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Lecture 2, Monday, January 9, 8:30 am-10:00 am

Linear Panel Data Models

These notes cover some recent topics in linear panel data models. They begin with a

“modern” treatment of the basic linear model, and then consider some embellishments, such as

random slopes and time-varying factor loads. In addition, fully robust tests for correlated

random effects, lack of strict exogeneity, and contemporaneous endogeneity are presented.

Section 4 discusses methods for estimating dynamic panel data models without strictly

exogenous regressors. Recent methods for estimating production functions using firm-level

panel data are summarized in Section 5, and Section 6 provides a unified treatment of

estimation with pseudo-panel data.

1. Overview of the Basic Model

Most of these notes are concerned with an unobserved effects model defined for a large

population. Therefore, we assume random sampling in the cross section dimension. Unless

stated otherwise, the asymptotic results are for a fixed number of time periods, T, with the

number of cross section observations, N, getting large.

For some of what we do, it is critical to distinguish the underlying population model of

interest and the sampling scheme that generates data that we can use to estimate the population

parameters. The standard model can be written, for a generic i in the population, as

yit  t  xit  ci  uit, t  1, . . . ,T,     (1.1)

where t is a separate time period intercept (almost always a good idea), xit is a 1  K vector of

explanatory variables, ci is the time-constant unobserved effect, and the uit : t  1, . . . ,T are

idiosyncratic errors. Thanks to Mundlak (1978) and Chamberlain (1982), we now know that, in
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the small T case, viewing the ci as random draws along with the observed variables is the

appropriate posture. Then, one of the key issues is whether ci is correlated with elements of xit.

It probably makes more sense to drop the i subscript in (1.1), which would emphasize that

the equation holds for an entire population. But (1.1) is useful to emphasizing which factors

change only across t, which change only change across i, and which change across i and t. It is

sometimes convenient to subsume the time dummies in xit.

Ruling out correlation (for now) between uit and xit, a sensible assumption is

contemporaneous exogeneity conditional on ci :

Euit|xit,ci  0, t  1, . . . ,T.     (1.2)

This equation really defines  in the sense that, under (1.1) and (1.2),

Eyit|xit,ci  t  xit  ci,     (1.3)

so the j are partial effects holding fixed the unobserved heterogeneity (and covariates other

than xtj).

As is now well known,  is not identified only under (1.3). Of course, if we add

Covxit,ci  0 for any t, then  is identified and can be consistently estimated by a cross

section regression using a single time period t, or by pooling across t. But usually the whole

point in having panel data is to allow the unobserved effect to be correlated with time-varying

xit.

We can allow general correlation between ci and xi  xi1,xi2, . . . ,xiT if we add the

assumption of strict exogeneity conditional on ci:

Euit|xi1,xi2, . . . ,xiT,ci  0, t  1, . . . ,T,     (1.4)

which can be expressed as

2



Imbens/Wooldridge, AEA Lecture Notes 2, January ’12

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci  t  xit  ci.     (1.5)

If the elements of xit : t  1, . . . ,T have suitable time variation,  can be consistently

estimated by fixed effects (FE) or first differencing (FD), or generalized least squares (GLS) or

generalized method of moments (GMM) versions of them. The fixed effects, or within

estimator, is the pooled OLS estimator in the equation

ÿit  ̈t  ẍit  üit, t  1, . . . ,T,

where ÿit  yit − T−1∑r1
T yir is the deviation of yit from the time average, ȳi and similarly for

ẍit. Consistency of pooled OLS (for fixed T and N → ) essentially requires rests on

∑ t1
T Eẍit

′ üit  ∑ t1
T Eẍit

′ uit  0, which means the error uit should be uncorrelated with xir

for all r and t. The FD estimator is pooled OLS on

Δyit   t  Δxit  Δuit, t  2, . . . ,T,

where  t  t − t−1. Sufficient for consistency is EΔxit
′ Δuit  0. See Wooldridge (2010,

Chapter 10) for further discussion.

If FE or FD are used, standard inference can and should be made fully robust to

heteroskedasticity and serial dependence that could depend on the regressors (or not). These

are the now well-known “cluster” standard errors (which we discuss in detail in the notes on

cluster sampling). With large N and small T, there is little excuse not to compute them. Even if

GLS is used with an unrestricted variance matrix for the T − 1 vector Δui (in the FD case) or

the T − 1 vector üi (where we drop one time period), the system homoskedasticity assumption,

for example, in the FE case, Eüiüi
′|ẍi  Eüiüi

′, need not hold, and so a case can be made

for robust inference.

(As an aside, some call (1.4) or (1.5) “strong” exogeneity. But in the Engle, Hendry, and
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Richard (1983) work, strong exogeneity incorporates assumptions on parameters in different

conditional distributions being variation free, and that is not needed here.)

The strict exogeneity assumption is always violated if xit contains lagged dependent

variables, but it can be violated in other cases where xi,t1 is correlated with uit – a “feedback

effect.” An assumption more natural than strict exogeneity is sequential exogeneity condition

on ci:

Euit|xi1,xi2, . . . ,xit,ci  0, t  1, . . . ,T     (1.6)

or

Eyit|xi1, . . . ,xit,ci  Eyit|xit,ci  t  xit  ci.     (1.7)

This allows for lagged dependent variables (in which case it implies that the dynamics in the

mean have been completely specified) and, generally, is more natural when we take the view

that xit might react to shocks that affect yit. Generally,  is identified under sequential

exogeneity. First differencing and using lags of xit as instruments, or forward filtering, can be

used in simple IV procedures or GMM procedures. (More later.)

If we are willing to assume ci and xi are uncorrelated, then many more possibilities arise

(including, of course, identifying coefficients on time-constant explanatory variables). The

most convenient way of stating the random effects (RE) assumption is

Eci|xi  Eci,     (1.8)

although using the linear projection in place of Eci|xi suffices for consistency (but usual

inference would not generally be valid). Under (1.8), we can used pooled OLS or any GLS

procedure, including the usual RE estimator. Fully robust inference is available and should

generally be used. (Note: The usual RE variance matrix, which depends only on c
2 and u

2,
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need not be correctly specified! It still makes sense to use it in estimation but make inference

robust.)

It is useful to define two correlated random effects assumptions:

Lci|xi    xi,     (1.9)

which actually is not an assumption but a definition. For nonlinear models, we will have to

actually make assumptions about Dci|xi, the conditional distribution. Methods based on (1.9)

are often said to implement the Chamberlain device, after Chamberlain (1982).

Mundlak (1978) used a restricted version, and used a conditional expectation:

Eci|xi    x̄i,     (1.10)

where x̄i  T−1∑ t1
T xit. This formulation conserves on degrees of freedom, and extensions are

useful for nonlinear models.

If we write ci    xi  ai or ci    x̄i  ai and plug into the original equation, for

example

yit  t  xit  x̄i  ai  uit     (1.11)

(absorbing  into the time intercepts), then we are tempted to use pooled OLS, or RE

estimation because Eai  uit|xi  0. Either of these leads to the FE estimator of , and to a

simple test of H0 :   0. Later, when we discuss control function methods, it will be handy to

run regressions directly that include the time averages. (Somewhat surprisingly, we obtain the

same algebraic equivalence using Chamberlain’s more flexible devise. That is, if we apply

pooled OLS to the equation yit  t  xit  xi11 . . .xiTT  ai  uit, the estimate of  is

still the FE estimator, even though the t might change substantially across t. Of course, this

estimator is not generally efficient, and Chamberlain shows how to obtain the efficient
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minimum distance estimator. See also Wooldridge (2010, Chapter 11).)

Some of us have been pushing for several years the notion that specification tests should be

made robust to assumptions that are not directly being tested. That is, if a test has no

asymptotic power for detecting violation of certain assumptions, the test should be modified to

have proper asymptotic size if those assumptions are violated. Much progress has been made in

the theoretical literature, but one still sees routine use of Hausman (1978) statistics that

maintain a full set of assumptions under the null hypothesis. (Ironically, this often happens in

studies where traditional inference about parameters is made fully robust.) Take a leading case,

comparing random effects to fixed effects. Once we maintain (1.4), which is used by FE and

RE, the key assumption is (1.8), that is, we are interested in finding evidence of whether ci is

correlated with xi. Of course, the FE estimator is consistent (for the coefficients on

time-varying covariates) whether or not ci is correlated with xi. And, of course, we need make

no assumptions about Varui|xi,ci for consistency of FE. Further, RE is consistent under

(1.8), whether or not Varvi|xi has the random effects structure, where vit  ci  uit. (In

addition to (1.4) and (1.8), sufficient are Varui|xi,ci  u
2IT and Varci|xi  Varci. ) In

fact, we might be perfectly happy using RE under (1.8) even though it might not be the

asymptotically efficient estimator. Therefore, for testing the key assumption (1.8), we should

not add the auxiliary assumptions that imply RE is asymptotically efficient. Moreover, as

should be clear from the structure of the statistic (and can be shown formally), the usual form

of the Hausman statistic has no systematic power for detecting violations of the second

moment assumptions on Varvi|xi. In particular, if (1.4) and (1.8) hold, the usual statistic

converges in distribution to some random variable (not chi-square in general), regardless of the

structure of Varvi|xi.
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To summarize, it makes no sense to report fully robust variance matrices for FE and RE but

then to compute a Hausman test that maintains the full set of RE assumptions. The

regression-based Hausman test from (1.11) is very handy for obtaining a fully robust test, as

well as for using the proper degrees of freedom in the limiting distribution. Specifically,

suppose the model contains a full set of year intercepts as well as time-constant and

time-varying explanatory variables:

yit  gt  zi  wit  ci  uit, t  1, . . . ,T.

Now, it is clear that, because we cannot estimate  by FE, it is not part of the Hausman test

comparing the RE and FE estimates. What is less clear, but also true, is that the coefficients on

the aggregate time variables, , cannot be included, either. (RE and FE estimation only with

variables that change across t are identical.) In fact, we can only compare the M  1 estimates

of , say ̂FE and ̂RE. If we include ̂FE and ̂RE we introduce a nonsingularity in the

asymptotic variance matrix. The regression based test, from the pooled regression

yit on gt, zi, wit, w̄i, t  1, . . . ,T; i  1, . . . ,N,

makes this clear (and also makes it clear that the are only M restrictions to test). Mundlak

(1978) suggested this test and Arellano (1993) described the robust version.. Unfortunately, the

usual form of the Hausman test does not make it easy to obtain a nonnegative test statistic, and

it is easy to get confused about the appropriate degrees of freedom in the chi-square

distribution. For example, the “Hausman” command in Stata includes year dummies in the

comparison between RE and FE; in addition, the test maintains the full set of RE assumptions

under the null. The most important problem is that unwarranted degrees of freedom are added

to the chi-square distribution, often many extra df, which can produce seriously misleading
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p-values.

2. New Insights Into Old Estimators

In the past several years, the properties of traditional estimators used for linear models,

particularly fixed effects and its instrumental variable counterparts, have been studied under

weaker assumptions. We review some of those results here. In these notes, we focus on models

without lagged dependent variables or other non-strictly exogenous explanatory variables,

although the instrumental variables methods applied to linear models can, in some cases, be

applied to models with lagged dependent variables.

2.1. Fixed Effects Estimation in the Correlated Random Slopes Model

The fixed effects (FE) estimator is still the workhorse in empirical studies that employ

panel data methods to estimate the effects of time-varying explanatory variables. The

attractiveness of the FE estimator is that it allows arbitrary correlation between the additive,

unobserved heterogeneity and the explanatory variables. (Pooled methods that do not remove

time averages, as well as the random effects (RE) estimator, essentially assume that the

unobserved heterogeneity is uncorrelated with the covariates.) Nevertheless, the framework in

which the FE estimator is typically analyzed is somewhat restrictive: the heterogeneity is

assumed to be additive and is assumed to have a constant coefficients (factor loads) over time.

Recently, Wooldridge (2005) has shown that the FE estimator, and extensions that sweep away

unit-specific trends, has robustness properties for estimating the population average effect

(PAE) or average partial effect (APE).

We begin with an extension of the usual model to allow for unit-specific slopes,
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yit  ci  xitbi  uit

Euit|xi,ci,bi  0, t  1, . . . ,T,

    (2.1)

    (2.2)

where bi is K  1. Rather than acknowledge that bi is unit-specific, we ignore the

heterogeneity in the slopes and act as if bi is constant for all i. We think ci might be correlated

with at least some elements of xit, and therefore we apply the usual fixed effects estimator. The

question we address here is: when does the usual FE estimator consistently estimate the

population average effect,   Ebi.

In addition to assumption (2.2), we naturally need the usual FE rank condition,

rank ∑
t1

T

Eẍit
′ ẍit  K.     (2.3)

Write bi    di where the unit-specific deviation from the average, di, necessarily has a zero

mean. Then

yit  ci  xit  xitdi  uit ≡ ci  xit  vit     (2.4)

where vit ≡ xitdi  uit. A sufficient condition for consistency of the FE estimator along with

(2.2) is

Eẍit
′ v̈it  0, t  1, . . . ,T.     (2.5)

Along with (2.2), it suffices that Eẍit
′ ẍitdi  0 for all t. A sufficient condition, and one that is

easier to interpret, is

Ebi|ẍit  Ebi  , t  1, . . . ,T.     (2.6)

Importantly, condition (2.6) allows the slopes, bi, to be correlated with the regressors xit

through permanent components. What it rules out is correlation between idiosyncratic

movements in xit. We can formalize this statement by writing xit  fi  r it, t  1, . . . ,T. Then
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(2.6) holds if Ebi|r i1,r i2, . . . ,r iT  Ebi. So bi is allowed to be arbitrarily correlated with the

permanent component, fi. (Of course, xit  fi  r it is a special representation of the covariates,

but it helps to illustrate condition (2.6).) Condition (2.6) is similar in spirit to the Mundlak

(1978) assumption applied to the slopes (rather to the intercept):

Ebi|xi1,xi2, . . . ,xiT  Ebi|x̄i

One implication of these results is that it is a good idea to use a fully robust variance matrix

estimator with FE even if one thinks idiosyncratic errors are serially uncorrelated: the term

ẍitdi is left in the error term and causes heteroskedasticity and serial correlation, in general.

These results extend to a more general class of estimators that includes the usual fixed

effects and random trend estimator. Write

yit  wtai  xitbi  uit, t  1, . . . ,T     (2.7)

where wt is a set of deterministic functions of time. We maintain the standard assumption (2.2)

but with ai in place of ci. Now, the “fixed effects” estimator sweeps away ai by netting out wt

from xit. In particular, now let ẍit denote the residuals from the regression xit on

wt, t  1, . . . ,T.

In the random trend model, wt  1, t, and so the elements of xit have unit-specific linear

trends removed in addition to a level effect. Removing even more of the heterogeneity from

xit makes it even more likely that (2.6) holds. For example, if xit  fi  hit  r it, then bi can

be arbitrarily correlated with fi,hi. Of course, individually detrending the xit requires at least

three time periods, and it decreases the variation in ẍit compared to the usual FE estimator. Not

surprisingly, increasing the dimension of wt (subject to the restriction dimwt  T), generally

leads to less precision of the estimator. See Wooldridge (2005) for further discussion.

Of course, the first differencing transformation can be used in place of, or in conjunction
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with, unit-specific detrending. For example, if we first difference followed by the within

transformation, it is easily seen that a condition sufficient for consistency of the resulting

estimator for  is

Ebi|Δẍit  Ebi, t  2, . . . ,T,     (2.8)

where Δẍit  Δxit − Δx are the demeaned first differences.

Now consider an important special case of the previous setup, where the regressors that

have unit-specific coefficients are time dummies. We can write the model as

yit  xit  tci  uit, t  1, . . . ,T,     (2.9)

where, with small T and large N, it makes sense to treat t : t  1, . . . ,T as parameters, like

. Model (2.9) is attractive because it allows, say, the return to unobserved “talent” to change

over time. Those who estimate, say, firm-level production functions like to allow the

importance of unobserved factors, such as managerial skill, to change over time. Estimation of

, along with the t, is a nonlinear problem. What if we just estimate  by fixed effects? Let

c  Eci and write (2.9) as

yit   t  xit  tdi  uit, t  1, . . . ,T,     (2.10)

where  t  tc and di  ci − c has zero mean In addition, the composite error,

vit ≡ tdi  uit, is uncorrelated with xi1,x2, . . . ,xiT (as well as having a zero mean). It is easy

to see that consistency of the usual FE estimator, which allows for different time period

intercepts, is ensured if

Covẍit,ci  0, t  1, . . . ,T.     (2.11)

In other words, the unobserved effects is uncorrelated with the deviations ẍit  xit − x̄i.

If we use the extended FE estimators for random trend models, as above, then we can
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replace ẍit with detrended covariates. Then, ci can be correlated with underlying levels and

trends in xit (provided we have a sufficient number of time periods).

Using usual FE (with full time period dummies) does not allow us to estimate the t, or

even determine whether the t change over time. Even if we are interested only in  when ci

and xit are allowed to be correlated, being able to detect time-varying factor loads is important

because (2.11) is not completely general. It is useful to have a simple test of

H0 : 2  3 . . . T with some power against the alternative of time-varying coefficients.

Then, we can determine whether a more sophisticated estimation method might be needed.

We can obtain a simple variable addition test that can be computed using linear estimation

methods if we specify a particular relationship between ci and xi. We use the Mundlak (1978)

assumption

ci    x̄i  ai.     (2.12)

Then

yit  t  xit  tx̄i tai  uit   t  xit  x̄i  tx̄i  ai  tai  uit,     (2.13)

where t  t − 1 for all t. Under the null hypothesis, t  0, t  2, . . . ,T. If we impose the

null hypothesis, the resulting model is linear, and we can estimate it by pooled OLS of yit on

1,d2t, . . . ,dTt,xit, x̄i across t and i, where the drt are time dummies. A variable addition test

that all t are zero can be obtained by applying FE to the equation

yit  1  2d2t . . .TdTt  xit  2d2tx̄î . . .TdTtx̄î  errorit,     (2.14)

and test the joint significance of the T − 1 terms d2tx̄î, . . . ,dTtx̄î. (The term x̄î would

drop out of an FE estimation, and so we just omit it.) Note that x̄î is a scalar and so the test as

T − 1 degrees of freedom. As always, it is prudent to use a fully robust test (even though, under
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the null, tai disappears from the error term).

A few comments about this test are in order. First, although we used the Mundlak device to

obtain the test, it does not have to represent the actual linear projection because we are simply

adding terms to an FE estimation. Under the null, we do not need to restrict the relationship

between ci and xi. Of course, the power of the test may be affected by this choice. Second, the

test only makes sense if  ≠ 0; in particular, it cannot be used in a pure random effects

environment. Third, a rejection of the null does not necessarily mean that the usual FE

estimator is inconsistent for : assumption (11) could still hold. In fact, the change in the

estimate of  when the interaction terms are added can be indicative of whether accounting for

time-varying t is likely to be important. But, because ̂ has been estimated under the null, the

estimated  from (1.14) is not generally consistent.

If we want to estimate the t along with , we can impose the Mundlak assumption and

estimate all parameters, including , by pooled nonlinear regression or some GMM version.

Or, we can use Chamberlain’s (1982) less restrictive assumption. But, typically, when we want

to allow arbitrary correlation between ci and xi, we work directly from (2.9) and eliminate the

ci. There are several ways to do this. If we maintain that all t are different from zero then we

can use a quasi-differencing method to eliminate ci. In particular, for t ≥ 2 we can multiply the

t − 1 equation by t/t−1 and subtract the result from the time t equation:

yit − t/t−1yi,t−1  xit−t/t−1xi,t−1  tci − t/t−1t−1ci  uit − t/t−1ui,t−1

 xit−t/t−1xi,t−1  uit − t/t−1ui,t−1, t ≥ 2.

We define t  t/t−1 and write

yit − tyi,t−1  xit − txi,t−1  eit, t  2, . . . ,T,     (2.15)

where eit ≡ uit − tui,t−1. Under the strict exogeneity assumption, eit is uncorrelated with every
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element of xi, and so we can apply GMM to (2.15) to estimate  and 2, . . . ,T. Again, this

requires using nonlinear GMM methods, and the eit would typically be serially correlated. If

we do not impose restrictions on the second moment matrix of ui, then we would not use any

information on the second moments of e i; we would (eventually) use an unrestricted weighting

matrix after an initial estimation.

Using all of xi in each time period can result in too many overidentifying restrictions. At

time t we might use, say, zit  xit,xi,t−1, and then the instrument matrix Zi (with T − 1 rows)

would be diagzi2, . . . ,ziT. An initial consistent estimator can be gotten by choosing weighting

matrix N−1∑ i1
N Zi

′Zi−1. Then the optimal weighting matrix can be estimated. Ahn, Lee, and

Schmidt (2001) provide further discussion.

If xit contains sequentially but not strictly exogenous explanatory variables – such as a

lagged dependent variable – the instruments at time t can only be chosen from xi,t−1, . . . ,xi1.

Holtz-Eakin, Newey, and Rosen (1988) explicitly consider models with lagged dependent

variables; more on these models later.

Other transformations can be used. For example, at time t ≥ 2 we can use the equation

t−1yit − tyi,t−1  t−1xit − txi,t−1  eit, t  2, . . . ,T,

where now eit  t−1uit − tui,t−1. This equation has the advantage of allowing t  0 for some

t. The same choices of instruments are available depending on whether xit are strictly or

sequentially exogenous.

2.2. Fixed Effects IV Estimation with Random Slopes

The results for the fixed effects estimator (in the generalized sense of removing
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unit-specific means and possibly trends), extend to fixed effects IV methods, provided we add

a constant conditional covariance assumption. Murtazashvili and Wooldridge (2007) derive a

simple set of sufficient conditions. In the model with general trends, we assume the natural

extension of Assumption FEIV.1, that is, Euit|zi,ai,bi  0 for all t, along with Assumption

FEIV.2. We modify assumption (2.6) in the obvious way: replace ẍit with z̈it, the

individual-specific detrended instruments:

Ebi|z̈it  Ebi  , t  1, . . . ,T     (2.16)

But something more is needed. Murtazashvili and Wooldridge (2007) show that, along with the

previous assumptions, a sufficient condition is

Covẍit,bi|z̈it  Covẍit,bi, t  1, . . . ,T.     (2.17)

Note that the covariance Covẍit,bi, a K  K matrix, need not be zero, or even constant across

time. In other words, we can allow the detrended covariates to be arbitrarily correlated with the

heterogeneous slopes, and that correlation can change in any way across time. But the

conditional covariance cannot depend on the time-demeaned instruments. (This is an example

of how it is important to distinguish between a conditional expectation and an unconditional

one: the implicit error in the equation generally has an unconditional mean that changes with t,

but its conditional mean does not depend on z̈it, and so using z̈it as IVs is valid provided we

allow for a full set of dummies.) Condition (2.17) extends to the panel data case the

assumption used by Wooldridge (2003) in the cross section case.

We can easily show why (2.17) suffices with the previous assumptions. First, if

Edi|z̈it  0 – which follows from Ebi|z̈it  Ebi – then Covẍit,di|z̈it  Eẍitdi
′|z̈it, and

so Eẍitdi|z̈it  Eẍitdi ≡ t under the previous assumptions. Write ẍitdi  t  rit where
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Eriti|z̈it  0, t  1, . . . ,T. Then we can write the transformed equation as

ÿit  ẍit  ẍitdi  üit  ÿit  ẍit  t  rit  üit.     (2.18)

Now, if xit contains a full set of time period dummies, then we can absorb t into ẍit, and we

assume that here. Then the sufficient condition for consistency of IV estimators applied to the

transformed equations is Ez̈it
′ rit  üit  0,.and this condition is met under the maintained

assumptions. In other words, under (2.16) and (2.17), the fixed effects 2SLS estimator is

consistent for the average population effect, . (Remember, we use “fixed effects” here in the

general sense of eliminating the unit-specific trends, ai.) We must remember to include a full

set of time period dummies if we want to apply this robustness result, something that should be

done in any case. Naturally, we can also use GMM to obtain a more efficient estimator. If bi

truly depends on i, then the composite error rit  üit is likely serially correlated and

heteroskedastic. See Murtazashvili and Wooldridge (2007) for further discussion and

simulation results on the performance of the FE2SLS estimator. They also provide examples

where the key assumptions cannot be expected to hold, such as when endogenous elements of

xit are discrete.

3. Behavior of Estimators without Strict Exogeneity

As is well known, both the FE and FD estimators are inconsistent (with fixed T, N → )

without the conditional strict exogeneity assumption. But it is also pretty well known that, at

least under certain assumptions, the FE estimator can be expected to have less “bias” (actually,

inconsistency) for larger T. One assumption is contemporaneous exogeneity, (1.2). If we

maintain this assumption, assume that the data series xit,uit : t  1, . . . ,T is “weakly
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dependent” – in time series parlance, integrated of order zero, or I(0) – then we can show that

plim ̂FE    OT−1

plim ̂FD    O1.

    (3.1)

    (3.2)

In some special cases – the AR(1) model without extra covariates – the “bias” terms can be

calculated. But not generally. The FE (within) estimator averages across T, and this tends to

reduce the bias.

Interestingly, the same results can be shown if xit : t  1, . . . ,T has unit roots as long as

uit is I(0) and contemporaneous exogeneity holds. But there is a catch: if uit is I(1) – so

that the time series version of the “model” would be a spurious regression (yit and xit are not

cointegrated), then (3.1) is no longer true. And, of course, the first differencing means any unit

roots are eliminated. So, once we start appealing to “large T” to prefer FE over FD, we must

start being aware of the time series properties of the series.

The same comments hold for IV versions of the estimators. Provided the instruments are

contemporaneously exogenous, the FEIV estimator has bias of order T−1, while the bias in the

FDIV estimator does not shrink with T. The same caveats about applications to unit root

processes also apply.

Because failure of strict exogeneity causes inconsistency in both FE and FD estimation, it

is useful to have simple tests. One possibility is to obtain a Hausman test directly comparing

the FE and FD estimators. This is a bit cumbersome because, when aggregate time effects are

included, the difference in the estimators has a singular asymptotic variance. Plus, it is

somewhat difficult to make the test fully robust.

Instead, simple regression-based strategies are available. Let wit be the 1  Q vector, a

subset of xit suspected of failing strict exogeneity. A simple test of strict exogeneity,
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specifically looking for feedback problems, is based on

yit  t  xit  wi,t1  ci  eit, t  1, . . . ,T − 1.     (3.3)

Estimate the equation by fixed effects and test H0 :   0 (using a fully robust test). Of course,

the test may have little power for detecting contemporaneous endogeneity.

In the context of FEIV we can test whether a subset of instruments fails strict exogeneity

by writing

yit  t  xit  hi,t1  ci  eit, t  1, . . . ,T − 1,     (3.4)

where hit is a subset of the instruments, zit. Now, estimate the equation by FEIV using

instruments zit,hi,t1 and test coefficients on the latter.

It is also easy to test for contemporaneous endogeneity of certain regressors, even if we

allow some regressors to be endogenous under the null. Write the model now as

yit1  zit11  yit21  yit31  ci1  uit1,     (3.5)

where, in an FE environment, we want to test H0 : Eyit3
′ uit1  0 . Actually, because we are

using the within transformation, we are really testing strict exogeneity of yit3, but we allow all

variables to be correlated with ci1. The variables yit2 are allowed to be endogenous under the

null – provided, of course, that we have sufficient instruments excluded from the structural

equation that are uncorrelated with uit1 in every time period. We can write a set of reduced

forms for elements of yit3 as

yit3  zit3  c i3  vit3,     (3.6)

and obtain the FE residuals,

v̈ it3  ÿit3 − z̈it̂3, where the columns of ̂3 are the FE estimates

of the reduced forms, and the double dots denotes time-demeaning, as usual. Then, estimate
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the equation

ÿit1  z̈it11  ÿit21  ÿit31 

v̈ it31  errorit1     (3.7)

by pooled IV, using instruments z̈it,ÿit3,

v̈ it3. The test of the null that yit3 is exogenous is just

the (robust) test that 1  0, and the usual robust test is valid without adjusting for the

first-step estimation.

An equivalent approach is to define v̂it3  yit3 − zit̂3, where ̂3 is still the matrix of FE

coefficients, add these to equation (3.5), and apply FE-IV, using a fully robust test. Using a

built-in command can lead to problems because the test is rarely made robust and the degrees

of freedom are often incorrectly counted.

4. Instrumental Variables Estimation under Sequential Exogeneity

We now consider IV estimation of the model

yit  xit  ci  uit, t  1, . . . ,T,     (4.1)

under sequential exogeneity assumptions. Some authors simply use

Exis
′ uit  0, s  1, . . . , t, t  1, . . . ,T.     (4.2)

As always, xit probably includes a full set of time period dummies. This leads to simple

moment conditions after first differencing:

Exis
′ Δuit  0, s  1, . . . , t − 1; t  2, . . . ,T.     (4.3)

Therefore, at time t, the available instruments in the FD equation are in the vector xi,t−1
o , where

xit
o ≡ xi1,xi2, . . . ,xit.     (4.4)

Therefore, the matrix of instruments is simply
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Wi  diagxi1
o ,xi2

o , . . . ,xi,T−1
o ,     (4.5)

which has T − 1 rows. Because of sequential exogeneity, the number of valid instruments

increases with t.

Given Wi, it is routine to apply GMM estimation. But some simpler strategies are available

that can be used for comparison or as the first-stage estimator in computing the optimal

weighting matrix. One useful one is to estimate a reduced form for Δxit separately for each t.

So, at time t, run the regression Δxit on xi,t−1
o , i  1, . . . ,N, and obtain the fitted values, Δxit. Of

course, the fitted values are all 1  K vectors for each t, even though the number of available

instruments grows with t. Then, estimate the FD equation

Δyit  Δxit  Δuit, t  2, . . . ,T     (4.6)

by pooled IV using instruments (not regressors) Δxit. It is simple to obtain robust standard

errors and test statistics from such a procedure because the first stage estimation to obtain the

instruments can be ignored (asymptotically, of course).

One potential problem with estimating the FD equation by IVs that are simply lags of xit is

that changes in variables over time are often difficult to predict. In other words, Δxit might

have little correlation with xi,t−1
o , in which case we face a problem of weak instruments. In one

case, we even lose identification: if xit  t  xi,t−1  e it where Ee it|xi,t−1, . . . ,xi1  0 – that is,

the elements of xit are random walks with drift – then EΔxit|xi,t−1, . . . ,xi1  0, and the rank

condition for IV estimation fails.

If we impose what is generally a stronger assumption, dynamic completeness in the

conditional mean,

Euit|xit,yi,t−1xi,t−1, . . . ,yi1,xi1,ci  0, t  1, . . . ,T,     (4.7)
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then more moment conditions are available. While (4.7) implies that virtually any nonlinear

function of the xit can be used as instruments, the focus has been only on zero covariance

assumptions (or (4.7) is stated as a linear projection). The key is that (4.7) implies that

uit : t  1, . . . ,T is a serially uncorrelated sequence and uit is uncorrelated with ci for all t. If

we use these facts, we obtain moment conditions first proposed by Ahn and Schmidt (1995) in

the context of the AR(1) unobserved effects model; see also Arellano and Honoré (2001). They

can be written generally as

EΔyi,t−1 − Δxi,t−1 ′yit − xit  0, t  3, . . . ,T.     (4.8)

Why do these hold? Because all uit are uncorrelated with ci, and ui,t−1, . . . ,ui1 are

uncorrelated with ci  uit. So ui,t−1 − ui,t−2 is uncorrelated with ci  uit, and the resulting

moment conditions can be written in terms of the parameters as (4.8). Therefore, under (4.7),

we can add the conditions (4.8) to (4.3) to improve efficiency – in some cases quite

substantially with persistent data.

Of course, we do not always intend for models to be dynamically complete in the sense of

(4.7). Often, we estimate static models or finite distributed lag models – that is, models without

lagged dependent variables – that have serially correlated idiosyncratic errors, and the

explanatory variables are not strictly exogenous and so GLS procedures are inconsistent. Plus,

the conditions in (4.8) are nonlinear in parameters.

Arellano and Bover (1995) suggested instead the restrictions

CovΔxit
′ ,ci  0, t  2, . . . ,T.     (4.9)

Interestingly, this is the zero correlation, FD version of the conditions from Section 2 that

imply we can ignore heterogeneous coefficients in estimation under strict exogeneity. Under
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(4.9), we have the moment conditions from the levels equation:

EΔxit
′ yit −  − xit  0, t  2, . . . ,T,     (4.10)

because yit − xit  ci  uit and uit is uncorrelated with xit and xi,t−1. We add an intercept, ,

explicitly to the equation to allow a nonzero mean for ci. Blundell and Bond (1999) apply

these moment conditions, along with the usual conditions in (4.3), to estimate firm-level

production functions. Because of persistence in the data, they find the moments in (4.3) are not

especially informative for estimating the parameters. Of course, (4.9) is an extra set of

assumptions.

The previous discussion can be applied to the AR(1) model, which has received much

attention. In its simplest form we have

yit  yi,t−1  ci  uit, t  1, . . . ,T,     (4.11)

so that, by convention, our first observation on y is at t  0. Typically the minimal assumptions

imposed are

Eyisuit  0, s  0, . . . , t − 1, t  1, . . . ,T,     (4.12)

in which case the available instruments at time t are wit  yi0, . . . ,yi,t−2 in the FD equation

Δyit  Δyi,t−1  Δuit, t  2, . . . ,T.     (4.13)

In other words, we can use

EyisΔyit − Δyi,t−1  0, s  0, . . . , t − 2, t  2, . . . ,T.     (4.14)

Anderson and Hsiao (1982) proposed pooled IV estimation of the FD equation with the single

instrument yi,t−2 (in which case all T − 1 periods can be used) or Δyi,t−2 (in which case only

T − 2 periods can be used). We can use pooled IV where T − 1 separate reduced forms are
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estimated for Δyi,t−1 as a linear function of yi0, . . . ,yi,t−2. The fitted values Δyi,t−1, can be used

as the instruments in (4.13) in a pooled IV estimation. Of course, standard errors and inference

should be made robust to the MA(1) serial correlation in Δuit. Arellano and Bond (1991)

suggested full GMM estimation using all of the available instruments yi0, . . . ,yi,t−2, and this

estimator uses the conditions in (4.12) efficiently.

Under the dynamic completeness assumption

Euit|yi,t−1,yi,t−2, . . . ,yi0,ci  0,     (4.15)

the Ahn-Schmidt extra moment conditions in (4.8) become

EΔyi,t−1 − Δyi,t−2yit − yi,t−1  0, t  3, . . . ,T.     (4.16)

Blundell and Bond (1998) noted that if the condition

CovΔyi1,ci  Covyi1 − yi0,ci  0     (4.17)

is added to (4.15) then the combined set of moment conditions becomes

EΔyi,t−1yit −  − yi,t−1  0, t  2, . . . ,T,     (4.18)

which can be added to the usual moment conditions (4.14). Therefore, we have two sets of

moments linear in the parameters. The first, (4.14), use the differenced equation while the

second, (4.18), use the levels. Arellano and Bover (1995) analyzed GMM estimators from

these equations generally.

As discussed by Blundell and Bond (1998), condition (4.17) can be interpreted as a

restriction on the initial condition, yi0. To see why, write

yi1 − yi0  yi0  ci  ui1 − yi0  1 − yi0  ci  ui1. Because ui1 is uncorrelated with ci,

(4.17) becomes
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Cov1 − yi0  ci,ci  0.     (4.19)

Write yi0 as a deviation from its steady state, ci/1 −  (obtained for || 1 by recursive

substitution and then taking the limit), as

yi0  ci/1 −   ri0.     (4.20)

Then 1 − yi0  ci  1 − ri0, and so (4.17) reduces to

Covri0,ci  0.     (4.21)

In other words, the deviation of yi0 from its steady state is uncorrelated with the steady state.

Blundell and Bond (1998) contains discussion of when this condition is reasonable. Of course,

it is not for   1, and it may not be for  “close” to one. On the other hand, as shown by

Blundell and Bond (1998), this restriction, along with the Ahn-Schmidt conditions, is very

informative for  close to one. Hahn (1999) shows theoretically that such restrictions can

greatly increase the information about .

The Ahn-Schmidt conditions (4.16) are attractive in that they are implied by the most

natural statement of the model, but they are nonlinear in the parameters and therefore more

difficult to use. By adding the restriction on the initial condition, the extra moment condition

also means that the full set of moment conditions is linear. Plus, this approach extends to

general models with only sequentially exogenous variables, as in (4.10). Extra moment

assumptions based on homoskedasticity assumptions – either conditional or unconditional –

have not been used nearly as much, probably because they impose conditions that have little if

anything to do with the economic hypotheses being tested.

Other approaches to dynamic models are based on maximum likelihood estimation or

generalized least squares estimation of a particular set of conditional means. Approaches that
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condition on the initial condition yi0, an approach suggested by Chamberlain (1980), Blundell

and Smith (1991), and Blundell and Bond (1998), seem especially attractive. For example,

suppose we assume that

Dyit|yi,t−1,yi,t−2, . . . ,yi1,yi0,ci  Normalyi,t−1  ci,u
2, t  1,2, . . . ,T.

Then the distribution of yi1, . . . ,yiT given yi0  y0,ci  c is just the product of the normal

distributions:


t1

T

u
−Tyt − yt−1 − c/u.

We can obtain a usable density for (conditional) MLE by assuming

ci|yi0 ~Normal0  0yi0,a
2.

The log likelihood function for a random draw i is

log 
−



t1

T

1/uTyit − yi,t−1 − c/u. 1/ac − 0 − 0yi0/adc .

Of course, if the log likelihood represents the correct density of yi1, . . . ,yiT given yi0, the

MLE is consistent and N -asymptotically normal (and efficient among estimators that

condition on yi0.

A more robust approach is to use a generalized least squares approach, where Eyi|yi0 and

Varyi|yi0 are obtained, and where the latter could even be misspecified. Like with the MLE

approach, this results in estimation that is highly nonlinear in the parameters and is used less

often than the GMM procedures with linear moment conditions. See Blundell and Bond (1998)

for further discussion.

The same kinds of moment conditions can be used in extensions of the AR(1) model, such
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as

yit  yi,t−1  zit  ci  uit, t  1, . . . ,T.

If we difference to remove ci, we can then use exogeneity assumptions to choose instruments.

The FD equation is

Δyit  Δyi,t−1  Δzit  Δuit, t  1, . . . ,T,

and if the zit are strictly exogenous with respect to ui1, . . . ,uiT then the available instruments

(in addition to time period dummies) are zi,yi,t−2, . . . ,yi0. We might not want to use all of zi

for every time period. Certainly we would use Δzit, and perhaps a lag, Δzi,t−1. If we add

sequentially exogenous variables, say hit, to (11.62) then hi,t−1, . . . ,hi1 would be added to the

list of instruments (and Δhit would appear in the equation). We might also add the Arellano

and Bover conditions (4.10), or at least the Ahn and Schmidt conditions (4.8).

As a simple example of methods for dynamic models, consider a dynamic air fare equation

for routes in the United States:

lfareit  t   lfarei,t−1   concenit  ci  uit,

where we include a full set of year dummies. We assume the concentration ratio, concenit, is

strictly exogenous and that at most one lag of lfare is needed to capture the dynamics. The data

are for 1997 through 2000, so the equation is specified for three years. After differencing, we

have only two years of data:

Δlfareit  t  Δlfarei,t−1  Δconcenit  Δuit, t  1999,2000.

If we estimate this equation by pooled OLS, the estimators are inconsistent because Δlfarei,t−1

is correlated with Δuit; we include the OLS estimates for comparison. We apply the simple

pooled IV procedure, where separate reduced forms are estimated for Δlfarei,t−1: one for 1999,
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with lfarei,t−2 and Δconcenit in the reduced form, and one for 2000, with lfarei,t−2, lfareimt−3 and

Δconcenit in the reduced form. The fitted values are used in the pooled IV estimation, with

robust standard errors. (We only use Δconcenit in the IV list at time t.) Finally, we apply the

Arellano and Bond (1991) GMM procedure. The data set can be obtained from the web site for

Wooldridge (2010), and is called AIRFARE.RAW.

Dependent Variable: lfare

(1) (2) (3)

Explanatory Variable Pooled OLS Pooled IV Arellano-Bond

lfare−1 −. 126 .219 .333

. 027 . 062 . 055

concen . 076 .126 .152

. 053 . 056 . 040

N 1,149 1,149 1,149

As is seen from column (1), the pooled OLS estimate of  is actually negative and

statistically different from zero. By contrast, the two IV methods give positive and statistically

significant estimates. The GMM estimate of  is larger, and it also has a smaller standard error

(as we would hope for GMM).

The previous example has small T, but some panel data applications have reasonably large

T. Alvarez and Arellano (2003) show that the GMM estimator that accounts for the MA(1)

serial correlation in the FD errors has desirable properties when T and N are both large, while

the pooled IV estimator is actually inconsistent under asymptotics where T/N → a  0. See

Arellano (2003, Chapter 6) for discussion.
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 (2

)

w
hi

ch
im

pl
ie

s

E�
y i
t|x
it,
c i
�
�
� t

�
x i
t�

�
c i

.
   

 (3
)

Th
e
�
j
ar

e
pa

rti
al

ef
fe

ct
sh

ol
di

ng
c i

fix
ed

.

��
is

no
ti

de
nt

ifi
ed

on
ly

un
de

r(
2)

.I
fw

e
ad

d
C
ov
�x
it,
c i
�
�
0,

th
en

�
is

id
en

tif
ie

d.

3

�T
o

al
lo

w
an

y
co

rr
el

at
io

n
be

tw
ee

n
x i
t
an

d
c i

,a
ss

um
e
st
ri
ct
ex
og
en
ei
ty

co
nd
iti
on
al
on
c i

:

E�
u i
t|x
i1

,x
i2

,.
..

,x
iT

,c
i�

�
0,
t�

1,
..

.,
T,

   
 (4

)

w
hi

ch
ca

n
be

ex
pr

es
se

d
as

E�
y i
t|x
i,c

i�
�
E�
y i
t|x
it,
c i
�
�
� t

�
x i
t�

�
c i

.
   

 (5
)

�I
f�
x i
t

:t
�

1,
..

.,
T�

ha
ss

ui
ta

bl
e

tim
e

va
ria

tio
n,

�
ca

n
be

co
ns

is
te

nt
ly

es
tim

at
ed

by
fix

ed
ef

fe
ct

s(
FE

)o
rf

irs
td

iff
er

en
ci

ng
(F

D
),

as
w

el
la

s

G
LS

an
d

G
M

M
ve

rs
io

ns
of

th
em

.
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�T
he

FE
es

tim
at

or
us

es
th

e
de

vi
at

io
ns

fr
om

tim
e

av
er

ag
es

to
re

m
ov

e
c i

(a
bs

or
b

tim
e

du
m

m
ie

si
n
x i
t):

ÿ i
t
�
x� i
t�

�
ü i
t,
t�

1,
..

.,
T,

   
 (6

)

w
he

re
ÿ i
t
�
y i
t
�
T�

1
�

r�
1

T
y i
r,

an
d

so
on

.F
E

is
po

ol
ed

O
LS

on
(6

).

�C
an

ne
d

pa
ck

ag
es

pr
ov

id
e

pr
op

er
st

an
da

rd
er

ro
rs

an
d

in
fe

re
nc

e
(w

ith

th
e

pr
op

er
“d

eg
re

es
-o

f-
fr

ee
do

m
”

ad
ju

st
m

en
t).

B
ut

th
e

“u
su

al
”

(n
on

ro
bu

st
)i

nf
er

en
ce

as
su

m
es

ho
m

os
ke

da
st

ic
ity

an
d

se
ria

l

in
de

pe
nd

en
ce

in
�
u i
t�

.

5

�M
ak

e
in

fe
re

nc
e

fu
lly

ro
bu

st
to

he
te

ro
ks

ed
as

tic
ity

an
d

se
ria

l

de
pe

nd
en

ce
.W

ith
la

rg
e
N

an
d

sm
al

lT
,t

he
re

is
lit

tle
ex

cu
se

no
tt

o

co
m

pu
te

“c
lu

st
er

ro
bu

st
”

st
an

da
rd

er
ro

rs
.

�T
re

at
in

g
th

e
c i

as
pa

ra
m

et
er

st
o

es
tim

at
e

ca
n

le
ad

to
tro

ub
le

ev
en

in

th
e

lin
ea

rm
od

el
:a

n
at

te
m

pt
to

“c
lu

st
er

”
th

e
st

an
da

rd
er

ro
rs

to
al

lo
w

ar
bi

tra
ry

se
ria

lc
or

re
la

tio
n

le
ad

st
o

m
ea

ni
ng

le
ss

st
an

da
rd

er
ro

rs
fo

rt
he

� i
�
y � i
�
x � i
�� .

6

�A
n

al
te

rn
at

iv
e

w
ay

to
re

m
ov

e
c i

is
to

fir
st

di
ff

er
en

ce
:

�
y i
t
�
�
x i
t�

�
�
u i
t,t

�
2,

..
.,
T.

   
 (7

)

Th
e

FD
es

tim
at

or
is

po
ol

ed
O

LS
on

th
e

fir
st

di
ff

er
en

ce
s.

�F
D

al
so

re
qu

ire
sa

ki
nd

of
st

ric
te

xo
ge

ne
ity

,n
am

el
y,

th
at
u i
t
is

un
co

rr
el

at
ed

w
ith
x i

,t�
1,
x i
t,

an
d
x i

,t�
1.

�F
ai

lu
re

of
st

ric
te

xo
ge

ne
ity

w
ill

ca
us

e
di

ff
er

en
ti

nc
on

si
st

en
ci

es
in

FE

an
d

FD
w

he
n
T
�

2.

7

�S
ho

ul
d

m
ak

e
in

fe
re

nc
e

ro
bu

st
to

se
ria

lc
or

re
la

tio
n

an
d

he
te

ro
sk

ed
as

tic
ity

in
th

e
di

ff
er

en
ce

d
er

ro
rs

,e
it
�
u i
t
�
u i

,t�
1.

Fo
r

ex
am

pl
e,

if
�
u i
t�

is
se

ria
lly

un
co

rr
el

at
ed

,C
or
r�
e i
t,e

i,t
�1
�
�
�.

5.

�I
n

un
ba

la
nc

ed
ca

se
s,

FD
re

qu
ire

st
ha

td
at

a
ex

is
ts

in
ad

ja
ce

nt
tim

e

pe
rio

ds
.F

E
do

es
no

t.

�E
ve

n
w

ith
FE

an
d

FD
,h

av
e

to
w

or
ry

ab
ou

tv
io

la
tio

ns
of

st
ric

t

ex
og

en
ei

ty
:s

tri
ct

ex
og

en
ei

ty
is

al
w

ay
sv

io
la

te
d

if
x i
t
co

nt
ai

ns
la

gg
ed

de
pe

nd
en

tv
ar

ia
bl

es
,b

ut
al

so
if

ch
an

ge
si

n
u i
t
ca

us
e

ch
an

ge
si

n

x i
,t�

1
(“

fe
ed

ba
ck

ef
fe

ct
”)

.
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�S
eq
ue
nt
ia
le
xo
ge
ne
ity
co
nd
iti
on
on
c i

:

E�
u i
t|x
i1

,x
i2

,.
..

,x
it,
c i
�
�

0,
t�

1,
..

.,
T

(8
)

or
,m

ai
nt

ai
ni

ng
th

e
lin

ea
rm

od
el

,

E�
y i
t|x
i1

,.
..

,x
it,
c i
�
�
E�
y i
t|x
it,
c i
�.

   
 (9

)

A
llo

w
sf

or
la

gg
ed

de
pe

nd
en

tv
ar

ia
bl

es
an

d
ot

he
rf

ee
db

ac
k.

9

�S
eq

ue
nt

ia
le

xo
ge

ne
ity

im
po

se
sa

ce
rta

in
fo

rm
of

co
rr

ec
td

yn
am

ic
s,

bu
td

oe
sn

ot
ru

le
ou

tf
ee

db
ac

k
fr

om
sh

oc
ks

to
y i
t
to
x i

,t�
1.

�I
fx

it
co

nt
ai

ns
y i

,t�
1

(a
nd

pe
rh

ap
so

th
er

va
ria

bl
es
z i
t
an

d
la

gs
),

se
qu

en
tia

le
xo

ge
ne

ity
ru

le
so

ut
se

ria
lc

or
re

la
tio

n
in

�
u i
t�

.

�I
f,

sa
y,
x i
t
�
�z
it,
z i

,t�
1,

..
.,
z i

,t�
Q
�

th
en

se
qu

en
tia

le
xo

ge
ne

ity
im

pl
ie

s

co
rr

ec
td

is
tri

bu
te

d
la

g
dy

na
m

ic
s,

bu
ta

llo
w

ss
ho

ck
su

it
to

be
co

rr
el

at
ed

w
ith
z i

,t�
1.
�
u i
t�

ca
n

be
se

ria
lly

co
rr

el
at

ed
.

�G
en

er
al

ly
,�

is
id

en
tif

ie
d

un
de

rs
eq

ue
nt

ia
le

xo
ge

ne
ity

.

10

�T
he

ke
y

“r
an

do
m

ef
fe

ct
s”

as
su

m
pt

io
n

is

E�
c i

|x
i�

�
E�
c i
�.

   
 (1

0)

�R
E

le
av

es
c i

in
th

e
er

ro
rt

er
m

an
d

ac
co

un
ts

fo
rt

he
se

ria
lc

or
re

la
tio

n

in
th

e
co

m
po

si
te

er
ro

r,
c i
�
u i
t,

vi
a

ge
ne

ra
liz

ed
le

as
ts

qu
ar

es
.T

he

no
m

in
al

as
su

m
pt

io
n

is
ho

m
os

ke
da

st
ic

ity
an

d
se

ria
li

nd
ep

en
de

nc
e

in

�
u i
t�

.B
ut

R
E

in
fe

re
nc

e
ca

n
al

so
be

m
ad

e
fu

lly
ro

bu
st

to
vi

ol
at

io
ns

of

th
is

as
su

m
pt

io
n.

11

�C
an

sh
ow

R
E

ca
n

be
co

m
pu

te
d

as
a

po
ol

ed
O

LS
es

tim
at

or
on

qu
as

i-t
im

e-
de

m
ea

ne
d

da
ta

:

y i
t
�
�y �
i
�
�x
it
�
�x �
i�
�
�
v i
t
�
�v �
i

(1
1)

w
he

re
v i
t
�
c i
�
u i
t
an

d �
�

1
�

1
1
�
T�
�
c2 /
�
u2 �

1/
2 ,

   
 (1

2)

�R
E

ca
n

be
cl

os
e

to
FE

w
ith

la
rg

e
T

or
w

he
n
�
c2 /
�
u2

is
la

rg
e,

or
w

he
n

E�
c i

|x
i�

�
E�
c i
�.
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�A
dv

an
ta

ge
so

fR
E:

(a
)R

E
al

lo
w

si
nc

lu
si

on
of

tim
e-

co
ns

ta
nt

va
ria

bl
es

;(
b)

C
an

be
su

bs
ta

nt
ia

lly
m

or
e

ef
fic

ie
nt

th
an

FE
.

�U
nd

er
th

e
fu

ll
se

to
fR

E
as

su
m

pt
io

ns
,

Av
ar
���
FE
�
�
�
u2 �
E�
X�
i� X�
i�
��

1 /
N

Av
ar
���
RE
�
�
�
u2 �
E�
X�
i� X�
i�
��

1 /
N

,

w
he

re
x� i
t
�
x i
t
�
�x �
i
ar

e
th

e
qu

as
i-t

im
e

de
m

ea
ne

d
tim

e-
va

ry
in

g

co
va

ria
te

s.

�B
ut

R
E

is
in

co
ns

is
te

nt
w

ith
ou

tE
�c
i|x
i�

�
E�
c i
�

(o
ra

tl
ea

st
ze

ro

co
rr

el
at

io
n)

.

13

�S
om

e
im

po
rta

nt
al

ge
br

ai
c

eq
ui

va
la

nc
es

:I
f

y i
t
�
g t
�
�
z i
�
�
c i
�
u i
t

th
en

�� R
E
�
�� F
E
�
�� P
O
LS

an
d
�� R
E
�
�� P
O
LS

(w
he

re
PO

LS
�

Po
ol

ed

O
LS

).

��
� R
E
�
�� F
E

ha
si

m
pl

ic
at

io
ns

fo
rH

au
sm

an
te

st
co

m
pa

rin
g

R
E

an
d

FE
.

14

�D
ef

in
e

tw
o
co
rr
el
at
ed
ra
nd
om
ef
fe
ct
s(

C
R

E)
as

su
m

pt
io

ns
.T

he
fir

st

ju
st

us
es

th
e

de
fin

iti
on

of
a

lin
ea

rp
ro

je
ct

io
n:

L�
c i

|x
i�

�
�
�
x i
	

(1
3)

w
he

re
x i

�
�x
i1

,x
i2

,.
..

,x
iT
�.

Th
is

is
of

te
n

ca
lle

d
th

e
C
ha
m
be
rl
ai
n

de
vi
ce

,a
fte

rC
ha

m
be

rla
in

(1
98

2)
.

�M
un

dl
ak

(1
97

8)
us

ed
a

re
st

ric
te

d
ve

rs
io

n

E�
c i

|x
i�

�
�
�
x � i
	,

   
 (1

4)

w
he

re
x � i

�
T�

1
�

t�
1

T
x i
t.

15

�I
n

th
e

eq
ua

tio
n

y i
t
�
g t
�
�
z i
�
�
w
it


�
c i
�
u i
t.

   
 (1

5)

w
e

w
rit

e
c i

�
�
�
w �
i	
�
a i

an
d

th
en

ge
tt

he
M

un
dl

ak
eq

ua
tio

n

y i
t
�
�
�
g t
�
�
z i
�
�
w
it


�
w �
i	
�
a i

�
u i
t,

   
 (1

6)

an
d

w
e

ca
n

ap
pl

e
po

ol
ed

O
LS

or
R

E
be

ca
us

e
E�
a i

�
u i
t|x
i�

�
0.

B
ot

h

eq
ua

lt
he

FE
es

tim
at

or
of


.

�A
ss

um
pt

io
ns

su
ch

as
D
�c
i|x
i�

�
D
�c
i|x �
i�

ar
e

ve
ry

co
nv

en
ie

nt
fo

r

no
nl

in
ea

rm
od

el
s.
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�T
he

M
un

dl
ak

eq
ua

tio
n

m
ak

es
it

ea
sy

to
co

m
pu

te
a

fu
lly

ro
bu

st

H
au

sm
an

te
st

co
m

pa
rin

g
R

E
an

d
FE

.I
n

th
e

eq
ua

tio
n

y i
t
�
�
�
g t
�
�
z i
�
�
w
it


�
w �
i	
�
a i

�
u i
t

(1
7)

te
st
H

0
:	

�
0

us
in

g
a

fu
lly

ro
bu

st
W

al
d

st
at

is
tic

af
te

rR
E

es
tim

at
io

n.

�W
e

ca
n

on
ly

co
m

pa
re


� R
E

an
d

� F
E

(M
pa

ra
m

et
er

s)
,n

ot
�� R
E

an
d
�� F
E
.

17

�E
qu

at
io

n
(1

7)
al

lo
w

su
st

o
es

tim
at

e
co

ef
fic

ie
nt

so
n
z i

w
hi

le
al

lo
w

in
g

co
rr

el
at

io
n

be
tw

ee
n
c i

an
d
w �
i.

(S
ho

ul
d

us
e

ca
ut

io
n

in
in

te
rp

re
tin

g
th

e

co
ef

fic
ie

nt
so

n
z i

).

�B
e

w
ar

y
of

ca
nn

ed
H

au
sm

an
te

st
pr

oc
ed

ur
es

th
at

di
re

ct
ly

co
m

pa
re

es
tim

at
es

:t
he
df

ar
e

of
te

n
w

ro
ng

(th
e

ag
gr

eg
at

e
tim

e
va

ria
bl

es
ar

e

co
un

te
d)

an
d

th
e

te
st

sa
re

no
nr

ob
us

t.
C

an
ge

tn
eg

at
iv

e
st

at
is

tic
s,

to
o.

18

E
X
A
M
PL
E

:
Fo

rN
�

1,
14

9
U

.S
.a

ir
ro

ut
es

an
d

th
e

ye
ar

s1
99

7

th
ro

ug
h

20
00

,y
it

is
lfa
re
it
�

lo
g�
fa
re
it�

an
d

th
e

ke
y

ex
pl

an
at

or
y

va
ria

bl
e

is
co
nc
en
it,

th
e

co
nc

en
tra

tio
n

ra
tio

fo
rr

ou
te
i.

O
th

er
co

va
ria

te
s

ar
e

ye
ar

du
m

m
ie

sa
nd

th
e

tim
e-

co
ns

ta
nt

va
ria

bl
es
ld
is
t i
�

lo
g�
di
st
i�

an
d
ld
is
t i2 .C

al
le

d
A

IR
FA

R
E.

D
TA

.

lfa
re
it
�
�
t
�
�

1c
on
ce
n i
t
�
�

2l
di
st
i
�
�

3l
di
st
i2
�
c i
�
u i
t
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.
d
e
s
f
a
r
e
l
f
a
r
e
c
o
n
c
e
n
d
i
s
t

s
t
o
r
a
g
e

d
i
s
p
l
a
y

v
a
l
u
e

v
a
r
i
a
b
l
e
n
a
m
e

t
y
p
e

f
o
r
m
a
t

l
a
b
e
l

v
a
r
i
a
b
l
e
l
a
b
e
l

-
-
-
-
-
-
-
-
-
-
-
-
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-
-
-
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-
-
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-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

f
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r
e

i
n
t

%
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.
0
g

a
v
g
.
o
n
e
-
w
a
y
f
a
r
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$

l
f
a
r
e

f
l
o
a
t

%
9
.
0
g

l
o
g
(
f
a
r
e
)

c
o
n
c
e
n

f
l
o
a
t

%
9
.
0
g

�
b
m
k
t
s
h
r

d
i
s
t

i
n
t

%
9
.
0
g

d
i
s
t
a
n
c
e
,
i
n
m
i
l
e
s

.
s
u
m
f
a
r
e
c
o
n
c
e
n
d
i
s
t

V
a
r
i
a
b
l
e
|

O
b
s

M
e
a
n

S
t
d
.
D
e
v
.

M
i
n

M
a
x

-
-
-
-
-
-
-
-
-
-
-
-
-
�-
-
-
-
-
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-
-
-
-
-
-
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-
-
-
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-
-
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AEA Lectures Chicago, January 2012
Lecture 4, Monday, January 9, 1:00 pm-2:30 pm

Cluster Sampling and Difference-in-Differences

These notes consider estimation and inference with cluster samples and samples obtained

by stratifying the population. The main focus is on true cluster samples, although the case of

applying cluster-sample methods to panel data is treated, including recent work where the sizes

of the cross section and time series are similar. Wooldridge (2003, extended version 2006)

contains a survey, but more recent work is discussed here.

1. The Linear Model with Cluster Effects

This section considers linear models estimated using cluster samples (of which a panel data

set is a special case). For each group or cluster g, let ygm,xg, zgm : m  1, . . . ,Mg be the

observable data, where Mg is the number of units in cluster g, ygm is a scalar response, xg is a

1  K vector containing explanatory variables that vary only at the group level, and zgm is a

1  L vector of covariates that vary within (as well as across) groups.

1.1 Specification of the Model

The linear model with an additive error is

ygm    xg  zgm  vgm,m  1, . . . ,Mg;g  1, . . . ,G.     (1.1)

Our approach to estimation and inference in equation (1.1) depends on several factors,

including whether we are interested in the effects of aggregate variables  or

individual-specific variables . Plus, we need to make assumptions about the error terms. In

the context of pure cluster sampling, an important issue is whether the vgm contain a common
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group effect that can be separated in an additive fashion, as in

vgm  cg  ugm,m  1, . . . ,Mg,     (1.2)

where cg is an unobserved cluster effect and ugm is the idiosyncratic error. (In the statistics

literature, (1.1) and (1.2) are referred to as a “hierarchical linear model.”) One important issue

is whether the explanatory variables in (1.1) can be taken to be appropriately exogenous.

Under (1.2), exogeneity issues are usefully broken down by separately considering cg and ugm.

Throughout we assume that the sampling scheme generates observations that are

independent across g. This assumption can be restrictive, particularly when the clusters are

large geographical units. We do not consider problems of “spatial correlation” across clusters,

although, as we will see, fixed effects estimators have advantages in such settings.

We treat two kinds of sampling schemes. The simplest case also allows the most flexibility

for robust inference: from a large population of relatively small clusters, we draw a large

number of clusters (G), where cluster g hasMg members. This setup is appropriate, for

example, in randomly sampling a large number of families, classrooms, or firms from a large

population. The key feature is that the number of groups is large enough relative to the group

sizes so that we can allow essentially unrestricted within-cluster correlation. Randomly

sampling a large number of clusters also applies to many panel data sets, where the

cross-sectional population size is large (say, individuals, firms, even cities or counties) and the

number of time periods is relatively small. In the panel data setting, G is the number of

cross-sectional units andMg is the number of time periods for unit g.

A different sampling scheme results in data sets that also can be arranged by group, but is

better interpreted in the context of sampling from different populations are different strata

within a population. We stratify the population into into G ≥ 2 nonoverlapping groups. Then,
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we obtain a random sample of size Mg from each group. Ideally, the group sizes are large in

the population, hopefully resulting in large Mg. This is the perspective for the “small G” case

in Section 1.3.

1.2. Large Group Asymptotics

In this section I review methods and estimators justified when the asymptotic

approximations theory is with The theory with G →  and the group sizes, Mg, fixed is well

developed; see, for example, White (1984), Arellano (1987), and Wooldridge (2010, Chapters

10, 11). Here, the emphasis is on how one might wish to use methods robust to cluster

sampling even when it is not so obvious.

First suppose that the covariates satisfy

Evgm|xg, zgm  0,m  1, . . . ,Mg;g  1, . . . ,G.     (1.3)

For consistency, we can, of course, get by with zero correlation assumptions, but we use (1.3)

for convenience because it meshes well with assumptions concerning conditional second

moments. Importantly, the exogeneity in (1.3) only requires that zgm and vgm are uncorrelated.

In particular, it does not specify assumptions concerning vgm and zgp for m ≠ p. As we saw in

the linear panel data notes, (1.3) is called the “contemporaneous exogeneity” assumption when

m represents time. Allowing for correlation between vgm and zgp,m ≠ p is useful for some

panel data applications and possibly even cluster samples (if the covariates of one unit can

affect another unit’s response). Under (1.3) and a standard rank condition on the covariates,

the pooled OLS estimator, where we regress ygm on 1,xg, zgm,m  1, . . . ,Mg;g  1, . . . ,G, is

consistent for  ≡ ,′, ′ ′ (as G →  withMg fixed) and G -asymptotically normal.

Without more assumptions, a robust variance matrix is needed to account for correlation

within clusters or heteroskedasticity in Varvgm|xg, zgm, or both. When vgm has the form in
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(1.2), the amount of within-cluster correlation can be substantial, which means the usual OLS

standard errors can be very misleading (and, in most cases, systematically too small). Write Wg

as the Mg  1  K  L matrix of all regressors for group g. Then the

1  K  L  1  K  L variance matrix estimator is

Avar̂POLS  ∑
g1

G

Wg
′Wg

−1

∑
g1

G

Wg
′ v̂gv̂g′Wg ∑

g1

G

Wg
′Wg

−1

    (1.4)

where v̂g is the Mg  1 vector of pooled OLS residuals for group g. This asymptotic variance

is now computed routinely using “cluster” options.

Pooled OLS estimation of the parameters in (1.1) ignores the within-cluster correlation of

the vgm; even if the procedure is consistent (again, with G →  and the Mg fixed), the POLS

estimators can be very inefficient. If we strengthen the exogeneity assumption to

Evgm|xg,Zg  0,m  1, . . . ,Mg;g  1, . . . ,G,     (1.5)

where Zg is the Mg  L matrix of unit-specific covariates, then we can exploit the presence of

cg in (1.2) in a generalized least squares (GLS) analysis. With true cluster samples, (1.5) rules

out the covariates from one member of the cluster affecting the outcomes on another, holding

own covariates fixed. In the panel data case, (1.5) is the strict exogeneity assumption on

zgm : m  1, . . . ,Mg that we discussed in the linear panel data notes The standard random

effects approach makes enough assumptions so that the Mg  Mg variance-covariance matrix

of vg  vg1,vg2, . . . ,vg,Mg ′ has the so-called “random effects” form,

Varvg  c2jMg
′ jMg  u2IMg ,     (1.6)

where jMg is the Mg  1 vector of ones and IMg is the Mg  Mg identity matrix. In the standard

setup, we also make the “system homoskedasticity” assumption,
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Varvg|xg,Zg  Varvg.     (1.7)

It is important to understand the role of assumption (1,7): it implies that the conditional

variance-covariance matrix is the same as the unconditional variance-covariance matrix, but it

does not restrict Varvg; it can be anyMg  Mg matrix under (1.7). The particular random

effects structure on Varvg is given by (1.6). Under (1.6) and (1.7), the resulting GLS

estimator is the well-known random effects (RE) estimator.

The random effects estimator ̂RE is asymptotically more efficient than pooled OLS under

(1.5), (1.6), and (1.7) as G →  with the Mg fixed. The RE estimates and test statistics are

computed routinely by popular software packages. Nevertheless, an important point is often

overlooked in applications of RE: one can, and in many cases should, make inference

completely robust to an unknown form of Varvg|xg,Zg.

The idea in obtaining a fully robust variance matrix of RE is straightforward and we

essentially discussed it in the notes on nonlinear panel data models. Even if Varvg|xg,Zg does

not have the RE form, the RE estimator is still consistent and G -asymptotically normal under

(1.5), and it is likely to be more efficient than pooled OLS. Yet we should recognize that the

RE second moment assumptions can be violated without causing inconsistency in the RE

estimator. For panel data applications, making inference robust to serial correlation in the

idiosyncratic errors, especially with more than a few time periods, can be very important.

Further, within-group correlation in the idiosyncratic errors can arise for cluster samples, too,

especially if underlying (1.1) is a random coefficient model,

ygm    xg  zgmg  vgm,m  1, . . . ,Mg;g  1, . . . ,G.     (1.8)

By estimating a standard random effects model that assumes common slopes , we effectively
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include zgmg −  in the idiosyncratic error; this generally creates within-group correlation

because zgmg −  and zgpg −  will be correlated for m ≠ p, conditional on Zg. Also, the

idiosyncratic error will have heteroskedasticity that is a function of zgm. Nevertheless, if we

assume Eg|Xg,Zg  Eg ≡  along with (1.5), the random effects estimator still

consistently estimates the average slopes, . Therefore, in applying random effects to panel

data or cluster samples, it is sensible (with large G) to make the variance estimator of random

effects robust to arbitrary heteroskedasticity and within-group correlation.

One way to see what the robust variance matrix looks like for ̂RE is to use the pooled OLS

characterization of RE on a transformed set of data. For each g, define

̂g  1 − 1/1  Mĝc2/̂u21/2, where ̂c2 and ̂u2 are estimators of the variances of cg and

ugm, respectively. Then the RE estimator is identical to the pooled OLS estimator of

ygm − ̂gȳg on 1 − ̂g, 1 − ̂gxg, zgm − ̂gz̄g,m  1, . . . ,Mg;g  1, . . . ,G;     (1.9)

see, for example, Hsiao (2003). For fully robust inference, we can just apply the fully robust

variance matrix estimator in (1.4) but on the transformed data.

With panel data, it may make sense to estimate an unrestricted version of Varvg,

especially if G is large. Even in that case, it makes sense to obtain a variance matrix robust to

Varvgm|xg,Zg ≠ Varvg, as the GEE literature does. One can also specify a particular

structure, such as an AR(1) model for the idiosyncratic errors. In any case, fully robust

inference is still a good idea.

In summary, with large G and relatively small Mg, it makes sense to compute fully robust

variance estimators even if we apply a GLS procedure that allows Varvg to be unrestricted.

Nothing ever guarantees Varvgm|xg,Zg  Varvg. Because RE imposes a specific structure
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on Varvg, there is a strong case for making RE inference fully robust. When cg is in the error

term, it is even more critical to use robust inference when using pooled OLS because the usual

standard errors ignore within-cluster correlation entirely.

If we are only interested in estimating , the “fixed effects” (FE) or “within” estimator is

attractive. The within transformation subtracts off group averages from the dependent variable

and explanatory variables:

ygm − ȳg  zgm − z̄g  ugm − ūg,m  1, . . . ,Mg;g  1, . . . ,G,     (1.10)

and this equation is estimated by pooled OLS. (Of course, the xg get swept away by the

within-group demeaning.) Under a full set of “fixed effects” assumptions – which, unlike

pooled OLS and random effects, allows arbitrary correlation between cg and the zgm –

inference is straightforward using standard software. Nevertheless, analogous to the random

effects case, it is often important to allow Varug|Zg to have an arbitrary form, including

within-group correlation and heteroskedasticity. For panel data, the idiosyncratic errors can

always have serial correlation or heteroskedasticity, and it is easy to guard against these

problems in inference. Reasons for wanting a fully robust variance matrix estimator for FE

applied to cluster samples are similar to the RE case. For example, if we start with the model

(1.8) then zgm − z̄gg −  appears in the error term. As we discussed in the linear panel data

notes, the FE estimator is still consistent if Eg|zg1 − z̄g, . . . , zg,Mg − z̄g  Eg  , an

assumption that allows g to be correlated with z̄g. Nevertheless, ugm,ugp will be correlated for

m ≠ p. A fully robust variance matrix estimator is

Avar̂FE  ∑
g1

G

Z̈g′ Z̈g

−1

∑
g1

G

Z̈g′ ûgûg′ Z̈g ∑
g1

G

Z̈g′ Z̈g

−1

,     (1.11)
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where Z̈g is the matrix of within-group deviations from means and ûg is the Mg  1 vector of

fixed effects residuals. This estimator is justified with large-G asymptotics.

One benefit of a fixed effects approach, especially in the standard model with constant

slopes but cg in the composite error term, is that no adjustments are necessary if the cg are

correlated across groups. When the groups represent different geographical units, we might

expect correlation across groups close to each other. If we think such correlation is largely

captured through the unobserved effect cg, then its elimination via the within transformation

effectively solves the problem. If we use pooled OLS or a random effects approach, we would

have to deal with spatial correlation across g, in addition to within-group correlation, and this

is a difficult problem.

The previous discussion extends immediately to instrumental variables versions of all

estimators. With large G, one can afford to make pooled two stage least squares (2SLS),

random effects 2SLS, and fixed effects 2SLS robust to arbitrary within-cluster correlation and

heteroskedasticity. Also, more efficient estimation is possible by applying generalized method

of moments (GMM); again, GMM is justified with large G.

1.3. Should we Use the “Large” G Formulas with “Large” Mg?

Until recently, the standard errors and test statistics obtained from pooled OLS, random

effects, and fixed effects were known to be valid only as G →  with eachMg fixed. As a

practical matter, that means one should have lots of small groups. Consider again formula

(1.4), for pooled OLS, when the cluster effect, cg, is left in the error term. With a large number

of groups and small group sizes, we can get good estimates of the within-cluster correlations –

technically, of the cluster correlations of the cross products of the regressors and errors – even

if they are unrestricted, and that is why the robust variance matrix is consistent as G →  with

8



Imbens/Wooldridge,AEA Lecture Notes 4, January ’12

Mg fixed. In fact, in this scenario, one loses nothing in terms of asymptotic local power (with

local alternatives shrinking to zero at the rate G−1/2) if cg is not present. In other words, based

on first-order asymptotic analysis, there is no cost to being fully robust to any kind of

within-group correlation or heteroskedasticity. These arguments apply equally to panel data

sets with a large number of cross sections and relatively few time periods, whether or not the

idiosyncratic errors are serially correlated.

What if one applies robust inference in scenarios where the fixedMg, G →  asymptotic

analysis not realistic? Hansen (2007) has recently derived properties of the cluster-robust

variance matrix and related test statistics under various scenarios that help us more fully

understand the properties of cluster robust inference across different data configurations. First

consider how his results apply to true cluster samples. Hansen (2007, Theorem 2) shows that,

with G andMg both getting large, the usual inference based on (1.4) is valid with arbitrary

correlation among the errors, vgm, within each group. Because we usually think of vgm as

including the group effect cg, this means that, with large group sizes, we can obtain valid

inference using the cluster-robust variance matrix, provided that G is also large. So, for

example, if we have a sample of G  100 schools and roughly Mg  100 students per school,

and we use pooled OLS leaving the school effects in the error term, we should expect the

inference to have roughly the correct size. Probably we leave the school effects in the error

term because we are interested in a school-specific explanatory variable, perhaps indicating a

policy change.

Unfortunately, pooled OLS with cluster effects when G is small and group sizes are large

fall outside Hansen’s theoretical findings: the proper asymptotic analysis would be with G

fixed, Mg → , and persistent within-cluster correlation (because of the presence of cg in the

9
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error). Hansen (2007, Theorem 4) is aimed at panel data where the time series dependence

satisfies strong mixing assumptions, that is, where the correlation within each group g is

weakly dependent. Even in this case, the variance matrix in (1.4) must be multiplied by

G/G − 1 and inference based on the tG−1 distribution. (Conveniently, this adjustment is

standard in Stata’s calculation of cluster-robust variance matrices.) Interestingly, Hansen finds,

in simulations, that with G  10 and Mg  50 for all g, using the adjusted robust variance

matrix estimator with critical values from the tG−1 distribution produces fairly small size

distortions. But the simulation study is special (one covariate whose variance is as large as the

variance of the composite error).

We probably should not expect good properties of the cluster-robust inference with small

groups and very large group sizes when cluster effects are left in the error term. As an

example, suppose that G  10 hospitals have been sampled with several hundred patients per

hospital. If the explanatory variable of interest is exogenous and varies only at the hospital

level, it is tempting to use pooled OLS with cluster-robust inference. But we have no

theoretical justification for doing so, and reasons to expect it will not work well. In the next

section we discuss other approaches available with small G and large Mg.

If the explanatory variables of interest vary within group, FE is attractive for a couple of

reasons. The first advantage is the usal one about allowing cg to be arbitrarily correlated with

the zgm. The second advantage is that, with large Mg, we can treat the cg as parameters to

estimate – because we can estimate them precisely – and then assume that the observations are

independent across m (as well as g). This means that the usual inference is valid, perhaps with

adjustment for heteroskedasticity. Interestingly, the fixed G, large Mg asymptotic results in

Theorem 4 of Hansen (2007) for cluster-robust inference apply in this case. But using
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cluster-robust inference is likely to be very costly in this situation: the cluster-robust variance

matrix actually converges to a random variable, and t statistics based on the adjusted version of

(1.11) – that is, multiplied by G/G − 1 – have an asymptotic tG−1 distribution. Therefore,

while the usual or heteroskedasticity-robust inference can be based on the standard normal

distribution, the cluster-robust inference is based on the tG−1 distribution (and the cluster-robust

standard errors may be larger than the usual standard errors). With small G, inference based on

cluster-robust statistics could be very conservative when it need not be. (Also, Hansen’s

Theorem 4 is not completely general, and may not apply with heterogeneous sampling across

groups.)

In summary, for true cluster sample applications, cluster-robust inference using pooled

OLS delivers statistics with proper size when G andMg are both moderately large, but they

should probably be avoided with large Mg and small G. When cluster fixed effects are

included, the usual inference is often valid, perhaps made robust to heteroskedasticity, and is

likely to be much more powerful than cluster-robust inference.

For panel data applications, Hansen’s (2007) results, particularly Theorem 3, imply that

cluster-robust inference for the fixed effects estimator should work well when the cross section

(N) and time series (T) dimensions are similar and not too small. If full time effects are allowed

in addition to unit-specific fixed effects – as they often should – then the asymptotics must be

with N and T both getting large. In this case, any serial dependence in the idiosyncratic errors

is assumed to be weakly dependent. The similulations in Bertrand, Duflo, and Mullainathan

(2004) and Hansen (2007) verify that the fully robust cluster-robust variance matrix works

well.

There is some scope for applying the fully robust variance matrix estimator when N is
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small relative to T when unit-specific fixed effects are included. Unlike in the true cluster

sampling case, it makes sense to treat the idiosyncratic errors as correlated with only weakly

dependent. But Hansen’s (2007, Theorem 4) does not allow time fixed effects (because the

asymptotics is with fixed N and T → , and so the inclusion of time fixed effects means adding

more and more parameters without more cross section data to estimate them). As a practical

matter, it seems dangerous to rely on omitting time effects or unit effects with panel data.

Hansen’s result that applies in this case requires N and T both getting large.

2. Estimation with a Small Number of Groups and
Large Group Sizes

We can summarize the findings of the previous section as follows: fully robust inference

justified for large G (N) and small Mg (T) can also be relied on when Mg (T) is also large,

provided G N is also reasonably large. However, whether or not we leave cluster

(unobserved) effects in the error term, there are good reasons not to rely on cluster-robust

inference when G N) is small andMg (T) is large.

In this section, we describe approaches to inference when G is small and the Mg are large.

These results apply primarily to the true cluster sample case, although we will draw on them

for difference-in-differences frameworks using pooled cross sections in a later set of notes.

In the large G, small Mg case, it often makes sense to think of sampling a large number of

groups from a large population of clusters, where each cluster is relatively small. When G is

small while each Mg is large, this thought experiment needs to be modified. For most data sets

with small G, a stratified sampling scheme makes more sense: we have defined G groups in the

population, and we obtain our data by randomly sampling from each group. As before,Mg is

the sample size for group g. Except for the relative dimensions of G andMg, the resulting data

12



Imbens/Wooldridge,AEA Lecture Notes 4, January ’12

set is essentially indistinguishable from that described in Section 1.2.

The problem of proper inference whenMg is large relative to G was brought to light by

Moulton (1990), and has been recently studied by Donald and Lang (2007). DL focus on

applications that seem well described by the stratified sampling scheme, but their approach

seems to imply a different sampling experiment. In particular, they treat the parameters

associated with the different groups as outcomes of random draws. One way to think about the

sampling in this case is that a small number of groups is drawn from a (large) population of

potential groups; therefore, the parameters common to all members of the group can be viewed

as random. Given the groups, samples are then obtained via random sampling within each

group.

To illustrate the issues considered by Donald and Lang, consider the simplest case, with a

single regressor that varies only by group:

ygm    xg  cg  ugm

 g  xg  ugm, m  1, . . . ,Mg;g  1, . . . ,G.

    (2.1)

    (2.2)

Notice how (2.2) is written as a model with common slope, , but intercept, g, that varies

across g. Donald and Lang focus on (2.1), where cg is assumed to be independent of xg with

zero mean. They use this formulation to highlight the problems of applying standard inference

to (2.1), leaving cg as part of the composite error term, vgm  cg  ugm. We know this is a bad

idea even in the large G, small Mg case, as it ignores the persistent correlation in the errors

within each group. Further, from the discussion of Hansen’s (2007) results, using

cluster-robust inference when G is small is likely to produce poor inference.

One way to see the problem with the usual inference in applying standard inference is to

note that whenMg  M for all g  1, . . . ,G, the pooled OLS estimator, ̂, is identical to the

13
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“between” estimator obtained from the regression

ȳg on 1,xg,g  1, . . . ,G.     (2.3)

Conditional on the xg, ̂ inherits its distribution from v̄g : g  1, . . . ,G, the within-group

averages of the composite errors vgm ≡ cg  ugm. The presence of cg means new observations

within group do not provide additional information for estimating  beyond how they affect

the group average, ȳg. In effect, we only have G useful pieces of information.

If we add some strong assumptions, there is a solution to the inference problem. In addition

to assumingMg  M for all g, assume cg|xg ~Normal0,c2 and assume

ugm|xg,cg  Normal0,u2. Then v̄g is independent of xg and v̄g  Normal0,c2  u2/M for

all g. Because we assume independence across g, the equation

ȳg    xg  v̄g,g  1, . . . ,G     (2.4)

satisfies the classical linear model assumptions. Therefore, we can use inference based on the

tG−2 distribution to test hypotheses about , provided G  2. When G is very small, the

requirements for a significant t statistic using the tG−2 distribution are much more stringent then

if we use the tM1M2...MG−2 distribution – which is what we would be doing if we use the usual

pooled OLS statistics. (Interestingly, if we use cluster-robust inference and apply Hansen’s

results – even though they do not apply – we would use the tG−1 distribution.)

When xg is a 1  K vector, we need G  K  1 to use the tG−K−1 distribution for inference.

[In Moulton (1990), G  50 states and xg contains 17 elements]

As pointed out by DL, performing the correct inference in the presence of cg is not just a

matter of correcting the pooled OLS standard errors for cluster correlation – something that

does not appear to be valid for small G, anyway – or using the RE estimator. In the case of
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common group sizes, there is only estimator: pooled OLS, random effects, and the between

regression in (2.4) all lead to the same ̂. The regression in (2.4), by using the tG−K−1

distribution, yields inference with appropriate size.

We can apply the DL method without normality of the ugm if the common group sizeM is

large: by the central limit theorem, ūg will be approximately normally distributed very

generally. Then, because cg is normally distributed, we can treat v̄g as approximately normal

with constant variance. Further, even if the group sizes differ across g, for very large group

sizes ūg will be a negligible part of v̄g: Varv̄g  c2  u2/Mg. Provided cg is normally

distributed and it dominates v̄g, a classical linear model analysis on (2.4) should be roughly

valid.

The broadest applicability of DL’s setup is when the average of the idiosyncratic errors, ūg,

can be ignored – either because u2 is small relative to c2, Mg is large, or both. In fact,

applying DL with different group sizes or nonnormality of the ugm is identical to ignoring the

estimation error in the sample averages, ȳg. In other words, it is as if we are analyzing the

simple regression g    xg  cg using the classical linear model assumptions (where ȳg is

used in place of the unknown group mean, g). With small G, we need to further assume cg is

normally distributed.

If zgm appears in the model, then we can use the averaged equation

ȳg    xg  z̄g  v̄g,g  1, . . . ,G,     (2.5)

provided G  K  L  1. If cg is independent of xg, z̄g with a homoskedastic normal

distribution and the group sizes are large, inference can be carried out using the tG−K−L−1

distribution.
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The DL solution to the inference problem with small G is pretty common as a strategy to

check robustness of results obtained from cluster samples, but often it is implemented with

somewhat large G (say, G  50). Often with cluster samples one estimates the parameters

using the disaggregated data and also the averaged data. When some covariates that vary

within cluster, using averaged data is generally inefficient. But it does mean that standard

errors need not be made robust to within-cluster correlation. We now know that if G is

reasonably large and the group sizes not too large, the cluster-robust inference can be

acceptable. DL point out that with small G one should think about simply using the group

averages in a classical linear model analysis.

For small G and large Mg, inference obtained from analyzing (2.5) as a classical linear

model will be very conservative in the absense of a cluster effect. Perhaps in some cases it is

desirable to inject this kind of uncertainty, but it rules out some widely-used staples of policy

analysis. For example, suppose we have two populations (maybe men and women, two

different cities, or a treatment and a control group) with means g,g  1,2, and we would like

to obtain a confidence interval for their difference. In almost all cases, it makes sense to view

the data as being two random samples, one from each subgroup of the population. Under

random sampling from each group, and assuming normality and equal population variances,

the usual comparison-of-means statistic is distributed exactly as tM1M2−2 under the null

hypothesis of equal population means. (Or, we can construct an exact 95% confidence interval

of the difference in population means.) With even moderate sizes forM1 andM2, the tM1M2−2

distribution is close to the standard normal distribution. Plus, we can relax normality to obtain

approximately valid inference, and it is easy to adjust the t statistic to allow for different

population variances. With a controlled experiment the standard difference-in-means analysis
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is often quite convincing. Yet we cannot even study this estimator in the DL setup because

G  2. The problem can be seen from (2.2): in effect, we have three parameters, 1, 2, and ,

but only two observations.

DL criticize Card and Krueger (1994) for comparing mean wage changes of fast-food

workers across two states because Card and Krueger fail to account for the state effect (New

Jersery or Pennsylvania), cg, in the composite error, vgm. But the DL criticism in the G  2

case is no different from a common question raised for any difference-in-differences analyses:

How can we be sure that any observed difference in means is due entirely to the policy

change? To characterize the problem as failing to account for an unobserved group effect is

not necessarily helpful.

To further study the G  2 case, recall that cg is independent of xg with mean zero. In other

words, the expected deviation in using the simple comparison-of-means estimator is zero. In

effect, it estimates

2 − 1  2   − 1    c2   −   c1    c2 − c1.     (2.6)

Under the DL assumptions, c2 − c1 has mean zero, and so estimating it should not bias the

analysis. DL work under the assumption that  is the parameter of interest, but, if the

experiment is properly randomized – as is maintained by DL – it is harmless to include the cg

in the estimated effect.

Consider now a case where the DL approach can be applied. Assume there are G  4

groups with groups one and two control groups (x1  x2  0) and two treatment groups

x3  x4  1. The DL approach would involve computing the averages for each group, ȳg,

and running the regression ȳg on 1,xg, g  1, . . . , 4. Inference is based on the t2 distribution.

The estimator ̂ in this case can be written as
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̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2.     (2.7)

(The pooled OLS regression using the disaggregated data results in the weighted average

p3ȳ3  p4ȳ4 − p1ȳ1  p2ȳ2, where p1  M1/M1  M2, p2  M2/M1  M2,

p3  M3/M3  M4, and p4  M4/M3  M4 are the relative proportions within the control

and treatment groups, respectively.) With ̂ written as in (2.7), we are left to wonder why we

need to use the t2 distribution for inference. Each ȳg is usually obtained from a large sample –

Mg  30 or so is usually sufficient for approximate normality of the standardized mean – and

so ̂, when properly standardized, has an approximate standard normal distribution quite

generally.

In effect, the DL approach rejects the usual inference based on group means from large

sample sizes because it may not be the case that 1  2 and 3  4. In other words, the

control group may be heterogeneous as might be the treatment group. But this in itself does not

invalidate standard inference applied to (2.7). In fact, if we define the object of inference as

  3  4/2 − 1  2/2,     (2.8)

which is an average treatment effect of sorts, then ̂ is consistent for  and (when properly

scaled) asymptotically normal as theMg get large.

Equation (2.7) hints at a different way to view the small G, large Mg setup. In this

particular application, we estimate two parameters,  and , given four moments that we can

estimate with the data. The OLS estimates from (2.4) in this case are minimum distance

estimates that impose the restrictions 1  2   and 3  4    . If we use the 4  4

identity matrix as the weight matrix, we get ̂ as in (2.7) and ̂  ȳ1  ȳ2/2. Using the MD

approach, we see there are two overidentifying restrictions, which are easily tested. But even if
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we reject them, it simply implies at least one pair of means within each of the control and

treatment groups is different.

With large group sizes, and whether or not G is especially large, we can put the general

problem into an MD framework, as done, for example, by Loeb and Bound (1996), who had

G  36 cohort-division groups and many observations per group. For each group g, write

ygm  g  zgmg  ugm,m  1, . . . ,Mg,     (2.9)

where we assume random sampling within group and independent sampling across groups.

We make the standard assumptions for OLS to be consistent (asMg → ) and

Mg -asymptotically normal; see, for example, Wooldridge (2010, Chapter 4). The presence

of group-level variables xg in a “structural” model can be viewed as putting restrictions on the

intercepts, g, in the separate group models in (2.9). In particular,

g    xg,g  1, . . . ,G,     (2.10)

where we think of xg as fixed, observed attributes of heterogeneous groups. With K attributes

we must have G ≥ K  1 to determine  and . If Mg is large enough to estimate the g

precisely, a simple two-step estimation strategy suggests itself. First, obtain the ̂g, along with

̂g, from an OLS regression within each group. If G  K  1 then, typically, we can solve for

̂ ≡ ̂, ̂′ ′ uniquely in terms of the G  1 vector ̂:. ̂  X−1̂, where X is the

K  1  K  1 matrix with gth row 1,xg. If G  K  1 then, in a second step, we can use a

minimum distance approach, as described in Wooldridge (2010, Section 14.5). If we use as the

weighting matrix IG, the G  G identity matrix, then the minimum distance estimator can be

computed from the OLS regression

̂g on 1,xg,g  1, . . . ,G.     (2.10)
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Under asymptotics such that Mg  gM where 0  g ≤ 1 and M → , the minimum distance

estimator ̂ is consistent and M -asymptotically normal. Still, this particular minimum

distance estimator is asymptotically inefficient except under strong assumptions. Because the

samples are assumed to be independent, it is not appreciably more difficult to obtain the

efficient minimum distance (MD) estimator, also called the “minimum chi-square” estimator.

First consider the case where zgm does not appear in the first stage estimation, so that the ̂g

is just ȳg, the sample mean for group g. Let ̂g2 denote the usual sample variance for group g.

Because the ȳg are independent across g, the efficient MD estimator uses a diagonal weighting

matrix. As a computational device, the minimum chi-square estimator can be computed by

using the weighted least squares (WLS) version of (2.11), where group g is weighted byMg/̂g2

(groups that have more data and smaller variance receive greater weight). Conveniently, the

reported t statistics from the WLS regression are asymptotically standard normal as the group

sizesMg get large. (With fixed G, the WLS nature of the estimation is just a computational

device; the standard asymptotic analysis of the WLS estimator has G → .). The minimum

distance approach works with small G provided G ≥ K  1 and each Mg is large enough so that

normality is a good approximation to the distribution of the (properly scaled) sample average

within each group.

If zgm is present in the first-stage estimation, we use as the minimum chi-square weights the

inverses of the asymptotic variances for the g intercepts in the separate G regressions. With

large Mg, we might make these fully robust to heteroskedasticity in Eugm2 |zgm using the White

(1980) sandwich variance estimator. At a minimum we would want to allow different g2 even

if we assume homoskedasticity within groups. Once we have the Avar̂g – which are just the
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squared reported standard errors for the ̂g – we use as weights 1/Avar̂g in the

computationally simple WLS procedure. We are still using independence across g in obtaining

a diagonal weighting matrix in the MD estimation.

An important by-product of the WLS regression is a minimum chi-square statistic that can

be used to test the G − K − 1 overidentifying restrictions. The statistic is easily obtained as the

weighted sum of squared residuals, say SSRw. Under the null hypothesis in (2.10),

SSRw
a G−K−1

2 as the group sizes,Mg, get large. If we reject H0 at a reasonably small

significance level, the xg are not sufficient for characterizing the changing intercepts across

groups. If we fail to reject H0, we can have some confidence in our specification, and perform

inference using the standard normal distribution for t statistics for testing linear combinations

of the population averages.

We might also be interested in how one of the slopes in g depends on the group features,

xg. Then, we simple replace ̂g with, say ̂g1, the slope on the first element of zgm. Naturally,

we would use 1/Avar̂g1 as the weights in the MD estimation.

The minimum distance approach can also be applied if we impose g   for all g, as in

the original model (1). Obtaining the ̂g themselves is easy: run the pooled regression

ygm on d1g,d2g, . . . ,dGg, zgm,m  1, . . . ,Mg;g  1, . . . ,G     (2.11)

where d1g,d2g, . . . ,dGg are group dummy variables. Using the ̂g from the pooled regression

(2.12) in MD estimation is complicated by the fact that the ̂g are no longer asymptotically

independent; in fact, ̂g  ȳg − z̄ĝ, where ̂ is the vector of common slopes, and the presence

of ̂ induces correlation among the intercept estimators. Let V̂ be the G  G estimated

(asymptotic) variance matrix of the G  1 vector ̂. Then the MD estimator is
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̂  X ′V̂−1X−1X ′V̂−1̂ and its estimated asymptotic variance is X ′V̂−1X−1. If the OLS

regression (2.11) is used, or the WLS version, the resulting standard errors will be incorrect

because they ignore the across group correlation in the estimators. (With large group sizes the

errors might be small; see the next section.)

Intermediate approaches are available, too. Loeb and Bound (1996) (LB for short) allow

different group intercepts and group-specific slopes on education, but impose common slopes

on demographic and family background variable. The main group-level covariate is the

student-teacher ratio. Thus, LB are interested in seeing how the student-teach ratio affects the

relationship between test scores and education levels. LB use both the unweighted estimator

and the weighted estimator and find that the results differ in unimportant ways. Because they

impose common slopes on a set of regressors, the estimated slopes on education (say ̂g1) are

not asymptotically independent, and perhaps using a nondiagonal estimated variance matrix V̂

(which would be 36  36 in this case) is more appropriate; but see Section 3.

If we reject the overidentifying restrictions, we are essentially concluding that

g    xg  cg, where cg can be interpreted as the deviation from the restrictions in (2.10)

for group g. As G increases relative to K, the likelihood of rejecting the restrictions increases.

One possibility is to apply the Donald and Lang approach, which is to analyze the OLS

regression in (2.11) in the context of the classical linear model (CLM), where inference is

based on the tG−K−1 distribution. Why is a CLM analysis justified? Since

̂g  g  OpMg
−1/2, we can ingore the estimation error in ̂g for large Mg (Recall that the

same “large Mg” assumption underlies the minimum distance approach.) Then, it is as if we

are estimating the equation g    xg  cg,g  1, . . . ,G by OLS. If the cg are drawn from a

normal distribution, classical analysis is applicable because cg is assumed to be independent of
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xg. This approach is desirable when one cannot, or does not want to, find group-level

observables that completely determine the g. It is predicated on the assumption that the other

factors in cg are not systematically related to xg, a reasonable assumption if, say, xg is a

randomly assigned treatment at the group level, a case considered by Angrist and Lavy (2002).

Beyond the treatment effect case, the issue of how to define parameters of interest appears

complicated, and deserves further study. In the example with G  4 and two control and two

treatment groups, it can be shown that defining the treatment effect as (2.8) is the same as

defining the parameters of interest as   X ′X−1X ′, where X is the 4  2 matrix

X 

1 0

1 0

0 1

0 1

    (2.12)

and    is the second element of . Generally, if it makes sense to define the object of

interest as   X ′X−1X ′, and if we estimate  as ̂  X ′X−1X ′̂, then M ̂ −  inherits its

asymptotic distribution from that of M ̂ − , where we assume, as before, that Mg  gM

with 0  g ≤ 1 andM → . Such a setting implies

Avar̂  X ′X−1X ′Avar̂XX ′X−1.     (2.13)

3. What if G and Mg are Both “Large”?

Section 1 reviewed methods appropriate for a large number of groups and relatively small

group sizes. Section 2 considered two approaches appropriate for large group sizes and a small

number of groups. The DL and minimum distance approaches use the large group sizes
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assumption differently: in its most applicable setting, DL use the large Mg assumption to

ignore the first-stage estimation error entirely, with all uncertainty coming from unobserved

group effects, while the asymptotics underlying the MD approach is based on applying the

central limit theorem within each group. Not surprisingly, more flexibility is afforded if G and

Mg are both “large.”

For example, suppose we adopt the DL specification (with an unobserved cluster effect),

g    xg  cg,g  1, . . . ,G,     (3.1)

and G  50 (say, states in the U.S.). Further, assume first that the group sizes are large enough

(or the cluster effects are so strong) that the first-stage estimation error can be ignored. Then,

it matters not whether we impose some common slopes or run separate regressions for each

group (state) in the first stage estimation. In the second step, we can treat the group-specific

intercepts, ̂g,g  1, . . . ,G, as independent “observations” to be used in the second stage. This

means we apply regression (2.10) and apply the usual inference procedures. The difference

now is that with G  50, the usual t statistics have some robustness to nonnormality of the cg,

assuming the CLT approximation works well With small G, the exact inference was based on

normality of the cg.

Loeb and Bound (1996), with G  38, essentially use regression (2.10), but with estimated

slopes as the dependent variable in place of estimated intercepts. As mentioned in Section 2,

LB impose some common slopes across groups, which means the estimated parameters are

dependent across group. The minimum distance approach without cluster effects is one way to

account for the dependence. Alternatively, one can simply adopt the DL perspective and just

assume the estimation error is swamped by cg; then standard OLS analysis is approximately
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justfied.

4. The Traditional Difference-in-Differences
Methodology

Since the work by Ashenfelter and Card (1985), the use of difference-in-differences

methods has become very widespread. The simplest set up is one where outcomes are observed

for two groups for two time periods. One of the groups is exposed to a treatment in the second

period but not in the first period. The second group is not exposed to the treatment during

either period. In the case where the same units within a group are observed in each time period,

the average gain in the second (control) group is substracted from the average gain in the first

(treatment) group. This removes biases in second period comparisons between the treatment

and control group that could be the result from permanent differences between those groups, as

well as biases from comparisons over time in the treatment group that could be the result of

trends. We will treat the panel data case in Section 4.

With repeated cross sections, we can write the model for a generic member of any of

groups as

y  0  1dB  0d2  1d2  dB  u     (4.1)

where y is the outcome of interest, d2 is a dummy variable for the second time period. The

dummy variable dB captures possible differences between the treatment and control groups

prior to the policy change. The time period dummy, d2, captures aggregate factors that would

cause changes in y even in the absense of a policy change. The coefficient of interest, 1,

multiplies the interaction term, d2  dB, which is the same as a dummy variable equal to one
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for those observations in the treatment group in the second period. The

difference-in-differences estimate is

̂1  ȳB,2 − ȳB,1 − ȳA,2 − ȳA,1.     (4.2)

Inference based on even moderate sample sizes in each of the four groups is straightforward,

and is easily made robust to different group/time period variances in the regression framework.

In some cases a more convincing analysis of a policy change is available by further

refining the definition of treatment and control groups. For example, suppose a state

implements a change in health care policy aimed at the elderly, say people 65 and older, and

the response variable, y, is a health outcome. One possibility is to use data only on people in

the state with the policy change, both before and after the change, with the control group being

people under 65 (or, say, 55 to 64), and the treatment group being people 65 and older. The

potential problem with this DD analysis is that other factors unrelated to the state’s new policy

might affect the health of the elderly relative to the younger population, for example, changes

in health care emphasis at the federal level. A different DD analysis would be to use another

state as the control group and use the elderly from the non-policy state as the control group.

Here, the problem is that changes in the health of the elderly might be systematically different

across states due to, say, income and wealth differences, rather than the policy change.

A more robust analysis than either of the DD analyses described above can be obtained by

comparing the DD estimate for the state where the policy was implemented with the same

estimate from a control state. If we again label the two time periods as one and two, let B

represent the state implementing the policy, and let E denote the group of elderly, then an

expanded verson of (4.1) is
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y  0  1dB  2dE  3dB  dE  0d2  1d2  dB  2d2  dE  3d2  dB  dE  u     (4.3)

The coefficient of interest is now 3, the coefficient on the triple interaction term, d2  dB  dE.

The OLS estimate ̂3 can be expressed as

̂3  ȳB,E,2 − ȳB,E,1 − ȳB,N,2 − ȳB,N,1 − ȳA,E,2 − ȳA,E,1 − ȳA,N,2 − ȳA,N,1,     (4.4)

where the A subscript means the state not implementing the policy and the N subscript

represents the non-elderly. The estimate in (4.4) is usually called the

difference-in-difference-in-differences (DDD) estimate. The first term in  is the DD estimate

obtained by using the non-elderly as the control group and the time periods before and after the

policy change. To ensure that this DD estimate is not simply picking up different trends in

health outcomes between the old and young, the DDD estimate subtracts off the same

estimated difference in trends for the control state (the second term in ).

When implemented as a regression, a standard error for ̂3 is easily obtained, including a

heteroskedasticity-robust standard error. As in the DD case, it is straightforward to add

additional covariates to (4.3) and inference robust to heteroskedasticity.
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5. How Should We View Uncertainty in DD Settings?

The standard approach just described assumes that all uncertainty in inference enters

through sampling error in estimating the means of each group/time period combination. This

approach has a long history in statistics, as it is equivalent to analysis of variance. Recently,

different approaches have been suggest that focus on different kinds of uncertainty – perhaps

in addition to sampling error in estimating means. Recent work by Bertrand, Duflo, and

Mullainathan (2004), Donald and Lang (2007), Hansen (2007a,b), and Abadie, Diamond, and

Hainmueller (2007) argues for additional sources of uncertainty. In fact, in most cases the

additional uncertainty is assumed to swamp the sampling error in estimating group/time period

means. We already discussed the DL approach in the cluster sample notes, although we did not

explicitly introduce a time dimension. One way to view the uncertainty introduced in the DL

framework – and a perspective explicitly taken by ADH – is that our analysis should better

reflect the uncertainty in the quality of the control groups.

Before we turn to a general setting, it is useful to ask whether introducing more than

sampling error into DD analyses is necessary, or desirable. As we discussed in the cluster

sample notes, the DL approach does not allow inference in the basic comparison-of-mean case

for two groups. While the DL estimate is the usual difference in means, the error variance of

the cluster effect cannot be estimated, and the t distribution is degenerate. It is also the case

that the DL approach cannot be applied to the standard DD or DDD cases covered in Section 1.

We either have four different means to estimate or six, and the DL regression in these cases

produces a perfect fit with no residual variance. Should we conclude nothing can be learned in

such settings?

Consider the example from Meyer, Viscusi, and Durbin (1995) on estimating the effects of

28



Imbens/Wooldridge,AEA Lecture Notes 4, January ’12

benefit generosity on length of time a worker spends on workers’ compensation. MVD have a

before and after period, where the policy change was to raise the cap on covered earnings. The

treatment group is high earners, and the control group is low earners – who should not have

been affected by the change in the cap. Using the state of Kentucky and a total sample size of

5,626, MVD find the DD estimate of the policy change is about 19.2% (longer time on

workers’ compensation). The t statistic is about 2.76, and the estimate changes little when

some controls are added. MVD also use a data set for Michigan. Using the same DD approach,

they estimate an almost identical effect: 19.1%. But, with “only” 1,524 observations, the t

statistic is 1.22. It seems that, in this example, there is plenty of uncertainty in estimation, and

one cannot obtain a tight estimate without a fairly large sample size. It is unclear what we gain

by concluding that, because we are just identifying the parameters, we cannot perform

inference in such cases. In this example, it is hard to argue that the uncertainty associated with

choosing low earners within the same state and time period as the control group somehow

swamps the sampling error in the sample means.

6. General Settings for DD Analysis: Multiple Groups
and Time Periods

The DD and DDD methodologies can be applied to more than two time periods. In the first

case, a full set of time-period dummies is added to (4.1), and a policy dummy replaces d2  dB;

the policy dummy is simply defined to be unity for groups and time periods subject to the

policy. This imposes the restriction that the policy has the same effect in every year, and

assumption that is easily relaxed. In a DDD analysis, a full set of dummies is included for each

of the two kinds of groups and all time periods, as well as all pairwise interactions. Then, a
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policy dummy (or sometimes a continuous policy variable) measures the effect of the policy.

See Gruber (1994) for an application to mandated maternity benefits.

With many time periods and groups, a general framework considered by BDM (2004) and

Hansen (2007b) is useful. The equation at the individual level is

yigt  t  g  xgt  zigtgt  vgt  uigt, i  1, . . . ,Mgt,     (6.1)

where i indexes individual, g indexes group, and t indexes time. This model has a full set of

time effects, t, a full set of group effects, g, group/time period covariates, xgt (these are the

policy variables), individual-specific covariates, zigt, unobserved group/time effects, vgt, and

individual-specific errors, uigt. We are interested in estimating . Equation (6.1) is an example

of a multilevel model.

One way to write (6.1) that is useful is

yigt  gt  zigtgt  uigt, i  1, . . . ,Mgt,     (6.2 )

which shows a model at the individual level where both the intercepts and slopes are allowed

to differ across all g, t pairs. Then, we think of gt as

gt  t  g  xgt  vgt.     (6.3)

Equation (6.3) is very useful, as we can think of it as a regression model at the group/time

period level.

As discussed by BDM, a common way to estimate and perform inference in (6.1) is to

ignore vgt, in which case the observations at the individual level are treated as independent.

When vgt is present, the resulting inference can be very misleading. BDM and Hansen (2007b)

allow serial correlation in vgt : t  1,2, . . . ,T and assume independence across groups, g.

A simple way to proceed is to view (6.3) as ultimately of interest. We observe xgt, t is
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handled with year dummies,and g just represents group dummies. The problem, then, is that

we do not observe gt. But we can use the individual-level data to estimate the gt, provided

the group/time period sizes,Mgt, are reasonably large. With random sampling within each

g, t, the natural estimate of gt is obtained from OLS on (6.2) for each g, t pair, assuming

that Ezigt′ uigt  0. (In most DD applications, this assumption almost holds by definition, as

the individual-specific controls are included to improve estimation of gt.) If a particular model

of heteroskedasticity suggests itself, and Euit|zigt  0 is assumed, then a weighted least

squares procedure can be used. Sometimes one wishes to impose some homogeneity in the

slopes – say, gt  g or even gt   – in which case pooling can be used to impose such

restrictions. In any case, we proceed as if theMgt are large enough to ignore the estimation

error in the ̂gt; instead, the uncertainty comes through vgt in (6.3). Hansen (2007b) considers

adjustments to inference that accounts for sampling error in the ̂gt, but the methods are more

complicated. The minimum distance approach we discussed in the cluster sampling notes,

applied in the current context, effectively drops vgt from (6.3) and views gt  t  g  xgt

as a set of deterministic restrictions to be imposed on gt. Inference using the efficient

minimum distance estimator uses only sampling variation in the ̂gt, which will be independent

across all g, t if they are separately estimated, or which will be correlated if pooled methods

are used.

Because we are ignoring the estimation error in ̂gt, we proceed simply by analyzing the

panel data equation

̂gt  t  g  xgt  vgt, t  1, . . . ,T,g  1, . . . ,G,     (6.4)

where we keep the error as vgt because we are treating ̂gt and gt interchangeably. If we
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assume that We can apply the BDM findings and Hansen (2007a) results directly to this

equation. Namely, if we estimate (6.4) by OLS – which means full year and group effects,

along with xgt – then the OLS estimator has satisfying properties as G and T both increase,

provided vgt : t  1,2, . . . ,T is a weakly dependent (mixing) time series for all g. The

simulations in BDM and Hansen (2007a) indicate that cluster-robust inference, where each

cluster is a set of time periods, work reasonably well when vgt follows a stable AR(1) model

and G is moderately large.

Hansen (2007b), noting that the OLS estimator (the fixed effects estimator) applied to (6.4)

is inefficient when vgt is serially uncorrelated (and possibly heteroskedastic), proposes feasible

GLS. As is well known, if T is not large, estimating parameters for the variance matrix

g  Varvg, where vg is the T  1error vector for each g, is difficult when group effects

have been removed. In other words, using the FE residuals, v̂gt, to estimate g can result in

severe bias for small T. Solon (1984) highlighted this problem for the homoskedastic AR(1)

model. Of course, the bias disappears as T → , and regression packages such as Stata, that

have a built-in command to do fixed effects with AR(1) errors, use the usual AR(1) coefficient

̂, obtained from

v̂gt on v̂g,t−1, t  2, . . . ,T,g  1, . . . ,G.     (6.5)

As discussed in Wooldridge (2003) and Hansen (2007b), one way to account for the bias in ̂

is to still use a fully robust variance matrix estimator. But Hansen’s simulations show that this

approach is quite inefficient relative to his suggestion, which is to bias-adjust the estimator ̂

and then use the bias-adjusted estimator in feasible GLS. (In fact, Hansen covers the general

ARp model.) Hansen derives many attractive theoretical properties of his the estimator.An

iterative bias-adjusted procedure has the same asymptotic distribution as ̂ in the case ̂ should
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work well: G and T both tending to infinity. Most importantly for the application to DD

problems, the feasible GLS estimator based on the iterative procedure has the same asymptotic

distribution as the GLS etsimator when G →  and T is fixed. When G and T are both large,

there is no need to iterated to achieve efficiency.

Hansen further shows that, even when G and T are both large, so that the unadjusted AR

coefficients also deliver asymptotic efficiency, the bias-adusted estimates deliver higher-order

improvements in the asymptotic distribution. One limitation of Hansen’s results is that they

assume xgt : t  1, . . . ,T are strictly exogenous. We know that if we just use OLS – that is,

the usual fixed effects estimate – strict exogeneity is not required for consistency as T → .

GLS, in exploiting correlations across different time periods, tends to exacerbate bias that

results from a lack of strict exogeneity. In policy analysis cases, this is a concern if the policies

can switch on and off over time, because one must decide whether the decision to implement

or remove a program is related to past outcomes on the response.

With large G and small T, one can estimate an unstricted variance matrix g and proceed

with GLS – this is the approach suggested by Kiefer (1980) and studied more recently by

Hausman and Kuersteiner (2005). It is equivalent to dropping a time period in the

time-demeaned equation and proceeding with full GLS (and this avoids the degeneracy in the

variance matrix of the time-demeaned errors). Hausman and Kuersteiner show that the Kiefer

approach works pretty well when G  50 and T  10, although substantial size distortions

exist for G  50 and T  20.

Especially if theMgt are not especially large, we might worry about ignoring the estimation

error in the ̂gt. One simple way to avoid ignoring the estimation error in ̂gt is to aggregate

equation (6.1) over individuals, giving
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ȳgt  t  g  xgt  z̄gt  vgt  ūgt, t  1, . . ,T,g  1, . . . ,G.     (6.6)

Of course, this equation can be estimated by fixed effects, too, and fully robust inference is

available using Hansen (2007a) because the composite error, rgt ≡ vgt  ūgt, is weakly

dependent. Fixed Effects GLS using an unrestricted variance matrix can be used with large G

and small T. The complication with using specific time series model for the error is the

presence of ūgt. With different Mgt, Varūgt is almost certainly heteroskedastic (and might be

with the sameMgt, of course). So, even if we specify, say, an AR(1) model vgt  vg,t−1  egt,

the variance matrix of rg is more complicated. One possibility is to just assume the composite

error, rgt, follows a simple model, implement Hansen’s methods, but then use fully robust

inference.

The Donald and Land (2007) approach applies in the current setting by using finite sample

analysis applied to the pooled regression (6.4). However, DL assume that the errors vgt are

uncorrelated across time, and so, even though for small G and T it uses small

degrees-of-freedom in a t distribution, it does not account for uncertainty due to serial

correlation in vgt : t  1, . . . ,T.
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AEA Lectures Chicago, January 2012
Lecture 6,Monday, January 9, 4:30 pm to 5:30 pm

Nonlinear Panel Data Models

These notes summarize some recent, and perhaps not-so-recent, advances in the estimation

of nonlinear panel data models. Research in the last 10 to 15 years has branched off in two

directions. In one, the focus has been on parameter estimation, possibly only up to a common

scale factor, in semiparametric models with unobserved effects that can be arbitrarily

correlated with covariates. Another branch has focused on estimating partial effects when

restrictions are made on the distribution of heterogeneity conditional on the history of the

covariates. These notes attempt to lay out the pros and cons of each approach, paying

particular attention to the tradeoff in assumptions and the quantities that can be estimated.

1. Basic Issues and Quantities of Interest

Most microeconomic panel data sets are best characterized as having few time periods and

(relatively) many cross section observations. Therefore, most of the discussion in these notes

assumes T is fixed in the asymptotic analysis while N is increasing. We assume random

sampling in the cross section, that is, xit,yit : t  1, . . . ,T, is a random draw of T time

periods for observation i. We take the response yit to be a scalar for simplicity.

If we are not concerned about traditional (contemporaneous) endogeneity, then we are

typically interested in the conditional distribution

Dyit|xit,c i,     (1.1)

where c i is the onobserved heterogeneity for observation idrawn along with the observables.

Often we are interested in a particular feature of this distribution, such as Eyit|xit,c i, or a
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conditional median. Generally, with nonlinear models, we must deal with the issue of

summarizing the effects of the observed covariates while accounting for the presense of c i. For

example, in the case of a mean, how do we summarize the partial effects when they depend on

the unobserved heterogeneity? Let Eyit|xit  xt,c i  c  mtxt,c be the mean function. If

xtj is continuous, then the partial effect can be defined as

jxt,c ≡
∂mtxt,c
∂xtj

.     (1.2)

For discrete (or continuous) variables, we can instead look at discrete changes in the mean

function. Either way, a key question is: How do we account for unobserved c? If we want to

estimate magnitudes of effects, we need to know enough about the distribution of c i so that we

can either insert meaningful values for c, or we can average the partial effects across the

distribution of c i. As an example of the former, suppose we can identify c  Ec i. Then we

can compute the partial effect at the average (PEA),

jxt,c.     (1.3)

Of course, to estimate (1.3), we need to estimate the function mt and the mean of c i. If we

know more about the distribution of c i, we can insert different quantiles, for example, or a

certain number of standard deviations from the mean.

As an alternative to plugging in specific values for c, we can average the partial effects

across the distribution of c i:

APExt  Ecijxt,c i,     (1.4)

the so-called average partial effect (APE). The difference between (1.3) and (1.4) can be

nontrivial for nonlinear mean functions. The definition in (1.4) dates back at least to
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Chamberlain (1984), and is closely related to the notion of the average structural function

(ASF) [Blundell and Powell (2003)]. The ASF is defined as

ASFxt  Ecimtxt,c i.     (1.5)

Assuming the derivative passes through the expectation results in (1.5), the average partial

effect. Of course, computing a discrete change in the ASF always gives the corresponding

APE. A useful feature of APEs is that they can be compared across models, where the

functional form of the mean or the distribution of the heterogeneity can be different. In

particular, APEs in general nonlinear models are comparable to the estimated coefficients in a

standard linear model.

Semiparametric methods that are totally silent about the distribution of c i, unconditionally

or conditional on xi1, . . . ,xiT, cannot generally deliver estimates of PAEs or APEs essentially

by design. Instead, an index structure is usually imposed so that parameters can be consistently

estimated. A common setup with scalar heterogeneity is

mtxt,c  Gxt  c,     (1.6)

where, say, G is strictly increasing and continuously differentiable (and, in some cases, is

known, and in others, is not). The partial effects are proportional to the parameters:

jxt,c  jgxt  c,     (1.7)

where g is the derivative of G. Therefore, if we can estimate j then we can estimate the

sign of the partial effect, and even the relative effects of any two continuous variables. But,

even if G is specified (the more common case), the magnitude of the effect evidently cannot

be estimated without making assumptions about the distribution of ci: the size of the scale

factor for a random draw i, gxt  ci, depends on ci. Without knowing something about the
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distribution of ci we cannot generally locate gxt  ci or average out the heterogeneity.

Returning to the general case, Altonji and Matzkin (2005) focus on what they call the local

average response (LAR) as opposed to the APE or PAE. The LAR at xt for a continuous

variable xtj is

 ∂mtxt,c∂xtj
dHtc|xt,     (1.8)

where Htc|xt denotes the cdf of Dc i|xit  xt. This is a “local” partial effect because it

averages out the heterogeneity for the slice of the population described by the vector of

observed covariates, xt. The APE, which, by comparison, could be called a “global average

response,” averages out over the entire distribution of c i. See also Florens, Heckman, Meghir,

and Vytlacil (2007).

It is important to see that the previous definitions of partial effects does not depend on the

nature of the variables in xt (except for whether it makes sense to use the calculus

approximation or use changes). In particular, xt can include lagged dependent variables and

lags of other variables, which may or may not be strictly exogenous. Unfortunately, we cannot

identify the APEs, or even relative effects in index models, without some assumptions.

2. Exogeneity Assumptions on the Covariates

Ideally, we would only have to specify a model for Dyit|xit,c i, or some feature, to

estimate parameters and partial effects. Unfortunately, it is well known that specifying a full

parametric model is not sufficient for identifying either the parameters of the model or the

partial effects defined in Section 1. In this section, we consider two useful exogeneity

assumptions on the covariates.
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It is easiest to deal with estimation under a strict exogeneity assumption. The most useful

definition of strict exogeneity for nonlinear panel data models is

Dyit|xi1, . . . ,xiT,c i  Dyit|xit,c i,     (2.1)

which means that xir, r ≠ t, does not appear in the conditional distribution of yit once xit and c i

have been counted for. Chamberlain (1984) labeled (2.1) strict exogeneity conditional on the

unobserved (or latent) effects c i; as discussed by Chamberlain, (2.1) is much more plausible

than if we did not condition on c i. Sometimes, a conditional mean version is sufficient:

Eyit|xi1, . . . ,xiT,c i  Eyit|xit,c i,     (2.2)

which we already saw for linear models. (In other cases a condition stated in terms of

conditional medians is more convenient.) Assumption (2.1), or its conditional mean version,

are less restrictive than if we do not condition on c i. Indeed, it is easy to see that, if (2.1) holds

and Dc i|xi depends on xi, then strict exogeneity without conditioning on c i,

Dyit|xi1, . . . ,xiT  Dyit|xit, cannot hold. Unfortunately, both (2.1) and (2.2) rule out lagged

dependent variables, as well as other situations where there may be feedback from

idiosyncratic changes in yit to future movements in xir, r  t. (Essentially the same problem

shows up in linear models, but there it is more easily dealt with.) Neverthless, the conditional

strict exogeneity assumption underlies the most common estimation methods for nonlinear

models.

More natural is sequential exogeneity conditional on the unobserved effects, which we can

state generally as

Dyit|xi1, . . . ,xit,c i  Dyit|xit,c i,     (2.3)

or, sometimes, in terms of specific features of the distribution. Assumption (2.3) allows for
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lagged dependent variables and does not restrict feedback. Unfortunately, (2.3) is more

difficult to work with than (2.1) for general nonlinear models.

Because we condition on xit, neither (2.1) nor (2.3) allows for contemporaneous

endogeneity of one or more elements of xit, where, say, xitj is correlated with unobserved,

time-varying unobservables that affect yit, or where xitj is simultaneously determined along

with yit. Such cases will be covered in later notes on control function methods.

3. Conditional Independence Assumption

The exogeneity conditions stated in Section 2 generally do not restrict the dependence in

the responses, yit : t  1, . . . ,T, although in special cases (2.3) does. Often, a conditional

independence assumption is explicitly imposed. We can write the condition generally as

Dyi1, . . . ,yiT|xi,c i 
t1

T

Dyit|xi,c i.     (3.1)

Equation (3.1) simply means that, conditional on the entire history xit : t  1, . . . ,T and the

unobserved heterogeneity c i, the responses are independent across time. One way to think

about (3.1) is that time-varying unobservables are independent over time. Because (3.1)

conditions on xi, it is useful only in the context of the strict exogeneity assumption (2.1). Then,

conditional independence can be written as

Dyi1, . . . ,yiT|xi,c i 
t1

T

Dyit|xit,c i.     (3.2)

In a parametric context, the conditional independence assumption reduces our task to

specifying a model for Dyit|xit,c i, and then determining how to treat the unobserved
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heterogeneity, c i. In random effects and correlated RE frameworks, conditional independence

can play a critical role in being able to estimate the parameters and the distribution of c i. We

could get by with less restrictive assumptions by parameterizing the dependence in the joint

distribution Dyi1, . . . ,yiT|xi,c i – something that is sometimes done – but that increases

computational burden. As it turns out, conditional independence plays no role in estimating

APEs for a broad class of models. [That is, we do not need to place restrictions on

Dyi1, . . . ,yiT|xi,c i. ] Before we can study estimation, we must discuss the critical issue of the

dependence between c i and xi.

4. Assumptions about the Unobserved
Heterogeneity

The modern approach to panel data analysis with micro data treats the unobserved

heterogeneity as random draws along with the observed data, and that is the view taken here.

Nevertheless, in order to avoid making distributional assumptions about c i, one sometimes

treats the c i as parameters to estimate, and so we allow for that possibility in our discussion.

Random Effects

For general nonlinear models, what we call the random effects assumption is independence

between c i and xi  xi1, . . . ,xiT:

Dc i|xi1, . . . ,xiT  Dc i.     (4.1)

If we combine this assumption with a model for the conditional mean, mtxt,c, then the APEs

are actually nonparametrically identified. (And, in fact, we do not need to assume strict or

sequential exogeneity to use a pooled estimation method, or to use just a single time period.) In
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fact, if Eyit|xit,c i  mtxit,c i and Dc i|xit  Dc i, then the APEs are obtained from

rtxt ≡ Eyit|xit  xt.     (4.2)

(The argument is a simple application of the law of interated expectations; it is discussed in

detail in Wooldridge (2005a).) In principle, Eyit|xit can be estimated nonparametrically, and

we only need a single time period to identify the partial effects for that time period.

In some leading cases (for example random effects probit and Tobit models with

heterogeneity normally distributed and homoskedastic), if we want to obtain partial effects for

different values of c, we must assume more: the strict exogeneity assumption (2.1), the

conditional independence assumption (3.1), and the random effects assumption (4.1) – with a

parametric distribution for Dc i – are typically sufficient. We postpone this discussion

because it takes us into the realm of specifying parametric models.

Correlated Random Effects

A correlated random effects framework allows dependence between c i and xi, but the

dependence in restricted in some way. In a parametric setting, we specify a distribution for

Dc i|xi1, . . . ,xiT, as in Mundlak (1978), Chamberlain (1982), and many subsequent authors;

see Wooldridge (2010). For many models, including probit and Tobit, one can allow

Dc i|xi1, . . . ,xiT to depend in a “nonexchangeable” manner on the time series of the

covariates; Chamberlain’s correlated random effects probit model does this. But the

distributional assumptions that lead to simple estimation – namely, homoskedastic normal with

a linear conditional mean — are restrictive. But it is aslo possible to assume

Dci|xi  Dci|x̄i     (4.3)

without specifying Dci|x̄i or restricting any feature of this distribution. We will see in the
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next section that (4.3) is very powerful.

We can go further. For example, suppose that we think the heterogeneity c i is correlated

with features of the covariate history other than just the time average. Altonji and Matzkin

(2005) allow for x̄i in equation (4.3) to be replaced by other functions of xit : t  1, . . . ,T,

such as sample variances and covariance. These are examples of “exchangeable” functions of

xit : t  1, . . . ,T, say, wi – that is, statistics whose value is the same regardless of the

ordering of the xit. Non-exchangeable functions can be used, too. For example, we might think

that c i is correlated with individual-specific trends, and so we define wi to include the intercept

and slope from the unit-specific regressions xit on 1, t, t  1, . . . ,T (for T ≥ 3); we can also add

the error variance from this individual specific regression if we have a sufficient number of

time periods. Regardless of how we choose wi, the key condition is

Dci|xi  Dci|wi.     (4.4)

Practically, we need to specify wi and then establish that there is enough variation in

xit : t  1, . . . ,T separate from wi in order to identify either parameters or, more like,

average partial effects; this will be clear in the next section.

Fixed Effects

Unfortunately, the label “fixed effects” is used in different ways by different researchers

(and, sometimes, by the same researcher). The traditional view is that a fixed effects

framework meant c i, i  1, . . . ,N were treated as parameters to estimate. This view is still

around, and, when researchers say they estimated a nonlinear panel data model by “fixed

effects,” they sometimes mean the c i were treated as parameters to estimate along with other

parameters (whose dimension does not change with N). As is well known, except in special
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cases, estimation of the c i generally introduces an “incidental parameters” problem. (More on

this later when we discuss estimation methods.) Subject to computational feasibility, the

approach that treats the c i as parameters is widely applicable. The practical question is whether

the stance of treating the c i as parameters delivers “good” estimates of the population

parameters and the partial effects.

Rather than meaning the c i are parameters to estimate, the “fixed effects” label can mean

that c i is random but Dc i|xi is unrestricted. Even in that case, there are different approaches

to estimation of parameters. One is to specify a joint distribution Dyi1, . . . ,yit|xi,c i such that a

sufficient statistic, say si, can be found such that

Dyi1, . . . ,yit|xi,c i, si  Dyi1, . . . ,yit|xi, si,     (4.5)

and where the latter distribution still depends on the parameters of interest in a way that

identifies them. In most cases, the conditional independence assumption (3.1) is maintained,

although one conditional MLE is known to have robustness properties: the so-called “fixed

effects” Poisson estimator. We cover that in Section 7.

5. Nonparametric Identification of Average Partial
and Local Average Effects

Before considering identification and estimation of parameters in parametric models, it is

useful to ask which quantities, if any, are identified without imposing parametric assumptions.

Not surprisingly, there are no known results on nonparametric identificiation of partial effects

evaluated at specific values of c, such as c – except, of course, when the partial effects do not

depend on c. Interestingly, identification can fail even under a full set of strong parametric
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assumptions. For example, in the probit model with unobserved heterogeneity,

Py  1|x,c  x  c,     (5.1)

where x is 1  K and includes unity, the partial effect for a continuous variable xj is simply

jx  c. Assuming Ec  0, which is without loss of generality when x1  1, the partial

effect at the mean of c is simply jx. Suppose we make the stronger assumption that c|x

~Normal0,c2. Then it is easy to show (see Wooldridge (2010, Chapter 15)) that

Py  1|x  x/1  c21/2,     (5.2)

which means that only the scaled parameter vector c ≡ /1  c21/2 is identified. Therefore,

jx is evidently unidentified. (The fact that probit of y on x estimates c rather than  has

been called the “attenuation bias” that results from omitted variables in the context of probit,

even when the omitted variable is independent of the covariates and normally distributed. As

mentioned earlier more generally, the average partial effects are obtained directly from

Py  1|x, and, in fact, are given by cjxc. As discussed in Wooldridge (2010, Chapter

15), cjxc can be larger or smaller in magnitude than the PEA jx: |cj|≤ |j| but

xc ≥ x. 

A related example is due to Hahn (2001), and is related to the nonidentification results of

Chamberlain (1993). Suppose that xit is a binary indicator (for example, a policy variable).

Consider the unobserved effects probit model for two time periods,

Pyit  1|xi,ci  xit  ci, t  1,2.     (5.3)

As discussed by Hahn,  is not known to be identified in this model, even under the

conditional independence assumption (2.1) and the random effects assumption

Dci|xi  Dci. But the average partial effect, which in this case is an average treatment
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effect, is simply  ≡ E  ci − Eci. By the general result cited earlier,  is

consistently estimated (in fact, unbiasedly estimated) by using a difference of means for the

treated and untreated groups, for either time period. (If treatment is only in the second time

period, as in Hahn (2001), then the difference must be for the second time period.) In fact, as

discussed in Wooldridge (2005a), identification of the APE holds if we replace  with an

unknown function G and allow Dci|xi  Dci|x̄i. But the parameters are still not identified.

The previous examples raise the following question: Are we focusing too much on

parameters in nonlinear models with unobserved heterogeneity? The answer seems to be yes,

but with qualifications. Consider a third example, due to Wooldridge (2005c). The binary

variable y is determined by the index model y  1x  u  0, where u|x

~Normal0,exp2x1, where x1 is a subset of x that does not contain an intercept. This

model is often called a heteroskedastic probit model. Of course,  and  are estimable by MLE

because Py  1|x  exp−x1x. However, the APE for, say, the continuous variable xj

is not obtained by differentiating Py  1|x with respect to xj; in fact, as is well known, this

derivative can have a sign different from the sign of j. Instead, the average structural function

is consistently estimated by

ASFx  N−1∑
i1

N

exp−xi1̂x̂ ,

and the partial derivative with respect to xj always has the same sign as ̂j. Notice how the

ASF averages across the argument xi1 in the heteroskedasticity function. That comes about

because we can write ASFx  Exi1E1x  ui  0|xi1  Eexp−xi1x. The

point of this example is that in this case the parameters actually give us the APEs up to the

same, positive factor (which depends on the parameters and x, and so the sign of the j gives
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us the direction of the effect on the APE, and ratios of parameters on continuous variables

provide the relative APEs. By contrast, if we blindly differentiate exp−x1x with respect

to xj and xj appears in x1, the resulting expression is not the APE. In other words, parameters

tell us more than derivatives in this case. Of course, we will prefer to take derivatives of the

appropriate function in (5.4), thereby getting consistent estimates of the APEs. See Wooldridge

(2005c) for further discussion of this kind of example, including the negative finding that the is

no way to distinguish between the heteroskedastic probit model and a model with random

slope coefficients. (And, in the latter case, we do obtain the APEs by differentiating Py  1|x

with respect to xj.)

Returning to the panel data case, we can establish identification of average partial effects

much more generally. Assume only that the strict exogeneity assumption (2.1) holds along

with Dci|xi  Dci|x̄i. These two assumptions are sufficient to identify the APEs. To see

why, note that the average structural function at time t can be written as

ASFtxt  Ecimtxt,c i  E x̄iEmtxt,c i|x̄i ≡ E x̄irtxt, x̄i,     (5.4)

where rtxt, x̄i ≡ Emtxt,c i|x̄i. It follows that, given an estimator r̂t,  of the function

rt, , the ASF can be estimated as

ASFtxt ≡ N−1∑
i1

N

r̂txt, x̄i,     (5.5)

and then we can take derivatives or changes with respect to the entries in xt. Notice that (5.4)

holds without the strict exogeneity assumption (2.1) or the assumption Dci|xi  Dci|x̄i.

However, these assumptions come into play in our ability to estimate rt, . If we combine

(2.1) and (4.3) we have
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Eyit|xi  EEyit|xi,c i|xi  Emtxit,c i|xi  mtxit,cdFc|xi
 mtxit,cdFc|x̄i  rtxit, x̄i,     (5.6)

where Fc|xi denotes the cdf of Dc i|xi (which can be a discrete, continuous, or mixed

distribution), the second equality follows from (2.1), the fourth equality follows from

assumption (4.3), and the last equality folllows from the definition of rt,  Of course,

because Eyit|xi depends only on xit, x̄i, we must have

Eyit|xit, x̄i  rtxit, x̄i.     (5.7)

Further, xit : t  1, . . . ,T is assumed to have time variation, and so xit and x̄i can be used as

separate regressors even in a fully nonparametric setting.

Altonji and Matskin (2005).use this idea more generally, and focus on estimating the local

average response. Wooldridge (2005a) used Dc i|xi  Dc i|x̄i generally in the case xit is

discrete, in which case a full nonparametric analysis is easy. When

Dc i|xi  Dc i|wi     (5.8)

for wi a function of xi, Altonji and Matzkin (2005) show that the LAR can be obtained as

 ∂rtxt,w∂xtj
dKtw|xt,     (5.9)

where rxt,w  Eyit|xit  xt,wi  w and Ktw|xt is the cdf of Dwi|xit  xt. Altonji and

Matskin demonstrate how to estimate the LAR based on nonparametric estimation of

Eyit|xit,wi followed by “local” averaging, that is, averaging ∂ryit|xt,wi/∂xtj over

observations i with xit “close” to xt.

This analysis demonstrates that APEs are nonparametrically identified under the

conditional mean version of strict exogeneity, Eyit|xi,c i  Eyit|xit,c i, and (5.8), at least for
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time-varying covariates if wi is restricted in some way. In fact, we can identify the APEs for a

single time period with just one year of data on y. We only need to obtain wi (with wi  x̄i

the leading case) and, in effect, include it as a control. Of course, efficiency would be gained

by assuming some stationarity across t and using a pooled method.

6. Dynamic Models

General models with only sequentially exogenous variables are difficult to deal with.

Arellano and Carrasco (2003) consider probit models. Wooldridge (2000) suggests a strategy

the requires modeling the dynamic distribution of the variables that are not strictly exogenous.

Much more is known about models with lagged dependent variables and otherwise strictly

exogenous variables. So, we start with a model for

Dyit|zit,yi,t−1, . . . ,zi1,yi0,c i, t  1, . . . ,T,     (6.1)

which we assume also is Dyit|zi,yi,t−1, . . . ,yi1,yi0,c i where zi is the entire history

zit : t  1, . . . ,T. This is the sense in which the zit are strictly exogenous.

Suppose this model depends only on zit,yi,t−1,c i, so ftyt|zt,yt−1,c;. The joint density of

yi1, . . . ,yiT given yi0,zi,c i is


t1

T

ftyt|zt,yt−1,c;.     (6.2)

The problem with using this for estimation is the presence of c i along with the initial condition,

yi0. Several approaches have bee suggestd: (i) Treat the c i as parameters to estimate (incidental

parameters problem, although recent research has attempted to reduce the asymptotic bias in

the partial effects). (ii) Try to estimate the parameters without specifying conditional or
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unconditional distributions for ci. (Available in some special cases covered below, but other

restrictions are needed. And, generally, cannot estimate partial effects.). (iii) Find or, more

practically, approximate Dyi0|c i, zi and then model Dc i|zi. After integrating out ci we

obtain the density for Dyi0,yi1, . . . ,yiT|zi and we can use MLE (conditional on zi), (iv) Model

Dc i|yi0,zi. After integrating out ci we obtain the density for Dyi1, . . . ,yiT|yi0,zi, and we can

use MLE (conditional on yi0,zi). As shown by Wooldridge (2005b), in some leading cases –

probit, ordered probit, Tobit, Poisson regression – there is a density hc|y0,z that mixes with

the density fy1, . . . ,yT|y0,z,c to produce a log-likelihood that is in a common family and

carried out by standard software.

If mtxt,c, is the mean function Eyt|xt,c for a scalar yt, then average partial effects are

easy to obtain. The average structural function is

ASFxt  Ecimtxt,c i,  E mtxt,c,hc|yi0,zi,dc |yi0,zi .     (6.3)

The term inside the brackets, say rtxt,yi0,zi,, is available, at least in principle, because

mt and h have been specified. Often, they have simple forms, in fact. Generally, it can be

simulated. In any case, ASFxt, is consistently estimated by

ASFxt  N−1∑
t1

T

rtxt,yi0,zi, ̂, ̂.

Partial derivatives and differences with respect to elements of xt (which, remember, can

include yt−1) can be computed. With large N and small T, the panel data bootstrap can be used

for standard errors and inference.

7. Applications to Specific Models
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We now turn to some common parametric models and highlight the difference between

estimation partial effects at different values of the heterogeneity and estimating average partial

effects. An analysis of Tobit models follows in a very similar way to those in the following

two sections. See Wooldridge (2010, Chapter 17) and Honoré and Hu (2004).

7.1 Binary and “Fractional” Response Models

We start with the standard specification for the unobserved effects (UE) probit model,

which is

Pyit  1|xit,ci  xit  ci, t  1, . . . ,T,     (7.1)

where xit does not contain an overall intercept but would usually include time dummies. We

cannot identify  or the APEs without further assumptions. The traditional RE probit models

imposes a strong set of assumptions: strict exogeneity, conditional serial independence, and

independence between ci and xi with ci ~Normalc,c2. Under these assumptions,  and the

parameters in the distribution of ci are identified and are consistently estimated by full MLE

(conditional on xi.

We can relax independence between ci and xi using the Chamberlain-Mundlak device

under conditional normality:

ci    x̄i  ai,ai|xi ~Normal0,a2,     (7.2)

where the time average is often used to save on degrees of freedom. We can relax (7.2) and

allow Chamberlain’s (1980) more flexible device:

ci    xi  ai    xi11 . . .xiTT  ai     (7.3)

Even when the r seem to be very different, the Mundlak restriction can deliver similar
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estimates of the other parameters and the APEs. (In the linear case, they both produce the usual

FE estimator of . 

If we still assume conditional serial independence then all parameters are identified. We

can estimate the mean of ci as ̂c  ̂  N−1∑ i1
N x̄i ̂ and the variance as

̂c2 ≡ ̂
′
N−1∑ i1

N x̄i′x̄i ̂  ̂a2. Of course, ci is not generally normally distributed unless x̄i is.

The approximation might get better as T gets large. In any case, we can plug in values of c that

are a certain number of estimated standard deviations from ̂c, say ̂c  ̂c.

The APEs are identified from the ASF, which is consistently estimated as

ASFxt  N−1∑
i1

N

xt̂a  ̂a  x̄îa     (7.4)

where, for example, ̂a  ̂/1  ̂a21/2. The derivatives or changes of ASFxt with respect to

elements of xt can be compared with fixed effects estimates from a linear model. Often, if we

also average out across xit, the linear FE estimates are similar to the averaged effects.

As we discussed generally in Section 5, the APEs are defined without the conditional serial

independence assumption. Without Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci, we can still estimate

the scaled parameters because

Pyit  1|xi  xita  a  x̄ia,     (7.5)

and so pooled probit consistently estimates the scaled parametes. (Time dummies have been

supressed for simplicity.) Now we have direct estimates of a, a, and a, and we insert those

directly into (7.4).

Using pooled probit can be inefficient for estimating the scaled parameters, whereas the
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full MLE is efficient but not (evidently) robust to violation of the conditional serial

independence assumption. It is possible to estimate the parameters more efficiently than pooled

probit that is still consistent under the same set of assumptions. One possibility is minimum

distance estimation. That is, estimate a separate models for each t, and then impose the

restrictions using minimum distance methods. (This can be done with or without the Mundlak

device.)

A different approach is to apply the so called “generalized estimating equations” (GEE)

approach. Briefly, GEE applied to panel data is essentially weighted multivariate nonlinear

least squares (WMNLS) with explicit recognition that the weighting matrix might not be the

inverse of the conditional variance matrix. In most nonlinear panel data models, obtaining the

actual matrix Varyi|xi is difficult, if not impossible, because integrating out the heterogeneity

does not deliver a closed form. The GEE approach uses Varyit|xi implied by the specific

distribution – in the probit case, we have the correct conditional variances,

Varyit|xi  xita  a  x̄ia1 − xita  a  x̄ia ≡ vit.     (7.6)

The “working” correlation matrix oftenusually specified as “exchangeable,”

Correit,eis|xi “  ”,     (7.7)

where eit  yit − xita  a  x̄iavit
1/2 is the standardized error. Or, each pair t, s is

allowed to have its own correlation but which is assumed to be independent of xi

(“unstructured”). The conditional correlation Correit,eis|xi is not constant, but that is the

working assumption. The hope is to improve efficiency over the pooled probit estimator while

maintaining the robustness of the pooled estimator. (The full RE probit estimator is not robust

to serial dependence.) A robust sandwich matrix is easily computed provided the conditional
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mean function (in this case, response probability) is correctly specified.

Because the Bernoulli log-likelihood is in the linear exponential family (LEF), exactly the

same methods can be applied if 0 ≤ yit ≤ 1 – that is, yit is a “fractional” response – but where

the model is for the conditional mean: Eyit|xit,ci  xit  ci. Pooled “probit” or minimum

distance estimation or GEE can be used. Now, however, we must make inference robust to

Varyit|xit, x̄i not having the probit form. (There are cases where Varyit|xit, x̄i is proportional

to (7.6), and so it still makes sense to use the probit quasi-log-likelihood. Pooled nonlinear

regression is another possibility or weighted multivariate nonlinear regression are also possible

and a special case of GEE.)

A more radical suggestion, but in the spirit of Altonji and Matzkin (2005) and Wooldridge

(2005a), is to just use a flexible model for Eyit|xit, x̄idirectly. For example, if yit is binary, or

a fractional response, 0 ≤ yit ≤ 1, we might just specify a flexible parametric model, such as

Eyit|xit, x̄i  t  xit  x̄i  x̄i ⊗ x̄i  xit ⊗ x̄i,     (7.8)

or the “heteroskedastic probit” model

Eyit|xit, x̄i  t  xit  x̄iexp−x̄i.     (7.9)

If we write either of these functions as rtxt, x̄ then the average structural function is estimated

as ASFtxt ≡ N−1∑ i1
N r̂txt, x̄i, where the “^” indicates that we have substituted in the

parameter estimates. We can let all parameters depend on t, or we can estimate the parameters

separately for each t and then use minimum distance estimation to impose the parameter

restrictions. The justification for using, say, (7.8) is that we are interested in the average partial

effects, and how parameters appear is really not the issue. Even though (7.8) cannot be derived

from Eyit|xit,ci  xit  ci or any other standard model, there is nothing sacred about this
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formulation. In fact, it is fairly simplistic. We can view (7.8) as the approximation to the true

Eyit|xit, x̄i obtained after integrating ci out of the unknown function mxt,ci. (We could

formalize this process by using series estimation, as in Newey (1988), where the number of

terms is allowed to grow with N.) This is the same argument used by, say, Angrist (2001) in

justifying linear models for limited dependent variables when the focus on primarily on

average effects.

The argument is essentially unchanged if we replace x̄i with other statistics wi. For

example, we might run, for each i, the regression xit on 1, t, t  1, . . . ,T and use the intercept

and slope (on the time trend) as the elements of wi. Or, we can use sample variances and

covariances for each i, along with the sample mean. Or, we can use initial values and average

growth rates. The key condition is Dc i|xi  Dc i|wi, and then we need sufficient variation

in xit : t  1, . . . ,T not explained by wi for identification. (Naturally, as we expand wi, the

number of time periods required generally increases.)

Of course, once we just view (7.8) as an approximation, we can are justified in using the

logistic function, say

Eyit|xit, x̄i  t  xit  x̄i  x̄i ⊗ x̄i  xit ⊗ x̄i,     (7.10)

where z  expz/1  expz, which, again, can be applied to binary or fractional

responses. The focus on partial effects that average out the heterogeneity can be liberating in

that it means the step of specifying Eyit|xit,c i is largely superfluous, and, in fact, can get in

the way of pursuing a suitably flexible analysis. On the other hand, if we start with, say, a

“structural” model such as Pyi1  1|xi,c i  ai  xitbi, which is a heterogeneous index

model, then we cannot derive equations such as (7.8) or (7.9), even under the strong

assumption that c i is independent of xi and multivariate normal. If we imposed the
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Chamberlain device for the elements of c i we can get expressions “close” to a combination of

(7.8) and (7.9). Whether one is willing to simply estimate relative simple models such as (7.8)

in order to estimate APEs depends on one’s taste for bypassing more traditional formulations.

If we start with the logit formulation

Pyit  1|xit,ci  xit  ci,     (7.11)

then we can estimate the parameters,  without restricting Dci|xi in any way, but we must

add the conditional independence assumption. (No one has been able to show that, unlike in

the linear model, or the Poisson model covered below, that the MLE that conditions on the

number of successes ni  ∑ t1
T yit is robust to serial dependence. It appears not to be. Plus, the

binary nature of yit appears to be critical, so the conditional MLE cannot be applied to

fractional responses even under serial independence.) Because we have not restricted Dci|xi

in any way, it appears that we cannot estimate average partial effects. As commonly happens in

nonlinear models, if we relax assumptions about the distribution of heterogeneity, we lose the

ability to estimate partial effects. We can estimate the effects of the covariates on the log-odds

ratio, and relative partial effects of continuous variables. But for partial effects themselves, we

do not have sensible values to plug in for c, and we cannot average across its distribution.

The following table summarizes the features of various approaches to estimating binary

response unobserved effects models.
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Model, Estimation Method Pyit 1|xit,ci Restricts Dci |xi? Idiosyncratic Serial PEs APEs?

Bounded in (0,1)? Dependence? at Eci?

RE Probit, MLE Yes Yes (indep, normal) No Yes Yes

RE Probit, Pooled MLE Yes Yes (indep, normal) Yes No Yes

RE Probit, GEE Yes Yes (indep, normal) Yes No Yes

CRE Probit, MLE Yes Yes (lin. mean, normal) No Yes Yes

CRE Probit, Pooled MLE Yes Yes (lin. mean, normal) Yes No Yes

CRE Probit, GEE Yes Yes (lin. mean, normal) Yes No Yes

LPM, Within No No Yes Yes Yes

FE Logit, MLE Yes No No No No

As an example, we apply several of the methods to women’s labor force participation data,

used by Chay and Hyslop (2001), where the data are for five time periods spaced four months

apart. The results are summarized in the following table. The standard errors for the APEs

were obtained with 500 bootstrap replications. The time-varying explanatory variables are log

of husband’s income and number of children, along with a full set of time period dummies.

(The time-constant variables race, education, and age are also included in columns (2), (3), and

(4).)
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(1) (2) (3) (4) (5)

Model Linear Probit CRE Probit CRE Probit FE Logit

Estimation Method Fixed Effects Pooled MLE Pooled MLE MLE MLE

Coefficient Coefficient APE Coefficient APE Coefficient APE Coefficient

kids −. 0389 −. 199 −. 0660 −. 117 −. 0389 −. 317 −. 0403 −. 644

. 0092 . 015 . 0048 . 027 . 0085 . 062 . 0104 . 125

lhinc −. 0089 −. 211 −. 0701 −. 029 −. 0095 −. 078 −. 0099 −. 184

. 0046 . 024 . 0079 (. 014 . 0048 . 041 . 0055 . 083

kids — — — −. 086 — −. 210 — —

— — — . 031 — . 071 — —

lhinc — — — −. 250 — −. 646 — —

— — — . 035 — . 079 — —

1  ̂a
2−1/2 — — — . 387 —

Log Likelihood — −16, 556. 67 −16, 516. 44 −8, 990. 09 −2, 003. 42

Number of Women 5,663 5,663 5,663 5,663 1,055

In the three methods that allow for unobserved heterogeneity correlated with the covariates

and where we can estimate APEs – columns (1), (3), and (4) – the estimated APEs are pretty

similar. Column (2) contains the pooled probit estimates without allowing the

Chamberlain-Mundlak device, and the APEs are much larger, especially on lhinc. Comparing

columns (2) and (3) stronly suggest the presence of unobserved heterogeneity correlated with

the covariates. To compare the estimates in (1), (3), and (4) to FE logit, we can look only at the

ratio of the coefficients on kids and lhinc, which is 3.50 in column (5). In columns (1), (3), and

(4) the ratios are 4.37, 4.03, and 4.06. Even if we think these differ substantially from the ratio

in column (5), we cannot be sure if this is due to the parametric assumptions on Dci|xi used

in the probit models or the conditional independence used by FE logit. Of course, both could

be misspecified.
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Generally, CMLE approaches are fragile to changes in the specification. For example, a

natural extension is

Pyit  1|xit,c i  ai  xitbi,     (7.12)

where bi is a vector of heterogeneous slopes with  ≡ Ebi; let  ≡ Eai. This extension of

the standard unobserved effects logit model raises several issues. First, what do we want to

estimate? Perhaps the partial effects at the mean values of the heterogeneity. But the APEs, or

local average effects, are probably of more interest.

Nothing seems to be known about what the logit CMLE would estimate if applied to

(7.12), where we assume   bi. On the other hand, if, say, Dc i|xi  Dc i|x̄i, a flexible

binary response model with covariates xit, x̄i (and allowing sufficiently for changes over

time) identifies the APEs – without the conditional serial independence assumption. The same

is true of the extension to time-varying factor loads, Pyit  1|xit,c i  t  xit  tci.

There are methods that allow estimation, up to scale, of the coefficients without even

specifying the distribution of uit in

yit  1xit  ci  uit ≥ 0.     (7.13)

under strict exogeneity.conditional on ci. Arellano and Honoré (2001) survey methods,

including variations on Manski’s maximum score estimator.

Estimation of parameters and APEs is much more difficult even in simple dynamic probit

models. Consider

Pyit  1|zi,yi,t−1, . . . ,yi0,ci  Pyit  1|zit,yi,t−1,ci, t  1, . . . ,T,

which combines correct dynamic specification with strict exogeneity of zit. For a dynamic

probit model
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Pyit  1|zit,yi,t−1,ci  zit  yi,t−1  ci.     (7.14)

Treating the ci as parameters to estimate causes inconsistency in  and  (although there is

recent work by Woutersen and Fernández-Val that shows how to make the asymptotic bias of

order 1/T2; see the next section). A simple analysis is available if we specify

ci|zi,yi0  Normal  0yi0  zi,a2     (7.15)

Then

Pyit  1|zi,yi,t−1, . . . ,yi0,ai  zit  yi,t−1    0yi0  zi  ai,     (7.16)

where ai ≡ ci −  − 0yi0 − zi. Because ai is independent of yi0,zi, it turns out we can use

standard random effects probit software, with explanatory variables 1,zit,yi,t−1,yi0,zi in time

period t. Easily get the average partial effects, too:

ASFzt,yt−1  N−1∑
i1

N

zt̂a  ̂ayt−1  ̂a  ̂a0yi0  zîa,     (7.17)

and take differences or derivatives with respect to elements of zt,yt−1. As before, the

coefficients are multiplied by 1  ̂a2−1/2. Of course, both the structural model and model for

Dci|yi0,zi can be made more flexible (such as including interactions, or letting Varci|zi,yi0

be heteroskedastic).

We apply this method to the Chay and Hyslop data and estimate a model for

Plfpit  1|kidsit, lhincit, lfpi,t−1,ci, where one lag of labor force participation is assumed to

suffice for the dynamics and kidsit, lhincit : t  1, . . . ,T is assumed to be strictly

exogenous conditional on ci. Also, we include the time-constant variables educ, black, age,

and age2 and a full set of time-period dummies. (We start with five periods and lose one with

the lag. Therefore, we estimate the model using four years of data.) We include among the
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regressors the initial value, lfpi0, kidsi1 through kidsi4, and lhinci1 through lhinci4. Estimating

the model by RE probit gives ̂  1.541 se  . 067, and so, even after controlling for

unobserved heterogeneity, there is strong evidence of state dependence. But to obtain the size

of the effect, we compute the APE for lfpt−1. The calculation involves averaging

zit̂a  ̂a  ̂a0yi0  zîa − zit̂a  ̂a0yi0  zîa across all t and i; we must be sure to

scale the original coefficients by 1  ̂a2−1/2, where, in this application, ̂a2  1.103. The APE

estimated from this method is about .259. In other words, averaged across all women and all

time periods, the probability of being in the labor force at time t is about .26 higher if the

women was in the labor force at time t − 1 than if she was not. This estimate controls for

unobserved heterogeneity, number of young children, husband’s income, and the woman’s

education, race, and age. (This APE estimate can be directly compared to a dynamic linear

probability model estimated using, say, the Arellano and Bond (1991) method and its

extensions.)

It is instructive to compare the APE with the estimate of a dynamic probit model that

ignores ci. In this case, we just use pooled probit of lfpit on

1,kidsit, lhincit, lfpi,t−1educi,blacki,agei, and agei2 and include a full set of period dummies.

The coefficient on lfpi,t−1 is 2.876 (se  . 027, which is much higher than in the dynamic RE

probit model. More importantly, the APE for state dependence is about . 837, which is much

higher than when heterogeneity is controlled for. Therefore, in this example, much of the

persistence in labor force participation of married women is accounted for by the unobserved

heterogeneity. There is still some state dependence, but its value is much smaller than a simple

dynamic probit indicates.

Arellano and Carrasco (2003) use a different approach to estimate the parameters and
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APEs in dynamic binary response models with only sequentially exogenous variables. Thus,

their method applies to models with lagged dependent variables, but also other models where

there made be feedback from past shocks to future covariates. (Their assumptions essentially

impose serial conditional serial independence.) Rather than impose an assumption such as

(7.15), they use a different approximation. Let vit  ci  uit be the composed error in

yit  1xit  ci  uit ≥ 0. Then, in the context of a probit model, they assume

vit|wit ~NormalEci|wit,t2     (7.18)

where wit  xit,yi,t−1,xi,t−1, . . . ,yi1xi1. The mean Eci|wit is unrestricted (although, of course,

they are linked across time by iterated expectations because wit ⊂ wi,t1, but the shape of the

distribution is assumed to be the same across t. Arellano and Carrasco discuss identification

and estimation, and extensions to models with time-varying factor loads.

Honoré and Kyriazidou (2000) extend an idea of Chamberlain’s (1993) and show how to

estimate  and  in a logit model without distributional assumptions for ci. They find

conditional probabilities that do not depend on ci but still depend on  and . However, in the

case with four time periods, t  0,1,2, and 3, the conditioning that removes ci requires

zi2  zi3. HK show how to use a local version of this condition to consistently estimate the

parameters. The estimator is also asymptotically normal, but converges more slowly than the

usual N -rate.

The condition that zi2 − zi3 has a distribution with support around zero rules out aggregate

year dummies or even linear time trends. Plus, using only observations with zi2 − zi3 in a

neighborhood of zero results in much lost data. Finally, estimates of partial effects or average

partial effects are not available.

While semiparametric approaches can be valuable to comparing parameter estimates with
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more parametric approaches, such comparisons have limitations. For example, the coefficients

on yt−1 in the dynamic logit model and the dynamic probit model are comparable only in sign;

we cannot take the derivative with respect to yt−1 because it is discrete. Because we do not

know where the evaluate the partial effects – that is, the values of c to plug in, or average out

across the distribution of ci, we cannot compare the magnitudes of the FE logit estimates with

CRC approaches. We can compare the relative effects on the continuous elements in zt based

on partial derivatives. But even here, if we find a difference between semiparametric and

parametric methods, is it because aggregate time effects were excluded in the semiparametric

estimation or because the model of Dci|yi0,zi was misspecified? Currently, we have no good

ways of deciding. (Recently, Li and Zheng (2006) use Bayesian methods to estimate a dynamic

Tobit model with unobserved heterogeneity, where they distribution of unosberved

heterogeneity is an infinite mixture of normals. They find that all of the average partial effects

are very similar to those obtained from the much simpler specification in (7.15).)

Honoré and Lewbel (2002) show how to estimate  in the model

yit  1vit  xit  ci  uit ≥ 0     (7.19)

without distributional assumptions on ci  uit. The special continuous explanatory variable vit,

which need not be time varying, is assumed to appear in the equation (and its coefficient is

normalized to one). More importantly, vit is assumed to satisfy

Dci  uit|vit,xit,zi  Dci  uit|xit,zi, which is a conditional independence assumption. The

vector zi is assumed to be independent of uit in all time periods. (So, if two time periods are

used, zi could be functions of variables determined prior to the earliest time period.) The most

likely scenario is when vit is randomized and therefore independent of xit,zi,eit, where

eit  ci  uit. It seems unlikely to hold if vit is related to past outcomes on yit. The estimator
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derived by Honoré and Lewbel is N -asymptotically normal, and fairly easy to compute; it

requires estimation of the density of vit given xit,ziand then a simple IV estimation.

Honoré and Tamer (2006) have recently shown how to obtain bounds on parameters and

APEs in dynamic models, including the dynamic probit model; these are covered in the notes

on partial identification.

Very similar analysis hold for ordered probit models. See Wooldridge (2010, Chapter 15)

for the static case and Wooldridge (2005b) for the dynamic case. The dependence of

heterogeneity on the initial condition can be made flexible while keeping the likelihood in the

class of random effects ordered probit models.

7.2 Count and Other Multiplicative Models

Several options are available for models with conditional means multiplicative in the

heterogeneity. The most common is

Eyit|xit,ci  ci expxit     (7.20)

where ci ≥ 0 is the unobserved effect and xit would incude a full set of year dummies in most

cases. First consider estimation under strict exogeneity (conditional on ci):

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci.     (7.21)

If we add independence between ci and xi – a random effects approach – then, using Eci  1

as a normalization,

Eyit|xi  expxit,     (7.22)

and various estimation methods can be used to account for the serial dependence in yit if

only xi is conditioned on. (Serial correlation is certainly present because of ci, but it could be
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present due to idiosyncratic shocks, too.) Regardless of the actual distribution of yit, or even its

nature – other than yit ≥ 0 – the pooled Poisson quasi-MLE is consistent for  under (7.22) but

likely very inefficient; robust inference is straightforward with small T and large N.

Random effects Poisson requires that Dyit|xi,ci has a Poisson distribution with mean

(7.20), and maintains the conditional independence assumption,

Dyi1, . . . ,yiT|xi,ci 
t1

T

Dyit|xit,ci,

along with a specific distribution for ci – usually a Gamma distribution with unit mean.

Unfortunately, like RE probit, the full MLE has no known robustness properties. The Poisson

distribution needs to hold along with the other assumptions. A generalized estimating approach

is available, too. If the Poisson quasi-likelihood is used, the GEE estimator is fully robust

provided the mean is correctly specified. One can use an exchangeable, or at least constant,

working correlation matrix. See Wooldridge (2010, Chapter 18).

A CRE model can be allowed by writing ci  exp  x̄iai where ai is independent of xi

with unit mean. Then

Eyit|xi  exp  xit  x̄i     (7.23)

and now the same methods described above can be applied but with x̄i added as regressors.

This approach identifies average partial effects. In fact, we could use Altonji and Matzkin

(2005) and specify Eci|xi  hx̄i (say), and then estimate the semiparametric model

Eyit|xi  hx̄iexpxit  expxit  gx̄i where gx̄i  loghx̄i is also unrestricted.

Other features of the series xit : t  1, . . . ,T, such as individual-specific trends or sample

variances, can be added to h.
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An important estimator that can be used under just

Eyit|xi,ci  ci expxit     (7.24)

is the conditional MLE derived under a Poisson distributional assumption and the conditional

independence assumption. It is often called the fixed effects Poisson estimator, and, in fact, ̂

turns out to be identical to using pooled Poisson QMLE and treating the ci as parameters to

estimate. (A rare case, like the linear model, where this does not result in an incidental

parameters problem.). It is easy to obtain fully robust inference, too (although it is not

currently part of standard software, such as Stata). The fact that the quasi-likelihood is derived

for a particular, discrete distribution appears to make people queasy about using it, but it is

analogous to using the normal log-likelihood in the linear model: the resulting estimator, the

usual FE estimator, is fully robust to nonnormality, heteroskedasticity, and serial correlation.

See Wooldridge (1999).

Estimation of models under sequential exogeneity has been studied by Chamberlain (1992)

and Wooldridge (1997). In particular, they obtain moment conditions for models such as

Eyit|xit, . . . ,xi1,ci  ci expxit.     (7.25)

Under this assumption, it can be shown that

Eyit − yi,t1 expxit − xi,t1|xit, . . . ,xi1  0,     (7.26)

and, because these moment conditions depend only on observed data and the parameter vector

, GMM can be used to estimate , and fully robust inference is straightforward.

Blundell, Griffiths, and Windmeijer (2002) consider a model with additive heterogeneity

and a lagged dependent variable that appears linearly, and derive estimating equations.

The moment conditions in (7.26) involve the differences xit − xi,t1, and we saw for the
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linear model that, if elements of xit − xi,t1 are persistent, IV and GMM estimators can be badly

biased and imprecise. If we make more assumptions, models with lagged dependent variables

and other regressors that are strictly exogenous can be handled using the conditional MLE

approach in Section 6. Wooldridge (2005b) shows how a dynamic Poisson model with

conditional Gamma heterogeneity can be easily estimated.

8. Estimating the Fixed Effects

It is well known that, except in special cases (linear and Poisson), treating the ci as

parameters to estimate leads to inconsistent estimates of the common parameters . But two

questions arise. First, are there ways to adjust the “fixed effects” estimate of  to at least

partially remove the bias? Second, could it be that estimates of the average partial effects,

based generally on

N−1∑
i1

N
∂mtxt, ̂,ĉ i

∂xtj
,     (8.1)

where mtxt,,c  Eyt|xt,c, are better behaved than the parameter estimates, and can their

bias be removed? In the unobserved effects probit model, (8.1) becomes

N−1∑
i1

N

̂jxt̂  ĉ i,     (8.2)

which is easy to compute once ̂ and the ĉ i (N of them) have been obtained.

Hahn and Newey (2004) propose both jackknife and analytical bias corrections for the

parameters and show that they work well for estimating the parameters in the probit model.

Generally, the jackknife procedure to remove the bias in ̂ is simple but can be
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computationally intensive. The idea is this. The estimator based on T time periods has

probability limit that can be written as

T    b1/T  b2/T2  OT−3     (8.3)

for vectors b1 and b2. Now, let ̂t denote the estimator that drops time period t. Then,

assuming stability across t, the plim of ̂t is

t    b1/T − 1  b2/T − 12  OT−3.     (8.4)

It follows that

N→

plim T̂ − T − 1̂t  T  b1  b2/T − T − 1  b1  b2/T − 1  OT−3

  − b2/TT − 1  OT−3    OT−2.     (8.5)

If, for given heterogeneity ci, the data are independent and identically distributed across t, then

(8.5) holds for all leave-one-time-period-out estimators, so we use the average of all such

estimators in computing the panel jackknife estimator:

̃ ≡ T̂ − T − 1T−1∑
t1

T

̂t.     (8.6)

From the argument above, theasymptotic bias of ̃ is on the order of T−2.

Unfortunately, there are some practical limitations to the jackknife procedure, as well as to

the analytical corrections derived by Hahn and Newey. First, aggregate time effects are not

allowed, and they would be very difficult to include because the analysis is with T → . (In

other words, they would introduce an incidental parameters problem in the time dimension as

well as the cross section dimension.) Generally, heterogeneity in the distributions across t

changes the bias terms b1 and b2 when a time period is dropped, and so the simple

transformation in (8.5) does not remove the bias terms. Second, Hahn and Newey assume

34



Imbens/Wooldridge, AEA Lecture Notes 6, January ’12

independence across t conditional on ci. It is a traditional assumption, but in static models it is

often violated, and it must be violated in dynamic models. Plus, as noted by Hahn and

Keursteiner (2002), applying the “leave-one-out” method to dynamic models is problematical

because the b1 and b2 in (8.4) would depend on t so, again, the transformation in (8.5) will not

eliminate the b1 term.

Recently, Dhaene, Jochmans, and Thuysbaert (2006) propose a modification of the

Hahn-Newey procedure that appears promising for dynamic models. In the simplest case, in

addition to the “fixed effects” estimator using all time periods, they obtain estimators for two

subperiods: one uses the earlier time periods, one uses later time periods, and they have some

overlap (which is small as T gets large). Unfortunately, the procedure still requires stationarity

and rules out aggregate time effects.

For the probit model, Fernández-Val (2007) studies the properties of estimators and

average partial effects and allows time series dependence in the strictly exogenous regressors.

Interestingly, in the probit model with exogenous regressors under the conditional

independence assumption, the estimates of the APEs based on the “fixed effects” estimator has

bias of order T−2 in the case that there is no heterogeneity. Unfortunately, these findings do not

carry over to models with lagged dependent variables, and the bias corrections in that case are

difficult to implement (and still do not allow for time heterogeneity).

As the resurgent literature on “fixed effects” approaches stands, there is still a tradeoff in

the assumptions when compared with the correlated random effecst approach. The FE

approach allows Dc i|xi to be unrestricted, but, currently, the corrections to the parameter

estimates and partial effects impose stationarity across time and restricts the time dependence,

often in very restrictive ways (such as serial independence). The CRE approach restricts
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Dc i|xi but, because it can be applied for small T, does not restrict nonstationarity or serial

dependence in the time series dimension. With recent advances such as those in Altonji and

Matzkin (2005) that impose weak restrictions on Dc i|xi, the CRE approach continues to be

attractive, particularly because it identifies average partial effects. Generally, the FE and CRE

approaches should be viewed as being complementary.

One final comment. The CRE approach has only been fully worked out in the case of

balanced panels. When we introduce a set of sample selection indicators for each i,

si  si1, si2, . . . , siT, where sit  1 if xit,yit is osberved, the CRE method requires us to

model Dc i|xi, si. It may still make sense, in some cases, to assume exchangeability, so that,

say, Dc i|xi, si  Dc i|x̄i, where x̄i  Ti−1∑ t1
T sitxit is the average using the selected sample,

but this possibility has not been explored. By contrast, provided selection is strictly exogenous

conditional on xi,c i – see the notes on missing data – the FE procedure on the unbalanced

panel is fundamentally unchanged. (However, the jackknife corrections discussed above would

no long be valid with an unbalanced panel.) The properties and merits of FE and CRE

approaches using unbalanced panels needs to be explored in future research.
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Imbens/Wooldridge, AEA Lecture Notes 8, January ’12

AEA Lectures Chicago, January 2012
Lecture 8, Tuesday, January 10, 9:45 am to 11 am

Control Function and Related Methods

These notes review the control function approach to handling endogeneity in models linear

in parameters, and draws comparisons with standard methods such as 2SLS and maximum

likelihood methods. Certain nonlinear models with endogenous explanatory variables are most

easily estimated using the CF method, and the recent focus on average marginal effects

suggests some simple, flexible strategies. Recent advances in semiparametric and

nonparametric control function method are covered, and an example for how one can apply CF

methods to nonlinear panel data models is provided.

1. Linear-in-Parameters Models: IV versus Control
Functions

Most models that are linear in parameters are estimated using standard instrumental

variables methods – either two stage least squares (2SLS) or generalized method of moments

(GMM). An alternative, the control function (CF) approach, relies on the same kinds of

identification conditions. In the standard case where a endogenous explanatory variables

appear linearly, the CF approach leads to the usual 2SLS estimator. But there are differences

for models nonlinear in endogenous variables even if they are linear in parameters. And, for

models nonlinear in parameters, the CF approach offers some distinct advantages.

To illustrate the CF approach, let y1 denote the response variable, y2 the endogenous

explanatory variable (a scalar for simplicity), and z the 1  L vector of exogenous variables

(which includes unity as its first element). Consider the model

y1  z11  1y2  u1,     (1.1)

1



Imbens/Wooldridge, AEA Lecture Notes 8, January ’12

where z1 is a 1  L1 strict subvector of z that also includes a constant. The sense in which z is

exogenous is given by the L orthogonality (zero covariance) conditions

Ez′u1  0.     (1.2)

Of course, this is the same exogeneity condition that we use for consistency of the 2SLS

estimator, and we can consistently estimate 1 and 1 by 2SLS under (1.2) and the rank

condition, which reduces to rank Ez′x1  K1, where x1  z1,y2 is a 1  K1 vector. (We

also need to assume Ez′z is nonsingular, but this assumption is rarely a concern.)

Just as with 2SLS, the reduced form of y2 – that is, the linear projection of y2 onto the

exogenous variables – plays a critical role. Write the reduced form with an error term as

y2  z2  v2

Ez′v2  0

    (1.3)

    (1.4)

where 2 is L  1. Endogeneity of y2 arises if and only if u1 is correlated with v2. Write the

linear projection of u1 on v2, in error form, as

u1  1v2  e1,     (1.5)

where 1  Ev2u1/Ev2
2 is the population regression coefficient. By definition, Ev2e1  0,

and Ez′e1  0 because u1 and v2 are both uncorrelated with z.

Plugging (1.5) into equation (1.1) gives

y1  z11  1y2  1v2  e1,     (1.6)

where we now view v2 as an explanatory variable in the equation. As just noted, e1, is

uncorrelated with v2 and z. Plus, y2 is a linear function of z and v2, and so e1 is also

uncorrelated with y2.

Because e1 is uncorrelated with z1, y2, and v2, (1.6) suggests a simple procedure for

2
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consistently estimating 1 and 1 (as well as 1): run the OLS regression of y1 on z1,y2, and v2

using a random sample. (Remember, OLS consistently estimates the parameters in any

equation where the error term is uncorrelated with the right hand side variables.) The only

problem with this suggestion is that we do not observe v2; it is the error in the reduced form

equation for y2. Nevertheless, we can write v2  y2 − z2 and, because we collect data on y2

and z, we can consistently estimate 2 by OLS. Therefore, we can replace v2 with v̂2, the OLS

residuals from the first-stage regression of y2 on z. Simple substitution gives

y1  z11  1y2  1v̂2  error,     (1.7)

where, for each i, errori  ei1  1zî2 − 2, which depends on the sampling error in ̂2

unless 1  0. Standard results on two-step estimation imply the OLS estimators from (1.7)

will be consistent for 1,1, and 1.

The OLS estimates from (1.7) are control function estimates. The inclusion of the residuals

v̂2 “controls” for the endogeneity of y2 in the original equation (although it does so with

sampling error because ̂2 ≠ 2).

It is a simple exercise in the algebra of least squares to show that the OLS estimates of 1

and 1 from (1.7) are identical to the 2SLS estimates starting from (1.1) and using z as the

vector of instruments. [Standard errors from (1.7) must adjust for the generated regressor.]

It is trivial to use (1.7) to test H0 : 1  0, as the usual t statistic is asymptotically valid

under homoskedasticity Varu1|z,y2  1
2 under H0; or use the heteroskedasticity-robust

version (which does not account for the first-stage estimation of 2).

An estimator that can be different from the CF and 2SLS estimators is the limited

information (quasi-) maximum likelihood (LIML) estimator. The LIML estimator is obtained

from equations (1.1) and (1.3) under the assumption that u1,v2 is independent of z with a

3
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mean-zero bivariate normal distribution. In fact, we can work off of (1.3) and (1.6) and use the

relationship fy1,y2|z  fy1|y2,zfy2|z. If 1
2  Vare1 and 2

2  Varv2, the

quasi-log-likelihood for observation i is

− log1
2/2 − yi1 − zi11 − 1yi2 − 1yi2 − zi22/21

2

− log2
2/2 − yi2 − zi22/22

2,

    (1.8)

and all parameters are estimated simultaneously. When (1.1) is overidentified, LIML is

generally different from CF (2SLS). And, as the weak instruments notes document, LIML

typically has better statistical properties than 2SLS in situations with overidentification. The

CF approach can be seen to be a two-step version of LIML, where 2 is obtained in a first step

and then 1,1, and 1 are estimated in a second step. (The variance parameters can be

estimated in the two-step procedure, too.) Fortunately, while LIML is derived under joint

normality, it is just as robust as the CF estimator: independence between the errors and z and

normality are not needed.

[Incidentally, full information maximum likelihood (FIML) arises in systems with true

simultaneity when interest lies in estimating all structural equations. In these notes, we assume

that one equation is of particular interest. This could be because it is the main equation in a

truly simultaneous system or because the endogeneity we are worried about is due to omitted

variables.]

Now extend the model to include a quadratic:

y1  z11  1y2  1y2
2  u1

Eu1|z  0.

    (1.9)

    (1.10)

For simplicity, assume that we have a scalar, z2, that is not also in z1. Then, under (1.10) –

which is stronger than (1.2), and is essentially needed to identify nonlinear models – we can

4
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use, say, z2
2 (if z2 is not binary) as an instrument for y2

2 because any function of z2 is

uncorrelated with u1. In other words, we can apply the standard IV estimator with explanatory

variables z1,y2,y2
2 and instruments z1, z2, z2

2; note that we have two endogenous

explanatory variables, y2 and y2
2.

What would the CF approach entail in this case? To implement the CF approach in (1.9),

we obtain the conditional expectation Ey1|z,y2 – a linear projection argument no longer

works because of the nonlinearity – and that requires an assumption about Eu1|z,y2. A

standard assumption is

Eu1|z,y2  Eu1|z,v2  Eu1|v2  1v2,     (1.11)

where the first equality follows because y2 and v2 are one-to-one functions of each other

(given z) and the second would hold if u1,v2 is independent of z – a nontrivial restriction on

the reduced form error in (1.3), not to mention the structural error u1.. The final assumption is

linearity of the conditional expectation Eu1|v2, which is more restrictive than simply defining

a linear projection. Under (1.11),

Ey1|z,y2  z11  1y2  1y2
2  1y2 − z2

 z11  1y2  1y2
2  1v2.

    (1.12)

Implementing the CF approach means running the OLS regression y1 on z1,y2,y2
2, v̂2,where v̂2

still represents the reduced form residuals. The CF estimates are not the same as the 2SLS

estimates using any choice of instruments for y2,y2
2.

The CF approach, while likely more efficient than a direct IV approach, is less robust. For

example, it is easily seen that (1.10) and (1.11) imply that Ey2|z  z2. A linear conditional

expectation for y2 is a substantive restriction on the conditional distribution of y2. Therefore,

the CF estimator will be inconsistent in cases where the 2SLS estimator will be consistent. On

5
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the other hand, because the CF estimator solves the endogeneity of y2 and y2
2 by adding the

scalar v̂2 to the regression, it will generally be more precise – perhaps much more precise –

than the IV estimator. [I do not know of a systematic analysis comparing the two approaches in

models such as (1.9).]

The equivalence between CF approaches and IV methods is broken even in the simple

model (1.1) if we allow y2 to have discreteness in its distribution and we use a distributional

assumption to exploit that discreteness. For example, suppose y2 is a binary response. The

standard CF approach involves estimating

Ey1|z,y2  z11  1y2  Eu1|z,y2,     (1.13)

and so we must be able to estimate Eu1|z,y2. If y2  1z2  e2 ≥ 0, u1,e2 is independent

of z, Eu1|e2  1e2, and e2 ~Normal0,1, then

Eu1|z,y2  EEu1|z,e2|z,y2  1Ev2|z,y2

 1y2z2 − 1 − y2−z2,     (1.14)

where   / is the inverse Mills ratio (IMR). A simple two-step estimator is to

obtain the probit estimate ̂2 and then to add the “generalized residual,”

gri2 ≡ yi2zî2 − 1 − yi2−zî2 as a regressor:

yi1 on zi1, yi2, gri2, i  1, . . . ,N.     (1.15)

The estimators from this regression are consistent and N -asymptotically normal provided

Dy2|z follows a probit, Eu1|v2 is linear, and Eu1|z,v2  Eu1|v2. (Standard errors need

to be adjusted for the two-step estimation, except when 1  0. A simple t test on gri2 is valid

as a test of H0 : 1  0.)

Of course, if we just apply 2SLS directly to y1  z11  1y2  u1, we make no distinction

6
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among discrete, continuous, or some mixture for y2. 2SLS is consistent if Ly2|z  z2

actually depends on z2 and (1.2) holds. So, while estimating (1.1) using CF methods when y2 is

binary is somewhat popular (Stata’s “treatreg” even has the option of full MLE, where u1,e2

is bivariate normal), one should remember that it is less robust than standard IV approaches. In

principal, it is much less robust, but whether estimates obtained from (1.15) differ substantially

from 2SLS estimates is an empirical issue.

Often researchers look to exploit the binary nature of the endogenous explanatory variable,

and there may even be some confusion about the properties of 2SLS in such contexts. Again, it

is important to understand that 2SLS is consistent, N -asymptotically normal, and inference is

standard. But it could be asymptotically inefficient. Therefore, a natural question is: How

might one use the binary nature of y2 in IV estimation [as opposed to the CF approach in

(1.15)]? We need to assume Eu1|z  0 to exploit nonlinear functions z as IVs. Nominally,

the same probit model for Dy2|z that is used in the CF approach. Then, after estimating the

probit model, obtain the fitted probabilities, zî2. These fitted probabilities are then used as

IVs for yi2 in estimating (1.1). This method has several attractive features: it is fully robust to

misspecification of the probit model, provided one uses zî2 as an IV for yi2, not as a

regressor in place of yi2; the standard errors need not be adjusted for the first-stage probit

(asymptotically); and it is the efficient IV estimator if Py2  1|z  z2 and

Varu1|z  1
2. Probably it is less efficient than the CF estimator if the additional assumptions

needed for CF consistency hold; a careful study could shed light on the tradeoffs. See

Wooldridge (2010, Chapter 21) for further discussion.

We can briefly summarize the main points of this section. In the model (1.1), CF methods

based on Ey1|z,y2 impose additional assumptions compared with standard IV methods. When

7
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y2 has special features (such as being binary, or even a corner solution), models for Ey2|z can

be used to generate instruments (not regressors) for y2. The resulting IV estimates are robust to

misspecification of the model for Ey2|z and the first-step estimation can be ignored

asymptotically.

8
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2. Correlated Random Coefficient Models

Control function methods can be used for random coefficient models – that is, models

where unobserved heterogeneity interacts with endogenous explanatory variables. In some

cases, CF methods are indispensable; in other cases, standard IV methods are more robust. To

illustrate, we modify equation (1.1) as

y1  1  z11  a1y2  u1,     (2.1)

where z1 is 1  L1, y2 is the endogenous explanatory variable, and a1, the “coefficient” on y2 –

an unobserved random variable. [It is now convenient to set apart the intercept.] We could

replace 1 with a random vector, say d1, and this would not affect our analysis of the IV

estimator (but, as we will see, does change the control function estimator). Following

Heckman and Vytlacil (1998), we refer to (2.1) as a correlated random coefficient (CRC)

model.

It is convenient to write a1  1  v1 where 1  Ea1 is the object of interest. We can

rewrite the equation as

y1  1  z11  1y2  v1y2  u1 ≡ 1  z11  1y2  e1,     (2.2)

where e1  v1y2  u1. Equation (2.2) shows explicitly a constant coefficient on y2 (which we

hope to estimate) but also an interaction between the observed heterogeneity, v1, and y2.

Remember, (2.2) is a population model. For a random draw, we would write

yi1  1  zi11  1yi2  vi1yi2  ui1, which makes it clear that 1 and 1 are parameters to

estimate and vi1 is specific to observation i.

As discussed in Wooldridge (1997, 2003), the potential problem with applying instrumental

variables (2SLS) to (2.2) is that the error term v1y2  u1 is not necessarily uncorrelated with

9
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the instruments z, even if we make the assumptions

Eu1|z  Ev1|z  0,     (2.3)

which we maintain from here on. Generally, the term v1y2 can cause problems for IV

estimation, but it is important to be clear about the nature of the problem. If we are allowing y2

to be correlated with u1 then we also want to allow y2 and v1 to be correlated. In other words,

Ev1y2  Covv1,y2 ≡ 1 ≠ 0. But a nonzero unconditional covariance is not a problem

with applying IV to (2.2): it simply implies that the composite error term, e1, has

(unconditional) mean 1 rather than a zero. As we know, a nonzero mean for e1 means that the

orginal intercept, 1, would be inconsistenly estimated, but this is rarely a concern.

Therefore, we can allow Covv1,y2, the unconditional covariance, to be unrestricted. But

the usual IV estimator is generally inconsistent if Ev1y2|z depends on z. Note that, because

Ev1|z  0, Ev1y2|z  Covv1,y2|z. Therefore, as shown in Wooldridge (2003), a

sufficient condition for the IV estimator applied to (2.2) to be consistent for 1 and 1 is

Covv1,y2|z  Covv1,y2.     (2.4)

The 2SLS intercept estimator is consistent for 1  1. Condition (2.4) means that the

conditional covariance between v1 and y2 is not a function of z, but the unconditional

covariance is unrestricted.

Because v1 is unobserved, we cannot generally verify (2.4). But it is easy to find situations

where it holds. For example, if we write

y2  m2z  v2     (2.5)

and assume v1,v2 is independent of z (with zero mean), then (2.4) is easily seen to hold

because Covv1,y2|z Covv1,v2|z, and the latter cannot be a function of z under

10
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independence. Of course, assuming v2 in (2.5) is independent of z is a strong assumption even

if we do not need to specify the mean function, m2z. It is much stronger than just writing

down a linear projection of y2 on z (which is no real assumption at all). As we will see in

various models in Part IV, the representation (2.5) with v2 independent of z is not suitable for

discrete y2, and generally (2.4) is not a good assumption when y2 has discrete characteristics.

Further, as discussed in Card (2001), (2.4) can be violated even if y2 is (roughly) continuous.

Wooldridge (2005) makes some headway in relaxing (2.44) by allowing for parametric

heteroskedasticity in u1 and v2.

A useful extension of (1.1) is to allow observed exogenous variables to interact with y2.

The most convenient formulation is

y1  1  z11  1y2  z1 − 1y21  v1y2  u1     (2.6)

where 1 ≡ Ez1 is the 1  L1 vector of population means of the exogenous variables and 1

is an L1  1 parameter vector. As we saw in Chapter 4, subtracting the mean from z1 before

forming the interaction with y2 ensures that 1 is the average partial effect.

Estimation of (2.6) is simple if we maintain (2.4) [along with (2.3) and the appropriate rank

condition]. Typically, we would replace the unknown 1 with the sample averages, z̄1, and

then estimate

yi1  1  zi11  1yi2  zi1 − z̄1yi21  errori     (2.7)

by instrumental variables, ignoring the estimation error in the population mean. The only issue

is choice of instruments, which is complicated by the interaction term. One possibility is to use

interactions between zi1 and all elements of zi (including zi1). This results in many

overidentifying restrictions, even if we just have one instrument zi2 for yi2. Alternatively, we

11



Imbens/Wooldridge, AEA Lecture Notes 8, January ’12

could obtain fitted values from a first stage linear regression yi2 on zi, ŷ i2  zî2, and then use

IVs 1,zi, zi1 − z̄1ŷ i2, which results in as many overidentifying restrictions as for the model

without the interaction. Importantly, the use of zi1 − z̄1ŷ i2 as IVs for zi1 − z̄1yi2 is

asymptotically the same as using instruments zi1 − 1  zi2, where Ly2|z  z2 is the

linear projection. In other words, consistency of this IV procedure does not in any way restrict

the nature of the distribution of y2 given z. Plus, although we have generated instruments, the

assumptions sufficient for ignoring estimation of the instruments hold, and so inference is

standard (perhaps made robust to heteroskedasticity, as usual).

We can just identify the parameters in (2.6) by using a further restricted set of instruments,

1,zi1,ŷ i2, zi1 − z̄1ŷ i2. If so, it is important to use these as instruments and not as regressors.

If we add the assumption. The latter procedure essentially requires a new assumption:

Ey2|z  z2     (2.8)

(where z includes a constant). Under (2.3), (2.4), and (2.8), it is easy to show

Ey1|z  1  1  z11  1z2  z1 − 1  z21,     (2.9)

which is the basis for the Heckman and Vytlacil (1998) plug-in estimator. The usual IV

approach applied to (2.7) simply relaxes (2.8) and does not require adjustments to the standard

errors (because it uses generated instruments, not generated regressors).

We can also use a control function approach if we assume

Eu1|z,v2  1v2,Ev1|z,v2  1v2.     (2.10)

Then

Ey1|z,y2  1  z11  1y2  1v2y2  1v2,     (2.11)

and this equation is estimable once we estimate 2. Garen’s (1984) control function procedure
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is to first regress y2 on z and obtain the reduced form residuals, v̂2, and then to run the OLS

regression y1 on 1,z1,y2, v̂2y2, v̂2. Under the maintained assumptions, Garen’s method

consistently estimates 1 and 1. Because the second step uses generated regressors, the

standard errors should be adjusted for the estimation of 2 in the first stage. Nevertheless, a

test that y2 is exogenous is easily obtained from the usual F test of H0 : 1  0,1  0 (or a

heteroskedasticity-robust version). Under the null, no adjustment is needed for the generated

standard errors.

Garen’s assumptions are more restrictive than those needed for the standard IV estimator to

be consistent. For one, it would be a fluke if (2.10) held without the conditional covariance

Covv1,y2|z being independent of z. Plus, like HV (1998), Garen relies on a linear model for

Ey2|z. Further, Garen adds the assumptions that Eu1|v2 and Ev1|v2 are linear functions,

something not needed by the IV approach.

Of course, one can make Garen’s approach less parametric by replacing the linear functions

in (2.10) with unknown functions. But independence of u1,v1,v2 and z – or something very

close to independence – is needed. And this assumption is not needed for the usual IV

estimator,

If the assumptions needed for Garen’s CF estimator to be consistent hold, it is likely more

efficient than the IV estimator, although a comparison of the correct asymptotic variances is

complicated. Again, there is a tradeoff between efficiency and robustness.

In the case of binary y2, we have what is often called the “switching regression” model.

Now, the right hand side of equation (2.11) represents Ey1|z,v2 where y2  1z2  v2 ≥ 0.

If we assume (2.10) and that v2|z is Normal0,1, then

Ey1|z,y2  1  z11  1y2  1h2y2,z2  1h2y2,z2y2,     (2.12)

13
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where

h2y2,z2  y2z2 − 1 − y2−z2     (2.13)

is the generalized residual function. The two-step estimation method is the one due to

Heckman (1976).

There are two ways to embellish the model. The first is common: interact z1 − 1 with y2

to allow different slopes for the “treated” and non-treated groups (keeping 1 as the average

treatment effect). With this extension, the CF regression is

yi1 on 1, zi11  1yi2  zi1 − z̄1yi2, h2yi2,zî2, h2yi2,zî2yi2,     (2.14)

and is identical to running two separate regressions, including the IMRs for y2  0 and y2  1.

The estimate of 1 is the difference in the two intercepts.

An extension that is not so common – in fact, it seems not to appear in the literature –

comes from allowing z1 to also interact with heterogeneity, as in

y1  z1d1  a1y2  y2z1 − 1g1  u1.     (2.15)

Now all coefficients are heterogeneous. If we assume that Ea1|v2, Ed1|v2, and Eg1|v2 are

linear in v2, then

Ey1|z,y2  z11  1y2  y2z1 − 11  1Ev2|z,y2  1Ev2|z,y2y2

 z1Ev2|z,y21  y2z1 − 1Ev2|z,y21

 z11  1y2  1h2y2,z2  1h2y2,z2y2

 h2y2,z2z11  h2y2,z2y2z1 − 11

    (2.16)

and the second-step estimation after the first stage probit is a regression

yi1 on 1, zi11  1yi2  zi1 − z̄1yi2, h2yi2,zî2, h2yi2,zî2yi2,

h2yi2,zî2zi1, h2yi2,zî2yi2zi1 − z̄1.

    (2.17)
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across all observations i. Bootstrapping can be used to obtain valid standard errors because the

first-stage estimation is just probit and the second stage is just linear regression.

If not for the term v1y2 in (2.6), we could, in a much more robust manner, apply IV directly

to (2.7) (and the standard errors are easier to obtain, too). The IVs would be, say,

1,zi1, ̂i2, zi1 − z̄1  ̂i2, and the same procedure consistently estimates the average effects

whether or not there are random coefficients on zi1.

Interestingly, the addition of the terms h2yi2,zî2zi1 and h2yi2,zî2yi2zi1 − z̄1 has

similarities with methods that allow Ev1|v2 and so on to be more flexible. For example, as

shown in Heckman and MaCurdy (1986), if Eu1|v2  1v2  1v2
2 − 1, then the extra term

in the expected value when y2  1 is −zî2zî2, and there is a similar expression for

yi2  0.

Newey (1988), in the standard switching regression framework, proposed a flexible

two-step procedure that estimates 2 semiparametrically in the first stage – see Powell (1994)

for a survey of such methods – and then uses series in zî2 in place of the usual IMR terms. He

obtains valid standard errors and, in most cases, bootstrapping is valid, too.

Finally, we should not forget that maximum likelihood estimation is possible, too. If

Dy2|z is specified as a probit and all unobservables are assumed to be jointly normal and

independent of z, Dy1|y2,z can be obtained and all parameters can be estimated jointly.
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3. Some Common Nonlinear Models and Limitations
of the CF Approach

Like standard IV methods, control function approaches are more difficult to apply to

nonlinear models, even relatively simple ones. Methods are available when the endogenous

explanatory variables are continuous, but few if any results apply to cases with discrete y2.

Therefore, maximum likelihood approaches continue to be popular for nonlinear models.

3.1. Binary and Fractional Responses

The probit model provides a good illustration of the general approach. With a single

endogenous explanatory variable, the simplest specification is

y1  1z11  1y2  u1 ≥ 0,     (3.1)

where u1|z ~Normal0,1. But the analysis goes through if we replace z1,y2 with any known

function g1z1,y2, provided we have sufficient identifying assumptions. An example is

y1  z11  y2z11  1y2
2  u1  0. The nonlinearity in y2 is not itself a problem (unless we

inappropriately try to mimic 2SLS – more on this later).

The Smith-Blundell (1986) and Rivers-Vuong (1988) approach is to make a

homoskedastic-normal assumption on the reduced form for y2,

y2  z2  v2, v2|z ~Normal0,2
2.     (3.2)

A key point is that the RV approach essentially requires

u1,v2 independent of z;     (3.3)

as we will see in the next section, semiparametric and nonparametric CF methods also rely on

(3.3), or at least something close to it..
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If we assume

u1,v2 ~Bivariate Normal     (3.4)

with 1  Corru1,v2, then we can proceed with MLE based on fy1,y2|z. A simpler

two-step approach, which is convenient for testing H0 : 1  0 (y2 is exogenous), is also

available, and it works if we replace the normality assumption in (3.2), the independence

assumption in (3.3), and joint normality in (3.4) with

Du1|v2,z  Normal1v2, 1 − 1
2,     (3.5)

where 1  1/2 is the regression coefficient. That we can relax the assumptions to some

degree using a two-step CF approach has implications for less parametric approaches.

Certainly we can relax the homoskedasticity and linear expectation in (3.3) without much

additional work, as discussed in Wooldridge (2005).

Under the weaker assumption (3.5) we can write

Py1  1|z,y2  z11  1y2  1v2     (3.6)

where each coefficient is multiplied by 1 − 1
2−1/2.

The RV two-step approach is

(1) OLS of y2 on z, to obtain the residuals, v̂2.

(2) Probit of y1 on z1,y2, v̂2 to estimate the scaled coefficients.

The original coefficients, which appear in the partial effects, are easily obtained from the

set of two-step estimates:

̂1  ̂1/1  ̂1
2 ̂2

21/2,     (3.7)

where ̂1 is the coeffcient on v̂2 and ̂2
2 is the usual error variance estimator from the first step
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OLS, and ̂1 includes ̂1 and ̂1. Standard errors can be obtained from the delta method of

bootstrapping. Of course, they are computed directly from MLE. Partial effects are based on

x1̂1 where x1  z1,y2. It should be clear that nothing changes for estimation if

x1  g1z1,y2; of course, we would change how partial effects are computed to account for

the specific function g1, .

Testing the null hypothesis that y2 is exogenous is simple using the two-step control

function approache. Asymptotically, a simple t test on v̂2 is valid to test H0 : 1  0.

Under (3.3), we can also apply maximum likelihood by combining (3.2) and (3.6),

recognizing that v2  y2 − z2 and estimating all parameters jointly. For details, see

Wooldridge (2010, Section 15.7.2).

A different way to obtain partial effects is to use the average structural function approach,

which leads to estimation of Ev2x11  1v2. Whether or not v2 is normally distributed,

a consistent, N -asymptotically normal estimator of the average structural function (evaluated

at a given vector x1) is

ASFz1,y2  N−1∑
i1

N

x1̂1  ̂1v̂i2;     (3.8)

that is, we average out the reduced form residuals, v̂i2. This formulation is also useful for more

complicated models.

Given that the probit structural model is essentially arbitrary, one might be so bold as to

specify models for Py1  1|z1,y2,v2 directly. For example, we can add polynomials in v2 or

even interact v2 with elements of x1 side a probit or logit function. We return to such

possibilities in the next section.
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The two-step CF approach easily extends to fractional responses. Now, we start with an

omitted variables formulation in the conditional mean:

Ey1|z,y2,q1  Ey1|z1,y2,q1  x11  q1,     (3.9)

where x1 is a function of z1,y2 and q1 contains unobservables. As usual, we need some

exclusion restrictions, embodied by omitting z2 from x1. The specification in equation (3.9)

allows for responses at the corners, zero and one, and y1 may take on any values in between.

Under the assumption that

Dq1|v2,z ~ Normal1v2,1
2     (3.10)

Given (3.9) and (3.10), it can be shown, using the mixing property of the normal distribution,

that

Ey1|z,y2,v2  x11  1v2,     (3.11)

where the index “” denotes coefficients multiplied by 1  1
2−1/2. Because the Bernoulli log

likelihood is in the linear exponential family, maximizing it consistently estimates the

parameters of a correctly specified mean; naturally, the same is true for two-step estimation.

That is, the same two-step method can be used in the binary and fractional cases. Of course,

the variance associated with the Bernoulli distribution is generally incorrect. In addition to

correcting for the first-stage estimates, a robust sandwich estimator should be computed to

account for the fact that Dy1|z,y2 is not Bernoulli. The best way to compute partial effects is

to use (3.8), with the slight notational change that the implicit scaling in the coefficients is

different. By using (3.8), we can directly use the scaled coefficients estimated in the second

stage – a feature common across CF methods for nonlinear models. The bootstrap that

reestimates the first and second stages for each iteration is an easy way to obtain standard
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errors. Of course, having estimates of the parameters up to a common scale allows us to

determine signs of the partial effects in (3.9) as well as relative partial effects on the

continuous explanatory variables.

Wooldridge (2005) describes some simple ways to make the analysis starting from (3.9)

more flexible, including allowing Varq1|v2 to be heteroskedastic. We can also use strictly

monotonic transformations of y2 in the reduced form, say h2y2, regardless of how y2 appears

in the structural model: the key is that y2 can be written as a function of z,v2. The extension

to multivariate y2 is straightforward with sufficient instruments provide the elements of y2, or

strictly monotonic functions of them, have reduced forms with additive errors that are

effectively indendent of z. (This assumption rules out applications to y2 that are discrete

(binary, multinomial, or count)or have a discrete component (corner solution).

The control function approach has some decided advantages over another two-step

approach – one that appears to mimic the 2SLS estimation of the linear model. Rather than

conditioning on v2 along with z (and therefore y2) to obtain

Py1  1|z,v2  Py1  1|z,y2,v2, we can obtain Py1  1|z. To find the latter probability,

we plug in the reduced form for y2 to get y1  1z11  1z2  1v2  u1  0. Because

1v2  u1 is independent of z and u1,v2 has a bivariate normal distribution,

Py1  1|z  z11  1z2/1 where

1
2 ≡ Var1v2  u1  1

22
2  1  21Covv2,u1. (A two-step procedure now proceeds by

using the same first-step OLS regression – in this case, to get the fitted values, ŷ i2  zî2 –

now followed by a probit of yi1 on zi1,ŷ i2. It is easily seen that this method estimates the

coefficients up to the common scale factor 1/1, which can be any positive value (unlike in the

CF case, where we know the scale factor is greater than unity).
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One danger with plugging in fitted values for y2 is that one might be tempted to plug ŷ2

into nonlinear functions, say y2
2 or y2z1. This does not result in consistent estimation of the

scaled parameters or the partial effects. If we believe y2 has a linear RF with additive normal

error independent of z, the addition of v̂2 solves the endogeneity problem regardless of how y2

appears. Plugging in fitted values for y2 only works in the case where the model is linear in y2.

Plus, the CF approach makes it much easier to test the null that for endogeneity of y2 as well as

compute APEs.

In standard index models such as (3.9), or, if you prefer, (3.1), the use of control functions

to estimate the (scaled) parameters and the APEs produces no surprises. However, one must

take care when, say, we allow for random slopes in nonlinear models. For example, suppose

we propose a random coefficient model

Ey1|z,y2,c1  Ey1|z1,y2,c1  z11  a1y2  q1,     (3.12)

where a1 is random with mean 1 and q1 again has mean of zero. If we want the partial effect

of y2, evaluated at the mean of heterogeneity, we have

1z11  1y2,     (3.13)

where  is the standard normal pdf, and this equation is obtained by differentiating (3.12)

with respect to y2 and then plugging in a1  1 and q1  0. Suppose we write a1  1  d1

and assume that d1,q1 is bivariate normal with mean zero. Then, for given z1,y2, the

average structural function can be shown to be

Ed1,q1z11  1y2  d1y2  q1  z11  1y2/1  q2  2dqy2  d2y2
21/2,     (3.14)

where q2  Varq1, d2  Vard1, and dq  Covd1,q1. The average partial effect with

respect to, say, y2, is the derivative of this function with respect to y2. While this partial effect
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depends on 1, it is messier than (3.13) and need not even have the same sign as 1.

Wooldridge (2005) discusses related issues in the context of probit models with exogenous

variables and heteroskedasticity. In one example, he shows that, depending on whether

heteroskedasticity in the probit is due to heteroskedasticity in Varu1|x1, where u1 is the latent

error, or due to random slopes, the APEs are completely different in general. The same is true

here: the APE when the coefficient on y2 is random is generally very different from the APE

obtained if we maintain a1  1 but allow Varq1|v2 to be heteroskedastic. In the latter case,

the APE is a positive multiple of 1.

Incidentally, we can estimate the APE in (3.14) fairly generally. A parametric approach is

to assume joint normality of d1,q1,v2 (and independence with z). Then, with a normalization

restriction, it can be shown that

Ey1|z,v2  z11  1y2  1v2  1y2v2/1  1y2  1y2
21/2,     (3.15)

which can be estimated by inserting v̂2 for v2 and using nonlinear least squares or Bernoulli

QMLE. (The latter is often called “heteroskedastic probit” when y1 is binary.) This procedure

can be viewed as an extension to Garen’s method for linear models with correlated random

coefficients.

Estimation, inference, and interpretation would be especially straightforward (the latter

possibly using the bootstrap) if we squint and pretend the term 1  1y2  1y2
21/2 is not

present. Then, estimation would simply be Bernoulli QMLE of yi1 on zi1, yi2, v̂i2, and yi2v̂i2,

which means that we just add the interaction to the usual Rivers-Vuong procedure. The APE

for y2 would be estimated by taking the derivative with respect to y2 and averaging out v̂i2, as

usual:
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N−1∑
i1

N

̂1  ̂1v̂i2  z1̂1  ̂1y2  ̂1v̂i2  ̂1y2v̂i2,     (3.16)

and evaluating this at chosen values for z1,y2 (or using further averaging across the sample

values). This simplification cannot be reconciled with (3.9), but it is in the spirit of adding

flexibility to a standard approach and treating functional forms as approximations. As a

practical matter, we can compare this with the APEs obtained from the standard Rivers-Vuong

approach, and a simple test of the null hypothesis that the coefficient on y2 is constant is

H0 : 1  0 (which should account for the first step estimation of ̂2). The null hypothesis

that y2 is exogenous is the joint test H0 : 1  0,1  0, and in this case no adjustment is

needed for the first-stage estimation. And why stop here? If we, add, say, y2
2 to the structural

model, we might add v̂2
2 to the estimating equation as well. It would be very difficult to relate

parameters estimated from the CF method to parameters in an underlying structural model;

indeed, it would be difficult to find a structural model given rise to this particular CF approach.

But if the object of interest are the average partial effects, the focus on flexible models for

Ey1|z1,y2,v2 can be liberating (or disturbing, depending on one’s point of view about

“structural” parameters).

Lewbel (2000) has made some progress in estimating parameters up to scale in the model

y1  1z11  1y2  u1  0, where y2 might be correlated with u1 and z1 is a 1  L1 vector

of exogenous variables. Lewbel’s (2000) general approach applies to this situation as well. Let

z be the vector of all exogenous variables uncorrelated with u1. Then Lewbel requires a

continuous element of z1 with nonzero coefficient – say the last element, zL1– that does not

appear in Du1|y2,z. (Clearly, y2 cannot play the role of the variable excluded from

Du1|y2,z if y2 is thought to be endogenous.) When might Lewbel’s exclusion restriction
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hold? Sufficient is y2  g2z2  v2, where u1,v2 is independent of z and z2 does not contain

zL1 . But this means that we have imposed an exclusion restriction on the reduced form of y2,

something usually discouraged in parametric contexts. Randomization of zL1 does not make its

exclusion from the reduced form of y2 legitimate; in fact, one often hopes that an instrument

for y2 is effectively randomized, which means that zL1 does not appear in the structural

equation but does appear in the reduced form of y2 – the opposite of Lewbel’s assumption.

Lewbel’s assumption on the “special” regressor is suited to cases where a quantity that only

affects the response, y1, is randomized. A randomly generated project cost presented to

subjects in a willingness-to-pay study is one possibility. Even in such scenarios, one cannot

identify the effects of covariates on willingness to pay because coefficients are identified only

up to scale.

Returning to the probit response function in (3.9), we can understand the limits of the CF

approach for estimating nonlinear models with discrete EEVs. The Rivers-Vuong approach,

and its extension to fractional responses, cannot be expected to produce consistent estimates of

the parameters or APEs for discrete y2. The problem is that we cannot write

y2  z2  v2

Dv2|z  Dv2  Normal0,2
2.

    (3.17)

    (3.18)

In other words, unlike when we estimate a linear structural equation, the reduced form in the

RV approach is not just a linear projection – far from it. In the extreme we have completely

specified Dy2|z as homoskedastic normal, which is clearly violated if y2 is a binary variable,

a count variable, or a corner solution (commonly called a “censored” variable). Unfortunately,

even just assuming independence between v2 and z rules out discrete y2, an assumption that

plays an important role even in fully nonparametric approaches. The bottom line is that there
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are no known two-step estimation methods that allow one to estimate a probit model or

fractional probit model with discrete y2, even if we make strong distributional assumptions.

Possibly because of the absense of valid two-step methods with discrete EEVs, some poor

strategies still linger. For example, suppose y1 and y2 are both binary, (3.1) holds, y2 follows

the index model

y2  1z2  v2 ≥ 0,     (3.19)

and we maintain joint normality of u1,v2 – now both with unit variances – and, of course,

independence between the errors and z. Because Dy2|z follows a standard probit, it is

tempting to try to mimic 2SLS as follows: (i) Run probit of y2 on z and get the fitted

probabilities, ̂2  ẑ2. (ii) Run probit of y1 on z1, ̂2; that is, just replace each yi2 with its

fitted probability, ̂i2. This does not work, as it would require passing the expected value

passes through a nonlinear function. Some have called prodedures like this a “forbidden

regression.” We could find Ey1|z,y2 as a function of the structural and reduced form

parameters, insert the first-stage estimates of the RF parameters, and then use binary response

estimation in the second stage. But the estimator is not probit with the fitted probabilities

plugged in for y2. Currently, the only strategy we have is maximum likelihood estimation

based on fy1|y2,zfy2|z, which is not difficult. Wooldridge (2010, Section 15.7.3) contains

the likelihood function. [The dearth of options that allow some robustness to distributional

assumptions on y2 helps explain why some authors, notably Angrist (2001), have promoted the

idea of just using linear probability models estimated by 2SLS. This strategy seems to provide

good estimates of the average treatment effect in many applications. But it also seems true that

MLE based on joint normality might yield useful approximations to the APEs, too, even if the

distributional functions are not entirely correct. Such a view argues for fully robust inference
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in the context of misspecified maximum likelihood, as in White (1982).]

An issue that comes up occasionally is whether “bivariate probit” software can be used to

estimate the probit model with a binary endogenous variable. In fact, the answer is yes, and the

endogenous variables can appear in any way in the model, particularly interacted with

exogenous variables. The key is that the likelihood function is constructed from

fy1|y2,x1f2y2|x2, and so its form does not change if x1 includes y2. (Of course, one should

have at least one exclusion restriction in the case x1 does depend on y2. ) MLE, of course, has

all of its desirable properties, and the parameter estimates needed to compute APEs are

provided directly.

If y1 is a fractional response satisfying (3.9), y2 follows (3.19), and q1,v2 are jointly

normal and independent of z, a two-step method based on Ey1|z,y2 is possible; the

expectation is not in closed form, and estimation cannot proceed by simply adding a control

function to a Bernoulli QMLE. But it should not be difficult to implement. Full MLE for a

fractional response is more difficult than for a binary response, particularly if y1 takes on

values at the endpoints with positive probability.

An essentially parallel discussion holds for ordered probit response models, where y1 takes

on the ordered values 0,1, . . . ,J. The RV procedure, and its extensions, applies immediately.

In computing partial effects on the response probabilities, we simply average out the reduced

for residuals, as in equation (3.8). The comments about the forbidden regression are

immediately applicable, too: one cannot simply insert, say, fitted probabilities for the binary

EEV y2 into an ordered probit model for y1 and hope for consistent estimates of anything of

interest.

Likewise, methods for Tobit models when y1 is a corner solution, such as labor supply or
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charitable contributions, are analyzed in a similar fashion. If y2 is a continuous variable, CF

methods for consistent estimation can be obtained, at least under the assumptions used in the

RV setup. Smith and Blundell (1986) and Wooldridge (2010, Chapter 17) contain treatments.

The embellishments described above, such as letting Du1|v2 be a flexible normal distribution,

carry over immediately to Tobit case, as do the cautions in looking for simple two-step

methods when Dy2|z is discrete. Maximum likleihood estimation of all parameters jointly is

also quite feasible.

3.2. Multinomial and Ordered Responses

Allowing endogenous explanatory variables (EEVs) in multinomial response models is

notoriously difficult, even for continuous endogenous variables. There are two basic reasons.

First, multinomial probit (MNP), which mixes well well a reduced form normality assumption

for Dy2|z, is still computationally difficult for even a moderate number of choices.

Apparently, no one has undertaken a systematic treatment of MNP with EEVs, including how

to obtain partial effects.

The multinomial logit (MNL) model and its extensions, such as nested logit and random

coefficient versions, are much simpler computationally with lots of alternatives. Unfortunately,

the normal distribution does not mix well with the extreme value distribution, and so, if we

begin with a structural MNL model (or conditional logit), the estimating equations obtained

from a CF approach are difficult to obtain, and MLE is very difficult, too, even if we assume a

normal distribution in the reduced form(s).

Recently, some authors have suggested taking a practical approach to allowing continuous

EEVs in multinomial response. The suggestions for binary and fractional responses in the
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previous subsection – namely, use probit, or even logit, with flexible functions of both the

observed variables and the reduced form residuals – is in this spirit.

Again it is convenient to model the source of endogeneity as an omitted variable. Let y1 be

the (unordered) multinomial response taking values 0,1, . . . ,J, let z be the vector of

endogenous variables, and let y2 be a vector of endogenous variables. If r1 represents omitted

factors that the researcher would like to control for, then the structural model consists of

specifications for the response probabilities

Py1  j|z1,y2, r1, j  0,1, . . . ,J.     (3.20)

The average partial effects, as usual, are obtained by averaging out the unobserved

heterogeneity, r1. Assume that y2 follows the linear reduced form

y2  z2  v2.     (3.21)

Typically, at least as a first attempt, we would assume a convenient joint distribution for

r1,v2, such as multivariate normal and independent of z. This approach has been applied

when the response probabilities, conditional on r1, have the conditional logit form. For

example, Villas-Boas and Winer (1999) apply this approach to modeling brand choice, where

prices are allowed to correlated with unobserved tastes that affect brand choice. In

implementing the CF approach, the problem in starting with a multinomial or conditional logit

model for (3.20) is computational. Nevertheless, estimation is possible, particular if one uses

simulation methods of estimation briefly mentioned in the previous subsection.

A much simpler control function approach is obtained if we skip the step of modeling

Py1  j|z1,y2, r1 and jump directly to convenient models for

Py1  j|zi1,y2,v2  Py1  j|z,y2. Petrin and Train (2006) are proponents of this solution.
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The idea is that any parametric model for Py1  j|z1,y2, r1 is essentially arbitrary, so, if we

can recover quantities of interest directly from Py1  j|z1,y2,v2, why not specify these

probabilities directly? If we assume that Dr1|z,y2  Dr1|v2, and that Py1  j|z1,y2,v2

can be obtained from Py1  j|z1,y2, r1 by integrating the latter with respect to Dr1|v2 then

we can estimate the APEs directly from Py1  j|z1,y2,v2 by averaging out across the

reduced form residuals, as in previous cases.

Once we have selected a model for Py1  j|z1,y2,v2, which could be multinomial logit,

conditional logit, or nested logit, we can apply a simple two-step procedure. First, estimate the

reduced form for yi2 and obtain the residuals, v̂i2  yi2 − zî2. (Alternatively, we can use

strictly monotonic transformations of the elements of yi2.) Then, we estimate a multinomial

response model with explanatory variables zi1,yi2, and v̂i2. As always with control function

approaches, we need enough exclusion restrictions in zi1 to identify the parameters and APEs.

We can include nonlinear functions of zi1,yi2, v̂i2, including quadratics and interactions for

more flexibility.

Given estimates of the probabilities pjz1,y2,v2, we can estimate the average partial

effects on the structural probabilities by estimating the average structural function:

ASFz1,y2  N
−1∑

i1

N

pjz1,y2, v̂i2.     (3.22)

Then, we can take derivatives or changes of ASFz1,y2 with respect to elements of z1,y2,

as usual. While the delta method can be used to obtain analytical standard errors, the bootstrap

is simpler and feasible if one uses, say, conditional logit.

In an application to choice of television service, Petrin and Train (2006) find the CF
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approach gives remarkably similar parameter estimates to the approach proposed by Berry,

Pakes, and Levinsohn (1995), which we touch on in the cluster sample notes.

When the EEVs are discrete, the CF arguments above do not apply. One can often

implement maximum likelihood without too much difficulty. For example, Adams, Chiang,

and Jensen (2003) use MLE when the scalar y2 follows an ordered probit.

3.3. Exponential Models

Exponential models represent a middle ground between linear models and discrete

response models: to allow for EEVs in an exponential model, we need to impose more

assumptions than needed for standard linear models but fewer assumptions than discrete

response models. Both IV approaches and CF approaches are available for exponential models,

the latter having been worked out for continuous and binary EEVs. With a single EEV, write

Ey1|z,y2, r1  expz11  1y2  r1,     (3.23)

where r1 is the omitted variable. (Extensions to general nonlinear functions of z1,y2 are

immediate; we just add those functions with linear coefficients to (3.23). Leading cases are

polynomials and interactions.) Suppose first that y2 has a standard linear reduced form with an

additive, independent error:

y2  z2  v2

Dr1,v2|z  Dr1,v2,

    (3.24)

    (3.25)

so that r1,v2 is independent of z. Then

Ey1|z,y2  Ey1|z,v2  Eexpr1|v2expz11  1y2.     (3.26)

If r1,v2 are jointly normal, then Eexpr1|v2  exp1v2, where we set the intercept to
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zero, assuming z1 includes an intercept. This assumption can hold more generally, too. Then

Ey1|z,y2  Ey1|z,v2  expz11  1y2  1v2,     (3.27)

and this expectation immediately suggest a two-step estimation procedure. The first step, as

before, is to estimate the reduced form for y2 and obtain the residuals. Then, include v̂2, along

with z1 and y2, in nonlinear regression or, especially if y1 is a count variable, in a Poisson

QMLE analysis. Like NLS, it requires only (3.27) to hold. A t test of H0 : 1  0 is valid as a

test that y2 is exogenous. Average partial effects on the mean are obtained from

N−1∑
i1

N

exp̂1v̂i2 expz1̂1  ̂1y2.

Proportionate effects on the expected value, that is elasticities and semi-elasticities, do not

depend on the scale factor out front.

Like in the binary case, we can use a random coefficient model to suggest more flexible CF

methods. For example, if we start with

Ey1|z,y2,a1, r1  expz11  a1y2  r1

 expz11  1y2  d1y2  r1

    (3.28)

and assume trivariate normality of d1, r1,v2 (and independence from z), then it can be shown

that

Ey1|z,v2  expz11  1y2  1v2  1y2v2

 r2  2dry2  d2y2
2/2.

    (3.29)

Therefore, the estimating equation involves a quadratic in y2 and an interaction between y2 and

v2. Notice that the term r2  2dry2  d2y2
2/2 is present even if y2 is exogenous, that is,

1  1  0. If dr  Covd1, r1 ≠ 0 then (3.29) does not even identify 1  Ea1 (we
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would have to use higher-order moments, such as a variance assumption). But (3.29) does

identify the average structural function (and, therefore, APEs). We just absorb r2 into the

intercept, combine the linear terms in y2, and add the quadratic in y2. So, we would estimate

Ey1|z,v2  expz11  1y2  1v2  1y2v2  1y2
2     (3.30)

using a two-step QMLE. The ASF is more complicated, and estimated as

ASFz1,y2  N−1∑
i1

N

expz1̂1  ̂1y2  ̂1v̂i2  ̂1y2v̂i2  ̂1y2
2 ,     (3.31)

which, as in the probit example, implies that the APE with respect to y2 need not have the

same sign as 1.

Our inability to estimate 1 even in this very parametric setting is just one example of how

delicate identification of parameters in standard index models can be. Natural extensions to

models with random slopes generally cause even the mean heterogeneity (1 above) to be

unidentified. Again, it must be emphasized that the loss of identification holds even if y2 is

assumed exogenous.

If y2 is a binary model following a probit, then a CF approach due to Terza (1998) can be

used. We return to the model in (3.23) where, for simplicity, we assume y2 is not interacted

with elements of z1; the extension is immediate.We can no longer assume (3.24) and (3.25).

Instead, replace (3.24)

y2  1z2  v2  0     (3.32)

and still adopt (3.25). In fact, we assume r1,v2 is jointly normal. To implement a CF

approach, we need to find
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Ey1|z,y2  EEy1|z,v2|z,y2

 expz11  1y2Eexp1  1v2|z,y2

 expz11  1y2hy2,z2,1,     (3.34)

where we absorb 1 into the intercept in z1 without changing notation and

hy2,z2,1  exp1
2/2y21  z2/z2

 1 − y21 − 1  z2/1 − z2,

    (3.35)

as shown by Terza (1998). Now, 2 is estimated by a first-stage probit, and then NLS or, say,

Poisson QMLE can be applied to the mean function

expz11  1y2hy2,ẑ2,1.     (3.36)

As usual, unless 1  0, one must account for the estimation error in the first step when

obtaining inference in the second. Terza (1998) contains analytical formulas, or one may use

the bootstrap.

In the exponential case, an alternative to either of the control function approaches just

presented is available – and, it produces consistent estimators regardless of the nature of y2.

Write x1  g1z1,y2 as any function of exogenous and endogenous variables. If we start with

Ey1|z,y2, r1  expx11  r1     (3.37)

then we can use a transformation due to Mullahy (1997) to consistently estimate 1 by method

of moments. By definition, and assuming only that y1 ≥ 0, we can write

y1  expx11  r1a1

 expx11expr1a1, Ea1|z,y2, r1  1.

If r1 is independent of z then

Eexp−x11y1|z  Eexpr1|z  Eexpr1  1,     (3.38)
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where the last equality is just a normalization that defines the intercept in 1. Therefore, we

have conditional moment conditions

Eexp−x11y1 − 1|z  0,     (3.39)

which depends on the unknown parameters 1 and observable data. Any function of z can be

used as instruments in a nonlinear GMM procedure. An important issue in implementing the

procedure is choosing instruments. See Mullahy (1997) for further discussion.

4. Semiparametric and Nonparametric Approaches

Blundell and Powell (2004) show how to relax distributional assumptions on u1,v2 in the

model model y1  1x11  u1  0, where x1 can be any function of z1,y2. The key

assumption is that y2 can be written as y2  g2z  v2, where u1,v2 is independent of z. The

independence of the additive error v2 and z pretty much rules out discreteness in y2, even

though g2 can be left unspecified. Under the independence assumption,

Py1  1|z,v2  Ey1|z,v2  Hx11,v2     (4.1)

for some (generally unknown) function H, . The average structural function is just

ASFz1,y2  Evi2Hx11,vi2. We can estimate H and 1 quite generally by first estimating

the function g2 and then obtaining residuals v̂i2  yi2 − ĝ2zi. Blundell and Powell (2004)

show how to estimate H and 1 (up to scale) and G, the distribution of u1. The ASF is

obtained from Gx11. We can also estimate the ASF by averaging out the reduced form

residuals,
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ASFz1,y2  N−1∑
i1

N

Ĥx1̂1, v̂i2;     (4.2)

derivatives and changes can be computed with respect to elements of z1,y2.

Blundell and Powell (2003) allow Py1  1|z,y2 to have the general form Hz1,y2,v2,

and then the second-step estimation is entirely nonparametric. They also allow ĝ2 to be fully

nonparametric. But parametric approximations in each stage might produce good estimates of

the APEs. For example, yi2 can be regressed on flexible functions of zi to obtain v̂i2. Then, one

can estimate probit or logit models in the second stage that include functions of z1, y2, and v̂2

in a flexible way – for example, with levels, quadratics, interactions, and maybe even

higher-order polynomials of each. Then, one simply averages out v̂i2, as in equation (4.2).

Valid standard errors and test statistics can be obtained by bootstrapping or by using the delta

method.

In certain cases, an even more parametric approach suggests itself. Suppose we have the

exponential regression

Ey1|z,y2, r1  expx11  r1,     (4.3)

where r1 is the unobservable. If y2  g2z2  v2 and r1,v2 is independent of z, then

Ey1|z1,y2,v2  h2v2expx11,     (4.4)

where now h2 is an unknown function. It can be approximated using series, say, and, of

course, first-stage residuals v̂2 replace v2.

Blundell and Powell (2003) consider a very general setup, which starts with

y1  g1z1,y2,u1, and then discuss estimation of the ASF, given by

ASF1z1,y2   g1z1,y2,u1dF1u1,     (4.5)
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where F1 is the distribution of u1. The key restrictions are that y2 can be written as

y2  g2z  v2,     (4.6)

where u1,v2 is independent of z. The additive, independent reduced form errors in (4.6)

effectively rule out applications to discrete y2. Conceptually, Blundell and Powell’s method is

straightforward, as it is a nonparametric extenstion of parametric approaches. First, estimate g2

nonparametrically (which, in fact, may be done via a flexible parametric model, or kernel

estimators). Obtain the residuals v̂i2  yi2 − ĝ2zi. Next, estimate

Ey1|z1,y2,v2  h1z1,y2,v2 using nonparametrics, where v̂i2 replaces v2. Identification of

h1 holds quite generally, provided we have sufficient exclusion restrictions (elements in z not

in z1. BP discuss some potential pitfalls. Once we have ĥ1, we can consistently estimate the

ASF. For given x1
o  z1

o,y2
o, the ASF can always be written, using iterated expectations, as

Ev2Eg1x1
o,u1|v2.

Under the assumption that u1,v2 is independent of z, Eg1x1
o,u1|v2  h1x1

o,v2 – that is,

the regression function of y1 on x1,v2. Therefore, a consistent estimate of the ASF is

N−1∑
i1

N

ĥ1x1, v̂i2.     (4.7)

While semiparametric and parametric methods when y2 (or, more generally, a vector y2)

are continuous – actually, have a reduced form with an additive, independent error – they do

not currently help us with discrete EEVs.

With univariate y2, it possible to relax the additivity of v2 in the reduced form equation

under monotonicity assumptions. Like Blundell and Powell (2003), Imbens and Newey (2006)

consider the triangular system, but without additivity in the reduced form of y2. The structureal
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equation is

y1  g1z1,y2,u1,     (4.8)

where u1 is a vector heterogeneity (whose dimension may not even be known), and the

reduced form for y2 is

y2  g2z,e2,     (4.9)

where g2z,  is strictly monotonic. This assumption rules out discrete y2 but allows some

interaction between the unobserved heterogeneity in y2 and the exogenous variables. As one

special case, Imbens and Newey show that, if u1,e2 is assumed to be independent of z, then a

valid control function that can be used in a second stage is v2 ≡ Fy2|zy2,z, where Fy2|z is the

conditional distribution of y2 given z. Imbens and Newey described identification of various

quantities of interest, including the quantile structural function. When u1 is a scalar and

monotonically increasing in u1, the QSF is

QSFx1  g1x1,Quantu1,     (4.10)

where Quantu1 is the  th of u1. We consider quantile methods in more detail in the quantile

methods notes.

5. Methods for Panel Data

We can combine methods for handling correlated random effects models with control

function methods to estimate certain nonlinear panel data models with unobserved

heterogeneity and EEVs. Here we provide as an illustration a parametric approach used by

Papke and Wooldridge (2008), which applies to binary and fractional responses. The
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manipulations are routine but point to more flexible ways of estimating the average marginal

effects. It is important to remember that we currently have no way of estimating, say,

unobserved effects models for fractional response variables, either with or without endogenous

explanatory variables, without imposing some restrictions on the distribution of heterogeneity

given the exogenous variables. Even the approaches that treat the unobserved effects as

parameters – and use large T approximations – to not allow endogenous regressors. Plus, recall

from the nonlinear panel data notes that most results are for the case where the data are

assumed independent across time. Jackknife approaches further assume homogeneity across

time.

We write the model with time-constant unobserved heterogeneity, ci1, and time-varying

unobservables, vit1, as

Eyit1|yit2,zi,ci1,vit1  Eyit1|yit2,zit1,ci1,vit1  1yit2  zit11  ci1  vit1.     (5.1)

Thus, there are two kinds of potential omitted variables. We allow the heterogeneity, ci1, to be

correlated with yit2 and zi, where zi  zi1, . . . ,ziT is the vector of strictly exogenous variables

(conditional on ci1). The time-varying omitted variable is uncorrelated with zi – strict

exogeneity – but may be correlated with yit2. As an example, yit1 is a female labor force

participation indicator and yit2 is other sources of income. Or, yit1 is a test pass rate, and the

school leve, and yit2 is a measure of spending per student.

When we write zit  zit1,zit2, we are assuming zit2 can be excluded from the “structural”

equation (4.1). This is the same as the requirement for fixed effects two stage least squares

estimation of a linear model.

To proceed, we first model the heterogeneity using a Chamberlain-Mundlak approach:
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ci1  1  z̄i1  ai1,ai1|zi ~ Normal0,a1
2 .     (5.2)

We could allow the elements of zi to appear with separate coefficients, too. Note that only

exogenous variables are included in z̄i. Plugging into (5.1) we have

Eyit1|yit2,zi,ai1,vit1  1yit2  zit11  1  z̄i1  ai1  vit1

≡ 1yit2  zit11  1  z̄i1  rit1.     (5.3)

Next, we assume a linear reduced form for yit2:

yit2  2  zit2  z̄i2  vit2, t  1, . . . ,T,     (5.4)

where, if necessary, we can allow the coefficients in (5.4) to depend on t. The addition of the

time average of the strictly exogenous variables in (5.4) follows from the Mundlak (1978)

device. The nature of endogeneity of yit2 is through correlation between rit1  ai1  vit1 and

the reduced form error, vit2. Thus, yit2 is allowed to be correlated with unobserved

heterogeneity and the time-varying omitted factor. We also assume that rit1 given vit2 is

conditionally normal, which we write as

rit1  1vit2  eit1,     (5.5)

eit1|zi,vit2 ~ Normal0,e1
2 , t  1, . . . ,T.     (5.6)

Because eit1 is independent of zi,vit2, it is also independent of yit2. Using a standard mixing

property of the normal distribution,

Eyit1|zi,yit2,vit2  e1yit2  zit1e1  e1  z̄ie1  e1vit2     (5.7)

where the “e” subscript denotes division by 1  e1
2 1/2. This equation is the basis for CF

estimation.

The assumptions used to obtain (5.7) would not hold for yit2 having discreteness or
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substantively limited range in its distribution. It is straightfoward to include powers of vit2 in

(5.7) to allow greater flexibility. Following Wooldridge (2005) for the cross-sectional case, we

could even model rit1 given vit2 as a heteroskedastic normal.

In deciding on estimators of the parameters in (5.7), we must note that the explanatory

variables, while contemporaneous exogenous by construction, are not usually strictly

exogenous. In particular, we allow yis2 to be correlated with vit1 for t ≠ s. Therefore,

generalized estimation equations, that assume strict exogeneity – see the notes on nonlinear

panel data models – will not be consistent in general. We could apply method of moments

procedures. A simple approach is to use use pooled nonlinear least squares or pooled

quasi-MLE, using the Bernoulli log likelihood. (The latter fall under the rubric of generalized

linear models.) Of course, we want to allow arbitrary serial dependence and

Varyit1|zi,yit2,vit2 in obtaining inference, which means using a robust sandwich estimator.

The two step procedure is (i) Estimate the reduced form for yit2 (pooled across t, or maybe

for each t separately; at a minimum, different time period intercepts should be allowed).

Obtain the residuals, v̂it2 for all i, t pairs. The estimate of 2 is the fixed effects estimate. (ii)

Use the pooled probit QMLE of yit1 on yit2,zit1, z̄i, v̂it2 to estimate e1,e1,e1,e1 and e1.

Because of the two-step procedure, the standard errors in the second stage should be

adjusted for the first stage estimation. Alternatively, bootstrapping can be used by resampling

the cross-sectional units. Conveniently, if e1  0, the first stage estimation can be ignored, at

least using first-order asymptotics. Consequently, a test for endogeneity of yit2 is easily

obtained as an asymptotic t statistic on v̂it2; it should be make robust to arbitrary serial

correlation and misspecified variance. Adding first-stage residuals to test for endogeneity of an

explanatory variables dates back to Hausman (1978). In a cross-sectional contexts, Rivers and
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Vuong (1988) suggested it for the probit model.

Estimates of average partial effects are based on the average structural function

Eci1,vit1 1yt2  zt11  ci1  vit1     (5.8)

with respect to the elements of yt2,zt1. It can be shown that

Ez̄i,vit2 e1yt2  zt1e1  e1  z̄ie1  e1vit2;     (5.9)

that is, we “integrate out” z̄i,vit2 and then take derivatives or changes with respect to the

elements of zt1yt2. Because we are not making a distributional assumption about z̄i,vit2, we

instead estimate the APEs by averaging out z̄i, v̂it2 across the sample, for a chosen t:

N−1∑
i1

N

̂e1yt2  zt1̂e1  ̂e1  z̄îe1  ̂e1v̂it2.     (5.10)

APEs computed from (5.10) – typically with further averaging out across t and the values

of yt2 and zt1 – can be compared directly with linear model estimates, particular fixed effects

IV estimates.

We can use the approaches of Altonji and Matzkin (2005) and Blundell and Powell (2003)

to make the analysis less parametric. For example, we might replace (5.4) with

yit2  g2zit, z̄i  vit2 (or use functions in addition to , z̄i, as in AM). Then, we could maintain

Dci1  vit1|zi,yit2  Dci1  vit1|z̄i,vit2.

In the first estimation step, v̂it2 is obtained from a nonparametric or semiparametric pooled

estimation. Then the function

Eyit1|yit2,zi,vit2  h1xit11, z̄i,vit2

can be estimated in a second stage, with the first-stage residuals, v̂it2, inserted. Generally,
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identification holds because the vit2 varying over time separately from xit1 due to time-varying

exogenous instruments zit2. The inclusion of z̄i requires that we have at least one time-varying,

strictly exogenous instrument for yit2.
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