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A.1 Proof of Lemma 1

Proof. We prove a slightly stronger statement than stated in the main body (this stronger

version will be used in Appendix A.4). We show that if the tax schedule is piece-wise

linear (as opposed to linear, as assumed in the main body), then for all (n, α) such that

optimal earnings z∗(n, α) is not a kink point of the tax schedule and z∗(n, α) is the unique

optimal earnings level for type (n, α), the Jacobian matrix of G(log(n), log(α)) is given

by the following expression:1

JG(log(n), log(α)) =

[
∂ log(z∗)
∂ log(n)

∂ log(z∗)
∂ log(α)

∂ log(h∗)
∂ log(n)

∂ log(h∗)
∂ log(α)

]
(log(n), log(α)) =

[
1 + ξuz ξcz

ξuh ξch

]
(log(n), log(α))

This stronger statement implies that if the tax schedule is linear, then the above ex-

pression for JG(log(n), log(α)) holds globally. For any individual not locating at a kink

point of the piece-wise linear tax schedule, the tax schedule is locally linear with tax rate

(1−T ′) and virtual income R. For any such individual, consider the first order conditions

with respect to h and e, evaluated at the optimal levels h∗ and e∗:

Uh(h
∗, e∗;n, α, 1− T ′, R) = αuc(nh

∗e∗(1− T ′) +R)ne∗(1− T ′)− vh(h∗, e∗) = 0

Ue(h
∗, e∗;n, α, 1− T ′, R) = αuc(nh

∗e∗(1− T ′) +R)nh∗(1− T ′)− ve(h∗, e∗) = 0

Where as before we define U(h, e;n, α, 1− T ′, R) as:

U(h, e;n, α, 1− T ′, R) ≡ αu(nhe(1− T ′) +R)− v(h, e)

Now, note that n and 1−T ′ enter the above equations only multiplicatively as n(1−T ′);
hence, it can be immediately deduced that the elasticities of h and e with respect to n

1If type (n, α) has more than one optimal earnings level, which can occur if the tax schedule has
decreasing marginal tax rates, G(log(n), log(α)) is no longer a function, it is a correspondence.
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must be the same as with respect to 1− T ′. Differentiating Uh and Ue with respect to n

and multiplying by n we get (noting c∗ = nh∗e∗(1− T ′) +R):

αuc(c
∗)ne∗(1− T ′) + αucc(c

∗)ne∗(1− T ′)2z∗ + Uhh(h
∗, e∗)

∂h∗

∂n
n+ Uhe(h

∗, e∗)
∂e∗

∂n
n = 0

αuc(c
∗)nh∗(1− T ′) + αucc(c

∗)nh∗(1− T ′)2z∗ + Uee(h
∗, e∗)

∂e∗

∂n
n+ Ueh(h

∗, e∗)
∂h∗

∂n
n = 0

Differentiating Uh and Ue with respect to (1− T ′) and multiplying by (1− T ′), we have:

αuc(c
∗)ne∗(1− T ′) + αucc(c

∗)ne∗(1− T ′)2z∗+

Uhh(h
∗, e∗)

∂h∗

∂(1− T ′)
(1− T ′) + Uhe(h

∗, e∗)
∂e∗

∂(1− T ′)
(1− T ′) = 0

(1)

αuc(c
∗)nh∗(1− T ′) + αucc(c

∗)nh∗(1− T ′)2z∗+

Uee(h
∗, e∗)

∂e∗

∂(1− T ′)
(1− T ′) + Ueh(h

∗, e∗)
∂h∗

∂(1− T ′)
(1− T ′) = 0

(2)

Hence, comparing terms, we must have that:

∂h∗

∂n
n =

∂h∗

∂(1− T ′)
(1− T ′)

∂e∗

∂n
n =

∂e∗

∂(1− T ′)
(1− T ′)

Thus, ξnh = ξuh . Finally, noting that log(z∗) = log(n) + log(h∗) + log(e∗), differentiating

with respect to n, and substituting in, we have that:

ξnz = 1 +
∂ log(h∗)

∂ log(n)
+
∂ log(e∗)

∂ log(n)
= 1 +

∂ log(h∗)

∂ log(1− T ′)
+

∂ log(e∗)

∂ log(1− T ′)
= 1 + ξuz

The 1 in the above equalities comes from the endowment effect of increasing n.

Lastly, note that α and 1−T ′ enter the first order conditions multiplicatively as α(1−T ′)
if we hold consumption constant. Intuitively, the elasticities of hours worked and earnings

with respect to α must be the same as the elasticities with respect to 1 − T ′, holding

consumption constant. In other words, the elasticities of hours worked and earnings with

respect to α must be the same as the compensated elasticities with respect to 1 − T ′.

More concretely, by differentiating Uh and Ue with respect to α and multiplying by α:

(3) αuc(c
∗)ne∗(1− T ′) + Uhh(h

∗, e∗)
∂h∗

∂α
α + Uhe(h

∗, e∗)
∂e∗

∂α
α = 0
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(4) αuc(c
∗)nh∗(1− T ′) + Uee(h

∗, e∗)
∂e∗

∂α
α + Ueh(h

∗, e∗)
∂h∗

∂α
α = 0

Differentiating Uh and Ue with respect to R and multiplying by z(1− T ′) we find:

(5) αucc(c
∗)ne∗(1− T ′)2z∗ + Uhh(h

∗, e∗)
∂h∗

∂R
z∗(1− T ′) + Uhe(h

∗, e∗)
∂e∗

∂R
z∗(1− T ′) = 0

(6) αucc(c
∗)nh∗(1− T ′)2z∗ + Uee(h

∗, e∗)
∂e∗

∂R
z∗(1− T ′) + Ueh(h

∗, e∗)
∂h∗

∂R
z∗(1− T ′) = 0

Subtracting Equations 5 and 6 from Equations 1 and 2, respectively:

αuc(c
∗)ne∗(1− T ′) + Uhh(h

∗, e∗)

(
∂h∗

∂(1− T ′)
− ∂h∗

∂R
z∗
)

(1− T ′)+

Uhe(h
∗, e∗)

(
∂e∗

∂(1− T ′)
− ∂e∗

∂R
z∗
)

(1− T ′) = 0

(7)

αuc(c
∗)nh∗(1− T ′) + Uee(h

∗, e∗)

(
∂e∗

∂(1− T ′)
− ∂e∗

∂R
z∗
)

(1− T ′)+

Ueh(h
∗, e∗)

(
∂h∗

∂(1− T ′)
− ∂h∗

∂R
z∗
)

(1− T ′) = 0

(8)

Hence, comparing terms in Equations 7 and 8 with Equations 3 and 4, we have that:

∂h∗

∂α
α =

(
∂h∗

∂(1− T ′)
− ∂h∗

∂R
z∗
)

(1− T ′)

∂e∗

∂α
α =

(
∂e∗

∂(1− T ′)
− ∂e∗

∂R
z∗
)

(1− T ′)

Using the definition of the compensated elasticity for i = e, h from Section II we get that

ξαh = ξch and ξαe = ξce. The relationship ξαz = ξcz follows from log(z∗) = log(n) + log(h∗) +

log(e∗), ξαh = ξch, and ξαe = ξce.

A.2 Recovering Optimal Effort from Earnings and Hours Worked

First, under the conditions in Proposition 1, we can invert the relationship between

(z∗, h∗) and (n, α) so as to write n and α in terms of z∗ and h∗. Hence, we can

also write e∗ as a function of z∗ and h∗. We have that log(e∗) = log(z∗) − log(h∗) −
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log(n(log(z∗), log(h∗))). Taking partial derivatives of log(e∗) w.r.t. log(h∗) and log(z∗):

∂ log(e∗)

∂ log(h∗)
= −1− ∂ log(n)

∂ log(h∗)
= −1 +

ξcz
(1 + ξuz )ξch − ξuhξcz

∂ log(e∗)

∂ log(z∗)
= 1− ∂ log(n)

∂ log(z∗)
= 1− ξch

(1 + ξuz )ξch − ξuhξcz

The equations for ∂ log(n)/∂ log(h∗) and ∂ log(n)/∂ log(z∗) come from inverting the deriva-

tive matrix of G in Proposition 1. Using ξcz = ξch+ξce and the Slutsky equations ξui = ξci +ηi

for i = z, h, e, we can rearrange to yield:

(9)
∂ log(e∗)

∂ log(h∗)
=
ξce + ξceηh − ξchηe
ξch + ξchηe − ξceηh

(10)
∂ log(e∗)

∂ log(z∗)
=

ξczηe − ξceηz
ξcz(1− ηe)− ξce(1− ηz)

Intuitively, the relationship between optimal hours and optimal effort depends on the ratio

between ξce and ξch. However, there are also terms in Equations 9 and 10 that depend on

the income effect parameters. Starting with Equation 9, as optimal hours increases, this

creates an income effect (which is negative) that causes optimal effort to fall, hence the

term ξceηh in the numerator. Similarly, as optimal effort rises, this causes an income effect,

leading optimal hours to fall, which in turn affects optimal effort, hence the term −ξchηe
in the numerator. Likewise, in the denominator of Equation 9, the converse logic holds,

hence the terms ξchηe and −ξceηh. Turning to Equation 10, increasing optimal earnings

leads to an income effect on effort, but increasing effort leads to a further income effect,

which decreases optimal effort, hence the terms ξczηe and −ξceηz. In the denominator of

Equation 10, changes in earnings lead to income effects, which further effect earnings via

income effects on earnings and income effects on effort.

Finally, if income effects are 0 so that ξui = ξci , then the above equations simplify to:

∂ log(e∗)

∂ log(h∗)
=
ξce
ξch

=
ξcz − ξch
ξch

∂ log(e∗)

∂ log(z∗)
= 0
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A.3 Proof of Proposition 2 with A Linear Tax Schedule

Proof. Recall that G : N × A → Z∗ × H∗ is the continuously differentiable function

that maps each (log(n), log(α)) to a (log(z∗), log(h∗)).2 Our goal is to find the inverse

function, G−1 : Z∗×H∗ → N ×A. By Lemma 1, we can recover the Jacobian derivative

matrix of the function G, denoted JG:3

JG(log(n), log(α)) =

[
∂ log(z∗)
∂ log(n)

∂ log(z∗)
∂ log(α)

∂ log(h∗)
∂ log(n)

∂ log(h∗)
∂ log(α)

]
(log(n), log(α)) =

[
1 + ξuz ξcz

ξuh ξch

]
(log(n), log(α))

We want to show that the mapping G is bijective, i.e., that each (n, α) chooses a unique

optimal (z∗, h∗) and each (z∗, h∗) is chosen by a unique (n, α). In order to show that G

is bijective, we need to first show that its Jacobian has an everywhere non-zero determi-

nant, which is necessary for local invertibility. We showed in the proof to Proposition

1 that, under the conditions stated in the proposition, JG has an everywhere positive

determinant. Moreover, (1 + ξuz ) > 0 (as 1 + ξuz − ξcz > 0 and ξcz > 0) and ξch > 0 so that

JG has all positive principal minors. Hence JG is a P-matrix. A mapping G on a closed

rectangular domain characterized by a P-matrix Jacobian must be bijective by Gale and

Nikaido (1965) Theorem 4 (we assume the elasticity conditions hold for all (n, α) ∈ R2
+

so that the domain is closed and rectangular).

Thus, the mapping G is globally invertible; moreover, by the inverse function theorem,

the Jacobian of the inverse mapping G−1 is given by:

JG−1(log(z∗), log(h∗)) =

[
∂ log(n)
∂ log(z∗)

∂ log(n)
∂ log(h∗)

∂ log(α)
∂ log(z∗)

∂ log(α)
∂ log(h∗)

]
(log(z∗), log(h∗)) =

[
1 + ξuz ξcz

ξuh ξch

]−1

(log(z∗), log(h∗))

From here, we simply pick a particular (z∗0 , h
∗
0) and normalize (log(n(z∗0 , h

∗
0)), log(α(z∗0 , h

∗
0))) =

(0, 0). Finally, if γ represents a path from (log(z∗0), log(h∗0)) to (log(z∗), log(h∗)), we have

by Stokes’ Theorem:4

(11)

[
log(n(z∗, h∗))

log(α(z∗, h∗))

]
=

[
0

0

]
+

∫
γ

JG−1(r)dr

Evaluating the path integral in Equation 11 allows us to match every optimal choice

of earnings and hours, (z∗, h∗), to a unique level of (n, α), i.e., to recover G−1. As an

2G will be continuously differentiable as long as the utility function is twice continuously differentiable.
3In practice, the observed Jacobian must additionally be consistent with some function G, i.e., the

Jacobian field must be conservative.
4We require that the set of observed (z∗, h∗) values be path connected.
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example, the following parametrization of γ allows us to calculate (n, α) for any (z∗, h∗):[
log(n(z∗, h∗))

log(α(z∗, h∗))

]
=

[
0

0

]
+

∫ log(z∗)

log(z∗0 )

JG−1(s, log(h∗0))

[
1

0

]
ds+

∫ log(h∗)

log(h∗0)

JG−1(log(z∗), s)

[
0

1

]
ds

A.4 Proof of Proposition 2 with Kink Points

If the tax schedule is piece-wise linear, the mapping from productivities and preferences

to earnings and hours worked will be more complicated for two reasons. First, bunching

at kinks where the marginal tax rate increases leads to a mapping that is no longer

injective. Second, if the tax schedule exhibits decreasing marginal tax rates between

some tax brackets, this means that some individuals will have multiple optimal earnings

levels so that G(log(n), log(α)) is now a correspondence rather than a function. Bunching

will mean that many types (n, α) pool on a single level of (z, h), which leads to two

challenges: (1) recovering (n, α) for each bunching individual and (2) relating the levels

of (n, α) for non-bunching individuals across different tax brackets. We show that (2) can

be solved but (1) cannot be fixed so that we can only recover G−1 : Z∗ ×H∗ → N ×A
for all individuals whose optimal earnings z∗ is not a kink point of the tax schedule. (1)

cannot be fixed as individuals who bunch at a kink point with the same hours of work

are observationally equivalent - hence, we cannot determine (n, α) for an individual who

bunches at the kink. Finally, the presence of decreasing marginal tax rates also leads

to the added difficulty of relating the levels of (n, α) for non-bunching individuals across

different tax brackets. However, as in the case of increasing marginal tax rates, we show

that this issue can be solved.

Proof. First, we consider the case of a piece-wise linear tax schedule with two brackets

with increasing marginal tax rates. Then we consider the case with two brackets and

decreasing maraginal tax rates. The logic then easily extends to the case with many tax

brackets, some of which may be increasing and some of which may be decreasing.

Note that all individuals (n, α) have a unique (z∗, h∗) under a piece-wise linear tax sched-

ule with increasing rates under standard assumptions (i.e., the Hessian matrix of U(h, e)

is negative definite ∀n, α). Hence, the function G : N × A → Z∗ × H∗ exists. Second,

within a given tax bracket, excluding the kink points, the mapping between (n, α) and

(z∗, h∗) is bijective under the assumptions in Proposition 2; this follows immediately from

the proof of Proposition 2 in Appendix A.3 applied to individuals in a single tax bracket

(i.e., constant tax rate). But this means that, for a given tax bracket, every (z∗, h∗) in

that tax bracket corresponds to a unique (n, α). Thus, excluding the kink points of the
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tax schedule, every (z∗, h∗) in every tax bracket corresponds to a unique (n, α). Thus,

the mapping between (n, α) and (z∗, h∗) is bijective globally (excluding kink points).

Now that we have established that there is a bijection between (n, α) and (z∗, h∗) ∀z∗ s.t.

z∗ is not a kink point, we need to determine how to map each (z∗, h∗) to its associated

(n, α). As before, pick a particular (z∗0 , h
∗
0) and normalize (log(n(z∗0 , h

∗
0)), log(α(z∗0 , h

∗
0))) =

(0, 0). Given this normalization, we want to be able to determine the value of (log(n), log(α))

that chooses any given (z∗, h∗). If z∗ is in the same bracket as z∗0 , we can simply integrate

the Jacobian as in the proof of Proposition 2. So consider trying to find the associated

value of (log(n), log(α)) for an individual with (log(z∗), log(h∗)) where z∗ is in the tax

bracket above z∗0 so that they are separated by a kink point at zK .

To do this, we will first investigate the set of individuals who choose to bunch at the kink

zK and work hours hK (there will be many different hours choices associated with zK ,

we have denoted a single arbitrary choice of hours as hK). Let the tax rate below zK be

given by T ′1 and the tax rate above zK be given by T ′2 > T ′1. Let (nmin, αmin) denote the

individual who chooses (zK , hK) who is just indifferent from the left (i.e., under T ′1) and

(nmax, αmax) denote the individual who chooses (zK , hK) who is just indifferent from the

right (i.e., under T ′2). The individual with (nmin, αmin) satisfies the following FOCs when

z = zK , h = hK , and e = zK/(n
minhK):

αminuc(c(z))nmine(1− T ′1)− vh(h, e) = 0

αminuc(c(z))nminh(1− T ′1)− ve(h, e) = 0

The individual with (nmax, αmax) satisfies the following FOCs when z = zK , h = hK and

e = zK/(n
maxhK):

αmaxuc(c(z))nmaxe(1− T ′2)− vh(h, e) = 0

αmaxuc(c(z))nmaxh(1− T ′2)− ve(h, e) = 0

How can we relate (nmax, αmax) to (nmin, αmin)? It turns out that nmax = nmin and

αmax(1− T ′2) = αmin(1− T ′1) as:

αmaxuc(c(zK))nmax
zK

nmaxhK
(1− T ′2)− vh(hK ,

zK
nmaxhK

)

= αminuc(c(zK))nmin
zK

nminhK
(1− T ′1)− vh(hK ,

zK
nminhK

) = 0
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and

αmaxuc(c(zK))nmaxhK(1− T ′2)− vh(hK ,
zK

nmaxhK
)

= αminuc(c(zK))nminhK(1− T ′1)− vh(hK ,
zK

nminhK
) = 0

Moreover, both (nmin, αmin) and (nmax, αmax) are unique.5 Because z∗ is increasing in α

(by Topkis’s theorem), the individuals that bunch at the kink zK and work hours hK are

those with n = nmin and αmin ≤ α ≤ αmin(1− T ′1)/(1− T ′2). Now, we finally show how,

conditional on the normalization (log(n(z∗0 , h
∗
0)), log(α(z∗0 , h

∗
0))) = (0, 0), we can recover

the level of (n, α) that chooses (z∗, h∗), where z∗ is in the tax bracket above z∗0 . By the

same logic as in the proof of Proposition 2, if γ1 represents a curve from (log(z∗0), log(h∗0))

to (log(zK), log(hK)), we can determine the value of (log(nmin), log(αmin)) by Stokes’

Theorem:

(12)

[
log(nmin)

log(αmin)

]
=

[
0

0

]
+

∫
γ1

JG−1(r)dr

Once we know (log(nmin), log(αmin)), we know nmax = nmin and αmax(1−T ′2) = αmin(1−
T ′1). Because type (nmax, αmax) chooses (log(zK), log(hK)) and is just indifferent under

the tax rate T ′2 in the tax bracket above zK , we can similarly apply Proposition 2 if γ2 is

a curve from (log(zK), log(hK)) to (log(z∗), log(h∗)):

(13)

[
log(n(z∗, h∗))

log(α(z∗, h∗))

]
=

[
log(nmax)

log(αmax)

]
+

∫
γ2

JG−1(r)dr =

[
log(nmin)

log(αmin
1−T ′1
1−T ′2

)

]
+

∫
γ2

JG−1(r)dr

This finishes the proof in the case of two tax brackets with increasing marginal tax rates.

Now we move on to the case of two tax brackets with decreasing marginal tax rates

T ′2 < T ′1. In this case, a different complication arises because individuals can have multiple

optimal earnings levels - one in each tax bracket. This means that G : N ×A → Z∗×H∗

is now a correspondence instead of a function.

Note, however that G : N × A → Z∗ × H∗ is still an injective correspondence, so that

no two (n, α) map to the same (z∗, h∗). Towards a contradiction, if two (n, α) were

mapped to the same (z∗, h∗), then naturally both (n, α) would face the same marginal

tax rate, but the assumptions in Proposition 2 ensure the relationship between (n, α)

and (z∗, h∗) is bijective under a constant tax rate. Thus, G can be inverted so that

G−1 : Z∗ ×H∗ → N ×A exists.

5Suppose not so that, for example, both (nmax1 , αmax1 ) and (nmax2 , αmax2 ) choose (zK , hK) and that
their FOC’s hold exactly under tax rate T ′2. This implies that the mapping between (n, α) and (z∗, h∗)
is not bijective for individuals subject to the same tax rate, which is not possible under the assumptions
in Proposition 2.
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Now that we have established that G−1 : Z∗×H∗ → N ×A exists, we need to determine

how to map each (z∗, h∗) to its associated (n, α). As before, pick a particular (z∗0 , h
∗
0)

and normalize (log(n(z∗0 , h
∗
0)), log(α(z∗0 , h

∗
0))) = (0, 0). Given this normalization, we want

to be able to determine the value of (log(n), log(α)) that chooses any given (z∗, h∗). If

z∗ is in the same bracket as z∗0 , we can simply integrate the Jacobian as in the proof of

Proposition 2. So consider trying to find the associated value of (log(n), log(α)) for an

individual with (log(z∗), log(h∗)) where z∗ is in the tax bracket above z∗0 .

The key is being able to determine a pair (z∗l , h
∗
l ) and (z∗h, h

∗
h) such that some type

(nm, αm) has two optimal earnings levels at (z∗l , h
∗
l ) and (z∗h, h

∗
h). If we know that there is

an individual with two optimal earnings levels at (z∗l , h
∗
l ) and (z∗h, h

∗
h), we can determine

(nm, αm) by integrating the Jacobian along a curve γ3 between (z∗0 , h
∗
0) and (z∗l , h

∗
l ) as

the tax rate is constant in this interval:

(14)

[
log(nm)

log(αm)

]
=

[
0

0

]
+

∫
γ3

JG−1(r)dr

Then, if we know that (z∗h, h
∗
h) is also chosen optimally by (nm, αm), we can simply

integrate the Jacobian along a path γ4 between (z∗h, h
∗
h) and (z∗, h∗) where z∗ is in the

tax bracket above z∗0 to determine the (n, α) associated with (z∗, h∗):

(15)

[
log(n(z∗, h∗))

log(α(z∗, h∗))

]
=

[
log(nm)

log(αm)

]
+

∫
γ4

JG−1(r)dr

How can we determine such a (nm, αm)? For a fixed n let us consider the earnings levels

chosen by each (n, α) under the tax rate in the first tax bracket T ′1. This can be determined

by simply integrating JG (calculated under T ′1 between (0, 0) and (log(n), log(α)) using

our normalization that (log(n(z∗0 , h
∗
0)), log(α(z∗0 , h

∗
0))) = (0, 0)). Next, we can determine

for any individual (n, α) the earnings they would choose if they faced the lower tax

rate in the second bracket T ′2 < T ′1 yet remained on the same indifference curve (denote

their utility by ū) using the compensated elasticity (which is the elasticity of earnings

with respect to one minus the tax rate, holding utility constant). This results from the

following relationship, where we allow the elasticity to vary with the tax rate for a given

(n, α):6

log(z∗(T ′2;n, α, ū)) = log(z∗(T ′1;n, α, ū))−
∫ T ′2

T ′1

ξcz(s;n, α, ū)ds

More generally, we can calculate the the earnings level associated with any tax rate T ′

6Note, we need to observe (or make assumptions about) how the earnings elasticity varies with the
tax rate between T ′1 and T ′2 for a given individual (n, α). Naturally, assuming the compensated elasticity
is constant as a function of the tax rate would be sufficient. This is a minor limitation of our approach.
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on the indifference curve giving utility ū as:

log(z∗(T ′;n, α, ū)) = log(z∗(T ′1;n, α, ū))−
∫ T ′

T ′1

ξcz(s;n, α, ū)ds

Because the compensated elasticity is always positive, we can invert this function to

determine T ′(z∗;n, α, ū). One can then determine the consumption level associated with

z∗(T ′2;n, α, ū) that yields utility ū. Define c∗(z;n, α, ū) as the consumption level associated

with a given z∗ on indifference curve with utility ū. Noting that:

∂c∗

∂z∗

∣∣∣∣
ū

= 1− T ′(z∗;n, α, ū)

we have:

c∗(z∗(T ′2);n, α, ū) = c∗(z∗(T ′1);n, α, ū) +

∫ z∗(T ′2)

z∗(T ′1)

1− T ′(s;n, α, ū)ds

Thus, for any given (n, α) who chooses z∗(T ′1) under the first tax rate T ′1, we can determine

the earnings level z∗(T ′2) and the corresponding consumption level c∗(T ′2) that would leave

this individual indifferent between z∗(T ′1) and z∗(T ′2). Finally, we can determine if this

z∗(T ′2) and the corresponding consumption level c∗(T ′2) lie on the actual tax schedule. If

so, then this individual is indifferent between two earnings levels - one in each tax bracket.

One can then search the space of (n, α) to find a (nm, αm) with multiple optimal earnings

levels and apply Equations to 14 and 15 to map each (z∗, h∗) to the associated (n, α).

This completes the case with decreasing marginal tax rates.

Note, Equations 12, 13, 14, and 15 can be easily generalized to account for more than 1

kink point, allowing us to match every (z∗, h∗) with z∗ not a kink point to a unique level

of (n, α) with arbitrary piece-wise linear tax schedules.

A.5 Proof of Proposition 3

Proof. The elasticities of h1, h2, ..., hm, e1, e2, ..., em with respect to n are related to the

uncompensated elasticity and the elasticities of h1, h2, ..., hm, e1, e2, ..., em with respect to

α are related to the compensated elasticities by the exact same implicit function theorem

logic as in Lemma 1. More specifically, we still have:

∂i∗

∂n
n =

∂i∗

∂(1− T ′)
(1− T ′)

10



and

∂i∗

∂α
α =

(
∂i∗

∂(1− T ′)
− ∂i∗

∂R
z∗
)

(1− T ′) =
∂i∗

∂(1− T ′)

∣∣∣∣
c

(1− T ′)

for i = h1, h2, ..., hm, e1, e2, ..., em. Hence for z = n(h1e1 + ...+ hmem):

∂z∗

∂n
n = z∗ + n

∂(h∗1e
∗
1 + ...+ h∗me

∗
m)

∂n
n

= z∗ + n
∂(h∗1e

∗
1 + ...+ h∗me

∗
m)

∂(1− T ′)
(1− T ′) = z∗ +

∂z∗

∂(1− T ′)
(1− T ′)

(16)

∂z∗

∂α
α = n

∂(h∗1e
∗
1 + ...+ h∗me

∗
m)

∂α
α

= n
∂(h∗1e

∗
1 + ...+ h∗me

∗
m)

∂(1− T ′)

∣∣∣∣
c

(1− T ′) =
∂z∗

∂(1− T ′)

∣∣∣∣
c

(1− T ′)
(17)

The second equality in both 16 and 17 follows by expanding the derivative according to

the product rule, using the elasticity relationships term by term, and then condensing.

Dividing both equations by z∗ yields: ξnz = 1 + ξuz and ξαz = ξcz. Hence, our Jacobian of

G : N ×A → Z∗ ×H∗1 is given by:

JG(log(n), log(α)) =

[
∂ log(z∗)
∂ log(n)

∂ log(z∗)
∂ log(α)

∂ log(h∗1)

∂ log(n)

∂ log(h∗1)

∂ log(α)

]
(log(n), log(α)) =

[
1 + ξuz ξcz

ξuh1 ξch1

]
(log(n), log(α))

Hence, we can apply the same logic as the proof to Proposition 2 to prove the current

Proposition (either in the case with a constant linear tax rate or in the more general case

with a piece-wise linear tax schedule).

A.6 Method with Labor Supply Frictions

Labor supply frictions imply that optimal hours worked h∗ and optimal earnings z∗ are

not equal to observed hours worked, denoted h̃, and observed earnings, denoted z̃. In

order to apply Proposition 1 (or Proposition 2 in the case of heterogeneous elasticities

and/or piece-wise linear tax schedules), the first step is to determine h∗ and z∗ from h̃

and z̃. We assume that we can recover optimal hours worked without frictions h∗ (via

survey, for example). Next, note that:

log(z∗) = log(z̃) + log(h∗)− log(h̃) + log(e∗)− log(ẽ)

Let us suppose that log(e∗) − log(ẽ) = q(log(h∗) − log(h̃)) for some function q(·). For

11



example, if individuals do not face any frictions in their choice of effort per hour and

effort disutility is separable from hours disutility, then log(e∗) − log(ẽ) = 0. Or we may

assume, for example, that log(e∗) − log(ẽ) = ξce/ξ
c
h(log(h∗) − log(h̃)). Regardless of the

particular assumption, we can then infer log(e∗)− log(ẽ) from log(h∗)− log(h̃), which in

turn implies we can infer log(z∗). Finally, we require estimates of the elasticities of z∗ and

h∗ with respect to the tax rate. Unfortunately, for most individuals we do not observe

these elasticities (because their observed earnings and hours responses to tax rates are

influenced by frictions). We can, however, observe these elasticities for subsets of the

population that do not face frictions (e.g., the unemployed or Uber drivers).7 We then

assume all individuals who face frictions would have the same elasticities if they did not

face any frictions as the subset of individuals who we observe without frictions.

At this point, we have all of the required elements to apply Proposition 1 (or Proposition

2 in the case of heterogeneous elasticities and/or piece-wise linear tax schedules): the

distribution of optimal hours and optimal earnings as well as the elasticities of these

objects with respect to the tax rate.

A.7 Dynamic Analogue to Lemma 1

Suppose that agents have made labor supply decisions up to some time t, so that their

human capital K and past labor supply decisions at times 1, ..., t− 1 are fixed. We want

to show that the relationships ξnt
zt = 1 + ξuzt , ξ

nt
ht

= ξuht , ξ
α
zt = ξczt , and ξαht = ξcht hold. Let

us denote the growth rate of the effort wage at time t as qt(ht, et) and the cumulative

growth Qt ≡
∏t−1

s=1 qt(ht, et). The problem for the individual starting at a time t can be

represented as (using the fact that for any time s ≥ t, ns = n0KQs = nt
∏s−1

k=t qk(hk, ek) =

nt(Qs/Qt)):

max
{h}Ls=t,{e}Ls=t

L∑
s=t

βs [αu(cs)− v(hs, es)]

s.t. cs ≤ nt
Qs

Qt

hses(1− T ′) +R

Alternatively, we could define ν = nt(1− T ′) rewrite this problem as:

max
{h}Ls=t,{e}Ls=t

L∑
s=t

βs [αu(cs)− v(hs, es)]

s.t. cs ≤ ν
Qs

Qt

hses +R

7Alternatively, one could try to estimate these elasticities by surveying individuals’ choices of earnings
and hours worked under different tax rates.
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Note then that for any choice variable i ∈ {h}Ls=t, {e}Ls=t, we have that:

∂ log(i∗)

∂ log(nt)
=
∂ log(i∗)

∂ log(ν)

∂ log(ν)

∂ log(nt)
=
∂ log(i∗)

∂ log(ν)
=
∂ log(i∗)

∂ log(ν)

∂ log(ν)

∂ log(1− T ′)
=

∂ log(i∗)

∂ log(1− T ′)

Hence, setting i = ht immediately gives us ξnt
ht

= ξuht . Similarly, we have ξnt
et = ξuet ; since

log(z∗t ) = log(nt) + log(h∗t ) + log(e∗t ), we get that ξnt
zt = 1 + ξuzt . Next, suppose that we

take first order conditions with respect to choice variables hk and ek (hours and effort

per hour at arbitrary time k), recalling zs = nt(Qs/Qt)hses:

L∑
s=t

βs
[
αu′(c∗s)

∂zs
∂hk

(1− T ′)
]
− βkv1(h∗k, e

∗
k) = 0

L∑
s=t

βs
[
αu′(c∗s)

∂zs
∂ek

(1− T ′)
]
− βkv2(h∗k, e

∗
k) = 0

Note that in the above FOCs, ∂zs/∂hk and ∂zs/∂ek are functions that are evaluated at

the optimal choices {h∗}Ls=t, {e∗}Ls=t (but we omit these arguments for the sake of brevity).

Defining θ = α(1− T ′), for i ∈ {h}Ls=t, {e}Ls=t we can rewrite our FOCs as:

L∑
s=t

βs
[
θu′(c∗s)

∂zs
∂hk

]
− βkv1(hk, ek) = 0

L∑
s=t

βs
[
θu′(c∗s)

∂zs
∂ek

]
− βkv2(h∗k, e

∗
k) = 0

These first order conditions allow us to derive ∂ log(i∗)/∂ log(α) using the implicit function

theorem. Using the fact that α does not enter the FOCs except through its affect on θ,

we have:
∂ log(i∗)

∂ log(α)
=
∂ log(i∗)

∂ log(θ)

∂ log(θ)

∂ log(α)
=
∂ log(i∗)

∂ log(θ)

Moreover, we also have that:

∂ log(i∗)

∂ log(1− T ′)
=
∂ log(i∗)

∂ log(θ)

∂ log(θ)

∂ log(1− T ′)
+

∂ log(i∗)

∂ log(1− T ′)

∣∣∣∣
θ

=
∂ log(i∗)

∂ log(θ)
+

∂ log(i∗)

∂ log(1− T ′)

∣∣∣∣
θ

Thus:
∂ log(i∗)

∂ log(α)
=

∂ log(i∗)

∂ log(1− T ′)
− ∂ log(i∗)

∂ log(1− T ′)

∣∣∣∣
θ

13



We now are going to show that:

∂ log(i∗)

∂ log(1− T ′)

∣∣∣∣
θ

=
L∑
j=t

∂ log(i∗)

∂Rj

z∗j (1− T ′)

Differentiating the FOCs with respect to 1−T ′, holding θ constant, the implicit function

theorem gives us the following two relationships (note there will be two such equations

for each time k):

L∑
s=t

βs
[
θu′′(c∗s)

∂zs
∂hk

z∗s(1− T ′)
]

+
∑

i∈{h}Ls=t,{e}Ls=t

∂i∗

∂ log(1− T ′)

∣∣∣∣
θ

∂

∂i

(
L∑
s=t

βs
[
θu′(c∗s)

∂zs
∂hk

]
− βkv1(h∗k, e

∗
k)

)
= 0

(18)

L∑
s=t

βs
[
θu′′(c∗s)

∂zs
∂ek

z∗s(1− T ′)
]

+
∑

i∈{h}Ls=t,{e}Ls=t

∂i∗

∂ log(1− T ′)

∣∣∣∣
θ

∂

∂i

(
L∑
s=t

βs
[
θu′(c∗s)

∂zs
∂ek

]
− βkv2(h∗k, e

∗
k)

)
= 0

(19)

Next, we define ∂i∗/∂Rj as the derivative of i∗ with respect to an income shock in period

j. Differentiating the FOCs with respect to Rj and multiplying by z∗j (1− T ′) gives us:

βj
[
θu′′(c∗j)

∂zj
∂hk

z∗j (1− T ′)
]

+
∑

i∈{h}Ls=t,{e}Ls=t

∂i∗

∂Rj

z∗j (1− T ′)
∂

∂i

(
L∑
s=t

βs
[
θu′(c∗s)

∂zs
∂hk

]
− βkv1(h∗k, e

∗
k)

)
= 0

βj
[
θu′′(c∗j)

∂zj
∂ek

z∗j (1− T ′)
]

+
∑

i∈{h}Ls=t,{e}Ls=t

∂i∗

∂Rj

z∗j (1− T ′)
∂

∂i

(
L∑
s=t

βs
[
θu′(c∗s)

∂zs
∂ek

]
− βkv2(h∗k, e

∗
k)

)
= 0

Summing these FOCs over j from t to L and switching the index of summation from j

to s in the first term, we get:

L∑
s=t

βs
[
θu′′(c∗s)

∂zs
∂hk

z∗s(1− T ′)
]

+
∑

i∈{h}Ls=t,{e}Ls=t

L∑
j=t

∂i∗

∂Rj

z∗j (1− T ′)
∂

∂i

(
L∑
s=t

βs
[
θu′(c∗s)

∂zs
∂hk

]
− βkv1(h∗k, e

∗
k)

)
= 0

(20)
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L∑
s=t

βs
[
θu′′(c∗s)

∂zs
∂ek

z∗s(1− T ′)
]

+
∑

i∈{h}Ls=t,{e}Ls=t

L∑
j=t

∂i∗

∂Rj

z∗j (1− T ′)
∂

∂i

(
L∑
s=t

βs
[
θu′(c∗s)

∂zs
∂ek

]
− βkv2(h∗k, e

∗
k)

)
= 0

(21)

Matching terms in Equations 20 and 21 with Equations 18 and 19 as in Lemma 1 (rec-

ognizing that these equations hold for all time periods k) we can state that:

∂i∗

∂ log(1− T ′)

∣∣∣∣
θ

=
L∑
j=t

∂i∗

∂Rj

z∗j (1− T ′)

Dividing by i∗ yields:

∂ log(i∗)

∂ log(1− T ′)

∣∣∣∣
θ

=
L∑
j=t

∂ log(i∗)

∂Rj

z∗j (1− T ′)

Thus, we have that:

∂ log(i∗)

∂ log(α)
=

∂ log(i∗)

∂ log(1− T ′)
−

L∑
j=t

∂ log(i∗)

∂Rj

z∗j (1− T ′)

Hence:
∂ log(h∗t )

∂ log(α)
=

∂ log(h∗t )

∂ log(1− T ′)
−

L∑
j=t

∂ log(h∗t )

∂Rj

z∗j (1− T ′)

and
∂ log(e∗t )

∂ log(α)
=

∂ log(e∗t )

∂ log(1− T ′)
−

L∑
j=t

∂ log(e∗t )

∂Rj

z∗j (1− T ′)

Using log(z∗t ) = log(nt) + log(h∗t ) + log(e∗t ) we get:

∂ log(z∗t )

∂ log(α)
=

∂ log(z∗t )

∂ log(1− T ′)
−

L∑
j=t

∂ log(z∗t )

∂Rj

z∗j (1− T ′)

Defining the compensated elasticities in the dynamic setting to be equal to:

ξcht ≡
∂ log(h∗t )

∂ log(1− T ′)
−

L∑
j=t

∂ log(h∗t )

∂Rj

z∗j (1− T ′)

and

ξczt ≡
∂ log(z∗t )

∂ log(1− T ′)
−

L∑
j=t

∂ log(z∗t )

∂Rj

z∗j (1− T ′)
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we have our stated relationship that ξαht = ξcht and ξαzt = ξczt as desired. In the dy-

namic case, the compensated elasticity represents how individuals respond to a change

in marginal tax rates less the lifetime income effects that occur due to this change in the

tax rate today as well as in all future periods.

The key idea is still that changing the tax rate leads to both a substitution effect as well

as an income effect. The difference in the dynamic setting is that the income effect of

a tax change yields an income boost not only in the current period but also in future

periods (because tax changes are permanent). Because α still only causes a substitution

effect, to relate changes in α to changes in the tax rate, we need to net out both current

and future income effects, leading to a modified compensated elasticity in the dynamic

setup. Note that perfectly estimating the lifetime income effects of tax changes may be

empirically challenging as it requires us to both estimate future earnings z∗j as well as

current responses to current and future income shocks ∂ log(i∗)/∂Rj for j = t, t+ 1, ..., L.

Nonetheless, we expect that we can make some sensible assumptions on these terms so as

to apply our method even when productivities are determined by previous labor supply

decisions.

A.8 Dynamic Case with Savings

We augment the discussion from Section IV.C to include savings. Suppose that individ-

uals can save at interest rate 1 + r and choose a level of assets at each period:

max
{h}Lt=0,{e}Lt=0,{a}Lt=0,K

L∑
t=0

βt [αu(ct)− v(ht, et)]− κ(K)

s.t. ct ≤ n0KQthtet(1− T ′) +R + (1 + r)at−1 − at
aL = 0

Suppose that agents have made labor supply decisions up to some time t, so that their

human capital K and past labor supply decisions at times 1, ..., t − 1 are fixed. The

problem for the individual starting at a time t can be represented as (using the fact that

for any time s ≥ t, ns = n0KQs = n0KQt

∏s−1
k=t qk(hk, ek) = nt

∏s−1
k=t qk(hk, ek)):

max
{h}Ls=t,{e}Ls=t,{a}Ls=t

L∑
s=t

βs [αu(cs)− v(hs, es, K)]

s.t. cs ≤ nshses(1− T ′) +R + (1 + r)as−1 − as
aL = 0

From the perspective of a single time period t, there are three relevant pieces of het-
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erogeneity: the MRS α, the effort wage nt = n0KQt, and the level of available savings

σt = (1 + r)at−1. If we can observe earnings, hours worked, and savings we can re-

cover the function G that maps each (log(nt), log(α), σt) to (log(z∗t ), log(h∗t ), σt). Denote

θσti ≡ ∂ log(i∗)/∂σt = ∂ log(i∗)/∂Rt, the one-time income effect semi-elasticity (which

could be empirically estimated as the behavioral response to a one-time income shock).

Using the dynamic version of Lemma 1 discussed in Appendix A.7 (which still holds with

savings, as the additional first order conditions for as do not change the relationship be-

tween elasticities with respect to n and α and the tax rate)8 the Jacobian of this function

is given by:

JG(log(nt), log(α), σt) =


∂ log(z∗t )

∂ log(nt)

∂ log(z∗t )

∂ log(α)

∂ log(z∗t )

∂σt
∂ log(h∗t )

∂ log(nt)

∂ log(h∗t )

∂ log(α)

∂ log(h∗t )

∂σt
∂σt

∂ log(nt)
∂σt

∂ log(α)
∂σt
∂σt


=

1 + ξuzt ξczt θσtzt
ξuht ξcht θσtht
0 0 1

 (log(nt), log(α), σt)

The mapping G is bijective under the same conditions as in Proposition 2 as all principal

minors of JG(log(nt), log(α), σt) are positive. So if we can observe z∗t , h
∗
t , and σt, along

with the elasticities to form JG, we can recover G−1 by the same process as in the proof

of Proposition 2. Note that if u(c) is linear in consumption so that income effects are 0,

we can identify G−1 without observing σt as σt will not affect optimal choice of earnings

or hours worked.9

A.9 Heterogeneity in Unearned Income

Suppose individuals have heterogeneity in unearned income M , so that the individual

problem is:

max
h,e

αu(c)− v(h, e)

s.t. c ≤ nhe(1− T ′) +R +M

Suppose further that we can observe unearned income M ∈ M and that we want to

recover the function that maps (log(z∗), log(h∗),M) to (log(n), log(α),M), denoted G−1 :

Z∗ ×H∗ ×M→ N ×A×M. Defining φi = ∂ log(i∗)/∂M , the Jacobian matrix is now

8This proof is omitted as it is contains no new insights beyond the dynamic analogue in Section A.7.
9This can be seen by inverting JG noting that θσt

zt = θσt

ht
= 0.
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given by:

JG(log(n), log(α),M) =


∂ log(z∗)
∂ log(n)

∂ log(z∗)
∂ log(α)

∂ log(z∗)
∂M

∂ log(h∗)
∂ log(n)

∂ log(h∗)
∂ log(α)

∂ log(h∗)
∂M

∂M
∂ log(n)

∂M
∂ log(α)

∂M
∂M


=

1 + ξuz ξcz φz

ξuh ξch φh

0 0 1

 (log(n), log(α),M)

This matrix has positive principal minors under the same conditions as in Proposition 2

(hence G is globally invertible); the rest of the procedure to recover G−1 is unchanged from

the proof of Proposition 2. Essentially, if individuals differ in terms of unearned income,

we first need to subtract out the component of optimal hours and optimal earnings due

to income effects using the parameters φh and φz. Then, we can recover n and α from the

component of optimal earnings and optimal hours that is not due to unearned income

effects.

A.10 Non-Separable Utility

It is useful to consider how our assumption of separable utility affects our result. Suppose

we have a utility function as follows:

max
h,e

u(αc, h, e)

s.t. c ≤ nhe(1− T ′) +R

Using the exact same sort of arguments as in Appendix 1 to prove Lemma A.1, we can

show that the Jacobian matrix of G : N ×A → Z∗ ×H∗ is now:

JG(log(n), log(α)) =

[
∂ log(z∗)
∂ log(n)

∂ log(z∗)
∂ log(α)

∂ log(h∗)
∂ log(n)

∂ log(h∗)
∂ log(α)

]
=

[
1 + ξuz ξcz + ∂ log(z∗)

∂R
c(z∗)

ξuh ξch + ∂ log(h∗)
∂R

c(z∗)

]
(log(n), log(α))

We can still recover G−1 using the method of Proposition 2 as long as this new Jacobian

matrix has positive principal minors. Sufficient conditions for this are: 1 + ξuz > 0, ξch +

(∂ log(h∗)/∂R)c(z∗) > 0 and (1+ξuz ) (ξch + (∂ log(h∗)/∂R)c(z∗)) > (ξcz + (∂ log(z∗)/∂R)c(z∗)) ξuh .

These conditions will hold as long as income effects are not too large.
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B Data Appendix

B.1 ATUS Data Description

The American Time Use Survey (ATUS) is an annual repeated cross-sectional survey

conducted on a subset of individuals who have participated in the CPS. We have data

for individuals surveyed in the years 2003-2015 (individuals are only surveyed once). In

addition to earnings data, the ATUS asks respondents to meticulously detail all of their

activities on a particular (random) “diary day”.

B.1.1 Sample Construction

We assume that the noisy “diary day” measure of hours worked is representative of

this individual’s average daily hours worked. We implicitly assume that all individuals

work Monday-Friday, thereby dropping individuals whose randomly assigned diary day

happened to fall on a Saturday or Sunday. Moreover, because we only have information

on individuals’ earnings in their primary occupation, we drop all individuals who have

≥ 2 jobs; this is around 3.4% of people. We also do not observe days worked per year,

so we impute that all individuals work 250 days a year unless they report being part-

time individuals and work > 8 hours on their diary day, in which case we impute their

days worked as 125. In other words, we assume that part-time individuals who work

long hours (> 8 hours per day) only work half of the usual working days. However, this

only applies to a small number of individuals as full-time workers comprise 85% of our

sample. We keep all individuals that have positive earnings in our sample, abstracting

from the possibility of joint familial labor supply decisions - our findings all hold with the

smaller sample of single individuals, shown in Appendix C.3. We drop individuals who

say they are involuntarily part-time in the CPS Annual Social and Economic Supplement

(ASEC); this hopefully mitigates the effect of labor supply frictions. However, because

we can only match around 30% of our ATUS sample to the CPS ASEC, there are 4,413

part-time individuals for whom we do not know whether they are involuntarily part-

time.10 Because nearly 80% of the matched part-time individuals do not report to be

involuntarily part-time, we keep the non-matched part-time individuals in our sample.

However, our findings are robust to dropping all part-time workers that we cannot match

to the CPS and all part-time workers that we can match who report to be involuntarily

part-time. Lastly, we winsorize the top and bottom 0.5% of hourly wage earners. Our

final sample from the ATUS then consists of data on (inflation adjusted) earnings and

diary hours worked for 35,004 unique individuals from the years 2003-2015.

10While the ATUS is a sub-sample of the CPS, the linking variables in the CPS ASEC only allow us
to uniquely identify a subset of households in the ATUS.
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Figure 1: log(AnnualHours) vs. log(Earnings), Earnings Above $100,000 in ATUS

B.1.2 Top Coding Earnings

The ATUS top-codes individual wage earnings at ≈ $145, 000 (the top-coding is not in-

flation adjusted so does not change over time). To deal with this, we assume that annual

hours (which we do observe for top-coded individuals) and earnings are independent at

the highest earnings levels. This allows us to simulate the earnings of these individuals

by drawing from a Pareto distribution (with Pareto parameter 2), which matches the

observed top earnings distribution quite well, see Saez (2001). In support of this inde-

pendence assumption, Figure 1 illustrates a near zero correlation between earnings and

annual hours worked for individuals who are not top-coded and make above $100, 000 per

year.

B.2 CPS Hours Worked Measure

The CPS Annual Social and Economic Supplement (ASEC), which has data on individual

earnings, also asks people how many hours they typically work per week as well as the

number of weeks they work per year. This may seem like a natural data source for our

purposes; however, we believe the measure of hours worked in this dataset suffers from

substantial reporting error. Individuals appear to report “notional” hours of work, which

may be drastically different from the number of hours they actually work. To support

this assertion, we examine how reported hours of work in the CPS compares to actual

hours worked for hourly wage workers, a subset of individuals for whom we believe we

can reasonably accurately measure their actual hours worked by dividing annual earnings

by their hourly wage rate.11 Figure 2 plots annual hours worked for hourly wage workers

11This measure is still imperfect due to overtime and bonuses.
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Figure 2: Hours Worked in the CPS

only: Panel 2a plots annual hours worked, calculated as wage earnings divided by hourly

wage and Panel 2b plots reported annual hours (reported hours per week multiplied by

reported weeks per year). In particular, 48% of hourly wage workers report working 40

hours per week and 52 weeks per year.12 This is clearly not in alignment with their

observed hours worked, calculated using their earnings divided by the wage rate; hence

we conclude that the hours worked measure from the CPS is a poor indicator of actual

hours worked for hourly workers. Because the reported annual hours worked distribution

is similar for non-hourly workers, we strongly suspect the same reporting bias plagues

the distribution of annual hours worked for non-hourly workers in the CPS.

Conversely, the measure of hours worked from the ATUS seems to match relatively well

with the distribution of actual hours worked for the hourly wage workers in the CPS. We

use the 1,253 hourly workers in the ATUS who can be matched in the CPS.13 For this set

of workers, Figure 3 compares the (kernel smoothed) distributions of annual hours worked

constructed using the (a) diary day method and (b) annual earnings divided by hourly

wage from the CPS (as shown above in Figure 2a). Despite a sample of only around

a thousand individuals, these distributions are relatively similar, providing suggestive

evidence that the ATUS diary day measure is giving us a noisy, yet relatively unbiased,

estimate of hours worked. The ATUS density has slightly more pronounced peaks at

≈ 1000 hours and ≈ 2000 hours simply due to the fact that we multiply diary day hours

by 250 for full-time workers and 125 for part-time workers who work > 8 hours per day.

12Individuals are likely reporting weeks employed as opposed to working weeks, which would net out
vacation.

13While the ATUS is a sub-sample of the CPS, the linking variables in the CPS ASEC only allow us
to uniquely identify a subset of households in the ATUS.
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C Additional Analysis and Results Appendix

C.1 Elasticity Heterogeneity

We augment the analysis from Section V to allow for heterogeneity in elasticities across

the space of hours worked. The median elasticity is still assumed to be ξcz = ξch = 0.15

and income effects are 0. We explore two scenarios: (1) elasticities linearly increase in

log hours so that the lowest hours-worked individual in society has an elasticity around 0

and the highest hours worked individual has an elasticity around 0.2; and (2) elasticities

linearly decrease in log hours so that the lowest hours worked individual has an elasticity

around 0.6 and the highest hours-worked individual has an elasticity around 0. Allowing

elasticities to vary with hours requires us to integrate the inverse Jacobian matrix as in

Proposition 2. Given that ξch = a+ b log(h) for some constants a, b we get:

JG−1 ==

[
1 −1

−1 1 + 1
a+b log(h)

]

Hence, to calculate (log(n), log(α)) that optimally chooses (log(z∗), log(h∗)) we integrate

this inverse Jacobian along a path between (log(z0), log(h0)) and (log(z∗), log(h∗)):

log(n) =

∫ log(z∗)

log(z0)

1ds+

∫ log(h∗)

log(h0)

−1ds

log(n) =

∫ log(z∗)

log(z0)

−1ds+

∫ log(h∗)

log(h0)

1 +
1

a+ b log(h)
ds

Once we know (log(n), log(α)) that optimally chooses each (log(z∗), log(h∗)), we can
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invert this function to determine (log(z∗), log(h∗)) as a function of (log(n), log(α)). This

function then allows us to determine counter-factual incomes. We plot average counter-

factual earnings (if all individuals had the same α) by actual earnings levels in Figure

4 for both increasing elasticities and decreasing elasticities. We plot average counter-

factual earnings (if all individuals had the same n) by actual earnings levels in Figure 5

for both increasing elasticities and decreasing elasticities. As discussed in the main text,

these Figures look nearly identical to the benchmark case without elasticity heterogeneity.

This results because, while the elasticities vary with hours worked, the correlation between

hours worked and earnings is not overly strong so that average elasticities do not vary

substantially over the earnings distribution.
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Figure 4: Average Counter-Factual Earnings (same α), Heterogeneous Elasticities

10
00

0
20

00
0

30
00

0
40

00
0

Av
er

ag
e 

C
ou

nt
er

-fa
ct

ua
l E

ar
ni

ng
s 

(s
am

e 
n)

0 50000 100000 150000 200000
Earnings

Benchmark Increasing Elasticities
45° Line

(a) Increasing Elasticity in Hours:
dξch
dh > 0

10
00

0
20

00
0

30
00

0
40

00
0

Av
er

ag
e 

C
ou

nt
er

-fa
ct

ua
l E

ar
ni

ng
s 

(s
am

e 
n)

0 50000 100000 150000 200000
Earnings

Benchmark Decreasing Elasticities
45° Line

(b) Decreasing Elasticity in Hours:
dξch
dh < 0

Figure 5: Average Counter-Factual Earnings (same n), Heterogeneous Elasticities
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C.2 Labor Supply Frictions

The National Study of the Changing Workforce (NSCW) has data not only on earnings

and hours worked, but also on the number of hours each individual would prefer to work

if they faced no frictions for 1992, 1997, 2002, and 2008; we pool all of these years to

construct our sample and adjust earnings for inflation. The NSCW asks individuals “If

you could do what you wanted to do, ideally how many hours in total would you like

to work each week?” We use the response to this question as our measure of optimal

hours of work. The distribution of actual and ideal weekly hours worked from the NSCW

is shown in Figure 6. The distributions of actual and ideal weekly hours are somewhat

similar although, on average, ideal hours is about 10% less than actual hours.

From Section IV.B, we also need elasticities of optimal earnings and optimal hours with

respect to the tax rate. We use estimates of earnings and hours elasticities for self-

employed people, who are likely subject to far fewer frictions than the non-self-employed.14

We use estimates from Heim (2010) who finds that the real (as opposed to reported)

earnings elasticity with respect to the tax rate for the self-employed is 0.4, i.e., ξuz = 0.4.

We assume that effort is exogenous so that ξuh = 0.4.15 Finally, we assume income effects

are 0 so that ξuz = ξcz = ξuh = ξch = 0.4.

First, we calculate the distribution of optimal hours worked and optimal earnings using

data on optimal hours worked. Optimal earnings are equal to z∗ = nh∗ where produc-

tivity n = z̃/h̃ is recovered by dividing observed earnings z̃ by observed hours worked

h̃. We then use the distribution of (z∗, h∗) to get the distribution of productivities and

preferences exactly as in Proposition 1, using our elasticity estimates for individuals who

face no frictions to form the Jacobian used to construct the inverse function. Next, we de-

termine the counter-factual optimal hours worked for each individual if they had wage n0:

h∗(n0, α). We then use the distribution of hours frictions for individuals who, in actuality,

have productivity ≈ n0 and preferences ≈ α.16 For all individuals, we draw a friction

εn0,α from this distribution of frictions for individuals whose productivity is ≈ n0 and

preferences are ≈ α and add it to their counterfactual hours. Then our counter-factual

earnings level for each person is given by zCF,Frictionsn0
= n0(h∗(n0, α) + εn0,α). Note that

because the value of εn0,α is random, the value of zCF,Frictionsn0
is different even for individ-

uals with the same (n, α). An analogous process is used to calculate the counter-factual

distribution assuming all individuals have preferences α0.

14Note, we assume that individuals who are not self-employed would respond to taxes in the same
manner as self-employed people if they did not face labor market frictions.

15We can, however, implement our method with frictions if effort is endogenous if we make an assump-
tion on the relationship between effort frictions and hours frictions, see Section IV.B.

16More precisely, we split the distribution of n and α into deciles and sample from the partition
containing n0 and α.
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Figure 6: Actual vs. Ideal Hours Worked per Week, NSCW
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Figure 7: Average Counter-Factual Earnings, Accounting for Labor Market Frictions

Note: Elasticities used to construct this figure are from Heim (2010): ξuz = ξcz = ξuh = ξch = 0.4.

In Figure 7 we show the average counter-factual earnings level vs. actual earnings as-

suming all individuals had the same n (7a) and assuming all individuals had the same α

(7b). First, note that accounting for frictions has a relatively modest effect on the average

counter-factual earnings plots relative to the Figures shown in Section V even though we

use the NSCW instead of the ATUS and we use elasticities from Heim (2010) instead of

Chetty (2012). Figure 7 is qualitatively similar to Figure 3 - the average counter-factual

earnings curve in Figure 7a is relatively flat (compared to the 45◦ line) and high earnings

individuals have lower average counter-factual earnings than middle earnings individu-

als, implying that higher earnings people have weaker preferences for consumption. In

Figure 7b, high earnings individuals have higher average counter-factual earnings than in

actuality, again suggesting that they have weaker preferences for consumption.
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Figure 8: Average Counter-Factual Earnings for Singles, Benchmark Elasticities

Note: Elasticities used to construct this figure are from Chetty (2012): ξcz = ξuz = ξch = ξuh = 0.15.
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Figure 9: Average Counter-Factual Earnings for Singles, Larger Effort Elasticity

Note: Figures show average counter-factual earnings for each observed earnings level assuming all individuals had the same
productivities (left) or the same preferences (right). The blue lines assumes elasticities are ξcz = ξuz = 0.15, ξch = ξuh = 0.05
and the red lines assumes benchmark elasticities ξcz = ξuz = ξch = ξuh = 0.15.

C.3 Results for Single Individuals

We construct our counter-factual earnings measures using only single individuals (those

with a household size of 1), thereby eliminating effects of dependents and spousal labor

supply. Figures showing average counter-factual earnings by actual earnings level are

plotted below, shown for all three of the elasticity estimates (benchmark, larger effort

elasticity, and larger income effects) shown in the paper. The same general pattern holds

for this restricted subset as in the main body using all earners.
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Figure 10: Average Counter-Factual Earnings for Singles, Larger Income Effects

Note: Figures show average counter-factual earnings for each observed earnings level assuming all individuals had the same
productivities (left) or the same preferences (right). The blue lines assumes elasticities are ξcz = ξch = 0.15, ξuz = ξuh = 0
and the red lines assumes benchmark elasticities ξcz = ξuz = ξch = ξuh = 0.15.

D Optimal Tax Simulation Appendix

We start with a distribution of productivities and preferences f(n, α) computed using our

method to recover individual (n, α) from labor supply elasticities as in Section V. We

then choose a utility function that is consistent with these elasticities. In our benchmark

elasticity case, we use:

U (1)(c, e, h;n, α) = log

(
αc− (eh)1+ 1

0.15

1 + 1
0.15

)

which exhibits the constant labor supply elasticities ξcz = ξuz = ξch = ξuh = 0.15. Note

all individuals are indifferent between any given value of eh. So that optimal choices of

h∗ and z∗ are consistent with the assumed elasticities, we break this indifference using

Equation 12 to determine log(e∗) = (ξcz − ξch)/(ξ
c
h) log(h∗), so that e∗(n, α) = 1 ∀n, α.

Next, we determine welfare weights for each (n, α) person under the preference neutral-

ity assumption from Fleurbaey and Maniquet (2006). Specifically, preference neutrality

implies that optimal tax rates are 0 if all inequality is due to preference heterogeneity.

Operationally, 0 tax rates everywhere will be optimal if all individuals have the same

marginal social value of consumption under 0 taxes (if the social marginal value of con-

sumption is equal across individuals there is no motive to redistribute).17 Normalizing

weights µ(n, 1) = 1, we get that µ(n, α)U
(1)
c (c∗, e∗, h∗;n, α) = U

(1)
c (c∗, e∗, h∗;n, 1) under 0

17Technically, this is only sufficient for a local optimal tax schedule - we assume it is also a global
optima.
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taxes. For our choice of utility function this implies (noting c∗ = nh∗e∗):

µ(n, α)
α

αnh∗(n, α)e∗(n, α)− (e∗(n,α)h∗(n,α))1+
1

0.15

1+ 1
0.15

=
1

nh∗(n, 1)e∗(n, 1)− (e∗(n,1)h∗(n,1))1+
1

0.15

1+ 1
0.15

Using the fact that e∗(n, α)h∗(n, α) = (nα)0.15 from the individual FOC:

µ(n, α) =
αn(nα)0.15 − ((nα)0.15)

1+ 1
0.15

1+ 1
0.15

αn(n)0.15 − α (n0.15)1+
1

0.15

1+ 1
0.15

=
αn(nα)0.15 − α1+0.15 ((n)0.15)

1+ 1
0.15

1+ 1
0.15

αn(n)0.15 − α (n0.15)1+
1

0.15

1+ 1
0.15

= α0.15

The government’s welfare function can be re-written as:

max
T (z)

∫ ∞
0

∫ ∞
0

α0.15 log

(
αc∗(n, α)− (e∗(n, α)h∗(n, α))1+ 1

0.15

1 + 1
0.15

)
f(n, α)dndα

= max
T (z)

∫ ∞
0

∫ ∞
0

α0.15 log

α
z∗(n, α)− T (z∗(n, α))−

(
z∗(n,α)

nα0.15/1.15

) 1.15
0.15

1.15
0.15


 f(n, α)dαdn

= max
T (z)

∫ ∞
0

∫ ∞
0

α0.15 log

z∗(n, α)− T (z∗(n, α))−

(
z∗(n,α)

nα0.15/1.15

) 1.15
0.15

1.15
0.15

+ α0.15 log(α)f(n, α)dαdn

= max
T (z)

∫ ∞
0

∫ ∞
0

α0.15 log

z∗(v)− T (z∗(v))−

(
z∗(v)
v

) 1.15
0.15

1.15
0.15

 f(α|v)dαf(v)dv

= max
T (z)

∫ ∞
0

α0.15(v) log

z∗(v)− T (z∗(v))−

(
z∗(v)
v

) 1.15
0.15

1.15
0.15

 f(v)dv

The first equality swaps the integrals and uses z∗(n, α)/(n) = e∗(n, α)h∗(n, α) and c∗(n, α)

= z∗(n, α)−T (z∗(n, α)). The second equality is algebra. The third equality uses the fact

that adding a constant α0.15 log(α) to the welfare function does not change the optimal

tax schedule so can be safely ignored and does a change of variables from (n, α) to (v, α)

(the Jacobian determinant is equal to 1). Following Lockwood and Weinzierl (2016), we

refer to v = nα0.15/1.15 as the unified type. We can easily compute f(α|v) and f(v) from

f(n, α). The fourth equality evaluates the inner integral, denoted by α0.15(v), recognizing

that

log

z∗(v)− T (z∗(v))−

(
z∗(v)
v

) 1.15
0.15

1.15
0.15
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is not a function of α.

Finally, we have expressed the problem as a standard uni-dimensional optimal tax prob-

lem in terms of the unified type v. Hence, we can use the standard Hamiltonian opti-

mization techniques to solve the problem as in Mirrlees (1971) or Saez (2001). I.e., the

optimal tax rates are found by solving a system of ODE’s derived from the envelope

condition and the law of motion for the costate variable of the Hamiltonian (Equations

(10) and (12) in Mirrlees (1971)).

For completeness, we show that we can also express the optimal tax problem as a uni-

dimensional problem under the other two sets of elasticity parameters considered in Sec-

tion V. First, if ξcz = ξuz = 0.15, ξch = ξuh = 0.05, the utility function

U (1)(c, e, h;n, α) = log

(
αc− (eh)1+ 1

0.15

1 + 1
0.15

)

is still consistent with these elasticities. The only difference is that because all individuals

are indifferent between any given value of eh, we must break this indifference by assuming

e∗(n, α) = (ξcz−ξch)/(ξch)h∗(n, α) = 2h∗(n, α). But other than that the problem is identical,

hence standard uni-dimensional Hamiltonian optimization can still be used.

If ξcz = ξch = 0.15, ξuz = ξuh = 0, then we use

U (2)(c, e, h;n, α) = α log(c)− (eh)
1

0.15

1
0.15

which exhibits the constant labor supply elasticities ξcz = ξch = 0.15, ξuz = ξuh = 0 under

constant taxes. Again, because hours and earnings elasticities are identical, we break

individual indifference over he by assuming e∗(n, α) = 1. Preference neutrality implies

that welfare weights satisfy:

µ(n, α)
α

c∗(n, α)
=

1

c∗(n, 1)

Under 0 taxes, c∗(n, α) = nα0.15, hence:

µ(n, α) =
nα0.15

αn
= α0.15−1
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We can rewrite the optimal tax problem as follows:

max
T (z)

∫ ∞
0

∫ ∞
0

α0.15−1

(
α log(c∗(n, α))− (e∗(n, α)h∗(n, α))

1
0.15

1
0.15

)
f(n, α)dndα

= max
T (z)

∫ ∞
0

∫ ∞
0

α0.15

log(z∗(n, α)− T (z∗(n, α))−

(
z∗(n,α)
nα0.15

) 1
0.15

1
0.15

 f(n, α)dαdn

= max
T (z)

∫ ∞
0

∫ ∞
0

α0.15

log(z∗(v)− T (z∗(v))−

(
z∗(v)
v

) 1
0.15

1
0.15

 f(α|v)dαf(v)dv

= max
T (z)

∫ ∞
0

α0.15(v)

log(z∗(v)− T (z∗(v))−

(
z∗(v)
v

) 1
0.15

1
0.15

 f(v)dv

The first equality swaps the integrals, multiplies and divides by α and uses (z∗(n, α))/(n) =

e∗(n, α)h∗(n, α) and c∗(n, α) = z∗(n, α)−T (z∗(n, α)). The second equality does a change

of variables from (n, α) to (v, α) (the Jacobian determinant is equal to 1). The unified

type is denoted v = nα0.15. We can again easily compute f(α|v) and f(v) from f(n, α).

The third equality evaluates the inner integral, denoted by α0.15(v), recognizing thatlog(z∗(v)− T (z∗(v))−

(
z∗(v)
v

) 1
0.15

1
0.15


is not a function of α. Again, this last optimization problem is a standard one dimensional

tax problem in terms of the unified type v so we can use Hamiltonian techniques to solve

for the optimal rates.

E Miscellaneous Figures Appendix
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Figure 11: Counter-Factual Earnings Distribution, Benchmark Elasticities

Note: Elasticities used to construct this figure are from Chetty (2012): ξcz = ξuz = ξch = ξuh = 0.15.
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Figure 12: Average Counter-Factual Earnings, Even Larger Effort Elasticity

Note: Figures show average counter-factual earnings for each observed earnings level assuming all individuals had the same
productivities (left) or the same preferences (right). The blue lines assume elasticities are ξuz = ξcz = 0.15, ξuh = ξch = 0.025
and the red lines assume benchmark elasticities ξcz = ξuz = ξch = ξuh = 0.15.
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(a) Benchmark Case
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(b) Higher Effort Elasticity
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(c) Large Income Effects

Figure 13: Optimal Marginal Tax Rates with Productivity and Preference Heterogeneity

Note: Elasticities in panel (a) are ξcz = ξch = ξuz = ξuh = 0.15. Elasticities in panel (b) are ξcz = ξuz = 0.15, ξch = ξuh = 0.05.
Elasticities in panel (c) are ξcz = ξch = 0.15, ξuz = ξuh = 0.
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