No Spending without Representation: School Boards and the Racial Gap in Education Finance Brett Fischer Online Appendix

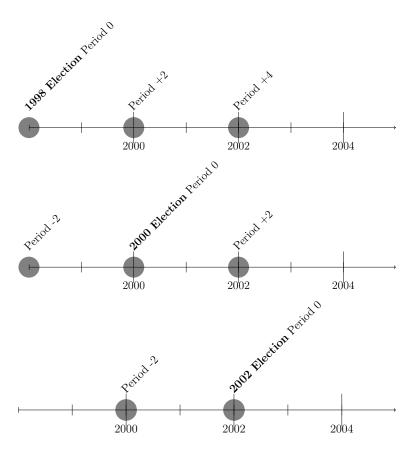


Figure A1: The diagram describes the overlapping panel structure I construct. Data from 2000 appear alternately as post-1998 election period 2 data; the 2000 election period 0 data; and pre-2002 election period -2 data.



Figure A2: The figure plots event-study estimates of the top-tier Hispanic treatment effect on district-wide SFP modernization spending per pupil by year relative to the election. The specification is Equation 5. All coefficients are relative to the election year (period 0). Vertical bars denote 95 percent confidence intervals using robust standard errors clustered at the district level. The sample includes 14,834 district-by-election-period observations.

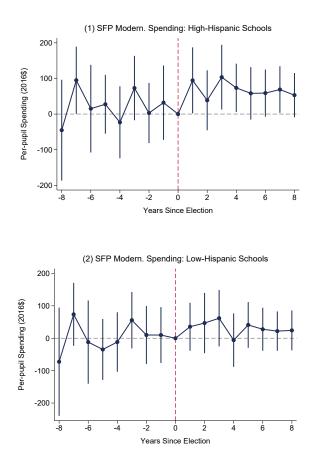


Figure A3: The specification is Equation 5. All coefficients are relative to the election year (period 0). Vertical bars denote 95 percent confidence intervals using robust standard errors clustered at the district level. The sample size is N=87,042 for panel 1 and 87,030 for panel 2.

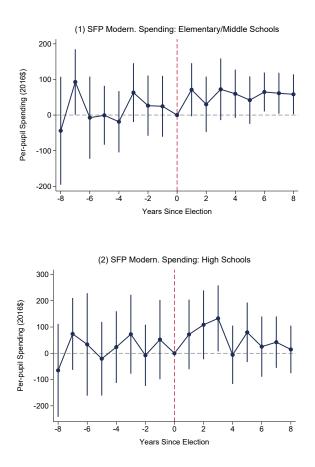


Figure A4: The specification is Equation 5. All coefficients are relative to the election year (period 0). Vertical bars denote 95 percent confidence intervals using robust standard errors clustered at the district level. The sample size is N=158,107 for panel 1 and 22,300 for panel 2.

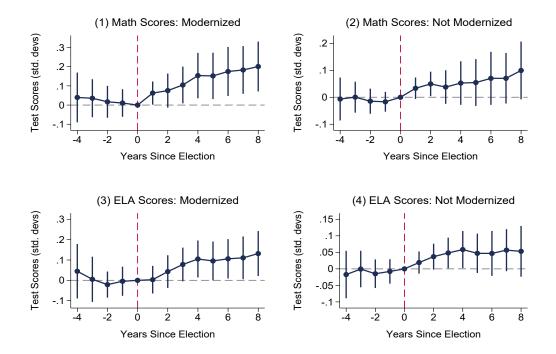


Figure A5: The figure shows event study plots depicting the estimated effect of a toptier Hispanic candidate on test scores by year relative to the election. The sample is broken down into schools that did and did not initiate an SFP modernization project after the given election. The specification is Equation 5. All coefficients are relative to the election year (period 0). Vertical bars denote 95 percent confidence intervals using robust standard errors clustered at the district level.

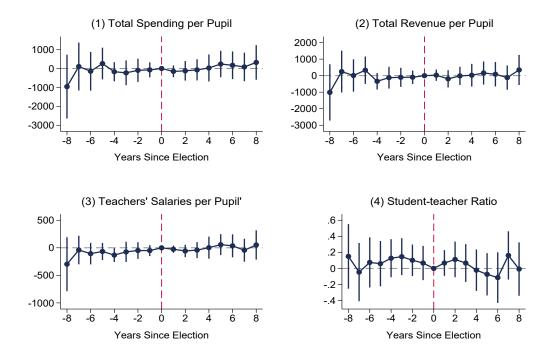


Figure A6: The figure shows event study plots depicting the estimated effect of a toptier Hispanic candidate on non-SFP budget outcomes by year relative to the election. The data come from the Census of Governments. The specification is Equation 5 with district-level, rather than school-level, data. All coefficients are relative to the election year (period 0). Vertical bars denote 95 percent confidence intervals using robust standard errors clustered at the district level.

	Ν	Mean	Median	Std Dev	Min	Max
I. All Projects						
Project Involves New Construction?	$7,\!648$	0.27	0	0.44	0	1
Project Involves Modernization?	$7,\!648$	0.75	1	0.43	0	1
Year Construction Began	$7,\!648$	2005	2004	4.18	1999	2017
Total Funds ('000s)	$7,\!648$	4212	2381	6427	4.6	128470
Funds from State ('000s)	$7,\!648$	2131	1648	3910	3.7	73102
Funds from District ('000s)	$7,\!648$	1480	621	2941	0	64235
Modernization Spending ('000s)	$7,\!648$	1299	786	1876	0	18823
New Construction Spending ('000s)	$7,\!648$	587	0	1890	0	34142
Supplemental SFP Grants ('000s)	$7,\!648$	2326	1031	4541	0	97104
II. Projects w/ Enrollment Data	ı					
Total Funds per Pupil	7,362	5093	3699	7887	5.1	219253
School Enrollment	7,362	956	700	738	0	5213
School Share FRL	7,362	0.52	0.53	0.30	0	1
School Share White	7,362	0.33	0.27	0.28	0	0.99
School Share Hispanic	7,362	0.46	0.43	0.30	0	1
School Share Other Minority	7,362	0.20	0.15	0.18	0	1

Table A1: Summary of School Facility Program (SFP) Projects

The table reports summary data from all 7,648 SFP projects begun by 2017. All SFP data come from California's Bond Accountability program. Note that a project can have both modernization and new construction components. All enrollment data come from the Common Core of Data. There are 286 new construction projects that I cannot match to enrollment data because the OPSC only assigns temporary identifying information. I report all costs in 2016 dollars.

	All Candidates	All Hispanic Candidates	NALEO Match	Hispanic Surname	NALEO and Hispanic Surname
Ν	11,062	2,032	990	1,914	872
Avg Name Hisp Share	$\begin{array}{c} 0.17 \\ (0.33) \end{array}$	0.84 (0.20)	0.80 (0.27)	$\begin{array}{c} 0.89 \\ (0.08) \end{array}$	$0.90 \\ (0.06)$

Table A2: Summary of Name Matching in California School Board Races

The elections sample is identical to the one used in Table 1 and contains 11,062 candidates across 3,070 school board elections that I successfully match to the Census data. The first panel describes the candidate-level data I obtain from matching my list of candidates to the list of most common Census surnames by race and to the NALEO directory of Latino officials. Standard deviations appear in parentheses. "Name Hispanic Share" refers to the share of Census respondents with a given surname who self-identify as Hispanic.

Table A3: Reduced-form Results Using Only Census Data to Identify Hispanics

	(1)	(2)
	NALEO + Census	Only Census
	Name Matching	Name Matching
I. First Stage		
Hisp. Board Share	0.075***	0.084***
Ĩ	(0.016)	(0.018)
	179,318	174,706
II. Reduced-Form Estimates	Among High-Hisp	anic Schools
Modernization Spending per Pupil	41.7***	30.4^{**}
	(13.8)	(13.8)
	61,405	59,880
Total SFP Spending per Pupil	49.3	32.7
	(30.9)	(31.0)
	61,405	59,880
Composite Math Scores	0.038^{**}	0.031
	(0.019)	(0.020)
	55,427	53,753
Composite ELA Scores	0.035^{**}	0.028^{*}
	(0.017)	(0.017)
	55,420	53,746
FTE Experience	0.23^{***}	0.20^{**}
	(0.08)	(0.08)
FTE Tenure	0.27***	0.23***
	(0.07)	(0.08)
	75,088	73,142

*** p < 0.01, ** p < 0.05, * p < 0.10

The specification is Equation 4 with controls for the share of Hispanic candidates, the number of contested seats, and school-level fixed effects, as well as additional election and demographic covariates, which appear below Table 6. Sample sizes appear in italics. The first column presents point estimates that appear in the main text of the paper and use my preferred definition of Hispanic candidates. The second column identifies Hispanic candidates using only Census name-matching. Robust standard errors clustered at the district level appear in parentheses. Sample sizes vary within columns because of missing enrollment and student performance data. Note that the first stage outcome in both columns is measured using NA-LEO data, whereas only the first column uses NALEO data to identify candidate ethnicities.

	All Car	ndidates	Hispanic C	Candidates				
	(1) Control Mean	(2) Top-tier Effect	(3) Control Mean	(4) Top-tier Effect				
I. Impact of Top-	tier Assignme	nt on Candidate	e Performance					
Vote Share	0.188 (0.117)	0.038^{***} (0.003)	$0.208 \\ (0.129)$	0.034^{***} (0.006)				
Wins?	$0.405 \\ (0.491)$	$\begin{array}{c} 0.152^{***} \\ (0.015) \end{array}$	$0.404 \\ (0.491)$	$\begin{array}{c} 0.184^{***} \\ (0.024) \end{array}$				
N:	2,793	5,337	902	1,795				
II. Correlation of Top-tier Assignment with Candidate Traits								
Democrat?	0.483 (0.500)	-0.014 (0.020)	$0.609 \\ (0.491)$	-0.007 (0.038)				
Republican?	$0.368 \\ (0.482)$	$0.021 \\ (0.019)$	$0.220 \\ (0.415)$	$0.041 \\ (0.031)$				
N:	1,229	2,308	368	735				
Hispanic?	0.367 (0.482)	0.025^{*} (0.015)						
N:	2,455	4,728						
Incumbent?	$0.324 \\ (0.047)$	0.083^{***} (4)	$0.324 \\ (0.047)$	$\begin{array}{c} 0.094^{***} \\ (0.021) \end{array}$				
Missing Ethnicity?	$0.121 \\ (0.326)$	-0.015^{*} (0.009)	—	—				
Missing Party?	$0.560 \\ (0.496)$	$0.016 \\ (0.013)$	$0.592 \\ (0.491)$	-0.003 (0.021)				
N:	2,793	5,337	902	1,795				

Table A4: Relevance and Excludability of Ballot Order, without Fixed Effects

The table is identical to Table 4, except that the specification used does *not* include election fixed effects. Otherwise, the specification is Equation 1, including controls for the share of Hispanic candidates and the number of contested seats in the election. Robust standard errors are clustered at the district level.

		Preferred Mo	del	+Control for Ele Competitiven	
	Post-Election Control Mean	Top-tier Hispanic Effect	F-stat	Top-tier Hispanic Effect	F-stat
	(1)	(2)	(3)	(4)	(5)
Hisp Board Share	0.200 (0.236)	0.078^{***} (0.014)	16.44	0.081^{***} (0.014)	19.00
Any Hisp on Board?	(0.542) (0.498)	(0.095^{***}) (0.030)	37.58	(0.0312) (0.101^{***}) (0.030)	40.61
Hisp Majority?	0.125 (0.331)	0.097^{***} (0.021)	2.55	0.100^{***} (0.022)	2.79
N:	41,901	179,318		179,318	
	School FEs	Y	Y	Y	Y
Control for S	hare Hisp Cand	Υ	Υ	Υ	Υ
Cont	trol for $\#$ Seats	Υ	Υ	Υ	Υ
Election/Academic	Yr, Period FEs	Υ	Υ	Υ	Υ
Other El	ection Controls	Υ	Υ	Υ	Υ
Demog	raphic Controls	Υ	Υ	Υ	Υ

Table A5: Robustness of Top-tier Hispanic IV to Controlling for Election Competitiveness

The sample includes school-period observations from pre-election period -8 through post-election period +8. Columns 1, 2, and 3 are identical to columns 1, 4, and 5, respectively, in Table 6. Election and school demographic controls are described below Table 6. In Column 4, I add a control for election competitiveness equal to the number of seats up for a vote in the race divided by the number of candidates. Robust standard errors clustered at the district level appear in parentheses.

	(1) Control Mean	(2) Top-tier Hispanic
		Effect
Hisp Board Share, Outgoing Board	0.14	0.02
	(0.21)	(0.01)
N:	392	1,097
Total Enrollment	11,517	-592
	(12,784)	(791)
Share White	0.35	-0.01
	(0.23)	(0.02)
Share Hispanic	0.48	0.00
	(0.24)	(0.02)
Share Asian	0.09	0.00
	(0.11)	(0.01)
Share Black	0.05	0.01
	(0.06)	(0.00)
Share FRL-eligible	0.51	0.02
	(0.23)	(0.02)
N:	367	1,044
Math Composite Scores	-0.24	-0.01
	(0.77)	(0.05)
ELA Composite Scores	-0.29	-0.03
	(0.78)	(0.05)
N:	351	986

Table A6: Excludability of Top-tier Hispanic IV, without Fixed Effects

The table is identical to Table 5, except that the specification does not include any year or district fixed effects. Otherwise, the specification is Equation 2 with controls for the share of Hispanic candidates and the number of contested seats in the election. Robust standard errors are clustered at the district level.

	Top-tier Effect	"Top-of-the-Ticket" Effect	1	Top-tier Effect, Excl. Top-of-the-Ticket	
	(1)	(2)	(3)	(4)	(5)
Hisp Board Share	$\begin{array}{c} 0.078^{***} \\ (0.014) \end{array}$	$\begin{array}{c} 0.085^{***} \\ (0.016) \end{array}$	0.046 (0.028)	$0.045 \\ (0.028)$	$\begin{array}{c} 0.114^{***} \\ (0.021) \end{array}$
N:	183,512	183,512	141,963	141,963	125,578
School FEs	Y	Y	Y	Y	Y
Control for Share Hisp Cand	Y	Υ	Υ	Υ	Υ
Control for $\#$ Seats	Υ	Υ	Υ	Υ	Υ
Election/Academic Yr, Period FEs	Υ	Υ	Υ	Υ	Υ
Control for Competitiveness	Ν	Ν	Ν	Υ	Υ

Table A7: Exploring Sensitivity of First Stage to "Top-of-the-ticket" Candidates

**** p < 0.01, ** p < 0.05, * p < 0.10

The data consist of school-period observations. The specification follows the first stage of Equation 3, with modifications as indicated in column headers. Column 1 is identical to the second column in Table 6. Column 2 uses as an instrument an indicator for whether a Hispanic candidate appeared in the first ballot position (the "top of the ticket"). Column 3 uses the top-tier Hispanic indicator, but excludes top-of-the-ticket Hispanic candidates (that is, the sample only includes elections with no top-tier Hispanic candidates and those with a top-tier Hispanic candidate who was not in the first ballot position). Column 4 again only includes top-tier candidates who do not appear in the very top spot, but includes a control for election competitiveness. Column 5 includes only "at-large" elections. Robust standard errors clustered at the district level appear in parentheses.

	(1) Control Mean	(2) Hisp Top tie Effect
I. Election Year SFP Outcomes		
Total SFP Spending per Pupil	369	112
Modernization Spending per Pupil	(1,014) 148	(115) 8 (115)
New Constr. Spending per Pupil	(429) 52	(42) 27
Supplemental SFP Grants per Pupil		(31) 61 (64)
N:	(513) 367	(64) 1,044
II. Election Year SFP Eligibility	v Proxies	
Cum. SFP Spending per Pupil	2,303	174
Total Enrollment	(2,970) 11,554	(302) 91 (110)
# FTE Teachers	(12,831) 531 (500)	(119) 5 (6)
Student-FTE Teacher Ratio	(590) 21.0 (2.31)	$(6) \\ 0.01 \\ (0.13)$
N:	367	1,044
Avg. Age of Schools	22.08 (7.40)	0.11 (0.14)
N:	367	1,040
Share of Schools Opened 1980	0.80 (0.24)	$0.01 \\ (0.01)$
N:	367	1,044
III. Election Candidate Compos	ition, Res	ults
Top-Tier Democrat?	0.30	0.06
Top-Tier Incumbent?	(0.46) 0.57	(0.05) 0.01
Share Missing Ethnicity	(0.50) 0.12 (0.15)	(0.06) 0.01
# Democrat Wins	(0.15) 0.41 (0.65)	(0.02) 0.02 (0.07)
# Incumbent Wins	(0.65) 1.15 (0.90)	$(0.07) \\ -0.05 \\ (0.09)$

Table A8: Correlation of Hispanic Top-Tier Indicator with SFP Outcomes, Election Characteristics

The specification is Equation 2 with controls for the share of Hispanic candidates, the number of contested seats, as well as electionyear and district-level fixed effects. Robust standard errors clustered at the district level appear in parentheses. Sample sizes vary within columns because of missing enrollment data.

	Fo	ur-year Effects		Eig	ht-year Effects	
	Control Mean (1)	Reduced Form (2)	2SLS (3)	Control Mean (4)	Reduced Form (5)	2SLS (6)
Modernization Spending per Pupil	115.1 (362.9)	32.4^{***} (11.4)	352.3^{***} (132.9)	82.2 (305.3)	21.3^{***} (7.8)	287.8*** (109.7)
Total SFP Spending per Pupil	404.4 (1,106.3)	(11.1) 28.2 (32.1)	(102.0) 306.9 (344.8)	324.1 (1,012.1)	(1.0) 28.1 (22.4)	(100.1) 379.3 (300.2)
N:	4,179	10,650	10,650	8,358	14,820	14,820
District FEs	_	Y	Y	_	Y	Y
Control for Share Hisp Cand	_	Υ	Υ	_	Υ	Υ
Control for # Seats	_	Υ	Υ	_	Υ	Υ
Election /Academic Yr, Period FEs	_	Υ	Υ	_	Υ	Υ
Other Election Controls	_	Υ	Υ	_	Υ	Υ
Demographic Controls	_	Υ	Υ	_	Y	Υ
First Stage	_	_	0.09	_	_	0.07
	_	_	(0.01)	_	_	(0.01)

Table A9: District-level SFP Spending Effects, 4 and 8 Years Post-Election

The reduced form specification is Equation 4, while the 2SLS specification is Equation 3. All specifications include the full set of controls described below Table 7. Columns 1, 2, and 3 are identical to columns 1, 3, and 5 of Table 7, respectively. Columns 1-3 include data from the eight years prior to four years after each election. Columns 4-6 use eight years of pre-election and eight years of post-election outcome data. Robust standard errors clustered at the district level appear in parentheses.

	Fo	ur-year Effects		Eig	ht-year Effects	
	Control Mean (1)	Reduced Form (2)	2SLS (3)	Control Mean (4)	Reduced Form (5)	2SLS (6)
Modernization Spending per Pupil	115.9 (548.8)	33.7^{***} (12/7)	362.8^{**} (153.3)	79.1 (454.8)	22.4^{***} (8.0)	302.2^{**} (116.4)
Total SFP Spending per Pupil	(040.0) 289.6 (1,180.8)	(12/1) 39.8 (27.8)	(100.0) 428.2 (303.3)	(104.0) 218.7 (1,044.2)	(0.0) 25.6 (17.8)	(110.4) 346.1 (239.5)
N:	51,971	128,464	128,464	105,054	179,318	179,318
School FEs	_	Y	Y	_	Y	Y
Control for Share Hisp Cand	_	Υ	Υ	_	Υ	Y
Control for $\#$ Seats	_	Υ	Υ	_	Υ	Y
Election /Academic Yr, Period FEs	_	Υ	Υ	_	Υ	Y
Other Election Controls	_	Υ	Υ	_	Υ	Y
Demographic Controls	_	Υ	Υ	_	Y	Υ
First Stage	_	_	0.09	_	_	0.07
-	_	_	(0.02)	_	_	(0.02)

Table A10: School-level SFP Spending Effects, 4 and 8 Years Post-Election

*** p < 0.01, ** p < 0.05, * p < 0.10

The reduced form specification is Equation 4, while the 2SLS specification is Equation 3. All specifications include the full set of controls described below Table 6. Columns 1, 2, and 3 present the same results as appear column 1 of Table 8. Columns 1-3 include data from the eight years prior to four years after each election. Columns 4-6 use eight years of pre-election and eight years of post-election outcome data. Robust standard errors clustered at the district level appear in parentheses.

			By School Ty	100l Type	
	Post-Election Mean	All Schools	Elementary/Middle Schools	High Schools	
	(1)	(2)	(3)	(4)	
Reduced-Form Estimates of To	p-tier Hispani	c Effect			
Modernization Spending per Pupil	115.9	33.7^{***}	32.9^{***}	41.0**	
	(548.8)	(12.7)	(13.8)	(18.9)	
Total SFP Spending per Pupil	289.6	49.3	42.9	50.0	
	(1, 180.8)	(30.9)	(28.9)	(45.5)	
N	51,971	128,464	111,904	15,467	
Election/Academic Y	, Period FEs	Y	Y	Y	
	School FEs	Υ	Υ	Υ	
Control for Sha	re Hisp Cand	Υ	Y	Υ	
Contro	l for # Seats	Υ	Y	Υ	
Other Elec	tion Controls	Υ	Y	Υ	
School Demogra	phic Controls	Υ	Υ	Υ	

Table A11: Reduced-form Spending Effects on Elementary/Middle and High Schools: School-level Analysis

* p < 0.10, ** p < 0.05, *** p < 0.01

The sample includes school-period observations from pre-election period -8 through postelection period +4. The first column shows the mean of the two outcome variables in the lefthand column over the eight post-election periods. Estimates in the remaining cells comes from separate OLS regressions on the samples of elementary/middle and high schools, following Equation 4. I define "elementary schools to be those whose highest grade is grade 8 and "high schools as all schools whose lowest grade is grade 9. Additional controls are described below Table 6. All specifications use school enrollment weights. Robust standard errors are clustered at the district level.

	Academic-ye	ar Definition	Election-yea	r Definition
	High-Hispanic (1)	Low-Hispanic (2)	High-Hispanic (3)	Low-Hispanic (4)
SFP Modern. Spending per Pupil	41.7***	21.6	45.7***	22.3
	(13.8)	(13.9)	(14.4)	(14.1)
	61,405	61,408	60,874	59,986
Math Scores	0.038^{**}	0.041^{**}	0.038^{*}	0.044^{**}
	(0.019)	(0.020)	(0.022)	(0.022)
	55,427	46,336	54,458	44,425
ELA Scores	0.035^{**}	0.034^{**}	0.035^{*}	0.038^{**}
	(0.017)	(0.017)	(0.018)	(0.018)
	55,420	46,340	54,456	44,425
FTE Experience	0.227^{***}	0.168^{***}	0.262^{***}	0.184^{***}
	(0.083)	(0.064)	(0.093)	(0.070)
	75,088	74,681	72,785	72,494
FTE Tenure	0.269^{***}	0.205^{***}	0.301^{***}	0.219^{***}
	(0.074)	(0.067)	(0.084)	(0.074)
	75,088	74,681	72,785	72,494
School FEs	Y	Y	Y	Y
Control for Share Hisp Cand	Υ	Υ	Υ	Υ
Control for $\#$ Seats	Y	Υ	Υ	Υ
Election /Academic Yr, Period FEs	Y	Υ	Υ	Υ
Other Election Controls	Y	Υ	Υ	Υ
Demographic Controls	Y	Y	Y	Y

Table A12: Comparing Definitions of "High-Hispanic" Schools: School-level Analysis

This table compares results using two definitions of high- and low-Hispanic schools. Each cell reports a reduced form estimate, following Equation 4. All estimates include the full set of controls described below Table 6. Columns 1 and 2 present results that appear in Tables 8, 9, and 10. In these specifications, I define "high-Hispanic" and "low-Hispanic" schools by comparing current Hispanic enrollment to the current district median. In columns 3 and 4, I present comparable results where I instead define high-Hispanic schools to be those schools that had above-median Hispanic enrollment in the election year, and low-Hispanic schools to be those that below-median Hispanic enrollment in the election year. Sample sizes vary within row due to missing enrollment data and omission of exactly-median schools, as discussed in the text. Robust standard errors clustered at the district level appear in parentheses.

	$\begin{array}{rrrrr} + \mbox{Elec Yr FEs} + \mbox{Academic Yr FEs} + \mbox{Academic Yr FEs} + \mbox{Period FEs} \\ 0.03 & 0.03 & 0.03 & 0.03 \\ 0.060 & 0.006 & 0.006 & 0.006 \\ 0.060 & 0.02 & 0.02 & 0.02 \\ 0.061 & 0.061 & 0.060 & 0.060 \\ 0.061 & 0.02 & 0.02 & 0.02 \\ 0.061 & 0.061 & 0.061 & 0.060 \\ 0.061 & 0.061 & 0.061 & 0.061 \\ 0.061 & 0.061 & 0.061 & 0.04 \\ 0.17 & 0.01 & 0.04 & 0.04 \\ 0.017 & 0.04 & 0$	(0) Pario 42 - 1 thur	(0) (1)	(6)	(07)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+ rerious -1 mru -8 Obs		Preferred Model	+ Flexible Elec Covars
		0.08	0	0.04^{**}	0.03^{**}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0.06)		(0.02)	(0.02)
		56, 369		55,420	55,420
		0.08		0.04^{**}	0.04^{*}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0.05) 56,376		(0.02) 55,427	(0.02) 55,427
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				50.88
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(31.09)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccc} (15.56) & (15.55) & (15.64) \\ 24.876 & 24.876 & 24.876 \\ 0.03 & 0.04 & 0.04 \\ (0.17) & (0.17) & (0.17) \\ -0.04 & -0.04 \end{array}$				42.21^{***}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(13.77)	(13.85)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			61,405	61,405
arce 0.03 0.03 0.04 0.04 0.05 0.07 0.24*** 0.24*** 0.24*** 0.23*** (0.17) (0.17) (0.17) (0.17) (0.16) (0.15) (0.09) (0.09) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.07) (0.15) (0.15) (0.15) (0.14) (0.08) (0.08) (0.07) (0.7) (0.15) (0.15) (0.14) (0.08) (0.07) (0.07) (0.07) (0.08) (0.07) (0.07) (0.08) (0.07) (0.07) (0.08) (0.07) (0.07) (0.07) (0.07) (0.08) (0.07) (0.07) (0.07) (0.08	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
				0.23^{***}	0.22^{***}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.07 -0.05 -0.04 -0.04			(0.08)	(0.08)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.27^{***}	0.26^{***}
49,851 $49,851$ $49,851$ $49,851$ $55,382$ $76,379$ $76,379$ $76,379$ $75,088$	(0.15) (0.15) (0.15) (0.15)	(0.14)		(0.07)	(0.08)
	49,851 49,851 49,851	76,379		75,088	75,088

Table A13: Specification Robustness: School-level Reduced-form Estimates

and pre-election observations as indicated. Column 9 reports results that appear in the main paper, with full demographic and election controls, which are described below Table 6. Note that sample sizes decline across columns 8 and 9 because of missing demographic variables. Column 10 presents a specification based on the preferred model which adds a quadratic term in the share of Hispanic candidates and uses a fixed effect for the number of contested seats (instead of a linear control as in the remaining columns). Standard errors in parentheses are clustered at the district level.

		ol-level Re	gression E	stimates			
		By Share	Hispanic	By Sha	re FRL	By	Title I
	All Schools	Above Median	Below Median	Above Median	Below Median	Title I Eligible	Not Title Eligible
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
I. School-by-Election Fixed Effe	ects						
Modernization Spending per Pupil	46.06**	57.54***	32.32	59.99***	31.04	60.81***	27.78
Total SFP Spending per Pupil	(18.08) 54.49	(20.61) 63.86	(20.70) 37.10	(21.74) 61.23	(19.92) 33.65	(21.45) 88.64*	(32.28) 3.89
total SF1 Spending per 1 upit	(39.46)	(46.00)	(45.42)	(45.71)	(44.56)	(48.44)	(64.33)
N	128,464	61,405	$61,\!408$	61,179	$61,\!172$	75,855	37,382
Math Composite Score	0.07^{*}	0.06^{*}	0.08^{**}	0.07^{*}	0.06 (0.04)	0.05	0.04
N	(0.03) 104,490	(0.04) 55,427	(0.04) 46,336	(0.04) 58,154	(0.04)	(0.04) 68,127	(0.06) 26,028
ELA Composite Score	0.06*	0.06*	0.06**	0.06*	0.05*	0.05*	0.04
1	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.05)
N	$104,\!487$	55,420	$46,\!340$	58,150	$42,\!900$	$68,\!127$	26,026
Mean FTE Experience	0.40^{***}	0.52***	0.33^{**}	0.58***	0.28^{**}	0.36**	0.27
Mean FTE Tenure	(0.13) 0.45^{***}	(0.18) 0.57^{***}	(0.13) 0.37^{**}	(0.19) 0.62^{***}	(0.13) 0.32^{**}	(0.16) 0.40^{**}	(0.19) 0.26
	(0.13)	(0.16)	(0.15)	(0.18)	(0.14)	(0.17)	(0.19)
Ň	$156,\!453$	75,088	$74,\!681$	74,877	$74,\!317$	102,566	43,106
II. District Fixed Effects							
Modernization Spending per Pupil	22.24***	29.33***	15.67^{*}	30.16***	16.56^{*}	23.21***	22.49*
	(7.92)	(8.66)	(8.75)	(9.12)	(8.54)	(8.71)	(13.08)
Total SFP Spending per Pupil	24.72 (17.67)	29.47 (20.48)	20.68 (19.21)	31.55 (20.19)	17.66 (20.00)	29.56 (20.84)	16.12 (26.14)
Ň	179,318	85,727	85,838	85,477	85,469	109,910	48,459
Math Composite Score	0.05**	0.05**	0.05**	0.05**	0.04**	0.03	0.05*
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)
N	104,490	55,427	46,336	58,154	$42,\!899$	68,127	26,028
ELA Composite Score	0.04^{**} (0.02)	0.04^{**} (0.02)	0.04^{**} (0.02)	0.04** (0.02)	0.05^{**} (0.02)	0.02^{*} (0.01)	0.05^{*} (0.03)
N	104,487	55,420	46,340	58,150	42,900	68,127	26,026
Mean FTE Experience	0.20***	0.25***	0.18**	0.27***	0.15**	0.14*	0.24**
	(0.07)	(0.08)	(0.07)	(0.09)	(0.07)	(0.08)	(0.10)
Mean FTE Tenure	0.24*** (0.07)	0.29*** (0.08)	0.22*** (0.08)	0.31^{***} (0.08)	0.19*** (0.07)	0.17** (0.08)	0.26*** (0.09)
N	156,453	75,088	74,681	74,877	74,317	102,566	43,106
III. Neither District Nor Schoo	l Effects						
Modernization Spending per Pupil	15.06*	20.69**	9.84	21.39**	9.69	20.47**	4.74
viodernization Spending per r upi	(8.67)	(8.88)	(9.79)	(8.82)	(9.58)	(9.23)	(13.69)
Total SFP Spending per Pupil	16.37	17.29	13.82	23.21	8.75	35.98 (24.32)	-4.29 (30.67)
N	(20.78) 179.318	(23.71) 85,727	(22.68) 85,838	(23.50) 85,477	(23.62) 85,469	(24.32) 109,910	(30.07) 48,459
Math Composite Score	0.05*	0.05*	0.06**	0.05*	0.05*	0.02	0.06
auti composite score	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.04)
N	$104,\!490$	55,427	46,336	58,154	$42,\!899$	$68,\!127$	26,028
ELA Composite Score	0.05*	0.04	0.06**	0.04	0.05**	0.02	0.06*
N	(0.02)	(0.03)	(0.02)	(0.03)	(0.02)	(0.02)	(0.03)
Mean FTE Experience	104,487	55,420	46,340	58,150	42,900	68,127	26,026
wean FIE Experience	-0.01 (0.12)	(0.01) (0.13)	(0.02) (0.14)	(0.05) (0.13)	-0.07 (0.14)	-0.03 (0.13)	0.07 (0.19)
Mean FTE Tenure	-0.02	-0.01	0.00	0.03	-0.08	-0.04	0.01
N	(0.12) 156,453	(0.12) 75,088	(0.14) 74,681	(0.11) 74,877	(0.14) 74,317	(0.13) 102,566	(0.17) 43,106
		**	x.	x *		· ·	
Election and Academic Yr FEs Control for Share Hisp Cand	Y Y	Y Y	Y Y	Y Y	Y Y	Y Y	Y Y
	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ
Control for # Seats School Demographic Controls	Υ	Υ	Υ	Υ	Υ	Y	Y

Table A14: Specification Robustness: Comparing Fixed Effect Choice

p < 0.01, ** p < 0.05, * p < 0.10The sample includes school-period observations. Each cell comes from a separate reduced-form regression, following Equation 4, with modifications as indicated in the panel headers. Note that the first panel—using school-by-election effects—does not include any election-level covariates, which are collinear with the first effects. See the footnote below Table 6 for descriptions of the election and demographic controls used. All specifications use school enrollment weights. Sample sizes vary within columns due to missing enrollment data and exclusion of schools with exactly median enrollment by category. Robust standard errors are clustered at the district level the district level.

	High/lo	w Hispanic	$\mathrm{High}/$	low FRL	Title	I Status
	Top-tier Effect (1)	Interaction Effect (2)	Top-tier Effect (3)	Interaction Effect (4)	Top-tier Effect (5)	Interaction Effect (6)
Total SFP Spending per Pupil	25.28 (30.83)	29.34 (22.60)	28.42 (30.62)	22.52 (25.76)	-13.35 (37.37)	89.63^{**} (39.92)
Modernization Spending per Pupil	22.67 (13.89)	23.52^{**} (9.60)	23.69^{*} (13.54)	23.56^{**} (10.99)	$12.90 \\ (18.62)$	37.11^{**} (18.12)
Ν	12	3,197	11	3,622	7'	7,654
Math Composite Score	0.06^{**} (0.03)	$0.00 \\ (0.02)$	0.04^{*} (0.03)	$\begin{array}{c} 0.03 \\ (0.02) \end{array}$	0.04 (0.03)	-0.01 (0.03)
Ν	10	3,454	10	1,053	9	5,839
ELA Composite Score	0.05^{**} (0.02)	$0.00 \\ (0.02)$	0.04 (0.02)	$0.02 \\ (0.02)$	0.04 (0.02)	-0.01 (0.02)
Ν	10	3,451	10	1,050	98	5,837
FTE Mean Experience	0.15^{**} (0.07)	0.14^{*} (0.08)	0.13^{**} (0.06)	0.18^{**} (0.08)	0.16^{*} (0.08)	$ \begin{array}{c} 0.02 \\ (0.10) \end{array} $
FTE Mean Tenure	0.19^{***} (0.07)	0.13^{*} (0.07)	0.16^{**} (0.06)	0.18^{**} (0.07)	0.21^{**} (0.09)	$0.01 \\ (0.10)$
Ν	15	2,235	14	9,194	14	8,161

Table A15: Are the Treatment Effects Across Schools Statistically Different?

The data consist of school-period observations. Each row within grouping (high/low Hispanic, high/low FRL, and Title I status) comes from a single regression. The reduced-form specification is analogous to Equation 4, but includes a fixed effect for whether the school has above-median Hispanic enrollment, above-median FRL enrollment, or Title I status ("high Hispanic") and interacts this dummy with my main treatment variable ($TopTierHisp \times post \times HighHisp$) as well as the "post" indicator. The interaction effects estimates measure the treatment effect on high-Hispanic, high-FRL, and Title I-eligible schools, relative to the effect on schools that do not fall into these categories, given by the "top-tier effect." Sample sizes vary due to missing test score data and different post-election time frames. All specifications include school, election year, academic year, and period fixed effects, as well as controls for the share of Hispanic candidates and the number of contested seats, as discussed in the text. All specifications also include other election controls and demographic controls, as described below Table 6. Sample sizes vary across columns due to missing student demographic data. Standard errors are clustered at the district level.

Type
School
by
Estimates,
Balance
and
Placebo
e-election
$\mathbf{P}_{\mathbf{r}}$
A16:
Table

			Sh	Share Hispanic	ic		Share FRL			Title I	
	Sample Mean	All Schools	Above Median	Below Median	p-value	Above Median	Below Median	p-value	Title I Eligible	Not Title I Eligible	p-value
	(1)	(2)	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)
Total SFP Spending per Pupil	300.4 (1164.68)	-17.27 (45.92)	-15.43 (55.00)	-20.88 (45.98)	0.885	7.14 (54.68)	-2.78 (40.16)	0.290	-15.59 (58.98)	11.50 (72.06)	0.752
N Modernization Spending per Pupil	36678 138.2 (597.1)	36678 -7.13 (20.67)	17,526 -8.27 (22.70)	17,523 -8.10 (22.36)	0.992	17,439 -8.10 (23.92)	17,436 -0.30 (20.98)	0.538	21,828 -5.38 (22.97)	11,182 11.72 (36.97)	0.734
N Cum. SFP Spending per Pupil N	36678 1697.3 (3314.4) 36678	36678 -44.44 (90.62) 36678	(17,526) -28.20 (102.44) 17.526	(17,523) -78.84 (102.29) 17.523	0.576	$\begin{array}{c} 17,439\\ 8.00\\ (101.07)\\ 17,439\end{array}$	17,436 -29.87 (97.31) 17 436	0.287	21,828 24.97 (107.97) 21.828	$\begin{array}{c} 11,182 \\ -107.96 \\ (158.52) \\ 11.182 \end{array}$	0.477
Total Enrollment N	884.6 (645.1) 36678	1.7 (6.3) 36678	-3.8 (21.7) 17.526	14.6 (17.2) 17.523	0.520	(18.6)	-3.2 -3.2 (8.5) 17.436	0.973	7.5 (21.2) 21.828	-48.8 (36.1) (11.182	0.231
Total FTE Teachers N	39.72 (23.51) 36678	-0.05 (0.35) 36678	-0.57 (0.42) 17.526	0.10 (0.53) 17.523	0.309	-0.58 (0.43) 17439	$\begin{array}{c} 0.03\\ (0.26)\\ 17436 \end{array}$	0.255	0.23 (0.63) 21.828	-0.64 (0.86) (11.182)	0.478
Student-FTE Ratio N	21.41 (9.09) 36678	0.07 (0.09) 36678	$ \begin{array}{c} 0.03 \\ 0.09 \end{array} $ 17.526	$\begin{array}{c} 0.11 \\ 0.11 \\ (0.12) \\ 17.523 \end{array}$	0.332	$\begin{array}{c} 0.02\\ 0.02\\ (0.09)\\ 17.439\end{array}$	0.01 0.01 (0.14 17.436	0.587	$\begin{array}{c} 21,020\\ 0.18\\ (0.14)\\ 21.828\end{array}$	-0.08 -0.08 (0.19) 11.182	0.253
School Age N	21.0 (8.6) 36862	-0.00 (0.07) 36608	-0.00 (0.09) 17497	$\begin{array}{c} 0.09 \\ (0.12) \\ 17496 \end{array}$	0.538	$\begin{array}{c} 0.04 \\ (0.07) \\ 17403 \end{array}$	$\begin{array}{c} 0.04 \\ (0.10) \\ 17417 \end{array}$	0.947	-0.10 (0.12) 21787	$\begin{array}{c} 0.27\\ (0.23)\\ 11166\end{array}$	0.215
School Opened in 1980? N	$\begin{array}{c} 0.801 \\ (0.399) \\ 36.678 \end{array}$	$\begin{array}{c} 0.00 \\ (0.00) \\ 36,678 \end{array}$	-0.00 (0.00) 17,526	$\begin{array}{c} 0.00 \ (0.01) \ 17,523 \end{array}$	0.525	$\begin{array}{c} 0.00 \\ (0.00) \\ 17,439 \end{array}$	$\begin{array}{c} 0.00 \\ (0.00) \\ 17,436 \end{array}$	0.659	-0.00 (0.00) 21,828	$\begin{array}{c} 0.01 \\ (0.01) \\ 11,182 \end{array}$	0.431
Share Hispanic N	0.539 (0.275) 36,678	$\begin{array}{c} 0.00 \\ (0.00) \\ 36,678 \end{array}$	$\begin{array}{c} 0.01^{**} \\ (0.00) \\ 17,526 \end{array}$	$\begin{array}{c} 0.00 \\ (0.00) \\ 17,523 \end{array}$	0.051	$\begin{array}{c} 0.01^{**} \\ (0.00) \\ 17,439 \end{array}$	-0.00 (0.00) 17,436	0.111	$\begin{array}{c} 0.00 \\ (0.00) \\ 21,828 \end{array}$	$\begin{array}{c} 0.00 \\ (0.00) \\ 11,182 \end{array}$	0.462
Share White N	$\begin{array}{c} 0.261 \\ (0.237) \\ 36,678 \end{array}$	-0.00^{**} (0.00) 36,678	-0.01^{***} (0.00) 17,526	-0.00 (0.00) 17,523	0.393	-0.01^{***} (0.00) 17,439	-0.00 (0.00) 17,436	0.187	-0.00 (0.00) 21,828	-0.00 (0.00) 11,182	0.535
Share FRL Observations	$\begin{array}{c} 0.576 \\ (0.290) \\ 36,646 \end{array}$	$\begin{array}{c} 0.00 \\ (0.00) \\ 36,646 \end{array}$	$\begin{array}{c} 0.01 \\ (0.00) \\ 17,515 \end{array}$	$\begin{array}{c} 0.00 \\ (0.00) \\ 17,508 \end{array}$	0.188	$\begin{array}{c} 0.00 \\ (0.00) \\ 17,439 \end{array}$	-0.00 (0.00) 17,436	0.260	-0.00 (0.01) 21,820	$\begin{array}{c} 0.00 \ (0.01) \ 11,164 \end{array}$	0.745
Elec Yr FEs District FEs		Y	X X	Y		Y	Y		Y	Y	
* $p < 0.10, ** p < 0.05, *** p < 0.01$											

The table presents placebo and robustness results for my school-level SFP analysis. The sample contains school-period observations. Column 1 reports the sample mean of each variable in the election year. The remaining columns report OLS coefficients from separate regressions. The specification employs district and election year fixed effects and controls for the share of Hispanic candidates and the number of contested seats. The first panel uses data from the three periods prior to the election. All other models use data from only the election year. All specifications use school enrollment weights. Sample sizes vary within columns due to missing data, as discussed in the text. Robust standard errors are clustered at the district level.

			By Se	hool Type			
	Post-Election Mean	All Schools	Modernized Schools	Non-modernized Schools			
	(1)	(2)	(3)	(4)			
Reduced-Form Estim	ates of Top-tie	r Hispani	c Effect				
Composite Math Score	0.022	0.038**	0.042	0.039^{*}			
	(1.028)	(0.019)	(0.030)	(0.022)			
N	58,948	104,490	25,767	78,723			
Composite ELA Score	-0.287	0.033^{**}	0.025	0.037^{**}			
	(0.994)	(0.016)	(0.024)	(0.019)			
N	58,947	104,487	25,767	78,720			
Election/Academic Y	r, Period FEs	Y	Y Y Y				
,	School FEs	Υ	Y Y				
Control for Sha	re Hisp Cand	Υ	Υ	Υ			
Contro	ol for # Seats	Υ	Υ	Υ			
Other Elec	tion Controls	Υ	Υ	Υ			
School Domogra	phic Controls	Y	Y	Y			

Table A17: Reduced-form Achievement Effects on Modernized and Non-modernized Schools

_

* p < 0.10, ** p < 0.05, *** p < 0.01

The sample includes school-period observations from pre-election period -8 through post-election period +8. The first column shows the mean of the two outcome variables in the left-hand column over the eight post-election periods. Estimates in the remaining cells comes from separate OLS regressions, following Equation 4. "Modernized" schools are those that begin any modernization project after the focal election. Additional controls are described below Table 6. All specifications use school enrollment weights. Robust standard errors are clustered at the district level.

	Sample Mean	All Se	chools	High-H	lispanic	Low-H	ispanic
	8 Year	4 Year	8 Year	4 Year	8 Year	4 Year	8 Year
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Total Enrollment	845.2	-8.0	-12.7**	-9.2	-10.6^{*}	-8.2	-12.5*
	(594.6)	(6.0)	(5.9)	(6.2)	(5.8)	(7.7)	(7.1)
Share White	0.208	0.003	0.005	0.003	0.005	0.003	0.004
	(0.215)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)
Share Hisp	0.594	-0.002	-0.004	-0.003	-0.005^{*}	-0.001	-0.001
	(0.272)	(0.002)	(0.003)	(0.002)	(0.003)	(0.002)	(0.002)
N	105,027	128,887	181,934	61,603	87,042	61,594	87,030
Share FRL-eligible	0.612	0.003	0.002	0.003	0.001	0.003	0.001
_	(0.285)	(0.003)	(0.003)	(0.003)	(0.004)	(0.003)	(0.003)
Ν	102,447	128,465	179,319	61,405	85,727	61,408	85,838

Table A18: Reduced Form Effect on School Demographics, 4 and 8 Years Post-election

The sample mean consists of data from years 1-8 after the election. The regression specification follows Equation 4 with school, election year, and test year fixed effects, as well as the same election covariates described below Table 7. I do not include demographic covariates, which are the outcome variables. Columns 2, 4, and 6 include data spanning periods -8 through +4. Columns 3, 5, and 7 include data spanning periods -8 through +8. Sample sizes appear in italics. Sample sizes vary due to missing data. Robust standard errors are clustered at the district level.

		Research Sam	ple		All-election Sar	nple
	All Schools (1)	High-Hispanic Schools (2)	Low-Hispanic Schools (3)	All Schools (4)	High-Hispanic Schools (5)	Low-Hispanic Schools (6)
SFP Modern. Spending per Pupil	33.68***	22.10**	41.67***	29.01***	21.62	15.61
	(12.69)	(9.61)	(13.77)	(9.51)	(13.90)	(10.55)
	128,464	309,514	61,405	146,919	61,408	146,772
Math Scores	0.04^{**}	0.07^{***}	0.04^{**}	0.05^{***}	0.04^{**}	0.07***
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
	104,490	253,841	55,427	131,834	46,336	114,870
ELA Scores	0.03**	0.05***	0.04**	0.05***	0.03**	0.04**
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
	104,487	253,846	55,420	131,827	46,340	114,882
FTE Experience	0.20^{***}	0.16^{*}	0.23***	0.21^{*}	0.17^{***}	0.11
	(0.07)	(0.09)	(0.08)	(0.11)	(0.06)	(0.09)
	$156,\!453$	$376,\!535$	75,088	179,351	74,681	178,483
FTE Tenure	0.24^{***}	0.20^{**}	0.27^{***}	0.24^{**}	0.20^{***}	0.15^{*}
	(0.06)	(0.08)	(0.07)	(0.09)	(0.07)	(0.08)
	$156,\!453$	$376,\!535$	75,088	$179,\!351$	74,681	$178,\!483$
School FEs	Y	Y	Y	Y	Y	Y
Control for Share Hisp Cand	Υ	Υ	Υ	Υ	Υ	Υ
Control for $\#$ Seats	Υ	Υ	Υ	Υ	Υ	Υ
Election / Academic Yr, Period FEs	Υ	Υ	Υ	Υ	Υ	Υ
Other Election Controls	Υ	Υ	Υ	Υ	Υ	Υ
Demographic Controls	Υ	Υ	Υ	Υ	Υ	Υ

Table A19: School-level Reduced-form Results Including Ethnically Noncompetitive Elections

This table compares results using my preferred research sample with those using the full sample of elections, including those that do not have any Hispanic candidates and those that have only Hispanic candidates. Each cell reports a reduced form estimate, following Equation 6. All estimates include the full set of controls described below Table 6. Columns 1, 2, and 3 present results that appear in Tables 8, 9, and 10. In columns 4, 5, and 6, I present comparable results where I include ethnically noncompetitive elections. Sample sizes vary within row due to missing enrollment data and omission of exactly-median schools, as discussed in the text. Robust standard errors clustered at the district level appear in parentheses.