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Supplemental material for Section II

A1. Proof of Proposition 1

First, conjecture that the value of being an owner at the start of any period,
with value uSt, is

V (uSt)

Let
V ≡ EuSt∼F (·) [V (uSt)]

be the ex-ante value of an owner, before she learns the realization of uSt.

Incumbent profit. — The incumbent first chooses ψt, and pays cost c (ψt). After
ψt is determined, the value of the asset owner for keeping the good is:

ψt + uSt + βV

Likewise, the value of a buyer is:

ψt + uBt + βV

Since the auction is second-price, the dominant strategy for the buyer is to bid
her true value.

The objective function of the incumbent is thus the following. If the incumbent
bids above the buyer, she gets:

(ψt + uSt + βV )︸ ︷︷ ︸
Continuation value

− τ (ψt + uBt + βV )︸ ︷︷ ︸
Fee payment

i.e. she pays the buyer’s bid, keeps the asset and gets her continuation value. If
the incumbent bids below the buyer’s value, she gets paid her bid for her share
(1− τ) of the asset, that is:

(1− τ) (ψt +m+ βV )
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In either case, the investment cost c (ψt) is sunk. Hence, the incumbent’s expected
profit can be written as:

Πt =

∫ m

0
[(ψt + uSt + βV )− τ (ψt + uBt + βV )] dF (uBt) +∫ ∞

m
(1− τ) (ψt +m+ βV ) dF (uBt)− c (ψt)

(A1)

Πt = (1− τ) (ψt + βV )−c (ψt)+

∫ m

0
[uSt − τuBt] dF (uBt)+(1− τ)m

∫ ∞
m

dF (uBt)

Price setting. — Differentiating (A1) with respect to m, we have:

(A2)
∂Π

∂m
= (uSt −m) f (m) + (1− τ) (1− F (m))

Setting to 0 and rearranging, we have:

m− uSt = (1− τ)
1− F (m)

f (m)

This proves (5) of Proposition 1. Note that the derivative (A2) is monotonically
decreasing in τ , hence (A1) has increasing differences in m and −τ , hence the
optimal m is monotonically decreasing in τ .

Investment. — Differentiating (A1) with respect to ψt, we have:

c′ (ψt) = (1− τ)

This proves (4) of Proposition 1.

The value function. — The incumbent’s value function satisfies:

(A3) V (uSt) = Π∗t =

(1− τ) (ψ∗t + βV )+

∫ m∗(uSt)

0
[uSt − τuBt] dF (uBt)+(1− τ)m∗ (uSt)

∫ ∞
m∗(uSt)

dF (uBt)−c (ψ∗t )
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The expected value V is thus the expectation of (A3) over uSt. In closed form,
V is:

(A4) V =
(1− τ)ψ∗t − c (ψ∗t )

1− β (1− τ)
+

EuSt∼F (·)

[∫m∗(uSt)
0 [uSt − τuBt] dF (uBt) + (1− τ)m∗ (uSt)

∫∞
m∗(uSt)

dF (uBt)
]

1− β (1− τ)

A2. Proof of Claims 1 and 2

These are special cases of Proposition 1, with τ = 0 and τ = 1 respectively.

A3. Proof of Proposition 2

In the following two subsections, we will show that marginal allocative welfare
is:

(A5)

∫ [
(1− τ)

(f (m∗ (uSt, τ)))2 h (m∗ (uSt, τ))

(1− F (m∗ (uSt, τ))) (1− (1− τ)h′ (m∗ (uSt, τ)))

]
dF (uSt)

where

h (m) ≡ 1− F (m)

f (m)

and marginal investment welfare from changing τ is:

(A6)
dW

dτ
= − τ

c′′ (ψ∗t (τ))

Equating the sum of these to 0 and rearranging, we have (11).

Now, if F has continuous second derivatives, h′ (m∗ (uSt, τ)) and h (m∗ (uSt, τ))
exist everywhere. Moreover, if f (·) is everywhere positive, then h (·) is nonzero
everywhere, so (A5) is strictly positive at τ = 0, if it exists. Now, (A6) is always
0 at τ = 0, hence (11) cannot hold when τ = 0: the marginal allocative value of
raising τ is positive, whereas the marginal investment loss is 0.

Similarly, when τ = 1, if c is strictly convex, (A6) is always negative, and (A5)
is always 0. Hence, (11) cannot hold when τ = 1: the marginal investment gain
from lowering τ is positive, whereas the marginal allocative loss is 0. This proves
that the first-order condition (11) cannot hold at τ = 1 or τ = 0, proving that
the optimal τ must be interior.
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Allocative welfare. — Allocative welfare, for type uSt, is:∫ ∞
m∗(uSt,τ)

uBtdF (uBt) + uSt

∫ m∗(uSt,τ)

0
dF (uBt)

Note that we have:
dW (uSt, τ)

dτ
=
∂W

∂m

∂m

∂τ
Now,

∂W

∂m
= (uSt −m) f (m)

Now, define the inverse hazard rate function h (m) as:

h (m) ≡ 1− F (m)

f (m)

We can then write the markup FOC as:

m∗ (uSt, τ)− uSt − (1− τ)h (m∗ (uSt, τ)) = 0

Applying the implicit function theorem, we have:

(A7)
∂m

∂τ
=

−h (m∗ (uSt, τ))

1− (1− τ)h′ (m∗ (uSt, τ))

Hence,

dW (uSt, τ)

dτ
= (m∗ (uSt, τ)− uSt)

f (m∗ (uSt, τ))h (m∗ (uSt, τ))

1− (1− τ)h′ (m∗ (uSt, τ))

Substituting for m− uSt using (5) and simplifying, we have:

dW (uSt, τ)

dτ
= (1− τ)

(1− F (m∗ (uSt, τ)))h (m∗ (uSt, τ))

(1− (1− τ)h′ (m∗ (uSt, τ)))

The change in total allocative welfare is just the integral of this:

dW (τ)

dτ
=

∫ [
(1− τ)

(1− F (m∗ (uSt, τ)))h (m∗ (uSt, τ))

(1− (1− τ)h′ (m∗ (uSt, τ)))

]
dF (uSt)

which is (A5).
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Investment welfare. — Investment welfare is:

ψ∗t (τ)− c (ψ∗t (τ))

Differentiating, we have:
dW

dτ
=
∂W

∂ψt

∂ψ∗t
∂τ

Now,
∂W

∂ψt
= 1− c′ (ψt)

And, applying the implicit function theorem to (4), we have:

∂ψt
∂τ

= − 1

c′′ (ψt)

Hence,

(A8)
dW

dτ
= −1− c′ (ψt)

c′′ (ψt)

Since c′ (ψt) = 1− τ , we have (A6).

Supplemental material for Section III

B1. Proof of Claim 3

Since we have assumed away private values, buyers and license owners are
identical. In any period, the license owner can choose to sell for (1− τ) p, or buy
for τp. Buyers and the license owner agree on the continuation value in period t,
which is:

Vt

The license owner is willing to keep the asset if:

Vt − τpt ≥ (1− τ) pt

=⇒ pt ≤ Vt
The buyer is willing to buy if pt ≤ Vt. Thus, the unique market clearing price
is pt = Vt in each period, which makes license owners indifferent between buying
and selling in each period. In the first period, where there is no license owner,
bidders will bid until p0 = V0.

Since license owners are always indifferent between buying and selling, and there
is no uncertainty, to calculate a license owner’s utility, we can simply assume a
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single license owner purchases the license in period 0, and then keeps the good
forever. Her expected utility is:

(B1)

∞∑
t=1

βtE [ψt]︸ ︷︷ ︸
Asset use value

− p0︸︷︷︸
Initial license price

−
∞∑
t=1

βtE [τtpt]︸ ︷︷ ︸
License fee payments

The license owner must be indifferent between purchasing and not purchasing the
license in period 0. Setting (B1) to 0 and rearranging, we have:

(B2) p0︸︷︷︸
Initial license price

+
∞∑
t=1

βtE [τtpt]︸ ︷︷ ︸
License fee payments

=
∞∑
t=1

βtE [ψt]︸ ︷︷ ︸
Asset use value

The left hand side of (B2) is the expected net present value of the government’s
revenue, over the initial sale of the license and the future license fee payments.
The right hand side is the expected net present value of the future common use
values, ψt, of the asset; this is not affected by τt. Thus, (B2) shows that the net
present value of the government’s revenue does not depend on τt.

B2. Proof of Proposition 3

Prices in each auction are:

p = min [uBt + ψt + βV (τ) ,m∗ (uSt, τ) + ψt + βV (τ)]

= βV (τ) + ψt + min [uBt,m
∗ (uSt, τ)]

Thus, total tax revenue is:

τ

1− β
p =

τ

1− β
[βV (τ) + ψt] +

τ

1− β
EuSt∼F (·) [min [uBt,m

∗ (uSt, τ)]]

We thus have:

R (τ) = V (τ) +
τE [pt]

1− β

= V (τ) +
τ

1− β
[βV (τ) + ψ∗t (τ)] +

τ

1− β
EuSt∼F (·) [min [uBt,m

∗ (uSt, τ)]]

(B3)

R (τ) =
(1− β (1− τ))

1− β
V (τ) +

τ

1− β
EuSt∼F (·) [min [uBt,m

∗ (uSt, τ)]] +
τψ∗t (τ)

1− β
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Now, note that from (A4) of Appendix A, we have:

V (τ) =
(1− τ)ψ∗t (τ)− c (ψ∗t (τ))

1− β (1− τ)
+

EuSt∼F (·)

[∫m∗(uSt,τ)
0 [uSt − τuBt] dF (uBt) + (1− τ)m∗ (uSt, τ)

∫∞
m∗(uSt,τ) dF (uBt)

]
1− β (1− τ)

Hence,

(1− β (1− τ))

1− β
V (τ) =

(1− τ)ψ∗t (τ)− c (ψ∗t (τ))

1− β
+

EuSt∼F (·)

[∫m∗(uSt,τ)
0 [uSt − τuBt] dF (uBt) + (1− τ)m∗ (uSt, τ)

∫∞
m∗(uSt,τ) dF (uBt)

]
1− β

Hence,

R (τ) =
1

1− β
EuSt∼F (·)

[∫ m∗(uSt,τ)

0
[uSt − τuBt] dF (uBt) + (1− τ)m∗ (uSt, τ)

∫ ∞
m∗(uSt,τ)

dF (uBt)

]
+

τ

1− β
EuSt∼F (·) [min [uBt,m

∗ (uSt, τ)]] +
(1− τ)ψ∗t (τ) + τψ∗t (τ)− c (ψ∗t (τ))

1− β

(B4)

R (τ) =
1

1− β
EuSt∼F (·)

[∫ m∗(uSt,τ)

0
[uSt − τuBt] dF (uBt) + (1− τ)m∗ (uSt, τ)

∫ ∞
m∗(uSt,τ)

dF (uBt)

]
+

τ

1− β
EuSt∼F (·) [min [uBt,m

∗ (uSt, τ)]] +
ψ∗t (τ)− c (ψ∗t (τ))

1− β

Now, note that we can write:

τ

1− β
EuSt∼F (·) [min [uBt,m

∗ (uSt, τ)]] =

1

1− β
EuSt∼F (·)

[∫ m∗(uSt,τ)

0
τuBtdF (uBt) + τm∗ (uSt, τ)

∫ ∞
m∗(uSt,τ)

dF (uBt)

]
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Hence, (B4) becomes:

(B5)

R (τ) =
1

1− β
EuSt∼F (·)

[∫ m∗(uSt,τ)

0
[uSt − τuBt] dF (uBt) + (1− τ)m∗ (uSt, τ)

∫ ∞
m∗(uSt,τ)

dF (uBt)

]
+

1

1− β
EuSt∼F (·)

[∫ m∗(uSt,τ)

0
τuBtdF (uBt) + τm∗ (uSt, τ)

∫ ∞
m∗(uSt,τ)

dF (uBt)

]
+
ψ∗t (τ)− c (ψ∗t (τ))

1− β

Adding the two integrals, (B5) simplifies to:

R (τ) =
1

1− β
EuSt∼F (·)

[
uSt

∫ m∗(uSt,τ)

0
dF (uBt) +m∗ (uSt, τ)

∫ ∞
m∗(uSt,τ)

dF (uBt)

]
+

ψ∗t (τ)− c (ψ∗t (τ))

1− β

(B6)

R (τ) =
1

1− β
EuSt∼F (·) [uStF (m∗ (uSt, τ)) +m∗ (uSt, τ) (1− F (m∗ (uSt, τ)))]︸ ︷︷ ︸

Allocative

+

ψ∗t (τ)− c (ψ∗t (τ))

1− β︸ ︷︷ ︸
Investment

This is (14) of Proposition 3. We can now differentiate R (τ) by differentiating
each of the allocative and investment terms with respect to τ . Beginning with
the allocative term, we have:

1

1− β
EuSt∼F (·)

[
dm∗ (uSt, τ)

dτ

∂

∂m∗

[
uSt

∫ m∗(uSt,τ)

0
dF (uBt) +m∗ (uSt, τ)

∫ ∞
m∗(uSt,τ)

dF (uBt)

]]

=
1

1− β
EuSt∼F (·)

[
dm∗ (uSt, τ)

dτ
[1− F (m∗ (uSt, τ)) + (uSt −m∗) f (m∗ (uSt, τ))]

]
(B7)

=
1

1− β
EuSt∼F (·)

[
dm∗ (uSt, τ)

dτ
(1− F (m∗ (uSt, τ)))

[
1− (m∗ − uSt)

f (m∗ (uSt, τ))

(1− F (m∗ (uSt, τ)))

]]
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Now, from rearraging (5) of Proposition 1, we have:

(B8)
(m∗ − uSt) f (m∗ (uSt, τ))

1− F (m∗ (uSt, τ))
= 1− τ

Plugging (B8) into (1), we get:

(B9)
τ

1− β
EuSt∼F (·)

[
dm∗ (uSt, τ)

dτ
(1− F (m∗ (uSt, τ)))

]

Note that dm∗(uSt,τ)
dτ is always weakly negative, and all other terms in (B9) are

positive, hence (B9) is always weakly negative.

Now, the investment term in (B6) is:

ψ∗t (τ)− c (ψ∗t (τ))

1− β

Note that ψ∗t (τ) − c (ψ∗t (τ)) is just investment welfare. This is monotonically
decreasing in τ . From (A8) of Appendix A.A3, the derivative is:

(B10)
d

dτ

ψ∗t (τ)− c (ψ∗t (τ))

1− β
= − τ

(1− β) c′′ (ψt)

Expression (B10) is always negative. Combining (B9) and (B10), we get (15).
Now, when c has continuous second derivative, c′′ exists everywhere. When F
has continuous and bounded second derivatives, from (A7), ∂m∂τ is finite and exists
everywhere. Thus, all terms in R′ (τ) exist. When τ = 0, both terms are 0, so
R′ (0) = 0.

Supplementary material for Section IV

C1. Numerical simulations

In Figures A.1, A.2, and A.3, we simulate outcomes as we vary, respectively,
transactions costs, the number of buyers, and the time period before investments
pay off.

Figure A.1 varies transactions costs c. As we show in Subsection IV.A, this
is equivalent to shifting buyers’ values uniformly downwards by c, which for the
exponential distribution, means shifting x0 to x0 − c. The left panel of Figure
A.1 shows that, as we decrease transactions costs, allocative welfare decreases, as
well as the allocative welfare gain from increasing τ . Intuitively, when transac-
tions costs are high, buyers’ values tend to be lower than sellers’, so the welfare
distortions from markups are quantitatively smaller. Allocative welfare is still
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monotonically increasing in τ , but the gains are smaller the smaller x0 is. The
right panel shows that, taking investment welfare into account, the optimal τ
tends to be smaller when transactions costs are high, though it is always interior.

Figure A.2 varies the number of buyers. The left panel shows that, as the
number of buyers N increases, allocative efficiency tends to increase, since the
highest bidder’s private value tends to increase. As N gets very large, allocative
welfare is also a flatter function of τ . Thus, when N is very large, the optimal τ
approaches 0. This can be seen in the right panel: the optimal τ starts decreasing
for large N . However, note that in this example, the optimal τ does not vary
monotonically with N : the optimal τ is somewhat higher for N = 2, 3, 4 than it
is with N = 1.

Figure A.3 shows results from varying χ, the time horizon on which investments
pay off. The left panel shows that, when χ is large, τ decreases investment
incentives much more rapidly. The right panel shows that this leads to a decrease
in the optimal level of τ . However, the slope of investment welfare is always 0
when τ = 0, so the optimal τ is always interior.

Figure A.1. : Transactions costs
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Notes. The left plot shows allocative welfare as a function of transactions cost c.
The right plot shows total welfare. Vertical dotted lines represent the

welfare-maximizing values of τ , for different values of c. Throughout, values are
exponential with minimum 0. The exponential rate parameter is λ = 0.1. The

investment cost parameter is κ = 10.

C2. Proof of Claim 4

The payoff to the license owner of bidding p in the auction can be described as
follows.
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Figure A.2. : Competition
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Notes. The left plot shows allocative welfare as a function of N , the number of
buyers arriving each period. The right plot shows total welfare. Vertical dotted

lines represent the welfare-maximizing values of τ , for different values of N .
Throughout, sellers’ and buyers’ values are exponential with minimum x0 = 0,

and rate parameter λ = 0.1, and the investment cost parameter is κ = 10.

• With probability N (1− F )FN−1, the owner’s bid is the second highest bid,
so she sells her share (1− τ) of the license at p, and gets p (1− τ).

• With probability 1 −N (1− F )FN−1 − FN , the owner’s bid is lower than
the second highest bid, so she sells her share (1− τ) at the conditional
expectation of second highest bid.

• With probability FN , the owner keeps the asset, and pays τ times the
conditional expectation of the highest bid.

We can thus write the incumbent’s profit as:

(1− τ)

[∫ ∞
p

(b2 − p) dF2 (b2) + p (1− F1 (p))

]
+

(ψt + βV + uit) (F1 (p))− τ
∫ p

0
(ψt + βV + b1) dF1 (b1)
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Figure A.3. : Long-term investments
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Notes. The left plot shows investment welfare as a function of χ, the number of
periods that investments take to pay off. The right plot shows total welfare.

Vertical dotted lines represent the welfare-maximizing values of τ , for different
values of χ. Throughout, sellers’ and buyers’ values are exponential with
minimum x0 = 0, and rate parameter λ = 0.1. We set the investment cost

parameter, κ, equal to 10
2β2χ , which ensures that total attainable investment

welfare does not vary with χ.

where F1 and F2, respectively, are the distribution of the highest and second
highest buyers’ bids. In markup terms, this is:

(1− τ) (βV + ψt) + (1− τ)

∫ ∞
m

(b2 −m) dF2 (b2) +

(1− τ)m (1− F1 (m)) + uitF1 (m)− τ
∫ m

0
b1dF1 (b1)

Differentiate with respect to m, to get: and rearrange, to get:

(m− uit) f1 (m) = (1− τ) (F2 (m)− F1 (m))

Now, the distributions of the first and second highest buyers’ bids satisfy:

F1 = FN , f1 = NFN−1f

F2 = FN +NFN−1 (1− F )

Plugging in, we have:

(m− uit)
(
NFN−1 (m) f (m)

)
= (1− τ)

(
NFN−1 (1− F )

)
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Rearranging, we have (19).

C3. Proof of Claim 5

An increase in ψt affects the value of any asset owner in period t. The social
planner sets the marginal cost of investment in period t, ∂c

∂ψt+χ
, equal to its dis-

counted marginal value in period t + χ. A unit of investment is always worth 1
in period t+ χ, so it is worth βk in period-t dollars. This is (20).

To solve for equilibrium investment, let Vt be the expected value of an owner
in any period t, before her private value is known. We have:

Πt (uSt) =

∫ m∗(uSt,τ)

0
[(ψt + uSt + βVt+1)− τ (ψt + uBt + βVt+1)] dF (uBt) +∫ ∞

m∗(uSt,τ)
(1− τ) (ψt + βVt+1 +m∗ (uSt, τ)) dF (uBt)

= (1− τ) (ψt + βVt+1)+

∫ m∗(uSt,τ)

0
[uSt − τuBt] dF (uBt)+(1− τ)m∗ (uSt, τ)

∫ ∞
m∗(uSt,τ)

dF (uBt)

Since the second piece is stationary, we have:

E [Πt (uSt)] = E [(1− τ) (ψt + βVt+1)] +

EuSt∼F (·)

[∫ m∗(uSt,τ)

0
[uSt − τuBt] dF (uBt) + (1− τ)m∗ (uSt, τ)

∫ ∞
m∗(uSt,τ)

dF (uBt)

]

Define

W = EuSt∼F (·)

[∫ m∗(uSt,τ)

0
[uSt − τuBt] dF (uBt) + (1− τ)m∗ (uSt, τ)

∫ ∞
m∗(uSt,τ)

dF (uBt)

]

Then we have:

(C1) E [Πt (uSt)] = E [W + (1− τ) (ψt + βVt+1)]

Now, suppose during period t that ψt, . . . , ψt+χ−1 have been determined by past
license owners’ investments. We can expand the recursion in (C1) to get:

E [Πt (uSt)] = E [W + (1− τ) (ψt + β (W + (1− τ) (ψt+1 + βVt+2)))]
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Expanding further to χ periods in the future,

E [Πt (uSt)] =

E

t+χ∑
t̃=t

(1− τ)t̃−t β t̃−tW

+

t+χ∑
t̃=t

(1− τ)t̃−t+1 β t̃−tψt̃

+ (1− τ)χ+1 βχ+1Vt+χ+1


Hence differentiating with respect to ψt+χ, we have:

∂c

∂ψt+χ
= βχ (1− τ)χ+1

This proves Claim 5.

C4. Proof of Claim 6

First, we wish to calculate the price of the license once ψ is known, p (ψ). Since
all agents are identical, the auction price must make the license owner in each
period indifferent between holding the asset and selling the asset. This means:

p (1− τ)︸ ︷︷ ︸
Sale revenue

= ψ︸︷︷︸
Use value

− τp︸︷︷︸
Fee payment

+ β (1− τ) p︸ ︷︷ ︸
Next−period sale revenue

Rearranging, we have:

(C2) p (ψ) =
ψ

1− β (1− τ)

Since agents are indifferent between holding and selling, and there is no uncer-
tainty after ψ is realized, agents’ utility from owning the license is equal to their
revenue from selling the license, (1− τ) p (ψ). The price in the initial auction has
no uncertainty, so the variance in the utility of an agent who buys the license in
the first period is thus simply the variance of (1− τ) p (ψ) over uncertainty in ψ,
that is, the variance of:

(1− τ)ψ

1− β (1− τ)

This is (23).

Now, note that agents’ expected utility for owning the asset, after ψ is known,
must be equal to its price, since the price makes agents indifferent between owning
the asset and selling it in each period. The price in the initial auction has no
uncertainty, so the variance in the utility of an agent who buyers the license in
the first period is thus simply the variance of p (ψ) over uncertainty in ψ. This is
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(23).

Now, conditional on ψ, the administrator’s fee revenue is:

(C3)
τp (ψ)

1− β
=

τψ

(1− β) (1− β (1− τ))

The price in the initial auction has no uncertainty, so the variance of the admin-
istrator’s revenue is just the variance of (C3). This is (24).

Supplementary material for Section V

D1. Self-assessment mechanisms

In this appendix, we analyze self-assessment mechanisms. We assume the same
preference and investment structure as the baseline model. However, suppose
that the incumbent license owner must announce some price p. She pays τp to
the government regardless of what the buyer bids. If the buyer’s bid is higher
than the incumbent’s price, the incumbent is paid p, and the buyer takes the
asset. This is a “self-assessed tax” mechanism, in the sense that the incumbent
must pay taxes based on her self-assessed price p, which is also a binding reserve
price for buyers.

The following claim characterizes license owners’ optimal price-setting and in-
vestment decisions under this mechanism.

Claim 1. The license owner bids:

V + ψt +m

where V is the continuation value, which is common to buyers and the license
owner, and the optimal markup satisfies:

(D1) m− uSt =
(1− F (m))− τ

f (m)

Investment satisfies:

(D2) c′ (ψt) = 1− τ

Intuitively, Claim 1 says that, for the same τ , from (D2), investment incentives
are identical to those in Proposition 1, the baseline mechanism. However, the
incumbent’s optimal markup is different. From (D1), a incumbent with type uSt
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sets m equal to uSt, so allocative efficiency is achieved, when we have:

τ = 1− F (uSt)

that is, when τ is equal to the probability that the incumbent sells the asset. This
has a number of implications.

For any given incumbent type, full allocative efficiency can be achieved with a
τ which is strictly lower than 1. Intuitively, this is because the self-assessed tax
mechanism produces stronger incentives to set lower prices than the second-price
mechanism. Under the second-price mechanism, the incumbent’s price announce-
ment only indirectly affects the taxes she pays if she wins, by increasing the set of
buyer bids that she wins over; under the self-assessment mechanism, incumbents
always pay the price they announce, so they have stronger incentives to announce
low prices. As a result, for a single incumbent type, the optimal τ is more effi-
cient, because it achieves full efficiency at the cost of sacrificing less investment
welfare.

The self-assessment mechanism has two weaknesses relative to the second-price
mechanism we discuss in the main text. The optimal τ differs for different in-
cumbents: any given fixed τ will be too high for some incumbents and too low
for others. Since the license designer must commit to a sequence of τ ’s when
she allocates the license, it is not possible to adjust τ depending on the realized
incumbent types.1 Relatedly, with the self-assessed tax mechanism, it is possible
for the administrator to overshoot the optimal τ , and actually decrease allocative
efficiency. If τ is higher than 1 − F (m), license owners will announce markups
m below their private values uSt, and will sell too often, relative to the social
optimum.

Proof of Claim 1. — Under the self-assessment mechanism, if the incumbent
bids above the buyer, she gets:

(ψt + uSt + βV )︸ ︷︷ ︸
Continuation value

− τ (ψt +m+ βV )︸ ︷︷ ︸
Fee payment

That is, the incumbent pays the buyer’s bid, keeps the asset and gets her con-
tinuation value. If the incumbent bids below the buyer’s value, she gets paid her
bid for her share (1− τ) of the asset, that is:

(1− τ) (ψt +m+ βV )

1Any mechanism which attempted to elicit license owners’ types and use them to set τ would generate
further incentive problems; license owners who recognize their type announcements affect τ ’s will have
further incentives to distort their types.
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In either case, the investment cost c (ψt) is sunk. Hence, the incumbent’s expected
profit can be written as:

Πt =

∫ m

0
[(ψt + uSt + βV )− τ (ψt +m+ βV )] dF (uBt) +∫ ∞

m
(1− τ) (ψt +m+ βV ) dF (uBt)− c (ψt)

(D3) Πt = (1− τ) (ψt + βV )− c (ψt) +

∫ m

0
uStdF (uBt) +m

∫ ∞
m

dF (uBt)− τm

Differentiating with respect to m, we have:

(uSt −m) f (m) + (1− F (m))− τ = 0

Rearranging, we have (D1). Differentiating (D3) with respect to ψt and rearrang-
ing, we have (D2).

D2. The Vickrey-Clarke-Groves mechanism

Suppose the administrator allocates the asset by running a Vickrey-Clarke-
Groves (VCG) mechanism in each period. Suppose the common value of the
asset is ψt. Suppose the seller’s private value is uSt, and the buyer’s is uBt.
Let V represent the stationary value of being a seller at the start of any period
(which will generally be different under the VCG mechanism than in the baseline
model). Under the VCG mechanism, if uBt > uSt, then the buyer’s payment to
the administrator increases by the seller’s value,

(D4) uSt + ψt + βV

and the buyer receives the license. If uSt > uBt, then the seller’s net payment to
the administrator increases by the buyer’s value,

(D5) uBt + ψt + βV

and the seller receives the license. Now, we impose individual rationality period-
by-period for the seller: the seller must achieve higher utility than she would get
from refusing to participate in period t, then participating from t + 1 onwards,
in any period. This implies that the seller cannot make any payment to the
administrator if she keeps the license: payments can only be made if the license is
actually traded. Thus, in order for the seller’s net payment to the administrator
to be uBt+ψt+βV if she keeps the license, the seller must get paid uBt+ψt+βV
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if she sells to the buyer. Intuitively, the VCG mechanism with two agents is a
second-price auction for the buyer – the buyer must pay the seller’s true value to
keep the asset. It is a first-price auction for the seller: if she sells to the buyer,
she is paid the buyer’s true value for the asset.

Under this mechanism, the expected utility for a seller with type uSt in period
t is:

EuBt max [uBt + ψt + βV, uSt + ψt + βV ]

= ψt + βV + EuBt max [uBt, uSt]

Hence, the seller’s utility increases one-for-one with increases in ψt. The seller’s
optimal investment decision is thus:

c′ (ψt) = 1

which is socially efficient. Thus, the VCG mechanism achieves both allocative
and investment efficiency.

However, the VCG mechanism is not budget-balanced, period by period. In
fact, it is guaranteed to makes a budget deficit for the administrator, whenever
trade occurs. When trade does not occur, there are no payment. Trade occurs
whenever uBt > uSt, and the buyer pays (D4), whereas the seller is paid (D5).
Thus, whenever trade occurs, the administrator must subsidize the difference
between the buyer and sellers’ values, uBt − uSt.

We note that, when considering the upfront revenue V that the administrator
makes from the initial sale of the license, the VCG mechanism may still be budget-
balanced ex ante for the administrator: the present value of the upfront revenue
may be enough to cover the costs of future auctions. However, administrators may
not be able to commit to a mechanism which requires repeated, and in principle
unbounded, subsidies throughout the life of the mechanism.

Another weakness of the VCG mechanism is that it is vulnerable to collusion:
the buyer and seller can collude to extract subsidy revenue from the increases. If
the buyer raises her bid, her payment does not change, but the subsidy revenue
the seller receives from the administrator increases. This collusion strategy is
also possible when there are more bidders. Suppose, for example, that there
are multiple buyers, and suppose at least two buyers have values higher than
the seller’s value. The VCG mechanism then requires that the highest valued
buyer pays the second highest valued buyer’s value, whereas the seller is paid the
highest buyer’s value. This implies that market participants can collude to extract
revenue from the administrator: if the highest-valued buyer raises her bid, this
increases the payment the administrator makes to the seller, without changing
the price that the highest-valued buyer pays. In comparison, the depreciating
license mechanism always creates positive revenue for the government, every time
an auction is run.
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Numerical simulations

E1. Details of numerical simulations

In this appendix, we calculate results for the noncentered exponential distri-
bution, which are used in all numerical simulations: Figures 1, 2, A.1, A.2, and
A.3. Suppose buyers’ values uBt are drawn from the noncentered exponential
distribution, with minimum x0:

F (uBt) = 1− e−λ(uBt−xB), f (uBt) = λe−λ(uBt−xB)

Where x0 is the minimum of uBt. Sellers’ values are also noncentered exponential,
with a possibly different minimum value xS .

Allocative welfare. We will solve for markups and welfare conditional on
uSt. Applying (7) of Proposition 1, markups are:

m∗ (uSt, τ) = uSt + (1− τ)
e−λ(x−xB)

λe−λ(x−xB)

(E1) m∗ (uSt, τ) = max

[
uSt +

(1− τ)

λ
, xB

]
where, it is never optimal to set m (uSt) lower than xB, the minimum of buyers’
values. Allocative welfare for a seller with type uSt is thus:
(E2)
W (uSt, τ) = uStF (m∗ (uSt, τ)) +E [uBt | uBt > m∗ (uSt, τ)] (1− F (m∗ (uSt, τ)))

Now, for exponential distributions,

E [uBt | uBt > m∗ (uSt, τ)] = m∗ (uSt, τ) +
1

λ

Hence, plugging in expressions for F , (E2) becomes:
(E3)

W (uSt, τ) = uSt

(
1− e−λ(m∗(uSt,τ)−xB)

)
+

(
m∗ (uSt, τ) +

1

λ

)
e−λ(m∗(uSt,τ)−xB)

We can compute expected welfare by numerically integrating (E3) over uSt.

Investment. From (4) of Proposition 1, agents invest until:

ψt
κ

= 1− τ
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=⇒ ψ∗t (τ) = (1− τ)κ

Investment welfare is:

ψ∗t (τ)− ψ∗t (τ)2

2κ
= (1− τ)κ− ((1− τ)κ)2

2κ

=
(
1− τ2

) κ
2

Revenue. We can calculate revenue using expression (14) of Proposition 3.
Revenue for type uSt is:
(E4)

1

1− β

(
uSt

(
1− e−λ(m∗(uSt,τ)−xB)

)
+m∗ (uSt, τ) e−λ(m∗(uSt,τ)−xB)

)
+
ψ∗t (τ)− c (ψ∗t (τ))

1− β

We compute expected revenue by numerically integrating (E4) over uSt.

Transaction costs. If buyers must pay some transaction cost c, then their
private values are effectively drawn from a noncentered exponential distribution
with minimum x0 − c. All calculations are otherwise unchanged.

Long-term investment. If investment takes χ periods to pay off, the first-
order condition is (21). Agents invest until:

ψ∗t (τ)

κ
= βχ (1− τ)χ+1

=⇒ ψ∗t (τ) = βχ (1− τ)χ+1 κ

Investment welfare generated in each period is:

βχψ − ψ2

2κ

(E5) = β2χ (1− τ)χ+1 κ

(
1− (1− τ)χ+1

2

)

In the simulations of Figure A.3, for each χ, we set

κ =
10

2β2χ

The result is that total investment welfare – (E5) when τ = 0 – does not vary as
we change χ.

Auctions. Suppose there are N buyers. Let F1 (·) denote the CDF of the
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highest buyer’s value. This has distribution:

F1 (uBt) = FN (uBt) =
(

1− e−λ(uBt−xB)
)N

From Claim 4, sellers’ optimal markups are still described by (E1). To calculate
welfare, note that the license is transferred to the highest-valued buyer if her value
is higher than m∗ (uSt, τ), and kept by the seller otherwise. Hence, welfare for a
seller of type uSt is:

(E6) W (uSt, τ) = uStF1 (m∗ (uSt, τ)) +

∫ ∞
m∗(uSt,τ)

uBtdF1 (uBt)

For the simulations in Figure A.2, we calculate (E6) numerically for each uSt, and
then integrate over uSt.
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