error term. As an
example, suppose that G = 10 hospitals have been sampled with several hundred patients per
hospital. If the explanatory variable of interest is exogenous and varies only at the hospital
level, it is tempting to use pooled OLS with cluster-robust inference. But we have no
theoretical justification for doing so, and reasons to expect it will not work well. In the next
section we discuss other approaches available with small G and large M.

If the explanatory variables of interest vary within group, FE is attractive for a couple of
reasons. The first advantage is the usal one about allowing ¢, to be arbitrarily correlated with
the z,4,,. The second advantage is that, with large M,, we can treat the ¢, as parameters to
estimate — because we can estimate them precisely — and then assume that the observations are
independent across m (as well as g). This means that the usual inference is valid, perhaps with
adjustment for heteroskedasticity. Interestingly, the fixed G, large M, asymptotic results in

Theorem 4 of Hansen (2007) for cluster-robust inference apply in this case. But using

10
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cluster-robust inference is likely to be very costly in this situation: the cluster-robust variance
matrix actually converges to a random variable, and 7 statistics based on the adjusted version of
(1.11) — that is, multiplied by G/(G — 1) — have an asymptotic z¢-1 distribution. Therefore,
while the usual or heteroskedasticity-robust inference can be based on the standard normal
distribution, the cluster-robust inference is based on the 71 distribution (and the cluster-robust
standard errors may be larger than the usual standard errors). With small G, inference based on
cluster-robust statistics could be very conservative when it need not be. (Also, Hansen’s
Theorem 4 is not completely general, and may not apply with heterogeneous sampling across
groups.)

In summary, for true cluster sample applications, cluster-robust inference using pooled
OLS delivers statistics with proper size when G and M, are both moderately large, but they
should probably be avoided with large M, and small G. When cluster fixed effects are
included, the usual inference is often valid, perhaps made robust to heteroskedasticity, and is
likely to be much more powerful than cluster-robust inference.

For panel data applications, Hansen’s (2007) results, particularly Theorem 3, imply that
cluster-robust inference for the fixed effects estimator should work well when the cross section
(NV) and time series (7) dimensions are similar and not too small. If full time effects are allowed
in addition to unit-specific fixed effects — as they often should — then the asymptotics must be
with N and 7 both getting large. In this case, any serial dependence in the idiosyncratic errors
is assumed to be weakly dependent. The similulations in Bertrand, Duflo, and Mullainathan
(2004) and Hansen (2007) verify that the fully robust cluster-robust variance matrix works
well.

There is some scope for applying the fully robust variance matrix estimator when N is

11
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small relative to 7 when unit-specific fixed effects are included. Unlike in the true cluster
sampling case, it makes sense to treat the idiosyncratic errors as correlated with only weakly
dependent. But Hansen’s (2007, Theorem 4) does not allow time fixed effects (because the
asymptotics is with fixed N and 7 — oo, and so the inclusion of time fixed effects means adding
more and more parameters without more cross section data to estimate them). As a practical
matter, it seems dangerous to rely on omitting time effects or unit effects with panel data.

Hansen’s result that applies in this case requires N and 7" both getting large.

2. Estimation with a Small Number of Groups and
Large Group Sizes

We can summarize the findings of the previous section as follows: fully robust inference
justified for large G (V) and small M, (7) can also be relied on when M, (7) is also large,
provided G (N) is also reasonably large. However, whether or not we leave cluster
(unobserved) effects in the error term, there are good reasons not to rely on cluster-robust
inference when G (&) is small and M, (7) is large.

In this section, we describe approaches to inference when G is small and the A, are large.
These results apply primarily to the true cluster sample case, although we will draw on them
for difference-in-differences frameworks using pooled cross sections in a later set of notes.

In the large G, small M, case, it often makes sense to think of sampling a large number of
groups from a large population of clusters, where each cluster is relatively small. When G is
small while each M, is large, this thought experiment needs to be modified. For most data sets
with small G, a stratified sampling scheme makes more sense: we have defined G groups in the
population, and we obtain our data by randomly sampling from each group. As before, M, is

the sample size for group g. Except for the relative dimensions of G and M,, the resulting data

12
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set is essentially indistinguishable from that described in Section 1.2.

The problem of proper inference when A, is large relative to G was brought to light by
Moulton (1990), and has been recently studied by Donald and Lang (2007). DL focus on
applications that seem well described by the stratified sampling scheme, but their approach
seems to imply a different sampling experiment. In particular, they treat the parameters
associated with the different groups as outcomes of random draws. One way to think about the
sampling in this case is that a small number of groups is drawn from a (large) population of
potential groups; therefore, the parameters common to all members of the group can be viewed
as random. Given the groups, samples are then obtained via random sampling within each
group.

To illustrate the issues considered by Donald and Lang, consider the simplest case, with a

single regressor that varies only by group:

Vem = 0+ Pxg + Cq + Ugnm (2.1)
=8¢+ Pxg+ugm, m=1,....Mg;g=1,...,G. (2.2)

Notice how (2.2) is written as a model with common slope, S, but intercept, o, that varies
across g. Donald and Lang focus on (2.1), where ¢, is assumed to be independent of x, with
zero mean. They use this formulation to highlight the problems of applying standard inference
to (2.1), leaving c, as part of the composite error term, vy, = cg + tgn. We know this is a bad
idea even in the large G, small M, case, as it ignores the persistent correlation in the errors
within each group. Further, from the discussion of Hansen’s (2007) results, using
cluster-robust inference when G is small is likely to produce poor inference.

One way to see the problem with the usual inference in applying standard inference is to

note that when M, = Mforallg = 1,..., G, the pooled OLS estimator, B, is identical to the

13
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“between” estimator obtained from the regression
yeonlxeg=1,...,G. (2.3)

Conditional on the xg,ﬁ inherits its distribution from {v, : g = 1,..., G}, the within-group
averages of the composite errors vg, = cg + ugn. The presence of ¢, means new observations
within group do not provide additional information for estimating 8 beyond how they affect
the group average, y. In effect, we only have G useful pieces of information.

If we add some strong assumptions, there is a solution to the inference problem. In addition
to assuming M, = M for all g, assume c,|x, ~Normal(0,52) and assume
Ugm|Xg,cg ~ Normal(0,02). Then v, is independent of x, and ¥, ~ Normal(0, 2 + o2/M) for
all g. Because we assume independence across g, the equation

Ve=0+Pxg+ve,g=1,...,G (2.4)

satisfies the classical linear model assumptions. Therefore, we can use inference based on the
tg—2 distribution to test hypotheses about S, provided G > 2. When G is very small, the
requirements for a significant 7 statistic using the ¢¢_ distribution are much more stringent then
if we use the #ps,+a1,+.. +m,—2 distribution — which is what we would be doing if we use the usual
pooled OLS statistics. (Interestingly, if we use cluster-robust inference and apply Hansen’s
results — even though they do not apply — we would use the 71 distribution.)

When x, isa 1 x K vector, we need G > K + 1 to use the z_x-1 distribution for inference.
[In Moulton (1990), G = 50 states and x, contains 17 elements]

As pointed out by DL, performing the correct inference in the presence of ¢, is not just a
matter of correcting the pooled OLS standard errors for cluster correlation — something that

does not appear to be valid for small G, anyway — or using the RE estimator. In the case of

14



Imbens/Wooldridge,AEA Lecture Notes 4, January 12

common group sizes, there is only estimator: pooled OLS, random effects, and the between
regression in (2.4) all lead to the same ﬁ The regression in (2.4), by using the z5_x-1
distribution, yields inference with appropriate size.

We can apply the DL method without normality of the u,,, if the common group size M is
large: by the central limit theorem, i, will be approximately normally distributed very
generally. Then, because c, is normally distributed, we can treat v, as approximately normal
with constant variance. Further, even if the group sizes differ across g, for very large group
sizes i1, will be a negligible part of v,: Var(v,) = 62 + 62/M,. Provided c, is normally
distributed and it dominates v, a classical linear model analysis on (2.4) should be roughly
valid.

The broadest applicability of DL’s setup is when the average of the idiosyncratic errors, i,
can be ignored - either because o2 is small relative to 62, M, is large, or both. In fact,
applying DL with different group sizes or nonnormality of the ug, is identical to ignoring the
estimation error in the sample averages, y.. In other words, it is as if we are analyzing the
simple regression p, = a + Px, + cg using the classical linear model assumptions (where y is
used in place of the unknown group mean, p,). With small G, we need to further assume c, is
normally distributed.

If z,,, appears in the model, then we can use the averaged equation
Ve=0+xf+Zgy +Ve,g=1,...,G, (2.5)

provided G > K+ L + 1. If ¢, is independent of (x,,Z,) with a homoskedastic normal
distribution and the group sizes are large, inference can be carried out using the ¢6-x—-1

distribution.
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The DL solution to the inference problem with small G is pretty common as a strategy to
check robustness of results obtained from cluster samples, but often it is implemented with
somewhat large G (say, G = 50). Often with cluster samples one estimates the parameters
using the disaggregated data and also the averaged data. When some covariates that vary
within cluster, using averaged data is generally inefficient. But it does mean that standard
errors need not be made robust to within-cluster correlation. We now know that if G is
reasonably large and the group sizes not too large, the cluster-robust inference can be
acceptable. DL point out that with small G one should think about simply using the group
averages in a classical linear model analysis.

For small G and large M,, inference obtained from analyzing (2.5) as a classical linear
model will be very conservative in the absense of a cluster effect. Perhaps in some cases it is
desirable to inject this kind of uncertainty, but it rules out some widely-used staples of policy
analysis. For example, suppose we have two populations (maybe men and women, two
different cities, or a treatment and a control group) with means p,,g = 1,2, and we would like
to obtain a confidence interval for their difference. In almost all cases, it makes sense to view
the data as being two random samples, one from each subgroup of the population. Under
random sampling from each group, and assuming normality and equal population variances,
the usual comparison-of-means statistic is distributed exactly as #s,+1,-2 under the null
hypothesis of equal population means. (Or, we can construct an exact 95% confidence interval
of the difference in population means.) With even moderate sizes for M1 and M, the ¢,1u1,-2
distribution is close to the standard normal distribution. Plus, we can relax normality to obtain
approximately valid inference, and it is easy to adjust the  statistic to allow for different

population variances. With a controlled experiment the standard difference-in-means analysis
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is often quite convincing. Yet we cannot even study this estimator in the DL setup because
G = 2. The problem can be seen from (2.2): in effect, we have three parameters, 61, 82, and 3,
but only two observations.

DL criticize Card and Krueger (1994) for comparing mean wage changes of fast-food
workers across two states because Card and Krueger fail to account for the state effect (New
Jersery or Pennsylvania), c,, in the composite error, v,,. But the DL criticism in the G = 2
case is no different from a common question raised for any difference-in-differences analyses:
How can we be sure that any observed difference in means is due entirely to the policy
change? To characterize the problem as failing to account for an unobserved group effect is

not necessarily helpful.

To further study the G = 2 case, recall that ¢, is independent of x, with mean zero. In other

words, the expected deviation in using the simple comparison-of-means estimator is zero. In
effect, it estimates
2 — 1 = 02+ P)—01=(@+c2+p)—(a+c1) = p+(c2—c1).

Under the DL assumptions, c2 — ¢1 has mean zero, and so estimating it should not bias the
analysis. DL work under the assumption that f is the parameter of interest, but, if the
experiment is properly randomized — as is maintained by DL — it is harmless to include the ¢,
in the estimated effect.

Consider now a case where the DL approach can be applied. Assume there are G = 4
groups with groups one and two control groups (x1 = x, = 0) and two treatment groups
(x3 = x4 = 1). The DL approach would involve computing the averages for each group, y,,
and running the regression y, on 1,x,, g = 1,...,4. Inference is based on the ¢, distribution.

The estimator J in this case can be written as
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B = @s+7a)l2= (1 +72)l2. (2.7)

(The pooled OLS regression using the disaggregated data results in the weighted average
(p3y3 + pava) — (piva + p2y2), Where p1 = Ma1l(M1 + M3), p2 = Mol(My + M>),
p3 = Msl(Ms + My), and pa = Mal(M3 + My) are the relative proportions within the control
and treatment groups, respectively.) With 3 written as in (2.7), we are left to wonder why we
need to use the ¢, distribution for inference. Each y, is usually obtained from a large sample —
M, = 30 or so is usually sufficient for approximate normality of the standardized mean — and
so 3, when properly standardized, has an approximate standard normal distribution quite
generally.

In effect, the DL approach rejects the usual inference based on group means from large
sample sizes because it may not be the case that 41 = p2 and us = p4. In other words, the
control group may be heterogeneous as might be the treatment group. But this in itself does not

invalidate standard inference applied to (2.7). In fact, if we define the object of inference as

T = (u3 + pa)l2 — (u1 + p2)/2, (2.8)

which is an average treatment effect of sorts, then ﬁ is consistent for 7 and (when properly
scaled) asymptotically normal as the M, get large.

Equation (2.7) hints at a different way to view the small G, large M, setup. In this
particular application, we estimate two parameters, ¢ and S, given four moments that we can
estimate with the data. The OLS estimates from (2.4) in this case are minimum distance
estimates that impose the restrictions y; = u2 = aand puz = us = a + p. If we use the 4 x 4
identity matrix as the weight matrix, we get B as in (2.7) and & = (51 + y2)/2. Using the MD

approach, we see there are two overidentifying restrictions, which are easily tested. But even if
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we reject them, it simply implies at least one pair of means within each of the control and
treatment groups is different.

With large group sizes, and whether or not G is especially large, we can put the general
problem into an MD framework, as done, for example, by Loeb and Bound (1996), who had

G = 36 cohort-division groups and many observations per group. For each group g, write
Vem = Og + Zgm¥g + Ugm,m = 1,..., Mg,

where we assume random sampling within group and independent sampling across groups.
We make the standard assumptions for OLS to be consistent (as M, - «) and

[M,, -asymptotically normal; see, for example, Wooldridge (2010, Chapter 4). The presence

of group-level variables x, in a “structural” model can be viewed as putting restrictions on the

intercepts, d,, in the separate group models in (2.9). In particular,
o =a+x.p,g=1,...,G,

where we think of x, as fixed, observed attributes of heterogeneous groups. With K attributes
we must have G > K + 1 to determine a and S. If M, is large enough to estimate the o,
precisely, a simple two-step estimation strategy suggests itself. First, obtain the Sg, along with
7 ¢, from an OLS regression within each group. If G = K + 1 then, typically, we can solve for
0 = (&, ") uniquely in terms of the G x 1 vector &:. = X~15, where X is the

(K + 1) x (K + 1) matrix with g” row (1,x,). If G > K+ 1then, in a second step, we can use a
minimum distance approach, as described in Wooldridge (2010, Section 14.5). If we use as the
weighting matrix /¢, the G x G identity matrix, then the minimum distance estimator can be

computed from the OLS regression

A

ogonlx.,g=1,...,G.
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Under asymptotics such that M, = p,M where 0 < p, < 1 and M — oo, the minimum distance
estimator @ is consistent and /A -asymptotically normal. Still, this particular minimum
distance estimator is asymptotically inefficient except under strong assumptions. Because the
samples are assumed to be independent, it is not appreciably more difficult to obtain the
efficient minimum distance (MD) estimator, also called the “minimum chi-square” estimator.

First consider the case where z,, does not appear in the first stage estimation, so that the Sg
is just y7,, the sample mean for group g. Let 62 denote the usual sample variance for group g.
Because the y, are independent across g, the efficient MD estimator uses a diagonal weighting
matrix. As a computational device, the minimum chi-square estimator can be computed by
using the weighted least squares (WLS) version of (2.11), where group g is weighted by M,/62
(groups that have more data and smaller variance receive greater weight). Conveniently, the
reported ¢ statistics from the WLS regression are asymptotically standard normal as the group
sizes M, get large. (With fixed G, the WLS nature of the estimation is just a computational
device; the standard asymptotic analysis of the WLS estimator has G — .). The minimum
distance approach works with small G provided G > K + 1 and each M, is large enough so that
normality is a good approximation to the distribution of the (properly scaled) sample average
within each group.

If zg, is present in the first-stage estimation, we use as the minimum chi-square weights the
inverses of the asymptotic variances for the g intercepts in the separate G regressions. With
large M,, we might make these fully robust to heteroskedasticity in E(u2,|zgx) using the White

(1980) sandwich variance estimator. At a minimum we would want to allow different o2 even

if we assume homoskedasticity within groups. Once we have the @(Sg) — which are just the
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squared reported standard errors for the Sg — we use as weights 1/Zza\r(3g) in the
computationally simple WLS procedure. We are still using independence across g in obtaining
a diagonal weighting matrix in the MD estimation.

An important by-product of the WLS regression is a minimum chi-square statistic that can
be used to test the G — K — 1 overidentifying restrictions. The statistic is easily obtained as the
weighted sum of squared residuals, say SSR,,. Under the null hypothesis in (2.10),

SSR,, ~ x%_x_4 as the group sizes, M,, get large. If we reject Ho at a reasonably small
significance level, the x, are not sufficient for characterizing the changing intercepts across
groups. If we fail to reject Hp, we can have some confidence in our specification, and perform
inference using the standard normal distribution for ¢ statistics for testing linear combinations
of the population averages.

We might also be interested in how one of the slopes in y, depends on the group features,

xg. Then, we simple replace Sg with, say 7,1, the slope on the first element of z,,. Naturally,

we would use l//Tva\r(f/gl) as the weights in the MD estimation.
The minimum distance approach can also be applied if we impose y, = y for all g, as in
the original model (1). Obtaining the Sg themselves is easy: run the pooled regression
Ven ONdlg,d2g,...,dGgzgm,m = 1,...,Mg;ig=1,...,G (2.11)
where dl,,d2,,...,dGg are group dummy variables. Using the Sg from the pooled regression
(2.12) in MD estimation is complicated by the fact that the Sg are no longer asymptotically
independent; in fact, Sg = yg — Zg¥, Where 7 is the vector of common slopes, and the presence

of 7 induces correlation among the intercept estimators. Let ¥ be the G x G estimated

(asymptotic) variance matrix of the G x 1 vector 5. Then the MD estimator is
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0 = (X'V-1X)~1x'I-15 and its estimated asymptotic variance is (X' -1X)L. If the OLS
regression (2.11) is used, or the WLS version, the resulting standard errors will be incorrect
because they ignore the across group correlation in the estimators. (With large group sizes the
errors might be small; see the next section.)

Intermediate approaches are available, too. Loeb and Bound (1996) (LB for short) allow
different group intercepts and group-specific slopes on education, but impose common slopes
on demographic and family background variable. The main group-level covariate is the
student-teacher ratio. Thus, LB are interested in seeing how the student-teach ratio affects the
relationship between test scores and education levels. LB use both the unweighted estimator
and the weighted estimator and find that the results differ in unimportant ways. Because they
impose common slopes on a set of regressors, the estimated slopes on education (say 1) are
not asymptotically independent, and perhaps using a nondiagonal estimated variance matrix
(which would be 36 x 36 in this case) is more appropriate; but see Section 3.

If we reject the overidentifying restrictions, we are essentially concluding that
O0g = a0+ xgf + cq, Where ¢, can be interpreted as the deviation from the restrictions in (2.10)
for group g. As G increases relative to K, the likelihood of rejecting the restrictions increases.
One possibility is to apply the Donald and Lang approach, which is to analyze the OLS
regression in (2.11) in the context of the classical linear model (CLM), where inference is
based on the ¢5_x-1 distribution. Why is a CLM analysis justified? Since
Sg =0g+ OP(M?’Z), we can ingore the estimation error in Sg for large M, (Recall that the
same “large M, assumption underlies the minimum distance approach.) Then, it is as if we
are estimating the equation 6, = a +x,f + cg,g = 1,...,G by OLS. If the ¢, are drawn from a

normal distribution, classical analysis is applicable because ¢, is assumed to be independent of
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xg. This approach is desirable when one cannot, or does not want to, find group-level
observables that completely determine the 5,. It is predicated on the assumption that the other
factors in ¢, are not systematically related to x,, a reasonable assumption if, say, x, is a
randomly assigned treatment at the group level, a case considered by Angrist and Lavy (2002).
Beyond the treatment effect case, the issue of how to define parameters of interest appears
complicated, and deserves further study. In the example with G = 4 and two control and two
treatment groups, it can be shown that defining the treatment effect as (2.8) is the same as

defining the parameters of interest as 0 = (X'X)LX'8, where X is the 4 x 2 matrix

x| (2.12)

and p = 7 is the second element of 6. Generally, if it makes sense to define the object of
interest as 6 = (X'X)~1X’8, and if we estimate 6 as § = (X'X)"1X'5, then JM (0 — 0) inherits its
asymptotic distribution from that of /M (6 — &), where we assume, as before, that M, = p.M

with 0 < p, < 1and M — oo. Such a setting implies

L —

Avar(9) = (X' X)X [Avar(8)]X(X' X)L, (2.13)

3. What if G and M, are Both “Large”?

Section 1 reviewed methods appropriate for a large number of groups and relatively small
group sizes. Section 2 considered two approaches appropriate for large group sizes and a small

number of groups. The DL and minimum distance approaches use the large group sizes
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assumption differently: in its most applicable setting, DL use the large M, assumption to
ignore the first-stage estimation error entirely, with all uncertainty coming from unobserved
group effects, while the asymptotics underlying the MD approach is based on applying the
central limit theorem within each group. Not surprisingly, more flexibility is afforded if G and
M, are both “large.”

For example, suppose we adopt the DL specification (with an unobserved cluster effect),
Og=a+xgf+ce,g=1,...,G, (3.1

and G = 50 (say, states in the U.S.). Further, assume first that the group sizes are large enough
(or the cluster effects are so strong) that the first-stage estimation error can be ignored. Then,
it matters not whether we impose some common slopes or run separate regressions for each
group (state) in the first stage estimation. In the second step, we can treat the group-specific
intercepts, 64,¢ = 1,..., G, as independent “observations” to be used in the second stage. This
means we apply regression (2.10) and apply the usual inference procedures. The difference
now is that with G = 50, the usual ¢ statistics have some robustness to nonnormality of the c,,
assuming the CLT approximation works well With small G, the exact inference was based on
normality of the c,.

Loeb and Bound (1996), with G = 38, essentially use regression (2.10), but with estimated
slopes as the dependent variable in place of estimated intercepts. As mentioned in Section 2,
LB impose some common slopes across groups, which means the estimated parameters are
dependent across group. The minimum distance approach without cluster effects is one way to
account for the dependence. Alternatively, one can simply adopt the DL perspective and just

assume the estimation error is swamped by c,; then standard OLS analysis is approximately
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justfied.

4. The Traditional Difference-in-Differences
Methodology

Since the work by Ashenfelter and Card (1985), the use of difference-in-differences
methods has become very widespread. The simplest set up is one where outcomes are observed
for two groups for two time periods. One of the groups is exposed to a treatment in the second
period but not in the first period. The second group is not exposed to the treatment during
either period. In the case where the same units within a group are observed in each time period,
the average gain in the second (control) group is substracted from the average gain in the first
(treatment) group. This removes biases in second period comparisons between the treatment
and control group that could be the result from permanent differences between those groups, as
well as biases from comparisons over time in the treatment group that could be the result of
trends. We will treat the panel data case in Section 4.

With repeated cross sections, we can write the model for a generic member of any of

groups as
y = Bo+ P1dB+ 60d2 +51d2 «dB + u 4.2)

where y is the outcome of interest, d2 is a dummy variable for the second time period. The

dummy variable dB captures possible differences between the treatment and control groups

prior to the policy change. The time period dummy, d2, captures aggregate factors that would

cause changes in y even in the absense of a policy change. The coefficient of interest, 61,

multiplies the interaction term, d2 - dB, which is the same as a dummy variable equal to one
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for those observations in the treatment group in the second period. The
difference-in-differences estimate is
51 = (p2 —¥81) — (a2 — Far). (4.2)
Inference based on even moderate sample sizes in each of the four groups is straightforward,
and is easily made robust to different group/time period variances in the regression framework.

In some cases a more convincing analysis of a policy change is available by further
refining the definition of treatment and control groups. For example, suppose a state
implements a change in health care policy aimed at the elderly, say people 65 and older, and
the response variable, y, is a health outcome. One possibility is to use data only on people in
the state with the policy change, both before and after the change, with the control group being
people under 65 (or, say, 55 to 64), and the treatment group being people 65 and older. The
potential problem with this DD analysis is that other factors unrelated to the state’s new policy
might affect the health of the elderly relative to the younger population, for example, changes
in health care emphasis at the federal level. A different DD analysis would be to use another
state as the control group and use the elderly from the non-policy state as the control group.
Here, the problem is that changes in the health of the elderly might be systematically different
across states due to, say, income and wealth differences, rather than the policy change.

A more robust analysis than either of the DD analyses described above can be obtained by
comparing the DD estimate for the state where the policy was implemented with the same
estimate from a control state. If we again label the two time periods as one and two, let B
represent the state implementing the policy, and let £ denote the group of elderly, then an

expanded verson of (4.1) is
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y = Bo + B1dB + BodE + BadB + dE + 5od2 + 51d2 « dB + 52d2 « dE + 65d2 +dB - dE +u  (4.3)

The coefficient of interest is now o3, the coefficient on the triple interaction term, d2 - dB - dE.

The OLS estimate &3 can be expressed as

53 = [Pz — 78E1) — Gone —Vena)] — [Fare = Far1) — Gane — Fani)], (4.4)

where the A4 subscript means the state not implementing the policy and the NV subscript
represents the non-elderly. The estimate in (4.4) is usually called the
difference-in-difference-in-differences (DDD) estimate. The first term in [-] is the DD estimate
obtained by using the non-elderly as the control group and the time periods before and after the
policy change. To ensure that this DD estimate is not simply picking up different trends in
health outcomes between the old and young, the DDD estimate subtracts off the same
estimated difference in trends for the control state (the second term in [-]).

When implemented as a regression, a standard error for 53 is easily obtained, including a
heteroskedasticity-robust standard error. As in the DD case, it is straightforward to add

additional covariates to (4.3) and inference robust to heteroskedasticity.
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5. How Should We View Uncertainty in DD Settings?

The standard approach just described assumes that all uncertainty in inference enters
through sampling error in estimating the means of each group/time period combination. This
approach has a long history in statistics, as it is equivalent to analysis of variance. Recently,
different approaches have been suggest that focus on different kinds of uncertainty — perhaps
in addition to sampling error in estimating means. Recent work by Bertrand, Duflo, and
Mullainathan (2004), Donald and Lang (2007), Hansen (2007a,b), and Abadie, Diamond, and
Hainmueller (2007) argues for additional sources of uncertainty. In fact, in most cases the
additional uncertainty is assumed to swamp the sampling error in estimating group/time period
means. We already discussed the DL approach in the cluster sample notes, although we did not
explicitly introduce a time dimension. One way to view the uncertainty introduced in the DL
framework — and a perspective explicitly taken by ADH — is that our analysis should better
reflect the uncertainty in the quality of the control groups.

Before we turn to a general setting, it is useful to ask whether introducing more than
sampling error into DD analyses is necessary, or desirable. As we discussed in the cluster
sample notes, the DL approach does not allow inference in the basic comparison-of-mean case
for two groups. While the DL estimate is the usual difference in means, the error variance of
the cluster effect cannot be estimated, and the ¢ distribution is degenerate. It is also the case
that the DL approach cannot be applied to the standard DD or DDD cases covered in Section 1.
We either have four different means to estimate or six, and the DL regression in these cases
produces a perfect fit with no residual variance. Should we conclude nothing can be learned in
such settings?

Consider the example from Meyer, Viscusi, and Durbin (1995) on estimating the effects of
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benefit generosity on length of time a worker spends on workers’ compensation. MVD have a
before and after period, where the policy change was to raise the cap on covered earnings. The
treatment group is high earners, and the control group is low earners — who should not have
been affected by the change in the cap. Using the state of Kentucky and a total sample size of
5,626, MVD find the DD estimate of the policy change is about 19.2% (longer time on
workers’ compensation). The ¢ statistic is about 2.76, and the estimate changes little when
some controls are added. MVD also use a data set for Michigan. Using the same DD approach,
they estimate an almost identical effect: 19.1%. But, with “only” 1,524 observations, the ¢
statistic is 1.22. It seems that, in this example, there is plenty of uncertainty in estimation, and
one cannot obtain a tight estimate without a fairly large sample size. It is unclear what we gain
by concluding that, because we are just identifying the parameters, we cannot perform
inference in such cases. In this example, it is hard to argue that the uncertainty associated with
choosing low earners within the same state and time period as the control group somehow

swamps the sampling error in the sample means.

6. General Settings for DD Analysis: Multiple Groups
and Time Periods

The DD and DDD methodologies can be applied to more than two time periods. In the first
case, a full set of time-period dummies is added to (4.1), and a policy dummy replaces d2 - dB;
the policy dummy is simply defined to be unity for groups and time periods subject to the
policy. This imposes the restriction that the policy has the same effect in every year, and
assumption that is easily relaxed. In a DDD analysis, a full set of dummies is included for each

of the two kinds of groups and all time periods, as well as all pairwise interactions. Then, a
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policy dummy (or sometimes a continuous policy variable) measures the effect of the policy.
See Gruber (1994) for an application to mandated maternity benefits.
With many time periods and groups, a general framework considered by BDM (2004) and

Hansen (2007b) is useful. The equation at the individual level is
YVigt = )vt + Qg + thﬁ + Zigt'Ygt + Vgt + Uigt, i = l, s sMgt; (61)

where i indexes individual, g indexes group, and ¢ indexes time. This model has a full set of
time effects, A,, a full set of group effects, a,, group/time period covariates, x,, (these are the
policy variables), individual-specific covariates, z,,,;, unobserved group/time effects, v, and
individual-specific errors, u;,. We are interested in estimating p. Equation (6.1) is an example
of a multilevel model.

One way to write (6.1) that is useful is
Vigt = 5gt + Zigt'Ygl + Uijgt, I = 11 s aMgt; (62 )

which shows a model at the individual level where both the intercepts and slopes are allowed
to differ across all (g, ) pairs. Then, we think of 5, as
Ogt = At + g + XagiP + Var. (6.3)

Equation (6.3) is very useful, as we can think of it as a regression model at the group/time
period level.

As discussed by BDM, a common way to estimate and perform inference in (6.1) is to
ignore v, in which case the observations at the individual level are treated as independent.
When v, is present, the resulting inference can be very misleading. BDM and Hansen (2007Db)
allow serial correlation in {vg : t = 1,2,..., T} and assume independence across groups, g.

A simple way to proceed is to view (6.3) as ultimately of interest. We observe X, A, is
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handled with year dummies,and a, just represents group dummies. The problem, then, is that
we do not observe §.,. But we can use the individual-level data to estimate the d,, provided
the group/time period sizes, M, are reasonably large. With random sampling within each
(g, 1), the natural estimate of 5 is obtained from OLS on (6.2) for each (g, ) pair, assuming
that £(z;,ui:) = 0. (In most DD applications, this assumption almost holds by definition, as
the individual-specific controls are included to improve estimation of §,,.) If a particular model
of heteroskedasticity suggests itself, and E(u|z;e;) = 0 is assumed, then a weighted least
squares procedure can be used. Sometimes one wishes to impose some homogeneity in the
slopes — say, Yo =Y Oreveny, =vy- in which case pooling can be used to impose such
restrictions. In any case, we proceed as if the M,, are large enough to ignore the estimation
error in the Sgt; instead, the uncertainty comes through v, in (6.3). Hansen (2007b) considers
adjustments to inference that accounts for sampling error in the Sgt, but the methods are more
complicated. The minimum distance approach we discussed in the cluster sampling notes,
applied in the current context, effectively drops v, from (6.3) and views g = A, + @ + X
as a set of deterministic restrictions to be imposed on d,,. Inference using the efficient
minimum distance estimator uses only sampling variation in the Sg,, which will be independent
across all (g, ) if they are separately estimated, or which will be correlated if pooled methods
are used.

Because we are ignoring the estimation error in Sgt, we proceed simply by analyzing the

panel data equation
Sop = Ai+0g+XeP+ve, t=1,....,T,g=1,...,G, (6.4)

where we keep the error as v, because we are treating 5 o and d4 interchangeably. If we
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assume that We can apply the BDM findings and Hansen (2007a) results directly to this
equation. Namely, if we estimate (6.4) by OLS — which means full year and group effects,
along with x,, — then the OLS estimator has satisfying properties as G and 7 both increase,
provided {vg : t = 1,2,..., T} is a weakly dependent (mixing) time series for all g. The
simulations in BDM and Hansen (2007a) indicate that cluster-robust inference, where each
cluster is a set of time periods, work reasonably well when {v,,} follows a stable AR(1) model
and G is moderately large.

Hansen (2007b), noting that the OLS estimator (the fixed effects estimator) applied to (6.4)
is inefficient when v, is serially uncorrelated (and possibly heteroskedastic), proposes feasible
GLS. As is well known, if T'is not large, estimating parameters for the variance matrix
Q, = Var(vg), Where vg is the 7 x Lerror vector for each g, is difficult when group effects
have been removed. In other words, using the FE residuals, v, to estimate €2, can result in
severe bias for small 7. Solon (1984) highlighted this problem for the homoskedastic AR(1)
model. Of course, the bias disappears as T — oo, and regression packages such as Stata, that
have a built-in command to do fixed effects with AR(1) errors, use the usual AR(1) coefficient

p, obtained from
f/gtonf/g,tfl,t=2,...,T,g=l,...,G. (65)

As discussed in Wooldridge (2003) and Hansen (2007b), one way to account for the bias in p
is to still use a fully robust variance matrix estimator. But Hansen’s simulations show that this
approach is quite inefficient relative to his suggestion, which is to bias-adjust the estimator p
and then use the bias-adjusted estimator in feasible GLS. (In fact, Hansen covers the general
AR(p) model.) Hansen derives many attractive theoretical properties of his the estimator.An

iterative bias-adjusted procedure has the same asymptotic distribution as p in the case p should
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work well: G and T both tending to infinity. Most importantly for the application to DD
problems, the feasible GLS estimator based on the iterative procedure has the same asymptotic
distribution as the GLS etsimator when G — oo and T'is fixed. When G and T are both large,
there is no need to iterated to achieve efficiency.

Hansen further shows that, even when G and T are both large, so that the unadjusted AR
coefficients also deliver asymptotic efficiency, the bias-adusted estimates deliver higher-order
improvements in the asymptotic distribution. One limitation of Hansen’s results is that they
assume {X, : t = 1,..., T} are strictly exogenous. We know that if we just use OLS — that is,
the usual fixed effects estimate — strict exogeneity is not required for consistency as 7' - .
GLS, in exploiting correlations across different time periods, tends to exacerbate bias that
results from a lack of strict exogeneity. In policy analysis cases, this is a concern if the policies
can switch on and off over time, because one must decide whether the decision to implement
or remove a program is related to past outcomes on the response.

With large G and small 7, one can estimate an unstricted variance matrix Q, and proceed
with GLS - this is the approach suggested by Kiefer (1980) and studied more recently by
Hausman and Kuersteiner (2005). It is equivalent to dropping a time period in the
time-demeaned equation and proceeding with full GLS (and this avoids the degeneracy in the
variance matrix of the time-demeaned errors). Hausman and Kuersteiner show that the Kiefer
approach works pretty well when G = 50 and 7' = 10, although substantial size distortions
exist for G = 50 and 7' = 20.

Especially if the M, are not especially large, we might worry about ignoring the estimation
error in the Sg,. One simple way to avoid ignoring the estimation error in Sg[ is to aggregate

equation (6.1) over individuals, giving
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)_}gt = )yt+ag+thB+2gt'Y+Vgt+1/_lgt, t = 1,..,T,g: 1,...,G. (66)

Of course, this equation can be estimated by fixed effects, too, and fully robust inference is
available using Hansen (2007a) because the composite error, {ry = vg + ilg}, is weakly
dependent. Fixed Effects GLS using an unrestricted variance matrix can be used with large G
and small 7. The complication with using specific time series model for the error is the
presence of i, With different My, Var(iig) is almost certainly heteroskedastic (and might be
with the same M, of course). So, even if we specify, say, an AR(1) model vy, = pvgi1 + egr,
the variance matrix of r, is more complicated. One possibility is to just assume the composite
error, r,, follows a simple model, implement Hansen’s methods, but then use fully robust
inference.

The Donald and Land (2007) approach applies in the current setting by using finite sample
analysis applied to the pooled regression (6.4). However, DL assume that the errors {v.} are
uncorrelated across time, and so, even though for small G and T it uses small
degrees-of-freedom in a ¢ distribution, it does not account for uncertainty due to serial

correlation in {vy, : ¢t =1,...,T}.
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Imbens/Wooldridge, AEA Lecture Notes 6, January '12

AEA Lectures Chicago, January 2012
Lecture 6, Monday, January 9, 4:30 pm to 5:30 pm

Nonlinear Panel Data Models

These notes summarize some recent, and perhaps not-so-recent, advances in the estimation
of nonlinear panel data models. Research in the last 10 to 15 years has branched off in two
directions. In one, the focus has been on parameter estimation, possibly only up to a common
scale factor, in semiparametric models with unobserved effects that can be arbitrarily
correlated with covariates. Another branch has focused on estimating partial effects when
restrictions are made on the distribution of heterogeneity conditional on the history of the
covariates. These notes attempt to lay out the pros and cons of each approach, paying

particular attention to the tradeoff in assumptions and the quantities that can be estimated.

1. Basic Issues and Quantities of Interest

Most microeconomic panel data sets are best characterized as having few time periods and
(relatively) many cross section observations. Therefore, most of the discussion in these notes
assumes 7 is fixed in the asymptotic analysis while N is increasing. We assume random
sampling in the cross section, that is, {(x;,y«) : t = 1,..., T}, isarandom draw of 7 time
periods for observation i. We take the response y;, to be a scalar for simplicity.

If we are not concerned about traditional (contemporaneous) endogeneity, then we are

typically interested in the conditional distribution

D(yitlxit, ci)v (1'1)
where ¢; is the onobserved heterogeneity for observation i drawn along with the observables.

Often we are interested in a particular feature of this distribution, such as E(y;|x;, ¢;), or a
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conditional median. Generally, with nonlinear models, we must deal with the issue of
summarizing the effects of the observed covariates while accounting for the presense of ¢;. For
example, in the case of a mean, how do we summarize the partial effects when they depend on
the unobserved heterogeneity? Let E(y.|x; = x;,¢; = ¢) = m,(x,,¢) be the mean function. If

x,; 1S continuous, then the partial effect can be defined as

amt(xt, C)

ej(Xt’c) = Oxyj
b

(1.2)

For discrete (or continuous) variables, we can instead look at discrete changes in the mean
function. Either way, a key question is: How do we account for unobserved ¢? If we want to
estimate magnitudes of effects, we need to know enough about the distribution of ¢; so that we
can either insert meaningful values for ¢, or we can average the partial effects across the
distribution of ¢,. As an example of the former, suppose we can identify p_ = E(c;). Then we
can compute the partial effect at the average (PEA),
0,(x1,1,)- (1.3)

Of course, to estimate (1.3), we need to estimate the function m, and the mean of ¢;. If we
know more about the distribution of ¢;, we can insert different quantiles, for example, or a
certain number of standard deviations from the mean.

As an alternative to plugging in specific values for ¢, we can average the partial effects

across the distribution of ¢;:
APE(x,) = E¢,[0;(xs,¢)], (1.4)

the so-called average partial effect (APE). The difference between (1.3) and (1.4) can be

nontrivial for nonlinear mean functions. The definition in (1.4) dates back at least to
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Chamberlain (1984), and is closely related to the notion of the average structural function

(ASF) [Blundell and Powell (2003)]. The ASF is defined as
ASF(X[) = Eci[m[(X[,C[)]. (15)

Assuming the derivative passes through the expectation results in (1.5), the average partial
effect. Of course, computing a discrete change in the ASF always gives the corresponding
APE. A useful feature of APEs is that they can be compared across models, where the
functional form of the mean or the distribution of the heterogeneity can be different. In
particular, APEs in general nonlinear models are comparable to the estimated coefficients in a
standard linear model.

Semiparametric methods that are totally silent about the distribution of ¢;, unconditionally
or conditional on (x;1,...,X,r), cannot generally deliver estimates of PAEs or APEs essentially
by design. Instead, an index structure is usually imposed so that parameters can be consistently

estimated. A common setup with scalar heterogeneity is
m;(x;, C) = G(Xtﬁ + C), (16)

where, say, G(-) is strictly increasing and continuously differentiable (and, in some cases, is

known, and in others, is not). The partial effects are proportional to the parameters:

0;(xi,¢) = Big(x:Pp +0), (1.7)
where g(-) is the derivative of G(-). Therefore, if we can estimate f; then we can estimate the
sign of the partial effect, and even the relative effects of any two continuous variables. But,
even if G(-) is specified (the more common case), the magnitude of the effect evidently cannot
be estimated without making assumptions about the distribution of ¢;: the size of the scale

factor for a random draw i, g(x,p + ¢;), depends on ¢,;. Without knowing something about the
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distribution of ¢; we cannot generally locate g(x; + ¢;) or average out the heterogeneity.
Returning to the general case, Altonji and Matzkin (2005) focus on what they call the /ocal
average response (LAR) as opposed to the APE or PAE. The LAR at x, for a continuous

variable x is

amt(xt, C)
09 gy ), (18)

where H,(c|x,) denotes the cdf of D(c;|x;; = x;). This is a “local” partial effect because it
averages out the heterogeneity for the slice of the population described by the vector of
observed covariates, x,. The APE, which, by comparison, could be called a “global average
response,” averages out over the entire distribution of ¢;. See also Florens, Heckman, Meghir,
and Vytlacil (2007).

It is important to see that the previous definitions of partial effects does not depend on the
nature of the variables in x, (except for whether it makes sense to use the calculus
approximation or use changes). In particular, x, can include lagged dependent variables and
lags of other variables, which may or may not be strictly exogenous. Unfortunately, we cannot

identify the APEs, or even relative effects in index models, without some assumptions.

2. Exogeneity Assumptions on the Covariates

Ideally, we would only have to specify a model for D(y|x;, ¢;), or some feature, to
estimate parameters and partial effects. Unfortunately, it is well known that specifying a full
parametric model is not sufficient for identifying either the parameters of the model or the
partial effects defined in Section 1. In this section, we consider two useful exogeneity

assumptions on the covariates.
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It is easiest to deal with estimation under a strict exogeneity assumption. The most useful

definition of strict exogeneity for nonlinear panel data models is

D()/n|Xi1, e ,XiT,Ci) = D(Vn|Xn,Ci), (2-1)
which means that x;., » # ¢, does not appear in the conditional distribution of y; once x;, and ¢;
have been counted for. Chamberlain (1984) labeled (2.1) strict exogeneity conditional on the

unobserved (or latent) effects ¢;; as discussed by Chamberlain, (2.1) is much more plausible

than if we did not condition on ¢;. Sometimes, a conditional mean version is sufficient:

EWulxi,...,xir,¢;) = EQulXi, €:), (2.2)
which we already saw for linear models. (In other cases a condition stated in terms of
conditional medians is more convenient.) Assumption (2.1), or its conditional mean version,
are less restrictive than if we do not condition on ¢;. Indeed, it is easy to see that, if (2.1) holds
and D(c;|x;) depends on x;, then strict exogeneity without conditioning on c;,
Diulxa,...,xir) = D(vilx;), cannot hold. Unfortunately, both (2.1) and (2.2) rule out lagged
dependent variables, as well as other situations where there may be feedback from
idiosyncratic changes in y;, to future movements in x;., » > ¢. (Essentially the same problem
shows up in linear models, but there it is more easily dealt with.) Neverthless, the conditional
strict exogeneity assumption underlies the most common estimation methods for nonlinear
models.

More natural is sequential exogeneity conditional on the unobserved effects, which we can

state generally as

D(yit|xil,---;xit,ci) = D()}itlxitlci)l (2'3)

or, sometimes, in terms of specific features of the distribution. Assumption (2.3) allows for
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lagged dependent variables and does not restrict feedback. Unfortunately, (2.3) is more
difficult to work with than (2.1) for general nonlinear models.

Because we condition on x;, neither (2.1) nor (2.3) allows for contemporaneous
endogeneity of one or more elements of x;,, where, say, x;; is correlated with unobserved,
time-varying unobservables that affect y;;, or where x;; is simultaneously determined along

with y;,. Such cases will be covered in later notes on control function methods.

3. Conditional Independence Assumption

The exogeneity conditions stated in Section 2 generally do not restrict the dependence in
the responses, {y: : t = 1,..., T}, although in special cases (2.3) does. Often, a conditional

independence assumption is explicitly imposed. We can write the condition generally as
T
Dy, ... ,yiT|Xi, ci) = HD()/iz|Xi, ci).
=1

Equation (3.1) simply means that, conditional on the entire history {x;; : t = 1,..., T} and the
unobserved heterogeneity c;, the responses are independent across time. One way to think

about (3.1) is that time-varying unobservables are independent over time. Because (3.1)

conditions on x;, it is useful only in the context of the strict exogeneity assumption (2.1). Then,

conditional independence can be written as
T
Dy, ...,yirlxi,¢;) = HD(Vit|Xit, Ci).
=1

In a parametric context, the conditional independence assumption reduces our task to

specifying a model for D(y|x, ¢;), and then determining how to treat the unobserved

(3.1)

(3.2)
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heterogeneity, c;. In random effects and correlated RE frameworks, conditional independence
can play a critical role in being able to estimate the parameters and the distribution of ¢;. We
could get by with less restrictive assumptions by parameterizing the dependence in the joint
distribution D(ya,...,yir|x;, ¢;) — something that is sometimes done — but that increases
computational burden. As it turns out, conditional independence plays no role in estimating
APEs for a broad class of models. [That is, we do not need to place restrictions on
D(ya,...,yir[xi,c:).] Before we can study estimation, we must discuss the critical issue of the

dependence between ¢; and x;.

4. Assumptions about the Unobserved
Heterogeneity

The modern approach to panel data analysis with micro data treats the unobserved
heterogeneity as random draws along with the observed data, and that is the view taken here.
Nevertheless, in order to avoid making distributional assumptions about ¢;, one sometimes

treats the c; as parameters to estimate, and so we allow for that possibility in our discussion.

Random Effects
For general nonlinear models, what we call the random effects assumption is independence
between ¢; and x; = (xi1,...,Xi7):
D(cilxa,...,xir) = D(c;). (4.1)
If we combine this assumption with a model for the conditional mean, m,(x;, ¢), then the APESs

are actually nonparametrically identified. (And, in fact, we do not need to assume strict or

sequential exogeneity to use a pooled estimation method, or to use just a single time period.) In
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fact, if E(yiu|xi,c;) = m,(Xi,¢;) and D(c;|x;) = D(e;), then the APEs are obtained from
ri(x;) = EQulxi = X4). (4.2)

(The argument is a simple application of the law of interated expectations; it is discussed in
detail in Wooldridge (2005a).) In principle, E(y:|x;) can be estimated nonparametrically, and
we only need a single time period to identify the partial effects for that time period.

In some leading cases (for example random effects probit and Tobit models with
heterogeneity normally distributed and homoskedastic), if we want to obtain partial effects for
different values of ¢, we must assume more: the strict exogeneity assumption (2.1), the
conditional independence assumption (3.1), and the random effects assumption (4.1) — with a
parametric distribution for D(c¢;) — are typically sufficient. We postpone this discussion

because it takes us into the realm of specifying parametric models.

Correlated Random Effects

A correlated random effects framework allows dependence between c; and x;, but the
dependence in restricted in some way. In a parametric setting, we specify a distribution for
D(ci|xi1,...,X;7p), as in Mundlak (1978), Chamberlain (1982), and many subsequent authors;
see Wooldridge (2010). For many models, including probit and Tobit, one can allow
D(ci|xi1,...,x;p) to depend in a “nonexchangeable” manner on the time series of the
covariates; Chamberlain’s correlated random effects probit model does this. But the
distributional assumptions that lead to simple estimation — namely, homoskedastic normal with

a linear conditional mean — are restrictive. But it is aslo possible to assume
D(Cl‘|X,') = D(Cl‘|)_(,‘) (43)

without specifying D(c;|X;) or restricting any feature of this distribution. We will see in the
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next section that (4.3) is very powerful.

We can go further. For example, suppose that we think the heterogeneity c; is correlated
with features of the covariate history other than just the time average. Altonji and Matzkin
(2005) allow for X; in equation (4.3) to be replaced by other functions of {x;; : t = 1,...,T},
such as sample variances and covariance. These are examples of “exchangeable” functions of
{x; :t=1,...,T}, say, w; — that is, statistics whose value is the same regardless of the
ordering of the x;,. Non-exchangeable functions can be used, too. For example, we might think
that ¢; is correlated with individual-specific trends, and so we define w; to include the intercept
and slope from the unit-specific regressions x;,; on 1, ¢t,¢t = 1,..., T (for T > 3); we can also add
the error variance from this individual specific regression if we have a sufficient number of

time periods. Regardless of how we choose w;, the key condition is
D(cilx;) = D(ciw;). (4.4)
Practically, we need to specify w; and then establish that there is enough variation in

{x; : t=1,..., T} separate from w; in order to identify either parameters or, more like,

average partial effects; this will be clear in the next section.

Fixed Effects

Unfortunately, the label “fixed effects” is used in different ways by different researchers
(and, sometimes, by the same researcher). The traditional view is that a fixed effects
framework meant ¢;, i = 1,..., N were treated as parameters to estimate. This view is still
around, and, when researchers say they estimated a nonlinear panel data model by “fixed
effects,” they sometimes mean the ¢; were treated as parameters to estimate along with other

parameters (whose dimension does not change with N). As is well known, except in special



Imbens/Wooldridge, AEA Lecture Notes 6, January '12

cases, estimation of the c; generally introduces an “incidental parameters” problem. (More on
this later when we discuss estimation methods.) Subject to computational feasibility, the
approach that treats the c; as parameters is widely applicable. The practical question is whether
the stance of treating the c; as parameters delivers “good” estimates of the population
parameters and the partial effects.

Rather than meaning the ¢; are parameters to estimate, the “fixed effects” label can mean
that ¢; is random but D(c,|x;) is unrestricted. Even in that case, there are different approaches
to estimation of parameters. One is to specify a joint distribution D(y,...,y|x;, ¢;) such that a

sufficient statistic, say s;, can be found such that

DWi,...,yiulXi,€i,8:) = Dy, ..., vilXi, 8i), (4.5)
and where the latter distribution still depends on the parameters of interest in a way that
identifies them. In most cases, the conditional independence assumption (3.1) is maintained,
although one conditional MLE is known to have robustness properties: the so-called “fixed

effects” Poisson estimator. We cover that in Section 7.

5. Nonparametric Identification of Average Partial
and Local Average Effects

Before considering identification and estimation of parameters in parametric models, it is
useful to ask which quantities, if any, are identified without imposing parametric assumptions.
Not surprisingly, there are no known results on nonparametric identificiation of partial effects
evaluated at specific values of ¢, such as p_, — except, of course, when the partial effects do not

depend on c. Interestingly, identification can fail even under a full set of strong parametric

10
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assumptions. For example, in the probit model with unobserved heterogeneity,
Py = 1x,¢) = O(xB + ¢), (5.1
where x is 1 x K and includes unity, the partial effect for a continuous variable x; is simply
Bio(xB + ¢). Assuming E(c) = 0, which is without loss of generality when x1 = 1, the partial
effect at the mean of ¢ is simply §;#(xp). Suppose we make the stronger assumption that c|x
~Normal(0,52). Then it is easy to show (see Wooldridge (2010, Chapter 15)) that
Py = 1|x) = O(xB/(1 + c2)?), (5.2)
which means that only the scaled parameter vector B, = B/(1 + 02)Y2 is identified. Therefore,
B;¢(xP) is evidently unidentified. (The fact that probit of y on x estimates B rather than B has
been called the “attenuation bias” that results from omitted variables in the context of probit,
even when the omitted variable is independent of the covariates and normally distributed. As
mentioned earlier more generally, the average partial effects are obtained directly from
P(y = 1|x), and, in fact, are given by B.,¢(xB,). As discussed in Wooldridge (2010, Chapter
15), B,¢(xB.) can be larger or smaller in magnitude than the PEA B;¢(xB): |B.I< |B;] but
p(xB,) = $(xB).)
A related example is due to Hahn (2001), and is related to the nonidentification results of
Chamberlain (1993). Suppose that x; is a binary indicator (for example, a policy variable).

Consider the unobserved effects probit model for two time periods,
P(y[t = 1|X,’,C,’) = <D(/3xl~, +C,'), t=1,2. (53)

As discussed by Hahn, § is not known to be identified in this model, even under the
conditional independence assumption (2.1) and the random effects assumption

D(ci|x;) = D(c;). But the average partial effect, which in this case is an average treatment

11



Imbens/Wooldridge, AEA Lecture Notes 6, January '12

effect, is simply 7 = E[O(S + ¢;)] — E[®(c;)]. By the general result cited earlier, 7 is
consistently estimated (in fact, unbiasedly estimated) by using a difference of means for the
treated and untreated groups, for either time period. (If treatment is only in the second time
period, as in Hahn (2001), then the difference must be for the second time period.) In fact, as
discussed in Wooldridge (2005a), identification of the APE holds if we replace ® with an
unknown function G and allow D(c;|x;) = D(c,|X;). But the parameters are still not identified.
The previous examples raise the following question: Are we focusing too much on
parameters in nonlinear models with unobserved heterogeneity? The answer seems to be yes,
but with qualifications. Consider a third example, due to Wooldridge (2005c). The binary
variable y is determined by the index model y = 1[xp + u > 0], where u|x
~Normal(0, exp(2x18)), where x; is a subset of x that does not contain an intercept. This
model is often called a heteroskedastic probit model. Of course, B and § are estimable by MLE
because P(y = 1|x) = ®[exp(—x18)xP]. However, the APE for, say, the continuous variable x;
IS not obtained by differentiating P(y = 1|x) with respect to x;; in fact, as is well known, this
derivative can have a sign different from the sign of g;. Instead, the average structural function
is consistently estimated by
N
ASF(x) = {Nl D ofexp(—xud)xP] }
i=1
and the partial derivative with respect to x; always has the same sign as [3,-. Notice how the
ASF averages across the argument x;; in the heteroskedasticity function. That comes about
because we can write ASF(x) = Ex,{E(1[xP +u; > 0]|xi1)} = E{D[exp(—x18)xP]}. The
point of this example is that in this case the parameters actually give us the APEs up to the

same, positive factor (which depends on the parameters and x), and so the sign of the ; gives

12
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us the direction of the effect on the APE, and ratios of parameters on continuous variables
provide the relative APEs. By contrast, if we blindly differentiate ®[exp(—x18)xp] with respect
to x; and x; appears in x1, the resulting expression is not the APE. In other words, parameters
tell us more than derivatives in this case. Of course, we will prefer to take derivatives of the
appropriate function in (5.4), thereby getting consistent estimates of the APEs. See Wooldridge
(2005c) for further discussion of this kind of example, including the negative finding that the is
no way to distinguish between the heteroskedastic probit model and a model with random
slope coefficients. (And, in the latter case, we do obtain the APEs by differentiating P(y = 1|x)
with respect to x;.)

Returning to the panel data case, we can establish identification of average partial effects
much more generally. Assume only that the strict exogeneity assumption (2.1) holds along
with D(c;|x;) = D(ci|X;). These two assumptions are sufficient to identify the APEs. To see

why, note that the average structural function at time ¢ can be written as

ASF,(x;) = E¢,[m/(x,,¢;)] = Ex,{E[m/(x,,¢)|X:]} Ex [r/(x:,X,)], (5.4)
where r,(x,,X;) = E[m,(x,,¢;)[X;]. It follows that, given an estimator 7,(+, -) of the function
r:(+,+), the ASF can be estimated as
N
ASFi(x)) = N 3 #(xi, %), (5.5)
i=1
and then we can take derivatives or changes with respect to the entries in x,. Notice that (5.4)
holds without the strict exogeneity assumption (2.1) or the assumption D(c;|x;) = D(c/|X;).

However, these assumptions come into play in our ability to estimate (-, -). If we combine

(2.1) and (4.3) we have

13
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E(aulxi) = E[E(yulx;, ¢i)|xi] = E[m(Xi, €i)|x;] = Imt(xit;c)dF(clxi)

= [ mixu OAF(elR)) = ro(xin 0, (5.6)

where F(c|x;) denotes the cdf of D(c;|x;) (which can be a discrete, continuous, or mixed
distribution), the second equality follows from (2.1), the fourth equality follows from
assumption (4.3), and the last equality folllows from the definition of r,(-, ) Of course,
because E(y«|x;) depends only on (x;, X;), we must have
Eulxi, Xi) = ri(Xiu, X). (5.7)

Further, {x;; : t = 1,...,T} is assumed to have time variation, and so x;, and X, can be used as
separate regressors even in a fully nonparametric setting.

Altonji and Matskin (2005).use this idea more generally, and focus on estimating the local
average response. Wooldridge (2005a) used D(c;|x;) = D(c;|X;) generally in the case x; is

discrete, in which case a full nonparametric analysis is easy. When
D(C[lX,’) = D(C[lW,’) (58)

for w; a function of x;, Altonji and Matzkin (2005) show that the LAR can be obtained as

| OriXe W) 4 (wix,), (5.9)

ﬁx,j

where r(x,,w) = E(vilxi = X, w; = w) and K,(w]|x,) is the cdf of D(w;|x;; = x;). Altonji and
Matskin demonstrate how to estimate the LAR based on nonparametric estimation of
E(vu|xi;, w;) followed by “local” averaging, that is, averaging or(y|x;, w;)/0x, over
observations i with x; “close” to x,.

This analysis demonstrates that APEs are nonparametrically identified under the

conditional mean version of strict exogeneity, E(yi|x;,¢;) = E(y«|xi, ¢;), and (5.8), at least for
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time-varying covariates if w; is restricted in some way. In fact, we can identify the APEs for a
single time period with just one year of data on y. We only need to obtain w; (with w; = X;)
the leading case) and, in effect, include it as a control. Of course, efficiency would be gained

by assuming some stationarity across ¢ and using a pooled method.

6. Dynamic Models

General models with only sequentially exogenous variables are difficult to deal with.
Arellano and Carrasco (2003) consider probit models. Wooldridge (2000) suggests a strategy
the requires modeling the dynamic distribution of the variables that are not strictly exogenous.

Much more is known about models with lagged dependent variables and otherwise strictly

exogenous variables. So, we start with a model for
D(ylziy; ;10 20, Yoo t = 1,..., T, (6.1)
which we assume also is D(y,|z;,y,, 1,---,¥:1, Y, €;) Where z; is the entire history

{z; : t=1,...,T}. This is the sense in which the z; are strictly exogenous.

Suppose this model depends only on (zi.,y;, 4, ¢;), S0 fi(y |z, ¥4, ¢;0). The joint density of

(V1,2 Y;p) Oiven (y,g,z;,¢;) IS
T
Hﬁ(yt|zt’y1_1’C;e)' (62)
t=1

The problem with using this for estimation is the presence of ¢; along with the initial condition,
Y- Several approaches have bee suggestd: (i) Treat the ¢, as parameters to estimate (incidental
parameters problem, although recent research has attempted to reduce the asymptotic bias in

the partial effects). (ii) Try to estimate the parameters without specifying conditional or
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unconditional distributions for ¢;. (Available in some special cases covered below, but other
restrictions are needed. And, generally, cannot estimate partial effects.). (iii) Find or, more
practically, approximate D(y ,|c;,z;) and then model D(c;|z;). After integrating out ¢; we
obtain the density for D(y,,y;.---,¥;71Z;) and we can use MLE (conditional on z;), (iv) Model
D(cily o, ;). After integrating out ¢; we obtain the density for D(y 4, ...,¥,7¥0.Zi), and we can
use MLE (conditional on (y,y,z;)). As shown by Wooldridge (2005b), in some leading cases —
probit, ordered probit, Tobit, Poisson regression — there is a density 4(cly,,z) that mixes with
the density f(y;, ...,y |y, z ¢) to produce a log-likelihood that is in a common family and
carried out by standard software.

If m,(x,,c¢,0) is the mean function E(y/|x,, ¢) for a scalar y,, then average partial effects are

easy to obtain. The average structural function is
ASF(x:) = Eemi(xi,e,0)] = E{ [ [ m(xi e, 0)h(elvo,zim)de [|vo,z: .

The term inside the brackets, say r.(x;,vi0,2:,0,y) is available, at least in principle, because
m,() and () have been specified. Often, they have simple forms, in fact. Generally, it can be
simulated. In any case, ASF(x,,0) is consistently estimated by

T

ASF(x;) = N3 ri(xoyio,2i,0,9).

=1
Partial derivatives and differences with respect to elements of x, (which, remember, can
include y,-1) can be computed. With large N and small 7, the panel data bootstrap can be used

for standard errors and inference.

7. Applications to Specific Models
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We now turn to some common parametric models and highlight the difference between
estimation partial effects at different values of the heterogeneity and estimating average partial
effects. An analysis of Tobit models follows in a very similar way to those in the following

two sections. See Wooldridge (2010, Chapter 17) and Honoré and Hu (2004).

7.1 Binary and “Fractional” Response Models

We start with the standard specification for the unobserved effects (UE) probit model,

which is
Py = 1xi,ci)) = X +ci), t=1,...,T, (7.2)

where x;; does not contain an overall intercept but would usually include time dummies. We
cannot identify p or the APEs without further assumptions. The traditional RE probit models
imposes a strong set of assumptions: strict exogeneity, conditional serial independence, and
independence between c; and x; with ¢; ~Normal(u., 52). Under these assumptions, B and the
parameters in the distribution of ¢; are identified and are consistently estimated by full MLE
(conditional on x;).

We can relax independence between ¢; and x; using the Chamberlain-Mundlak device

under conditional normality:
ci =y +XE+ a;,a;x; ~Normal(0,52), (7.2)

where the time average is often used to save on degrees of freedom. We can relax (7.2) and

allow Chamberlain’s (1980) more flexible device:
ci=y+x&+a =y +xp +...+xir&, +a; (7.3)

Even when the &, seem to be very different, the Mundlak restriction can deliver similar
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estimates of the other parameters and the APEs. (In the linear case, they both produce the usual
FE estimator of B.)
If we still assume conditional serial independence then all parameters are identified. We

can estimate the mean of ¢; as fic = y + (N* 2.7, %, )€ and the variance as
62=¢ (N 1YY, %i%:) €+ 62. Of course, c; is not generally normally distributed unless %/ is.
The approximation might get better as 7" gets large. In any case, we can plug in values of ¢ that
are a certain number of estimated standard deviations from fi., say fi. + 6.

The APEs are identified from the ASF, which is consistently estimated as

N
ASF(x;) = N1 Y d(xB, + vra + X,) (7.4)
i=1

where, for example, ﬁa = B/(1 + 62)Y2. The derivatives or changes of KS\F(X;) with respect to
elements of x, can be compared with fixed effects estimates from a linear model. Often, if we
also average out across x;, the linear FE estimates are similar to the averaged effects.

As we discussed generally in Section 5, the APEs are defined without the conditional serial

T
independence assumption. Without D(y1, ..., yir|Xi,¢i) = HD(yi,|Xi,,c[), we can still estimate
=1
the scaled parameters because
P(yit = 1|X,‘) = (I)(XitBa + Y, + ii&a)’ (75)

and so pooled probit consistently estimates the scaled parametes. (Time dummies have been
supressed for simplicity.) Now we have direct estimates of B, w,, and § , and we insert those
directly into (7.4).

Using pooled probit can be inefficient for estimating the scaled parameters, whereas the
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full MLE is efficient but not (evidently) robust to violation of the conditional serial
independence assumption. It is possible to estimate the parameters more efficiently than pooled
probit that is still consistent under the same set of assumptions. One possibility is minimum
distance estimation. That is, estimate a separate models for each ¢, and then impose the
restrictions using minimum distance methods. (This can be done with or without the Mundlak
device.)

A different approach is to apply the so called “generalized estimating equations” (GEE)
approach. Briefly, GEE applied to panel data is essentially weighted multivariate nonlinear
least squares (WMNLS) with explicit recognition that the weighting matrix might not be the
inverse of the conditional variance matrix. In most nonlinear panel data models, obtaining the
actual matrix Var(y,|x;) is difficult, if not impossible, because integrating out the heterogeneity
does not deliver a closed form. The GEE approach uses Var(y;|x;) implied by the specific

distribution — in the probit case, we have the correct conditional variances,

Var(yulx;) = @(xiP, + v +X:E )1 - OXiB, + v +X:E )] = vir. (7.6)

The “working” correlation matrix oftenusually specified as “exchangeable,

Corr(ei,ei|x;) *“ = "p, (7.7)

where e;, = [yu — ®(xiB, + v + X:E,)]vi” is the standardized error. Or, each pair (z,s) is

allowed to have its own correlation but which is assumed to be independent of x;
(“unstructured”). The conditional correlation Corr(e;, eis|x;) is not constant, but that is the
working assumption. The hope is to improve efficiency over the pooled probit estimator while
maintaining the robustness of the pooled estimator. (The full RE probit estimator is not robust

to serial dependence.) A robust sandwich matrix is easily computed provided the conditional
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mean function (in this case, response probability) is correctly specified.

Because the Bernoulli log-likelihood is in the linear exponential family (LEF), exactly the
same methods can be applied if 0 < y;, < 1 —that is, y; is a “fractional” response — but where
the model is for the conditional mean: E(y|xi,c;) = ®(xip + ¢;). Pooled “probit” or minimum
distance estimation or GEE can be used. Now, however, we must make inference robust to
Var(yi|xi,X;) not having the probit form. (There are cases where Var(y|x,X;) is proportional
to (7.6), and so it still makes sense to use the probit quasi-log-likelihood. Pooled nonlinear
regression is another possibility or weighted multivariate nonlinear regression are also possible
and a special case of GEE.)

A more radical suggestion, but in the spirit of Altonji and Matzkin (2005) and Wooldridge

(2005a), is to just use a flexible model for E(y|x, X;) directly. For example, if y;; is binary, or

a fractional response, 0 < y;, < 1, we might just specify a flexible parametric model, such as

EQulxi, X;) = [0, + xif + Xy + (X; ® X;)8 + (xi @ X;)n], (7.8)
or the “heteroskedastic probit” model

EQulxi, Xi) = @[(0: + xiB + Xsy) exp(-Xm)]. (7.9)

If we write either of these functions as r,(x;, X) then the average structural function is estimated
as KS\F;(X;) =Nt Zfil 7(x;,X;), where the “*” indicates that we have substituted in the
parameter estimates. We can let all parameters depend on ¢, or we can estimate the parameters
separately for each 7 and then use minimum distance estimation to impose the parameter
restrictions. The justification for using, say, (7.8) is that we are interested in the average partial

effects, and how parameters appear is really not the issue. Even though (7.8) cannot be derived

from E(vilxi,c;) = ®(xiP + ¢;) or any other standard model, there is nothing sacred about this
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formulation. In fact, it is fairly simplistic. We can view (7.8) as the approximation to the true
E(yi|x;, X;) obtained after integrating c; out of the unknown function m(x,, c;). (We could
formalize this process by using series estimation, as in Newey (1988), where the number of
terms is allowed to grow with N.) This is the same argument used by, say, Angrist (2001) in
justifying linear models for limited dependent variables when the focus on primarily on
average effects.

The argument is essentially unchanged if we replace x; with other statistics w;. For
example, we might run, for each i, the regression x;; on 1,z ¢t = 1,..., T and use the intercept
and slope (on the time trend) as the elements of w;. Or, we can use sample variances and
covariances for each i, along with the sample mean. Or, we can use initial values and average
growth rates. The key condition is D(¢;|x;) = D(c;|w;), and then we need sufficient variation
in{x; : t=1,...,T} not explained by w; for identification. (Naturally, as we expand w;, the
number of time periods required generally increases.)

Of course, once we just view (7.8) as an approximation, we can are justified in using the
logistic function, say

EQulxinX:) = A0, + x;:B + Xiy + (X; @ X,)8 + (xir ® Xi)m], (7.10)
where A(z) = exp(z)/[1 + exp(z)], which, again, can be applied to binary or fractional
responses. The focus on partial effects that average out the heterogeneity can be liberating in
that it means the step of specifying E(yi|xi, ¢;) is largely superfluous, and, in fact, can get in
the way of pursuing a suitably flexible analysis. On the other hand, if we start with, say, a
“structural” model such as P(ya1 = 1|x;,¢;) = ®(a; + x;b;), which is a heterogeneous index
model, then we cannot derive equations such as (7.8) or (7.9), even under the strong

assumption that ¢; is independent of x; and multivariate normal. If we imposed the

21



Imbens/Wooldridge, AEA Lecture Notes 6, January '12

Chamberlain device for the elements of ¢; we can get expressions “close” to a combination of
(7.8) and (7.9). Whether one is willing to simply estimate relative simple models such as (7.8)
in order to estimate APEs depends on one’s taste for bypassing more traditional formulations.

If we start with the logit formulation

P = 1xi, ci) = AXuP + ¢i), (7.11)

then we can estimate the parameters, B without restricting D(c;|x;) in any way, but we must
add the conditional independence assumption. (No one has been able to show that, unlike in
the linear model, or the Poisson model covered below, that the MLE that conditions on the
number of successes n; = Z;yn is robust to serial dependence. It appears not to be. Plus, the
binary nature of y; appears to be critical, so the conditional MLE cannot be applied to
fractional responses even under serial independence.) Because we have not restricted D(c;|x;)
in any way, it appears that we cannot estimate average partial effects. As commonly happens in
nonlinear models, if we relax assumptions about the distribution of heterogeneity, we lose the
ability to estimate partial effects. We can estimate the effects of the covariates on the log-odds
ratio, and relative partial effects of continuous variables. But for partial effects themselves, we
do not have sensible values to plug in for ¢, and we cannot average across its distribution.

The following table summarizes the features of various approaches to estimating binary

response unobserved effects models.
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Model, Estimation Method | P(y;= 1lx;,¢;) Restricts D(c,[x;)? Idiosyncratic Serial | PEs APEs?
Bounded in (0,1)? Dependence? at E(c;)?
RE Probit, MLE Yes Yes (indep, normal) No Yes Yes
RE Probit, Pooled MLE Yes Yes (indep, normal) Yes No Yes
RE Probit, GEE Yes Yes (indep, normal) Yes No Yes
CRE Probit, MLE Yes Yes (lin. mean, normal) | No Yes Yes
CRE Probit, Pooled MLE | Yes Yes (lin. mean, normal) | Yes No Yes
CRE Probit, GEE Yes Yes (lin. mean, normal) | Yes No Yes
LPM, Within No No Yes Yes Yes
FE Logit, MLE Yes No No No No

As an example, we apply several of the methods to women’s labor force participation data,

used by Chay and Hyslop (2001), where the data are for five time periods spaced four months

apart. The results are summarized in the following table. The standard errors for the APEs

were obtained with 500 bootstrap replications. The time-varying explanatory variables are log

of husband’s income and number of children, along with a full set of time period dummies.

(The time-constant variables race, education, and age are also included in columns (2), (3), and

(4).)
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1) ) ©) (4) ©)
Model Linear Probit CRE Probit CRE Probit FE Logit
Estimation Method | Fixed Effects Pooled MLE Pooled MLE MLE MLE
Coefficient | Coefficient | APE | Coefficient | APE | Coefficient | APE | Coefficient
kids —.0389 —-.199 —.0660 -.117 —.0389 -.317 —.0403 —.644
(.0092) (.015) | (.0048) | (.027) | (.0085) | (.062) | (.0104)| (.125)
lhinc —.0089 -.211 -.0701 —.029 —.0095 -.078 —.0099 —.184
(.0046) (.024) | (.0079) | (.014) | (.0048)| (.041) | (.0055)| (.083)
kids — — — ~.086 — ~.210 — —
— — — (.031) — (.071) — —
Ihinc — — — ~.250 — —.646 — —
— — — (.035) — (.079) — —
(1+62)72 — — — 387 —
Log Likelihood — -16,556.67 -16,516.44 —8,990.09 —2,003.42
Number of Women 5,663 5,663 5,663 5,663 1,055

In the three methods that allow for unobserved heterogeneity correlated with the covariates

and where we can estimate APEs — columns (1), (3), and (4) — the estimated APEs are pretty

similar. Column (2) contains the pooled probit estimates without allowing the

Chamberlain-Mundlak device, and the APEs are much larger, especially on /hinc. Comparing

columns (2) and (3) stronly suggest the presence of unobserved heterogeneity correlated with

the covariates. To compare the estimates in (1), (3), and (4) to FE logit, we can look only at the

ratio of the coefficients on kids and [hinc, which is 3.50 in column (5). In columns (1), (3), and

(4) the ratios are 4.37, 4.03, and 4.06. Even if we think these differ substantially from the ratio

in column (5), we cannot be sure if this is due to the parametric assumptions on D(c;|x;) used

in the probit models or the conditional independence used by FE logit. Of course, both could

be misspecified.
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Generally, CMLE approaches are fragile to changes in the specification. For example, a
natural extension is
PO = 1xi,¢;) = Ala; + x;b;), (7.12)
where b; is a vector of heterogeneous slopes with B = E(b;); let @ = E(a;). This extension of
the standard unobserved effects logit model raises several issues. First, what do we want to
estimate? Perhaps the partial effects at the mean values of the heterogeneity. But the APEs, or
local average effects, are probably of more interest.

Nothing seems to be known about what the logit CMLE would estimate if applied to
(7.12), where we assume B = b .. On the other hand, if, say, D(ci[x;) = D(¢;[X;), a flexible
binary response model with covariates (x;, X;) (and allowing sufficiently for changes over
time) identifies the APEs — without the conditional serial independence assumption. The same
is true of the extension to time-varying factor loads, P(y;: = 1|xi,¢;) = A(O; + XiP + 1:ci).

There are methods that allow estimation, up to scale, of the coefficients without even
specifying the distribution of u; in

yie = XuP + ci + ui = 0]. (7.13)
under strict exogeneity.conditional on ¢;. Arellano and Honoré (2001) survey methods,
including variations on Manski’s maximum score estimator.

Estimation of parameters and APEs is much more difficult even in simple dynamic probit

models. Consider
Py = lzi,yig1,...,yi0,¢i) = P = Yzir,yir1,¢i), t = 1,...,T,
which combines correct dynamic specification with strict exogeneity of {z; . For a dynamic

probit model
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P = 1|zi,yis-1,ci) = O(2id + pyis1 + ci). (7.14)
Treating the ¢; as parameters to estimate causes inconsistency in  and p (although there is

recent work by Woutersen and Fernandez-Val that shows how to make the asymptotic bias of
order 1/72; see the next section). A simple analysis is available if we specify
cilzi,yio ~ Normal(y + Eqyio + 2,E,62) (7.15)
Then
PWi = 1zi,yis-1,...,y0,ai) = P(zid + pyir1+ v + Eoyio + 2:€ + ai), (7.16)
where a; = ¢; —w — Eoyio — z:& Because a; is independent of (y.0,z;), it turns out we can use
standard random effects probit software, with explanatory variables (1,z;,y; .1, vi,Z;) in time
period ¢. Easily get the average partial effects, too:
N
ﬁ(z,,yt_l) = N1 Z CD(Z;S[, + Payi1 + Yo+ anyfo + Zi&a), (7.17)
i=1
and take differences or derivatives with respect to elements of (z;,y.1). As before, the
coefficients are multiplied by (1 + 62)~Y2. Of course, both the structural model and model for
D(cilyi,z;) can be made more flexible (such as including interactions, or letting Var(c:|z:,y0)
be heteroskedastic).
We apply this method to the Chay and Hyslop data and estimate a model for
P(lfpi = 1|kidsy, lhincy, Ifpi -1, ci), where one lag of labor force participation is assumed to
suffice for the dynamics and {(kids, lhinc;) : t = 1,...,T} is assumed to be strictly
exogenous conditional on ¢;. Also, we include the time-constant variables educ, black, age,
and age? and a full set of time-period dummies. (We start with five periods and lose one with

the lag. Therefore, we estimate the model using four years of data.) We include among the
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regressors the initial value, Ifp.o, kids through kids;s, and lhinc through lhinc;s. Estimating
the model by RE probit gives p = 1.541 (se =.067), and so, even after controlling for
unobserved heterogeneity, there is strong evidence of state dependence. But to obtain the size
of the effect, we compute the APE for /fp,_1. The calculation involves averaging
D(2dy + P+ Eaoyio +2:&,) — ©(Zidy + Eaoyio + 2:€,) across all 7 and i; we must be sure to
scale the original coefficients by (1 + 62)~Y2, where, in this application, 62 = 1.103. The APE
estimated from this method is about .259. In other words, averaged across all women and all
time periods, the probability of being in the labor force at time z is about .26 higher if the
women was in the labor force at time 7 — 1 than if she was not. This estimate controls for
unobserved heterogeneity, number of young children, husband’s income, and the woman’s
education, race, and age. (This APE estimate can be directly compared to a dynamic linear
probability model estimated using, say, the Arellano and Bond (1991) method and its
extensions.)

It is instructive to compare the APE with the estimate of a dynamic probit model that
ignores c;. In this case, we just use pooled probit of /fp;, on
1, kidsy, lhincy, lIfpi,-1educ;, black;, age;, and age? and include a full set of period dummies.
The coefficient on lfp;,.1 is 2.876 (se = .027), which is much higher than in the dynamic RE
probit model. More importantly, the APE for state dependence is about . 837, which is much
higher than when heterogeneity is controlled for. Therefore, in this example, much of the
persistence in labor force participation of married women is accounted for by the unobserved
heterogeneity. There is still some state dependence, but its value is much smaller than a simple
dynamic probit indicates.

Arellano and Carrasco (2003) use a different approach to estimate the parameters and
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APEs in dynamic binary response models with only sequentially exogenous variables. Thus,
their method applies to models with lagged dependent variables, but also other models where
there made be feedback from past shocks to future covariates. (Their assumptions essentially
impose serial conditional serial independence.) Rather than impose an assumption such as
(7.15), they use a different approximation. Let v;, = ¢; + u;, be the composed error in

vie = 1[xuP + ci +u; > 0]. Then, in the context of a probit model, they assume

V,‘;'Wi; ~N0rma|(E(Ci|Wi[),O't2) (718)

where w;; = (Xi, Vi1, Xis1,...,ViaXia). The mean E(c;|w;) is unrestricted (although, of course,
they are linked across time by iterated expectations because w;; < w; 1), but the shape of the
distribution is assumed to be the same across ¢. Arellano and Carrasco discuss identification
and estimation, and extensions to models with time-varying factor loads.

Honoré and Kyriazidou (2000) extend an idea of Chamberlain’s (1993) and show how to
estimate & and p in a logit model without distributional assumptions for ¢,. They find
conditional probabilities that do not depend on ¢; but still depend on & and p. However, in the
case with four time periods, ¢t = 0,1, 2, and 3, the conditioning that removes ¢; requires
z» = z;3. HK show how to use a local version of this condition to consistently estimate the
parameters. The estimator is also asymptotically normal, but converges more slowly than the
usual /N -rate.

The condition that z,, — z;3 has a distribution with support around zero rules out aggregate
year dummies or even linear time trends. Plus, using only observations with z;, — z;3 in a
neighborhood of zero results in much lost data. Finally, estimates of partial effects or average
partial effects are not available.

While semiparametric approaches can be valuable to comparing parameter estimates with
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more parametric approaches, such comparisons have limitations. For example, the coefficients
on y,1 in the dynamic logit model and the dynamic probit model are comparable only in sign;
we cannot take the derivative with respect to y,_; because it is discrete. Because we do not
know where the evaluate the partial effects — that is, the values of ¢ to plug in, or average out
across the distribution of ¢;, we cannot compare the magnitudes of the FE logit estimates with
CRC approaches. We can compare the relative effects on the continuous elements in z; based
on partial derivatives. But even here, if we find a difference between semiparametric and
parametric methods, is it because aggregate time effects were excluded in the semiparametric
estimation or because the model of D(c;|y.0,z;) was misspecified? Currently, we have no good
ways of deciding. (Recently, Li and Zheng (2006) use Bayesian methods to estimate a dynamic
Tobit model with unobserved heterogeneity, where they distribution of unosberved
heterogeneity is an infinite mixture of normals. They find that all of the average partial effects
are very similar to those obtained from the much simpler specification in (7.15).)

Honoré and Lewbel (2002) show how to estimate S in the model

Vie = 1vii + Xy + ci +uiyy > 0] (7.19)

without distributional assumptions on ¢; + u;,. The special continuous explanatory variable v,
which need not be time varying, is assumed to appear in the equation (and its coefficient is
normalized to one). More importantly, v; is assumed to satisfy
D(ci + uylvie,Xir,2;) = D(ci + uy|Xi,2;), which is a conditional independence assumption. The
vector z; is assumed to be independent of u; in all time periods. (So, if two time periods are
used, z; could be functions of variables determined prior to the earliest time period.) The most
likely scenario is when v;, is randomized and therefore independent of (x;,z;,e;), where

ey = c; + uy. It seems unlikely to hold if v; is related to past outcomes on y;,. The estimator
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derived by Honoré and Lewbel is /N -asymptotically normal, and fairly easy to compute; it
requires estimation of the density of v; given (x;,z;) and then a simple IV estimation.

Honoré and Tamer (2006) have recently shown how to obtain bounds on parameters and
APEs in dynamic models, including the dynamic probit model; these are covered in the notes
on partial identification.

Very similar analysis hold for ordered probit models. See Wooldridge (2010, Chapter 15)
for the static case and Wooldridge (2005b) for the dynamic case. The dependence of
heterogeneity on the initial condition can be made flexible while keeping the likelihood in the

class of random effects ordered probit models.

7.2 Count and Other Multiplicative Models
Several options are available for models with conditional means multiplicative in the
heterogeneity. The most common is
Eulxi,ci) = ciexp(xip) (7.20)
where ¢; > 0 is the unobserved effect and x;, would incude a full set of year dummies in most
cases. First consider estimation under strict exogeneity (conditional on ¢;):
EQiulxit, ..., X;p,ci) = EQulXin ¢i). (7.21)
If we add independence between ¢; and x; — a random effects approach — then, using E(c;) = 1
as a normalization,
EQilx;) = exp(xiB), (7.22)
and various estimation methods can be used to account for the serial dependence in {y;} if

only x; is conditioned on. (Serial correlation is certainly present because of ¢;, but it could be
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present due to idiosyncratic shocks, too.) Regardless of the actual distribution of y;, or even its
nature — other than y;, > 0 — the pooled Poisson quasi-MLE is consistent for § under (7.22) but
likely very inefficient; robust inference is straightforward with small 7"and large M.

Random effects Poisson requires that D(y;|x;, c;) has a Poisson distribution with mean

(7.20), and maintains the conditional independence assumption,

T
D(Vil, ces ,yiT|Xz‘, Ci) = H D(Yiz|Xiz, Ci),
=1

along with a specific distribution for ¢; — usually a Gamma distribution with unit mean.
Unfortunately, like RE probit, the full MLE has no known robustness properties. The Poisson
distribution needs to hold along with the other assumptions. A generalized estimating approach
is available, too. If the Poisson quasi-likelihood is used, the GEE estimator is fully robust
provided the mean is correctly specified. One can use an exchangeable, or at least constant,
working correlation matrix. See Wooldridge (2010, Chapter 18).

A CRE model can be allowed by writing ¢; = exp(v + X;€)a; where qa; is independent of x;
with unit mean. Then

E(ilxi) = exp(y + xip + X&)

and now the same methods described above can be applied but with x; added as regressors.
This approach identifies average partial effects. In fact, we could use Altonji and Matzkin
(2005) and specify E(ci|x;) = h(X;) (say), and then estimate the semiparametric model
EQiulx;) = h(X;)exp(xip) = exp(xip + g(X;)) where g(X;) = log[A(X;)] is also unrestricted.
Other features of the series {x;; : t = 1,..., T}, such as individual-specific trends or sample

variances, can be added to /4(-).
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An important estimator that can be used under just
EWulxi,ci) = ciexp(xiP) (7.24)

is the conditional MLE derived under a Poisson distributional assumption and the conditional
independence assumption. It is often called the fixed effects Poisson estimator, and, in fact, ﬁ
turns out to be identical to using pooled Poisson QMLE and treating the ¢; as parameters to
estimate. (A rare case, like the linear model, where this does not result in an incidental
parameters problem.). It is easy to obtain fully robust inference, too (although it is not
currently part of standard software, such as Stata). The fact that the quasi-likelihood is derived
for a particular, discrete distribution appears to make people queasy about using it, but it is
analogous to using the normal log-likelihood in the linear model: the resulting estimator, the
usual FE estimator, is fully robust to nonnormality, heteroskedasticity, and serial correlation.
See Wooldridge (1999).

Estimation of models under sequential exogeneity has been studied by Chamberlain (1992)

and Wooldridge (1997). In particular, they obtain moment conditions for models such as
EQiulXisy ..., Xi1,¢i) = cieXp(XiP). (7.25)
Under this assumption, it can be shown that
E{lyit = yir1eXp((xis — Xin1)P)IX,,, ..., xa] = 0, (7.26)

and, because these moment conditions depend only on observed data and the parameter vector
B, GMM can be used to estimate B, and fully robust inference is straightforward.

Blundell, Griffiths, and Windmeijer (2002) consider a model with additive heterogeneity
and a lagged dependent variable that appears linearly, and derive estimating equations.

The moment conditions in (7.26) involve the differences x;; — x; 1, and we saw for the
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linear model that, if elements of x;; — x; 1 are persistent, IV and GMM estimators can be badly

biased and imprecise. If we make more assumptions, models with lagged dependent variables
and other regressors that are strictly exogenous can be handled using the conditional MLE
approach in Section 6. Wooldridge (2005b) shows how a dynamic Poisson model with

conditional Gamma heterogeneity can be easily estimated.

8. Estimating the Fixed Effects

It is well known that, except in special cases (linear and Poisson), treating the c; as
parameters to estimate leads to inconsistent estimates of the common parameters 6. But two
questions arise. First, are there ways to adjust the “fixed effects” estimate of 0 to at least
partially remove the bias? Second, could it be that estimates of the average partial effects,

based generally on

N-1 Z 8mt(xt, 9 Cl)

ax;l

where m,(x,,0,¢) = E(y/|x,,c¢), are better behaved than the parameter estimates, and can their

bias be removed? In the unobserved effects probit model, (8.1) becomes
N ~ A
N Bio(xB+ ),
i=1

which is easy to compute once ﬁ and the é; (V of them) have been obtained.
Hahn and Newey (2004) propose both jackknife and analytical bias corrections for the
parameters and show that they work well for estimating the parameters in the probit model.

Generally, the jackknife procedure to remove the bias in 6 is simple but can be
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computationally intensive. The idea is this. The estimator based on 7 time periods has

probability limit that can be written as
07 = 0+b1/T+bo/T? + O(T3) (8.3)

for vectors by and b,. Now, let 8, denote the estimator that drops time period z. Then,

assuming stability across ¢, the plim of @(1) is
9(;) =0+ bll(T— 1) +bo/(T- 1)2 + O(T_S) (84)
It follows that

plim (76 — (T—1)8¢)) = (T8 + b1 + bo/T) — [(T—1)0 + by + bo/(T—1)] + O(T?)

N-owo

=0-b/[T(T-1)] +O(T2) =0+ 0(T?). (8.5)
If, for given heterogeneity c;, the data are independent and identically distributed across ¢z, then
(8.5) holds for all leave-one-time-period-out estimators, so we use the average of all such
estimators in computing the panel jackknife estimator:
T
0=10- (-7 0. (8.6)
=1
From the argument above, theasymptotic bias of @ is on the order of 7-2.
Unfortunately, there are some practical limitations to the jackknife procedure, as well as to
the analytical corrections derived by Hahn and Newey. First, aggregate time effects are not
allowed, and they would be very difficult to include because the analysis is with 7' - 0. (In
other words, they would introduce an incidental parameters problem in the time dimension as
well as the cross section dimension.) Generally, heterogeneity in the distributions across ¢
changes the bias terms b; and b, when a time period is dropped, and so the simple

transformation in (8.5) does not remove the bias terms. Second, Hahn and Newey assume
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independence across ¢ conditional on ¢;. It is a traditional assumption, but in static models it is
often violated, and it must be violated in dynamic models. Plus, as noted by Hahn and
Keursteiner (2002), applying the “leave-one-out” method to dynamic models is problematical
because the by and b, in (8.4) would depend on ¢ so, again, the transformation in (8.5) will not
eliminate the b; term.

Recently, Dhaene, Jochmans, and Thuysbaert (2006) propose a modification of the
Hahn-Newey procedure that appears promising for dynamic models. In the simplest case, in
addition to the “fixed effects” estimator using all time periods, they obtain estimators for two
subperiods: one uses the earlier time periods, one uses later time periods, and they have some
overlap (which is small as 7 gets large). Unfortunately, the procedure still requires stationarity
and rules out aggregate time effects.

For the probit model, Fernandez-Val (2007) studies the properties of estimators and
average partial effects and allows time series dependence in the strictly exogenous regressors.
Interestingly, in the probit model with exogenous regressors under the conditional
independence assumption, the estimates of the APEs based on the “fixed effects” estimator has
bias of order 72 in the case that there is no heterogeneity. Unfortunately, these findings do not
carry over to models with lagged dependent variables, and the bias corrections in that case are
difficult to implement (and still do not allow for time heterogeneity).

As the resurgent literature on “fixed effects” approaches stands, there is still a tradeoff in
the assumptions when compared with the correlated random effecst approach. The FE
approach allows D(¢;|x;) to be unrestricted, but, currently, the corrections to the parameter
estimates and partial effects impose stationarity across time and restricts the time dependence,

often in very restrictive ways (such as serial independence). The CRE approach restricts
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D(c;|x;) but, because it can be applied for small 7, does not restrict nonstationarity or serial
dependence in the time series dimension. With recent advances such as those in Altonji and
Matzkin (2005) that impose weak restrictions on D(c;|x;), the CRE approach continues to be
attractive, particularly because it identifies average partial effects. Generally, the FE and CRE
approaches should be viewed as being complementary.

One final comment. The CRE approach has only been fully worked out in the case of
balanced panels. When we introduce a set of sample selection indicators for each i,
si = (si1,8i2,...,87), where s;; = 1if (xi,y,,) is osherved, the CRE method requires us to
model D(c;|x;,s;). It may still make sense, in some cases, to assume exchangeability, so that,
say, D(ci|x;,s:) = D(c,[X,), where X; = T;1 Z;si,xn is the average using the selected sample,
but this possibility has not been explored. By contrast, provided selection is strictly exogenous
conditional on (x;, ¢;) — see the notes on missing data — the FE procedure on the unbalanced
panel is fundamentally unchanged. (However, the jackknife corrections discussed above would
no long be valid with an unbalanced panel.) The properties and merits of FE and CRE

approaches using unbalanced panels needs to be explored in future research.
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Imbens/Wooldridge, AEA Lecture Notes 8, January 12

AEA Lectures Chicago, January 2012
Lecture 8, Tuesday, January 10, 9:45 am to 11 am

Control Function and Related Methods
These notes review the control function approach to handling endogeneity in models linear
in parameters, and draws comparisons with standard methods such as 2SLS and maximum
likelihood methods. Certain nonlinear models with endogenous explanatory variables are most
easily estimated using the CF method, and the recent focus on average marginal effects
suggests some simple, flexible strategies. Recent advances in semiparametric and
nonparametric control function method are covered, and an example for how one can apply CF

methods to nonlinear panel data models is provided.

1. Linear-in-Parameters Models: IV versus Control
Functions

Most models that are linear in parameters are estimated using standard instrumental
variables methods — either two stage least squares (2SLS) or generalized method of moments
(GMM). An alternative, the control function (CF) approach, relies on the same kinds of
identification conditions. In the standard case where a endogenous explanatory variables
appear linearly, the CF approach leads to the usual 2SLS estimator. But there are differences
for models nonlinear in endogenous variables even if they are linear in parameters. And, for
models nonlinear in parameters, the CF approach offers some distinct advantages.

To illustrate the CF approach, let y1 denote the response variable, y, the endogenous
explanatory variable (a scalar for simplicity), and z the 1 x L vector of exogenous variables

(which includes unity as its first element). Consider the model

y1 = 1161 +ai1y2 +ui, (1.1)



Imbens/Wooldridge, AEA Lecture Notes 8, January 12

where z; isa 1 x L; strict subvector of z that also includes a constant. The sense in which z is
exogenous is given by the L orthogonality (zero covariance) conditions
E(z'u1) = 0. (1.2)

Of course, this is the same exogeneity condition that we use for consistency of the 2SLS
estimator, and we can consistently estimate &; and a1 by 2SLS under (1.2) and the rank
condition, which reduces to rank E(z'x1) = K1, where x; = (z1,y2) isa 1 x K; vector. (We
also need to assume E(z'z) is nonsingular, but this assumption is rarely a concern.)

Just as with 2SLS, the reduced form of y, — that is, the linear projection of y, onto the

exogenous variables — plays a critical role. Write the reduced form with an error term as

Y2 = Im2 + V2 (1.3)
E(z'vy) = 0 (1.4)

where ;2 is L x 1. Endogeneity of y, arises if and only if «; is correlated with v,. Write the
linear projection of u; on vy, in error form, as
uip = p1va +eu, (1.5)

where p1 = E(vou1)/E(v3) is the population regression coefficient. By definition, E(v;e1) = 0,
and E(z'e1) = 0 because u; and v, are both uncorrelated with z.
Plugging (1.5) into equation (1.1) gives
Y1 = 2181+ iy2 + p1ve + ey, (1.6)
where we now view v; as an explanatory variable in the equation. As just noted, e1, is
uncorrelated with v, and z. Plus, y is a linear function of z and v, and so e; is also

uncorrelated with y5.

Because e; is uncorrelated with z1, y2, and v, (1.6) suggests a simple procedure for
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consistently estimating 61 and a1 (as well as p1): run the OLS regression of y1 on z1,y», and v,
using a random sample. (Remember, OLS consistently estimates the parameters in any
equation where the error term is uncorrelated with the right hand side variables.) The only
problem with this suggestion is that we do not observe v;; it is the error in the reduced form
equation for y,. Nevertheless, we can write v, = y, — zr, and, because we collect data on y;
and z, we can consistently estimate w2 by OLS. Therefore, we can replace v, with V5, the OLS

residuals from the first-stage regression of y, on z. Simple substitution gives
y1 = 2181 +a1ys + Pl\’>2 + error, (1.7)

where, for each i, error; = ein + p1z;(ft, — m2), which depends on the sampling error in 7,
unless p1 = 0. Standard results on two-step estimation imply the OLS estimators from (1.7)
will be consistent for 61, a1, and p;.

The OLS estimates from (1.7) are control function estimates. The inclusion of the residuals
v2 “controls” for the endogeneity of y, in the original equation (although it does so with
sampling error because ft; # m2).

It is a simple exercise in the algebra of least squares to show that the OLS estimates of &1
and a; from (1.7) are identical to the 2SLS estimates starting from (1.1) and using z as the
vector of instruments. [Standard errors from (1.7) must adjust for the generated regressor.]

It is trivial to use (1.7) to test Hy : p1 = 0, as the usual ¢ statistic is asymptotically valid
under homoskedasticity (Var(ui|z,y2) = o3 under Ho); or use the heteroskedasticity-robust
version (which does not account for the first-stage estimation of =>).

An estimator that can be different from the CF and 2SLS estimators is the limited

information (quasi-) maximum likelihood (LIML) estimator. The LIML estimator is obtained

from equations (1.1) and (1.3) under the assumption that (u1,v») is independent of z with a
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mean-zero bivariate normal distribution. In fact, we can work off of (1.3) and (1.6) and use the
relationship f(y1,y2|z) = fyily2, 2)f(n2|z). If n%2 = Var(e1) and 73 = Var(v,), the

quasi-log-likelihood for observation 7 is

—log(n$)/2 — [(yir — 2181 — a1yi2 — p1(viz — zim2)14/(2n3%) (1.8)
—log(t3)/2 — (yir — 2im2)?/(27%),

and all parameters are estimated simultaneously. When (1.1) is overidentified, LIML is
generally different from CF (2SLS). And, as the weak instruments notes document, LIML
typically has better statistical properties than 2SLS in situations with overidentification. The
CF approach can be seen to be a two-step version of LIML, where & is obtained in a first step
and then 81, a1, and p; are estimated in a second step. (The variance parameters can be
estimated in the two-step procedure, too.) Fortunately, while LIML is derived under joint
normality, it is just as robust as the CF estimator: independence between the errors and z and
normality are not needed.

[Incidentally, full information maximum likelihood (FIML) arises in systems with true
simultaneity when interest lies in estimating all structural equations. In these notes, we assume
that one equation is of particular interest. This could be because it is the main equation in a
truly simultaneous system or because the endogeneity we are worried about is due to omitted
variables.]

Now extend the model to include a quadratic:

Z181 +ai1yz + ’}/1y% + U1 (19)
0. (1.10)

Y1
E(uilz)

For simplicity, assume that we have a scalar, z», that is not also in z;. Then, under (1.10) —

which is stronger than (1.2), and is essentially needed to identify nonlinear models — we can



Imbens/Wooldridge, AEA Lecture Notes 8, January 12

use, say, z3 (if z» is not binary) as an instrument for y3 because any function of z; is
uncorrelated with ;. In other words, we can apply the standard IV estimator with explanatory
variables (z1,y2,y3) and instruments (z1,z2,z3); note that we have two endogenous
explanatory variables, y, and y3.

What would the CF approach entail in this case? To implement the CF approach in (1.9),
we obtain the conditional expectation E(y1|z, y2) — a linear projection argument no longer
works because of the nonlinearity — and that requires an assumption about E(u1|z,y2). A

standard assumption is
E(uilz,y2) = E(uilz,v2) = E(ua|v2) = p1ve, (1.11)
where the first equality follows because y, and v, are one-to-one functions of each other
(given z) and the second would hold if (u1,v>2) is independent of z — a nontrivial restriction on
the reduced form error in (1.3), not to mention the structural error ;.. The final assumption is

linearity of the conditional expectation E(u1|v2), which is more restrictive than simply defining

a linear projection. Under (1.11),

E(ilz,y2) = 2181 + a1y2 + Y15 + p1(y2 — zm2) (1.12)

= 7181 + a1y2 + Y1V5 + p1va.
Implementing the CF approach means running the OLS regression y; on z1,y»,y3, v2,where v,
still represents the reduced form residuals. The CF estimates are not the same as the 2SLS
estimates using any choice of instruments for (y,,y3).
The CF approach, while likely more efficient than a direct 1V approach, is less robust. For
example, it is easily seen that (1.10) and (1.11) imply that E(y2|z) = z=r,. A linear conditional
expectation for y» is a substantive restriction on the conditional distribution of y,. Therefore,

the CF estimator will be inconsistent in cases where the 2SLS estimator will be consistent. On
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the other hand, because the CF estimator solves the endogeneity of y, and y3 by adding the
scalar v, to the regression, it will generally be more precise — perhaps much more precise —
than the IV estimator. [I do not know of a systematic analysis comparing the two approaches in
models such as (1.9).]

The equivalence between CF approaches and 1V methods is broken even in the simple
model (1.1) if we allow y» to have discreteness in its distribution and we use a distributional
assumption to exploit that discreteness. For example, suppose y; is a binary response. The

standard CF approach involves estimating
E(ilz,y2) = 2181 + a1y2 + E(uilz, y2), (1.13)

and so we must be able to estimate E(uil|z,y2). If yo = 1[zd2 + e2 > 0], (u1,e2) is independent

of z, E(uile2) = piez, and e, ~Normal(0, 1), then

E(uilz,y2) = E[E(uilz, e2)z,y2] = p1E(valz,y2)
= p1[y2A(282) — (1 - y2)A(-282)], (1.14)

where A(+) = ¢(+)/D(-) is the inverse Mills ratio (IMR). A simple two-step estimator is to
obtain the probit estimate 52 and then to add the “generalized residual,”
Ty = yor(2:62) — (1 — yi2) A(~2:5,) as a regressor:
Y1 ONZi1, Yi2, @y i = 1,...,N. (1.15)
The estimators from this regression are consistent and /N -asymptotically normal provided
D(y2|z) follows a probit, E(u1|v2) is linear, and E(u1|z,v2) = E(ui|v2). (Standard errors need
to be adjusted for the two-step estimation, except when p; = 0. A simple ¢ test on g7, is valid

asatestof Hy : p1 =0.)

Of course, if we just apply 2SLS directly to y1 = z181 + a1y2 + u1, we make no distinction
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among discrete, continuous, or some mixture for y,. 2SLS is consistent if L(y2|z) = zr
actually depends on z, and (1.2) holds. So, while estimating (1.1) using CF methods when y; is
binary is somewhat popular (Stata’s “treatreg” even has the option of full MLE, where (u1, e2)
is bivariate normal), one should remember that it is less robust than standard IV approaches. In
principal, it is much less robust, but whether estimates obtained from (1.15) differ substantially
from 2SLS estimates is an empirical issue.

Often researchers look to exploit the binary nature of the endogenous explanatory variable,
and there may even be some confusion about the properties of 2SLS in such contexts. Again, it
is important to understand that 2SLS is consistent, /N -asymptotically normal, and inference is
standard. But it could be asymptotically inefficient. Therefore, a natural question is: How
might one use the binary nature of y, in IV estimation [as opposed to the CF approach in
(1.15)]? We need to assume E(u1|z) = 0 to exploit nonlinear functions z as 1Vs. Nominally,
the same probit model for D(y;|z) that is used in the CF approach. Then, after estimating the
probit model, obtain the fitted probabilities, ®(z:5,). These fitted probabilities are then used as
IVs for y; in estimating (1.1). This method has several attractive features: it is fully robust to
misspecification of the probit model, provided one uses CD(zl-Sz) asan IV for y;, notas a
regressor in place of y;,; the standard errors need not be adjusted for the first-stage probit
(asymptotically); and it is the efficient IV estimator if P(y, = 1|z) = ®(z8,) and
Var(ui|z) = o%. Probably it is less efficient than the CF estimator if the additional assumptions
needed for CF consistency hold; a careful study could shed light on the tradeoffs. See
Wooldridge (2010, Chapter 21) for further discussion.

We can briefly summarize the main points of this section. In the model (1.1), CF methods

based on E(y1|z,y2) impose additional assumptions compared with standard IV methods. When
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v2 has special features (such as being binary, or even a corner solution), models for E£(y2|z) can
be used to generate instruments (not regressors) for y,. The resulting 1V estimates are robust to

misspecification of the model for E(y2|z) and the first-step estimation can be ignored

asymptotically.



Imbens/Wooldridge, AEA Lecture Notes 8, January 12

2. Correlated Random Coefficient Models

Control function methods can be used for random coefficient models — that is, models
where unobserved heterogeneity interacts with endogenous explanatory variables. In some
cases, CF methods are indispensable; in other cases, standard IV methods are more robust. To

illustrate, we modify equation (1.1) as
Y1 = N1+2101 +aiys +us, (2.1)

where z; is 1 x L1, y, is the endogenous explanatory variable, and a1, the “coefficient” on y, —
an unobserved random variable. [It is now convenient to set apart the intercept.] We could
replace &; with a random vector, say di, and this would not affect our analysis of the IV
estimator (but, as we will see, does change the control function estimator). Following
Heckman and Vytlacil (1998), we refer to (2.1) as a correlated random coefficient (CRC)
model.

It is convenient to write a; = a1 + v1 where a1 = E(a3) is the object of interest. We can

rewrite the equation as
Vi =MN1+2Z101 +a1y2 + viye +u1 = N1 + 2101 + a1y2 + e1, (2.2)

where e; = viy2 + u1. Equation (2.2) shows explicitly a constant coefficient on y, (which we
hope to estimate) but also an interaction between the observed heterogeneity, v1, and y».
Remember, (2.2) is a population model. For a random draw, we would write
Yit = N1+ Zad1 + a1y + viryi2 + ui, Which makes it clear that 81 and a1 are parameters to
estimate and v;; is specific to observation i.

As discussed in Wooldridge (1997, 2003), the potential problem with applying instrumental

variables (2SLS) to (2.2) is that the error term v1y2 + u3 is not necessarily uncorrelated with
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the instruments z, even if we make the assumptions
E(uilz) = E(v1]z) = 0, (2.3)

which we maintain from here on. Generally, the term v1y, can cause problems for 1V
estimation, but it is important to be clear about the nature of the problem. If we are allowing y»
to be correlated with «; then we also want to allow y, and v, to be correlated. In other words,
E(viy2) = Cov(vi,y2) = t1 # 0. But a nonzero unconditional covariance is not a problem
with applying 1V to (2.2): it simply implies that the composite error term, e1, has
(unconditional) mean 7 rather than a zero. As we know, a nonzero mean for e1 means that the
orginal intercept, 1, would be inconsistenly estimated, but this is rarely a concern.

Therefore, we can allow Cov(vi,y2), the unconditional covariance, to be unrestricted. But
the usual IV estimator is generally inconsistent if E(v1y2|z) depends on z. Note that, because
E(vilz) = 0, E(v1y2]z) = Cov(vi,y2|z). Therefore, as shown in Wooldridge (2003), a

sufficient condition for the IV estimator applied to (2.2) to be consistent for 81 and a1 is
Cov(vi,y2lz) = Cov(vi,y2). (2.4)

The 2SLS intercept estimator is consistent for 1 + 1. Condition (2.4) means that the
conditional covariance between vy and y» is not a function of z, but the unconditional
covariance is unrestricted.

Because v1 is unobserved, we cannot generally verify (2.4). But it is easy to find situations

where it holds. For example, if we write
Y2 = m2(z) +v2 (2.5)

and assume (v1,v2) is independent of z (with zero mean), then (2.4) is easily seen to hold

because Cov(v1,y2|z) =Cov(v1,v2|z), and the latter cannot be a function of z under

10
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independence. Of course, assuming v, in (2.5) is independent of z is a strong assumption even
if we do not need to specify the mean function, m,(z). It is much stronger than just writing
down a linear projection of y, on z (which is no real assumption at all). As we will see in
various models in Part IV, the representation (2.5) with v, independent of z is not suitable for
discrete y», and generally (2.4) is not a good assumption when y, has discrete characteristics.
Further, as discussed in Card (2001), (2.4) can be violated even if y; is (roughly) continuous.
Wooldridge (2005) makes some headway in relaxing (2.44) by allowing for parametric
heteroskedasticity in u1 and v,.

A useful extension of (1.1) is to allow observed exogenous variables to interact with y».

The most convenient formulation is
1= n1+2181 + aya + (2o — Y )y2y, +viye +u1 (2.6)

where y, = E(z1) is the 1 x L, vector of population means of the exogenous variables and vy,
isan L; x 1 parameter vector. As we saw in Chapter 4, subtracting the mean from z; before
forming the interaction with y, ensures that 1 is the average partial effect.

Estimation of (2.6) is simple if we maintain (2.4) [along with (2.3) and the appropriate rank
condition]. Typically, we would replace the unknown y, with the sample averages, Z;, and

then estimate
yi = 01+2101 + aiyp + (Z,‘l - zl)J/iZ'Yl + error; (27)

by instrumental variables, ignoring the estimation error in the population mean. The only issue
is choice of instruments, which is complicated by the interaction term. One possibility is to use
interactions between z;; and all elements of z; (including z;1). This results in many

overidentifying restrictions, even if we just have one instrument z;, for y,». Alternatively, we

11
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could obtain fitted values from a first stage linear regression y,, on z;, y» = z;%2, and then use
IVs [1,z;,(za — Z1)yi2], which results in as many overidentifying restrictions as for the model
without the interaction. Importantly, the use of (z;1 — Z1)y, as IVs for (zq — Z1)y:2 iS
asymptotically the same as using instruments (z;; — ) - (zim2), where L(y2|z) = zr, is the
linear projection. In other words, consistency of this IV procedure does not in any way restrict
the nature of the distribution of y, given z. Plus, although we have generated instruments, the
assumptions sufficient for ignoring estimation of the instruments hold, and so inference is
standard (perhaps made robust to heteroskedasticity, as usual).

We can just identify the parameters in (2.6) by using a further restricted set of instruments,
[1,z1,72,(Za — Z1)yi2]. If SO, it is important to use these as instruments and not as regressors.

If we add the assumption. The latter procedure essentially requires a new assumption:
E(y2|z) = zn, (2.8)
(where z includes a constant). Under (2.3), (2.4), and (2.8), it is easy to show
E(vilz) = (N1 + 71) + 2181 + a1(zm2) + (21 — ;) - (zm2)y,, (2.9)

which is the basis for the Heckman and Vytlacil (1998) plug-in estimator. The usual IV
approach applied to (2.7) simply relaxes (2.8) and does not require adjustments to the standard
errors (because it uses generated instruments, not generated regressors).

We can also use a control function approach if we assume
E(uilz,v2) = p1v2,E(vilz,v2) = &1va. (2.10)
Then

EGilz,y2) = n1+ 2181 + a1y2 + E1vaye + p1ve, (2.11)

and this equation is estimable once we estimate w,. Garen’s (1984) control function procedure

12
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is to first regress y, on z and obtain the reduced form residuals, v, and then to run the OLS
regression y1 on 1,z1,y2,v2y2, V2. Under the maintained assumptions, Garen’s method
consistently estimates 8; and o 1. Because the second step uses generated regressors, the
standard errors should be adjusted for the estimation of = in the first stage. Nevertheless, a
test that y is exogenous is easily obtained from the usual F testof Hy : &1 = 0,p1 = 0 (or a
heteroskedasticity-robust version). Under the null, no adjustment is needed for the generated
standard errors.

Garen’s assumptions are more restrictive than those needed for the standard 1V estimator to
be consistent. For one, it would be a fluke if (2.10) held without the conditional covariance
Cov(v1,y2|z) being independent of z. Plus, like HV (1998), Garen relies on a linear model for
E(y2|z). Further, Garen adds the assumptions that E(u1|v2) and E(v1|v2) are linear functions,
something not needed by the IV approach.

Of course, one can make Garen’s approach less parametric by replacing the linear functions
in (2.10) with unknown functions. But independence of (u1,v1,v2) and z — or something very
close to independence — is needed. And this assumption is not needed for the usual 1V
estimator,

If the assumptions needed for Garen’s CF estimator to be consistent hold, it is likely more
efficient than the IV estimator, although a comparison of the correct asymptotic variances is
complicated. Again, there is a tradeoff between efficiency and robustness.

In the case of binary y,, we have what is often called the “switching regression” model.
Now, the right hand side of equation (2.11) represents E(y1|z,v2) where y, = 1[zd2 + v2 > 0].

If we assume (2.10) and that v,|z is Normal(0, 1), then

EWilz,y2) = n1+ 2101 + a1yz + p1h2(y2,282) + E1ha(y2,282)y2, (2.12)

13
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where

h2(y2,282) = y2A(282) — (1 — y2)A(-282) (2.13)
is the generalized residual function. The two-step estimation method is the one due to
Heckman (1976).
There are two ways to embellish the model. The first is common: interact (z; — p,) with y,
to allow different slopes for the “treated” and non-treated groups (keeping a; as the average

treatment effect). With this extension, the CF regression is

yi On 1, zad1 + aryn + (Za — 1)y, ho(vi2, 2:2), h2(vi2, 2:82)yia, (2.14)
and is identical to running two separate regressions, including the IMRs for y, = O and y, = 1.
The estimate of a; is the difference in the two intercepts.
An extension that is not so common — in fact, it seems not to appear in the literature —

comes from allowing z; to also interact with heterogeneity, as in
V1 = z1dq + ay? +y2(Z1 — ul)gl + us. (2.15)
Now all coefficients are heterogeneous. If we assume that E(a1|v2), E(d1|v2), and E(g,|v2) are

linear in vy, then

E(ilz,y2) = 2181 + a1yz + y2(z1 — uy )8, + p1E(valz,y2) + S1E(v2|z, y2)y2
+21E(valz, y2)y, + ya(21 — uy))E(v2lz, y2) o1
= 2181 + a1y2 + p1ha(y2,282) + E1h2(y2,282)y2 (2.16)
+h2(y2,282)21y, + h2(y2,202)y2(z1 — py ) @1

and the second-step estimation after the first stage probit is a regression

viaonl, 2481 + a1y + (za — Z1)yio, hZ(yi21Zi82)a hZ(yi21Zi82)yi21 (2.17)
hz(yiz,liéz)lil, hZ(Vz‘Z,ZiSZ)y[Z(Zil —71).

14
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across all observations i. Bootstrapping can be used to obtain valid standard errors because the
first-stage estimation is just probit and the second stage is just linear regression.

If not for the term v1y» in (2.6), we could, in @ much more robust manner, apply IV directly
to (2.7) (and the standard errors are easier to obtain, too). The Vs would be, say,

[1,2i1, D2, (zin — Z1) - D12, and the same procedure consistently estimates the average effects
whether or not there are random coefficients on z;;.

Interestingly, the addition of the terms hz(y,-z,Z,-Sz)Zil and hz(y,-z,z,-ﬁz)y,-z(zil —171) has
similarities with methods that allow E(v1|v,2) and so on to be more flexible. For example, as
shown in Heckman and MaCurdy (1986), if E(u1|v2) = p1v2 + k1(v3 — 1), then the extra term
in the expected value when y, = 1 is —z,-Szll(ziSZ), and there is a similar expression for
yi2 = 0.

Newey (1988), in the standard switching regression framework, proposed a flexible
two-step procedure that estimates 8, semiparametrically in the first stage — see Powell (1994)
for a survey of such methods — and then uses series in z;5; in place of the usual IMR terms. He
obtains valid standard errors and, in most cases, bootstrapping is valid, too.

Finally, we should not forget that maximum likelihood estimation is possible, too. If
D(y2|z) is specified as a probit and all unobservables are assumed to be jointly normal and

independent of z, D(y1|y2,z) can be obtained and all parameters can be estimated jointly.

15
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3. Some Common Nonlinear Models and Limitations
of the CF Approach

Like standard 1V methods, control function approaches are more difficult to apply to
nonlinear models, even relatively simple ones. Methods are available when the endogenous
explanatory variables are continuous, but few if any results apply to cases with discrete y».

Therefore, maximum likelihood approaches continue to be popular for nonlinear models.

3.1. Binary and Fractional Responses

The probit model provides a good illustration of the general approach. With a single

endogenous explanatory variable, the simplest specification is
y1 = 1[z181 + a1y2 + u1 > 0], (3.2)
where u1|z ~Normal(0, 1). But the analysis goes through if we replace (z1,y2) with any known
function g1(z1,y2), provided we have sufficient identifying assumptions. An example is
y1 = [2181 + y2z101 + ¥1y5 +u1 > 0]. The nonlinearity in y, is not itself a problem (unless we
inappropriately try to mimic 2SLS — more on this later).
The Smith-Blundell (1986) and Rivers-VVuong (1988) approach is to make a
homoskedastic-normal assumption on the reduced form for y»,
Y2 = 22 + v2, v2|lz ~Normal(0,73). (3.2)
A key point is that the RV approach essentially requires
(u1,v2) independent of z; (3.3)

as we will see in the next section, semiparametric and nonparametric CF methods also rely on

(3.3), or at least something close to it..

16
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If we assume
(u1,v2) ~Bivariate Normal (3.4)

with p1 = Corr(ui,v2), then we can proceed with MLE based on f(y1,y2|z). A simpler
two-step approach, which is convenient for testing Ho : p1 = 0 (y2 is exogenous), is also
available, and it works if we replace the normality assumption in (3.2), the independence
assumption in (3.3), and joint normality in (3.4) with
D(uilv2,z) = Normal(01v2,1 — p?), (3.5)
where 01 = p1/t; is the regression coefficient. That we can relax the assumptions to some
degree using a two-step CF approach has implications for less parametric approaches.
Certainly we can relax the homoskedasticity and linear expectation in (3.3) without much

additional work, as discussed in Wooldridge (2005).

Under the weaker assumption (3.5) we can write
Py1 = 1z,y2) = (2181 + ap1y2 + 0p1v2) (3.6)

where each coefficient is multiplied by (1 — p%)~2.
The RV two-step approach is
(1) OLS of y, on z, to obtain the residuals, v;.
(2) Probit of y1 on z1,y2, v, to estimate the scaled coefficients.
The original coefficients, which appear in the partial effects, are easily obtained from the

set of two-step estimates:
B, = B,./(1+0%,29)1"2, (3.7)

where 9p1 is the coeffcient on ¥, and 73 is the usual error variance estimator from the first step

17
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OLS, and ﬁpl includes 3p1 and a 1. Standard errors can be obtained from the delta method of

bootstrapping. Of course, they are computed directly from MLE. Partial effects are based on
(D(xlﬁl) where x1 = (z1,y2). It should be clear that nothing changes for estimation if

x1 = g,(z1,y2); of course, we would change how partial effects are computed to account for
the specific function g, (-, «).

Testing the null hypothesis that y» is exogenous is simple using the two-step control
function approache. Asymptotically, a simple ¢ test on v, is valid to test Hp : p1 = 0.

Under (3.3), we can also apply maximum likelihood by combining (3.2) and (3.6),
recognizing that v, = y» — zm, and estimating all parameters jointly. For details, see
Wooldridge (2010, Section 15.7.2).

A different way to obtain partial effects is to use the average structural function approach,

which leads to estimation of E,, [d)(xlﬁpl +0,1v2)]. Whether or not v, is normally distributed,

a consistent, /N -asymptotically normal estimator of the average structural function (evaluated
at a given vector x;) is
— N A A
ASF(z1,y2) = Nt Y ®(x1B ; +0p1D0); (38)
i=1
that is, we average out the reduced form residuals, v,2. This formulation is also useful for more
complicated models.
Given that the probit structural model is essentially arbitrary, one might be so bold as to
specify models for P(y1 = 1|z1,y2,v2) directly. For example, we can add polynomials in v, or
even interact v, with elements of x; side a probit or logit function. We return to such

possibilities in the next section.

18
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The two-step CF approach easily extends to fractional responses. Now, we start with an

omitted variables formulation in the conditional mean:

E(vilz,y2,q1) = E(ilz1,y2,q1) = ©(x1B; + q1), (3.9)

where x; is a function of (z1,y») and g1 contains unobservables. As usual, we need some
exclusion restrictions, embodied by omitting z, from x;. The specification in equation (3.9)
allows for responses at the corners, zero and one, and y1 may take on any values in between.

Under the assumption that
D(ql|V2,Z) ~ NOI’maK@le,n%) (310)

Given (3.9) and (3.10), it can be shown, using the mixing property of the normal distribution,

that
E(yilz,y2,v2) = @(x1B,; + On1v2), (3.11)

where the index “n” denotes coefficients multiplied by (1 + n3)/2. Because the Bernoulli log
likelihood is in the linear exponential family, maximizing it consistently estimates the
parameters of a correctly specified mean; naturally, the same is true for two-step estimation.
That is, the same two-step method can be used in the binary and fractional cases. Of course,
the variance associated with the Bernoulli distribution is generally incorrect. In addition to
correcting for the first-stage estimates, a robust sandwich estimator should be computed to
account for the fact that D(y1|z,y2) is not Bernoulli. The best way to compute partial effects is
to use (3.8), with the slight notational change that the implicit scaling in the coefficients is
different. By using (3.8), we can directly use the scaled coefficients estimated in the second
stage — a feature common across CF methods for nonlinear models. The bootstrap that

reestimates the first and second stages for each iteration is an easy way to obtain standard
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errors. Of course, having estimates of the parameters up to a common scale allows us to
determine signs of the partial effects in (3.9) as well as relative partial effects on the
continuous explanatory variables.

Wooldridge (2005) describes some simple ways to make the analysis starting from (3.9)
more flexible, including allowing Var(qi|v2) to be heteroskedastic. We can also use strictly
monotonic transformations of y, in the reduced form, say 42(y2), regardless of how y, appears
in the structural model: the key is that y, can be written as a function of (z,v2). The extension
to multivariate y- is straightforward with sufficient instruments provide the elements of y,, or
strictly monotonic functions of them, have reduced forms with additive errors that are
effectively indendent of z. (This assumption rules out applications to y, that are discrete
(binary, multinomial, or count)or have a discrete component (corner solution).

The control function approach has some decided advantages over another two-step
approach — one that appears to mimic the 2SLS estimation of the linear model. Rather than
conditioning on v, along with z (and therefore y,) to obtain
P(y1 = 1lz,v2) = P(y1 = 1|z,y2,v2), we can obtain P(y1 = 1|z). To find the latter probability,
we plug in the reduced form for y, to get y1 = 1[z181 + @1(282) + a1v2 + u1 > 0]. Because
a1v2 + u1 1s independent of z and (u1,v2) has a bivariate normal distribution,

P(y1 = 1|z) = ®{[z181 + @1(282)]/m1} where

o? = Var(aivs +u1) = a3t + 1+ 2a:Cov(vz, u1). (A two-step procedure now proceeds by
using the same first-step OLS regression — in this case, to get the fitted values, y» = 2:0, —
now followed by a probit of y;1 on z;1,y:2. It is easily seen that this method estimates the
coefficients up to the common scale factor 1/w1, which can be any positive value (unlike in the

CF case, where we know the scale factor is greater than unity).
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One danger with plugging in fitted values for y, is that one might be tempted to plug y»
into nonlinear functions, say y3 or y,z;. This does not result in consistent estimation of the
scaled parameters or the partial effects. If we believe y, has a linear RF with additive normal
error independent of z, the addition of ¥, solves the endogeneity problem regardless of how y»
appears. Plugging in fitted values for y, only works in the case where the model is linear in y,.
Plus, the CF approach makes it much easier to test the null that for endogeneity of y, as well as
compute APEs.

In standard index models such as (3.9), or, if you prefer, (3.1), the use of control functions
to estimate the (scaled) parameters and the APEs produces no surprises. However, one must
take care when, say, we allow for random slopes in nonlinear models. For example, suppose

we propose a random coefficient model
EWil|z,y2,¢1) = E(v1|z1,y2,¢1) = ©(z181 + a1y2 + q1), (3.12)

where a; is random with mean a1 and g1 again has mean of zero. If we want the partial effect

of y,, evaluated at the mean of heterogeneity, we have
a1(z161 + a1y2), (3.13)
where ¢(-) is the standard normal pdf, and this equation is obtained by differentiating (3.12)
with respect to y, and then plugging in a1 = a1 and g1 = 0. Suppose we write a1 = a1 + d1
and assume that (d1,q1) is bivariate normal with mean zero. Then, for given (z1,y>), the
average structural function can be shown to be

E(dlyql)[(l)(zlﬁl +a1y2 + dlyz + ql)] = (D[(Z181 + O!lyz)/(l + O'g + 20—dqy2 + oﬁy%)l’z], (314)

where o = Var(q1), 6% = Var(d1), and 64, = Cov(d1,q1). The average partial effect with

respect to, say, y», is the derivative of this function with respect to y,. While this partial effect
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depends on a1, it is messier than (3.13) and need not even have the same sign as a.
Wooldridge (2005) discusses related issues in the context of probit models with exogenous
variables and heteroskedasticity. In one example, he shows that, depending on whether
heteroskedasticity in the probit is due to heteroskedasticity in Var(ui|x1), where u; is the latent
error, or due to random slopes, the APEs are completely different in general. The same is true
here: the APE when the coefficient on y, is random is generally very different from the APE
obtained if we maintain a; = a1 but allow Var(g1|v2) to be heteroskedastic. In the latter case,
the APE is a positive multiple of ;.

Incidentally, we can estimate the APE in (3.14) fairly generally. A parametric approach is
to assume joint normality of (d1,¢1,v2) (and independence with z). Then, with a normalization

restriction, it can be shown that
E(y1|z, v2) = ®[(z101 + ai1y2 +01vo + leZVZ)/(l + N1y + lly%)llz], (3.15)

which can be estimated by inserting v, for v, and using nonlinear least squares or Bernoulli
QMLE. (The latter is often called “heteroskedastic probit” when y; is binary.) This procedure
can be viewed as an extension to Garen’s method for linear models with correlated random
coefficients.

Estimation, inference, and interpretation would be especially straightforward (the latter
possibly using the bootstrap) if we squint and pretend the term (1 + n1y2 + A1y3) Y2 is not
present. Then, estimation would simply be Bernoulli QMLE of y;1 on z;1, yi2, vi2, and yivi,
which means that we just add the interaction to the usual Rivers-Vuong procedure. The APE
for y, would be estimated by taking the derivative with respect to y, and averaging out v;2, as

usual:
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N
N Z(&l +¥1Pi2) + (2181 + G1y2 + 01D + Fay2vi), (3.16)
i1

and evaluating this at chosen values for (z1,y,) (or using further averaging across the sample
values). This simplification cannot be reconciled with (3.9), but it is in the spirit of adding
flexibility to a standard approach and treating functional forms as approximations. As a
practical matter, we can compare this with the APEs obtained from the standard Rivers-Vuong
approach, and a simple test of the null hypothesis that the coefficient on y, is constant is

Ho : w1 = 0 (which should account for the first step estimation of &t;). The null hypothesis
that y, is exogenous is the joint test Ho : 81 = 0,1 = 0, and in this case no adjustment is
needed for the first-stage estimation. And why stop here? If we, add, say, y3 to the structural
model, we might add 3 to the estimating equation as well. It would be very difficult to relate
parameters estimated from the CF method to parameters in an underlying structural model;
indeed, it would be difficult to find a structural model given rise to this particular CF approach.
But if the object of interest are the average partial effects, the focus on flexible models for
E(yilz1,y2,v2) can be liberating (or disturbing, depending on one’s point of view about
“structural” parameters).

Lewbel (2000) has made some progress in estimating parameters up to scale in the model
v1 = 1[z181 + a1y2 + u1 > 0], where y, might be correlated with u; and z; isa 1 x L vector
of exogenous variables. Lewbel’s (2000) general approach applies to this situation as well. Let
z be the vector of all exogenous variables uncorrelated with «;. Then Lewbel requires a
continuous element of z; with nonzero coefficient — say the last element, z;,— that does not
appear in D(u1]y2,z). (Clearly, y, cannot play the role of the variable excluded from

D(uily2,2) if y2 is thought to be endogenous.) When might Lewbel’s exclusion restriction
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hold? Sufficient is y, = g2(z2) + v2, where (u1,v2) is independent of z and z, does not contain
zr,. But this means that we have imposed an exclusion restriction on the reduced form of y»,
something usually discouraged in parametric contexts. Randomization of z;, does not make its
exclusion from the reduced form of y, legitimate; in fact, one often hopes that an instrument
for y, is effectively randomized, which means that z;, does not appear in the structural
equation but does appear in the reduced form of y, — the opposite of Lewbel’s assumption.
Lewbel’s assumption on the “special” regressor is suited to cases where a quantity that only
affects the response, y1, is randomized. A randomly generated project cost presented to
subjects in a willingness-to-pay study is one possibility. Even in such scenarios, one cannot
identify the effects of covariates on willingness to pay because coefficients are identified only
up to scale.

Returning to the probit response function in (3.9), we can understand the limits of the CF
approach for estimating nonlinear models with discrete EEVs. The Rivers-Vuong approach,
and its extension to fractional responses, cannot be expected to produce consistent estimates of

the parameters or APEs for discrete y,. The problem is that we cannot write

Y2 = 1IM2 + V2 (3.17)
D(v2|z) = D(v2) = Normal(0,73). (3.18)

In other words, unlike when we estimate a linear structural equation, the reduced form in the
RV approach is not just a linear projection — far from it. In the extreme we have completely
specified D(y»|z) as homoskedastic normal, which is clearly violated if y, is a binary variable,
a count variable, or a corner solution (commonly called a “censored” variable). Unfortunately,
even just assuming independence between v, and z rules out discrete y,, an assumption that

plays an important role even in fully nonparametric approaches. The bottom line is that there
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are no known two-step estimation methods that allow one to estimate a probit model or

fractional probit model with discrete y,, even if we make strong distributional assumptions.
Possibly because of the absense of valid two-step methods with discrete EEVs, some poor

strategies still linger. For example, suppose y1 and y, are both binary, (3.1) holds, y, follows

the index model
v2 = 1282 + v, > 0], (3.19)

and we maintain joint normality of (u1,v2) — now both with unit variances — and, of course,
independence between the errors and z. Because D(y;|z) follows a standard probit, it is
tempting to try to mimic 2SLS as follows: (i) Run probit of y, on z and get the fitted
probabilities, ®; = ®(z5.). (ii) Run probit of y1 on z1, ®y; that is, just replace each y;, with its
fitted probability, @,». This does not work, as it would require passing the expected value
passes through a nonlinear function. Some have called prodedures like this a “forbidden
regression.” We could find E(y1|z,y2) as a function of the structural and reduced form
parameters, insert the first-stage estimates of the RF parameters, and then use binary response
estimation in the second stage. But the estimator is not probit with the fitted probabilities
plugged in for y,. Currently, the only strategy we have is maximum likelihood estimation
based on f(y1|y2,z)f(y2|z), which is not difficult. Wooldridge (2010, Section 15.7.3) contains
the likelihood function. [The dearth of options that allow some robustness to distributional
assumptions on y», helps explain why some authors, notably Angrist (2001), have promoted the
idea of just using linear probability models estimated by 2SLS. This strategy seems to provide
good estimates of the average treatment effect in many applications. But it also seems true that
MLE based on joint normality might yield useful approximations to the APEs, too, even if the

distributional functions are not entirely correct. Such a view argues for fully robust inference
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in the context of misspecified maximum likelihood, as in White (1982).]

An issue that comes up occasionally is whether “bivariate probit” software can be used to
estimate the probit model with a binary endogenous variable. In fact, the answer is yes, and the
endogenous variables can appear in any way in the model, particularly interacted with
exogenous variables. The key is that the likelihood function is constructed from
SfOnly2, x1)f2(y2|x2), and so its form does not change if x; includes y,. (Of course, one should
have at least one exclusion restriction in the case x; does depend on y,.) MLE, of course, has
all of its desirable properties, and the parameter estimates needed to compute APEs are
provided directly.

If y1 is a fractional response satisfying (3.9), v, follows (3.19), and (g1, v2) are jointly
normal and independent of z, a two-step method based on E(y1|z,y2) is possible; the
expectation is not in closed form, and estimation cannot proceed by simply adding a control
function to a Bernoulli QMLE. But it should not be difficult to implement. Full MLE for a
fractional response is more difficult than for a binary response, particularly if y; takes on
values at the endpoints with positive probability.

An essentially parallel discussion holds for ordered probit response models, where y; takes
on the ordered values {0,1,...,J}. The RV procedure, and its extensions, applies immediately.
In computing partial effects on the response probabilities, we simply average out the reduced
for residuals, as in equation (3.8). The comments about the forbidden regression are
immediately applicable, too: one cannot simply insert, say, fitted probabilities for the binary
EEV y, into an ordered probit model for y1 and hope for consistent estimates of anything of
interest.

Likewise, methods for Tobit models when y; is a corner solution, such as labor supply or
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charitable contributions, are analyzed in a similar fashion. If y, is a continuous variable, CF
methods for consistent estimation can be obtained, at least under the assumptions used in the
RV setup. Smith and Blundell (1986) and Wooldridge (2010, Chapter 17) contain treatments.
The embellishments described above, such as letting D(u1|v2) be a flexible normal distribution,
carry over immediately to Tobit case, as do the cautions in looking for simple two-step
methods when D(y-|z) is discrete. Maximum likleihood estimation of all parameters jointly is

also quite feasible.

3.2. Multinomial and Ordered Responses

Allowing endogenous explanatory variables (EEVs) in multinomial response models is
notoriously difficult, even for continuous endogenous variables. There are two basic reasons.
First, multinomial probit (MNP), which mixes well well a reduced form normality assumption
for D(y2|z), is still computationally difficult for even a moderate number of choices.
Apparently, no one has undertaken a systematic treatment of MNP with EEVSs, including how
to obtain partial effects.

The multinomial logit (MNL) model and its extensions, such as nested logit and random
coefficient versions, are much simpler computationally with lots of alternatives. Unfortunately,
the normal distribution does not mix well with the extreme value distribution, and so, if we
begin with a structural MNL model (or conditional logit), the estimating equations obtained
from a CF approach are difficult to obtain, and MLE is very difficult, too, even if we assume a
normal distribution in the reduced form(s).

Recently, some authors have suggested taking a practical approach to allowing continuous

EEVs in multinomial response. The suggestions for binary and fractional responses in the
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previous subsection — namely, use probit, or even logit, with flexible functions of both the
observed variables and the reduced form residuals — is in this spirit.

Again it is convenient to model the source of endogeneity as an omitted variable. Let y; be
the (unordered) multinomial response taking values {0,1,...,J}, let z be the vector of
endogenous variables, and let y, be a vector of endogenous variables. If ;1 represents omitted
factors that the researcher would like to control for, then the structural model consists of

specifications for the response probabilities
P(yl :j|Zl,y2;r1),j= 011""iJ' (320)

The average partial effects, as usual, are obtained by averaging out the unobserved

heterogeneity, 1. Assume that y» follows the linear reduced form
Y, =zl +va. (3.21)

Typically, at least as a first attempt, we would assume a convenient joint distribution for
(r1,v2), such as multivariate normal and independent of z. This approach has been applied
when the response probabilities, conditional on 1, have the conditional logit form. For
example, Villas-Boas and Winer (1999) apply this approach to modeling brand choice, where
prices are allowed to correlated with unobserved tastes that affect brand choice. In
implementing the CF approach, the problem in starting with a multinomial or conditional logit
model for (3.20) is computational. Nevertheless, estimation is possible, particular if one uses
simulation methods of estimation briefly mentioned in the previous subsection.

A much simpler control function approach is obtained if we skip the step of modeling
P(v1 = jlz1,y,,71) and jump directly to convenient models for

P(v1 = jlzi1,y,,v2) = P(y1 = jlz,y,). Petrin and Train (2006) are proponents of this solution.
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The idea is that any parametric model for P(y1 = j|z1,y,,r1) is essentially arbitrary, so, if we
can recover quantities of interest directly from P(y1 = j|z1,y,, v2), why not specify these
probabilities directly? If we assume that D(r1|z,y,) = D(r1|v2), and that P(y1 = j|z1,y,,V2)
can be obtained from P(y1 = j|z1,y,,71) by integrating the latter with respect to D(r1|v2) then
we can estimate the APEs directly from P(y1 = j|z1,y,, v2) by averaging out across the
reduced form residuals, as in previous cases.

Once we have selected a model for P(y1 = j|z1,y,,v2), which could be multinomial logit,
conditional logit, or nested logit, we can apply a simple two-step procedure. First, estimate the
reduced form for y,, and obtain the residuals, v, = y;, — zI1,. (Alternatively, we can use
strictly monotonic transformations of the elements of y ,.) Then, we estimate a multinomial
response model with explanatory variables z;1,y,,, and v;>. As always with control function
approaches, we need enough exclusion restrictions in z;; to identify the parameters and APEs.
We can include nonlinear functions of (z1,y,,, Vi2), including quadratics and interactions for
more flexibility.

Given estimates of the probabilities p;(z1,y,, v2), we can estimate the average partial
effects on the structural probabilities by estimating the average structural function:

N
ASF(z1,y,) = N Y pi(z1,y,,92). (3.22)
i1

Then, we can take derivatives or changes of KS\F(zl,yz) with respect to elements of (z1,y,),
as usual. While the delta method can be used to obtain analytical standard errors, the bootstrap
is simpler and feasible if one uses, say, conditional logit.

In an application to choice of television service, Petrin and Train (2006) find the CF
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approach gives remarkably similar parameter estimates to the approach proposed by Berry,
Pakes, and Levinsohn (1995), which we touch on in the cluster sample notes.

When the EEVs are discrete, the CF arguments above do not apply. One can often
implement maximum likelihood without too much difficulty. For example, Adams, Chiang,

and Jensen (2003) use MLE when the scalar y, follows an ordered probit.

3.3. Exponential Models
Exponential models represent a middle ground between linear models and discrete
response models: to allow for EEVs in an exponential model, we need to impose more
assumptions than needed for standard linear models but fewer assumptions than discrete
response models. Both 1V approaches and CF approaches are available for exponential models,

the latter having been worked out for continuous and binary EEVs. With a single EEV, write
E(ilz,y2,71) = exp(zi1d1 + a1y + r1), (3.23)

where 1 is the omitted variable. (Extensions to general nonlinear functions of (z1,y,) are
immediate; we just add those functions with linear coefficients to (3.23). Leading cases are
polynomials and interactions.) Suppose first that y, has a standard linear reduced form with an

additive, independent error:

Y2 =1m2+Vv2 (3.24)
D(r1,v2|z) = D(r1,v2), (3.25)

so that (r1,v2) is independent of z. Then
E(ylll,yz) = E(ylll,VZ) = E[eXp(r1)|V2] exp(2181 + Otlyz). (326)

If (r1,v2) are jointly normal, then E[exp(r1)|v2] = exp(61v2), where we set the intercept to
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zero, assuming z; includes an intercept. This assumption can hold more generally, too. Then

E(ilz,y2) = E(y1lz,v2) = exp(z181 + a1y2 + 01v2), (3.27)
and this expectation immediately suggest a two-step estimation procedure. The first step, as
before, is to estimate the reduced form for y, and obtain the residuals. Then, include v,, along
with z; and y», in nonlinear regression or, especially if y; is a count variable, in a Poisson
QMLE analysis. Like NLS, it requires only (3.27) to hold. A ttest of Hp : 1 = O isvalid as a

test that y, is exogenous. Average partial effects on the mean are obtained from

N
[N‘l D exp(@1di2) J exp(z181 + a1y2).
i=1
Proportionate effects on the expected value, that is elasticities and semi-elasticities, do not
depend on the scale factor out front.

Like in the binary case, we can use a random coefficient model to suggest more flexible CF

methods. For example, if we start with

EWilz,y2,a1,r1) = exp(z181 + a1y + r1) (3.28)
= exp(z181 + a1y2 + d1y2 + 1)

and assume trivariate normality of (d1,71,v2) (and independence from z), then it can be shown

that

E(yilz,v2) = exp(z181 + a1y2 + 01v2 + w1yav2 (3.29)
+ (02 + 2042 + 02y3)/2).

Therefore, the estimating equation involves a quadratic in y, and an interaction between y, and
v2. Notice that the term (o2 + 204.y2 + 05y3)/2 is present even if y, is exogenous, that is,

01 = w1 = 0. If o4 = Cov(di,r1) #+ 0 then (3.29) does not even identify a1 = E(a1) (we
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would have to use higher-order moments, such as a variance assumption). But (3.29) does
identify the average structural function (and, therefore, APES). We just absorb 2 into the

intercept, combine the linear terms in y,, and add the quadratic in y,. So, we would estimate

E(vi|z,v2) = exp(z181 + p1ya + 01v2 + wiyava + n1y3) (3.30)
using a two-step QMLE. The ASF is more complicated, and estimated as
N
ZS?“(zl,yz) = |:N‘1 ZeXp(lel + 1y + 0100 + riyavin + fny%)} (3.31)
i=1
which, as in the probit example, implies that the APE with respect to y» need not have the
same sign as aj.
Our inability to estimate a1 even in this very parametric setting is just one example of how
delicate identification of parameters in standard index models can be. Natural extensions to
models with random slopes generally cause even the mean heterogeneity («; above) to be
unidentified. Again, it must be emphasized that the loss of identification holds even if y; is
assumed exogenous.
If y, is a binary model following a probit, then a CF approach due to Terza (1998) can be
used. We return to the model in (3.23) where, for simplicity, we assume y» is not interacted
with elements of z;; the extension is immediate.We can no longer assume (3.24) and (3.25).

Instead, replace (3.24)
y2 = 1[zmy +v2 > 0] (332)

and still adopt (3.25). In fact, we assume (r1,v2) is jointly normal. To implement a CF

approach, we need to find
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E(yilz,y2) = E[E(y1|z,v2)|z,y2]
= exp(z181 + ary2)E[exp(n1 + 01v2)|z,y2]
= exp(z181 + a1y2)h(y2,2m2,01), (3.34)

where we absorb 11 into the intercept in z; without changing notation and

h(yz,ZTCz,Ql) = exp(@%/Z){yZCD(Hl + an)/(D(znz) (3.35)
+ (1 -y2)[1 - D01+ zm2)]/[1 — D(zm2)]},

as shown by Terza (1998). Now, &, is estimated by a first-stage probit, and then NLS or, say,
Poisson QMLE can be applied to the mean function
exp(2161 + alyz)h(yz,zﬁtz,el). (3.36)

As usual, unless 6; = 0, one must account for the estimation error in the first step when
obtaining inference in the second. Terza (1998) contains analytical formulas, or one may use
the bootstrap.

In the exponential case, an alternative to either of the control function approaches just
presented is available — and, it produces consistent estimators regardless of the nature of y».

Write x; = g,(z1,y,) as any function of exogenous and endogenous variables. If we start with
E(ilz,y, 1) = exp(xiB; +71) (3.37)

then we can use a transformation due to Mullahy (1997) to consistently estimate B, by method

of moments. By definition, and assuming only that y; > 0, we can write

y1 = exp(xip, +r1)a:
= exp(x1P,) exp(ri)ar, E(ailz,y, r1) = 1.

If 1 is independent of z then

Elexp(—x1P,)yilz] = E[exp(ri)lz] = E[exp(ri)] =1, (3.38)
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where the last equality is just a normalization that defines the intercept in B,. Therefore, we

have conditional moment conditions
Elexp(—x1B,)y1 — 1|z] = 0, (3.39)

which depends on the unknown parameters B, and observable data. Any function of z can be
used as instruments in a nonlinear GMM procedure. An important issue in implementing the

procedure is choosing instruments. See Mullahy (1997) for further discussion.

4. Semiparametric and Nonparametric Approaches

Blundell and Powell (2004) show how to relax distributional assumptions on (u1,v2) in the
model model y1 = 1[x1B, + u1 > 0], where x; can be any function of (z1,y2). The key
assumption is that y, can be written as y, = g2(z) + v2, where (u1,v2) is independent of z. The
independence of the additive error v, and z pretty much rules out discreteness in y», even

though g2(+) can be left unspecified. Under the independence assumption,
P(v1 = 1z,v2) = E(nilz,v2) = H(x1B;,v2) (4.1)
for some (generally unknown) function H(-, -). The average structural function is just
ASF(z1,y2) = E,,[H(x1B,,vi2)]. We can estimate / and B, quite generally by first estimating
the function g»(+) and then obtaining residuals v, = y» — g2(z;). Blundell and Powell (2004)
show how to estimate / and B, (up to scale) and G(+), the distribution of «;. The ASF is
obtained from G(x1p,). We can also estimate the ASF by averaging out the reduced form

residuals,
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N
KS\F(Zl,yz) =N ZH(Xlﬁl"A’iZ); (4-2)
i=1

derivatives and changes can be computed with respect to elements of (z1,y2).

Blundell and Powell (2003) allow P(y1 = 1|z, y) to have the general form H(z1,y2,v2),
and then the second-step estimation is entirely nonparametric. They also allow g»(-) to be fully
nonparametric. But parametric approximations in each stage might produce good estimates of
the APEs. For example, y;» can be regressed on flexible functions of z; to obtain v;,. Then, one
can estimate probit or logit models in the second stage that include functions of z1, y», and v
in a flexible way — for example, with levels, quadratics, interactions, and maybe even
higher-order polynomials of each. Then, one simply averages out v;2, as in equation (4.2).
Valid standard errors and test statistics can be obtained by bootstrapping or by using the delta
method.

In certain cases, an even more parametric approach suggests itself. Suppose we have the

exponential regression
E(yilz,y2,r1) = exp(x1, +r1), 4.3)
where r1 is the unobservable. If y, = g,(z)m2 + v, and (r1,v2) is independent of z, then
E(yilz1,y2,v2) = ha(v2) exp(x1B,), 4.4

where now #,(+) is an unknown function. It can be approximated using series, say, and, of
course, first-stage residuals v, replace vs.
Blundell and Powell (2003) consider a very general setup, which starts with

y1 = g1(z1,y,,u1), and then discuss estimation of the ASF, given by

ASF1(z1,y,) = Igl(zl,yz,ul)dﬂ(ul), (4.5)
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where F1 is the distribution of «1. The key restrictions are that y, can be written as

Yo = 8,(2) + vy, (4.6)
where (u1,v2) is independent of z. The additive, independent reduced form errors in (4.6)
effectively rule out applications to discrete y,. Conceptually, Blundell and Powell’s method is
straightforward, as it is a nonparametric extenstion of parametric approaches. First, estimate g,
nonparametrically (which, in fact, may be done via a flexible parametric model, or kernel
estimators). Obtain the residuals v,» = y,, — 8,(z;). Next, estimate
E(y1|z1,y,,v2) = h1(z1,y,,Vv2) using nonparametrics, where v, replaces v,. Identification of
h1 holds quite generally, provided we have sufficient exclusion restrictions (elements in z not
in z1). BP discuss some potential pitfalls. Once we have /1, we can consistently estimate the

ASF. For given x{ = (z9,y%), the ASF can always be written, using iterated expectations, as

Ev,{E[g1(x7,u1)lv2]}-
Under the assumption that (u1,v2) is independent of z, E[g1(x$,u1)|v2] = h1(x9,v2) —that is,
the regression function of y; on (x1,v2). Therefore, a consistent estimate of the ASF is
N
N ha(xa,92). (4.7)
i=1
While semiparametric and parametric methods when y» (or, more generally, a vector y,)
are continuous — actually, have a reduced form with an additive, independent error — they do
not currently help us with discrete EEVs.
With univariate y», it possible to relax the additivity of v, in the reduced form equation
under monotonicity assumptions. Like Blundell and Powell (2003), Imbens and Newey (2006)

consider the triangular system, but without additivity in the reduced form of y,. The structureal
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equation is

y1 = g1(z1,y2,u1), (4.8)
where u; is a vector heterogeneity (whose dimension may not even be known), and the

reduced form for y;, is

y2 = ga(z,e2), (4.9)
where g»(z, +) is strictly monotonic. This assumption rules out discrete y, but allows some
interaction between the unobserved heterogeneity in y, and the exogenous variables. As one
special case, Imbens and Newey show that, if (u1,e2) is assumed to be independent of z, then a
valid control function that can be used in a second stage is v = F,,(yv2,z), where F,, is the
conditional distribution of y, given z. Imbens and Newey described identification of various
quantities of interest, including the quantile structural function. When u; is a scalar and

monotonically increasing in u1, the QSF is
OSF:(x1) = g1(x1,Quant _(u1)), (4.10)

where Quant,(u1) is the 7% of u1. We consider quantile methods in more detail in the quantile

methods notes.

5. Methods for Panel Data

We can combine methods for handling correlated random effects models with control
function methods to estimate certain nonlinear panel data models with unobserved
heterogeneity and EEVs. Here we provide as an illustration a parametric approach used by

Papke and Wooldridge (2008), which applies to binary and fractional responses. The
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manipulations are routine but point to more flexible ways of estimating the average marginal
effects. It is important to remember that we currently have no way of estimating, say,
unobserved effects models for fractional response variables, either with or without endogenous
explanatory variables, without imposing some restrictions on the distribution of heterogeneity
given the exogenous variables. Even the approaches that treat the unobserved effects as
parameters — and use large 7 approximations — to not allow endogenous regressors. Plus, recall
from the nonlinear panel data notes that most results are for the case where the data are
assumed independent across time. Jackknife approaches further assume homogeneity across
time.

We write the model with time-constant unobserved heterogeneity, c¢;1, and time-varying
unobservables, v;q, as

EQinlyie zi,cin,vin) = EQinlyie, 2ia,ca,vin) = @(a1yie + 2iad1 + ci + via). (5.1)

Thus, there are two kinds of potential omitted variables. We allow the heterogeneity, c;1, to be
correlated with y;» and z;, where z; = (za,...,z;r) is the vector of strictly exogenous variables
(conditional on ¢;1). The time-varying omitted variable is uncorrelated with z; — strict
exogeneity — but may be correlated with y ;. As an example, y;;1 is a female labor force
participation indicator and y is other sources of income. Or, y;4 is a test pass rate, and the
school leve, and y;,, is a measure of spending per student.

When we write z;; = (zia1,Zip), We are assuming z;» can be excluded from the “structural”
equation (4.1). This is the same as the requirement for fixed effects two stage least squares
estimation of a linear model.

To proceed, we first model the heterogeneity using a Chamberlain-Mundlak approach:
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cil=y1+ Z'E_,l + ail,al-1|zl~ ~ NormaI(O,oﬁl). (52)

We could allow the elements of z; to appear with separate coefficients, too. Note that only

exogenous variables are included in z;. Plugging into (5.1) we have

EQinlyie,ziyai,vin) = ®(@1yie + 2ind1 + w1 + Z;&, + ain + vin)

= O(a1yie + 2ind1 +y1 + Z:&, +7in). (5.3
Next, we assume a linear reduced form for y;.:
Yie = W2+ 2402 +Z:&, +vip,t = 1,...,T, (5.4)
where, if necessary, we can allow the coefficients in (5.4) to depend on ¢. The addition of the
time average of the strictly exogenous variables in (5.4) follows from the Mundlak (1978)
device. The nature of endogeneity of y;. is through correlation between r;1 = ai1 + vz and
the reduced form error, v;». Thus, y;» is allowed to be correlated with unobserved

heterogeneity and the time-varying omitted factor. We also assume that r;1 given v, is

conditionally normal, which we write as
il = N1Vi + €in, (5.5)
ein|(zi,vir) ~Normal(0,62)),t = 1,...,T. (5.6)

Because e is independent of (z;,vi2), it is also independent of y;». Using a standard mixing

property of the normal distribution,

EQinlzi,yin,vie) = ®(@eyin + Zinder + e +Z:&,, + Ne1vi) (5.7)

where the “e” subscript denotes division by (1 + ¢2,)¥2. This equation is the basis for CF
estimation.

The assumptions used to obtain (5.7) would not hold for y;» having discreteness or
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substantively limited range in its distribution. It is straightfoward to include powers of v;. in
(5.7) to allow greater flexibility. Following Wooldridge (2005) for the cross-sectional case, we
could even model ;1 given v, as a heteroskedastic normal.

In deciding on estimators of the parameters in (5.7), we must note that the explanatory
variables, while contemporaneous exogenous by construction, are not usually strictly
exogenous. In particular, we allow y; to be correlated with v;; for ¢ = s. Therefore,
generalized estimation equations, that assume strict exogeneity — see the notes on nonlinear
panel data models — will not be consistent in general. We could apply method of moments
procedures. A simple approach is to use use pooled nonlinear least squares or pooled
quasi-MLE, using the Bernoulli log likelihood. (The latter fall under the rubric of generalized
linear models.) Of course, we want to allow arbitrary serial dependence and
Var(yinl|z:,yi2, vie) in obtaining inference, which means using a robust sandwich estimator.

The two step procedure is (i) Estimate the reduced form for y,» (pooled across ¢, or maybe
for each ¢ separately; at a minimum, different time period intercepts should be allowed).
Obtain the residuals, v for all (i, 7) pairs. The estimate of 8, is the fixed effects estimate. (ii)
Use the pooled probit QMLE of y;i1 0N yi,Zin,Z;, Vi t0 estimate a1, 8.1, ye1,§,; and ner.

Because of the two-step procedure, the standard errors in the second stage should be
adjusted for the first stage estimation. Alternatively, bootstrapping can be used by resampling
the cross-sectional units. Conveniently, if n.; = 0, the first stage estimation can be ignored, at
least using first-order asymptotics. Consequently, a test for endogeneity of y,. is easily
obtained as an asymptotic ¢ statistic on v;;; it should be make robust to arbitrary serial
correlation and misspecified variance. Adding first-stage residuals to test for endogeneity of an

explanatory variables dates back to Hausman (1978). In a cross-sectional contexts, Rivers and
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Vuong (1988) suggested it for the probit model.

Estimates of average partial effects are based on the average structural function
E ey [P(a1yn + 2481 + cit + vin)] (5.8)
with respect to the elements of (y2,z4). It can be shown that
EGvip [P(aarye + 2ader + Wer + Zi&,; + Neavin)]; (5.9)

that is, we “integrate out” (z;, vi2) and then take derivatives or changes with respect to the
elements of (z,1y2). Because we are not making a distributional assumption about (z;, vi2), we
instead estimate the APESs by averaging out (z;, vz) across the sample, for a chosen ¢
N
Nt Z D(Geryir + 2081 + Y1 + 7, + NeaPin). (5.10)
i=1
APEs computed from (5.10) — typically with further averaging out across ¢ and the values
of y,» and z,; — can be compared directly with linear model estimates, particular fixed effects
IV estimates.
We can use the approaches of Altonji and Matzkin (2005) and Blundell and Powell (2003)
to make the analysis less parametric. For example, we might replace (5.4) with

vie = g2(2i,Z;) + vi (Or use functions in addition to , z;, as in AM). Then, we could maintain
D(cit +vinlzi,yie) = D(ci + vial|Zi, vie).

In the first estimation step, v, is obtained from a nonparametric or semiparametric pooled

estimation. Then the function
EQinlyie,zi,vie) = hi(XiaPy,Zi, vie)

can be estimated in a second stage, with the first-stage residuals, v, inserted. Generally,
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identification holds because the v, varying over time separately from x;; due to time-varying
exogenous instruments z;». The inclusion of z; requires that we have at least one time-varying,

strictly exogenous instrument for y .
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