Appendix

A note about the appendix: The difference between the main figures and the appendix is that the main figures use national-level cutoffs for the state-level analysis, while the appendix figures use state-level cutoffs for the state-level analysis. Figure 1 in the text uses national-level data and does not break into states, and hence does not have that complication. So the appendix figures begin with Figure A2.

Figure A2
The Gender Gap in Math and Science and the Gender Gap in Reading by State

Notes: This figure illustrates the relationship between male to female ratios in math and science and female to male ratios in reading by U.S. states. Panel A computes ratios by looking at students scoring in the top 5\% while Panel B focuses on students scoring in the top 25%, using state-level cutoffs in each case.

Figure A3
Geographic Respresentation of the Stereotype Adherence Index (Top 5\%)

Notes: The map presents the Stereotype Adherence Index (the average of the male-female ratios in math and science and the female-male ratio in reading) for the top 5% of students using state-level cutoffs. States are ordered by this Index and then broken into four categories. Each shade of color represents a different grouping with the darker shades indicating a larger amount of stereotypical gender differences. The individual Stereotype Adherence Index scores for each state are provided in table format at the bottom.

Figure A4
Attitudes on Gender Issues and Stereotype Index - Top 5\%

Figure 4b - Math is for Boys

Stereotype Adherence Index-95th Percentile

Notes: This figure shows the relationship between the Stereotype Adherence Index (a measure of the stereotypical gender differences on test scores using state-level cutoffs) and attitudes on women's issues using state-level cutoffs. Panel A, graphs the SAI against responses to a GSS question asking if women are better suited to stay at home. Panel Bgraphs the SAI and 8th-grader responses to the query "is math for boys?".

Table A1
Correlates with Stereotypical Gender Differences at the State Level

	Dependent Variable: Stereotype Adherence Index - Top 5\%				
	(1)	(2)	(3)	(4)	(5)
2000 Census Variables					
Median household income (\$1,000s)	$\begin{aligned} & 0.001 \\ & (.009) \end{aligned}$				
Fraction with HS degree		$\begin{gathered} 0.283 \\ (1.227) \end{gathered}$			
Fraction of females with HS degree			$\begin{gathered} 0.251 \\ (1.228) \end{gathered}$		
Survey Questions					
Women better suited for home				$\begin{aligned} & 0.007 \\ & (.007) \end{aligned}$	
Undecided or Agree Math is for Boys					$\begin{aligned} & 0.013 \\ & (.016) \end{aligned}$
R-squared	0.001	0.002	0.002	0.051	0.010
Observations	37	37	37	37	35

Notes: This table illustrates the relationship between the Stereotype Adherence Index (a measure of the stereotypical gender differences on test scores using state-level cutoffs) based on the top 5% and state characteristics including attitudes on women's issues. The women-better-suited-for-home question is taken from the General Social Survey and the math-is-for-boys question is taken from an earlier NAEP wave.

