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A Theoretical Model

A.1 Additional notation

There is a unit mass of type-1 students and a unit-mass of type-2 students. Colleges have a fixed
capacity κ ∈ (0, 1); thus, 2κ represents overall capacity across the two institutions.

We solve the model backwards. In the third stage, following student application decisions and
university admissions offers, there are four possible student choice sets: choosing between both col-
leges, college 1 or 2 only, or only the outside option. The value of being accepted to both colleges
equals C12 = ln[exp(U1) + exp(U2) + 1].1 Likewise, we denote Y12 = exp(U1)/[1 + exp(U1) + exp(U2)]
as the yield for the first-choice college and y12 as the yield for the second-choice college for students
accepted to both. The value of being accepted to only the first choice equals C1 = ln[exp(U1) + 1],
and the corresponding yield is Y1 = exp(U1)/[1 + exp(U1)]. Similar expressions apply to the value
of being accepted to only the second choice (C2) and the corresponding yield is denoted by Y2, with
Y1 > Y2.

In the second stage, taking yield as given, schools set their admission rates in order to satisfy
capacity. We focus on an equilibrium in which all students apply to their first choice and a fraction b
of students also apply to their second-choice college. Then, admissions rates are set in order to equate
the number of student acceptances of university admissions offers to university capacity. For college
1, for example, total students acceptances equal the yield on first-choice students who are admitted
to college 1 plus the yield on second-choice students who both apply to and are admitted to college
1. This must then equal the overall university capacity, as expressed below:

0.5Q1 [(1− b)Y1 + bQ2Y12 + b(1−Q2)Y1]︸ ︷︷ ︸
yield on first-choice

+0.5Q1b [Q2y12 + (1−Q2)Y2]︸ ︷︷ ︸
yield on second-choice

= κ (1)

Among first-choice students, a fraction 1 − b apply to only their first choice, with yield of Y1, and a
fraction b also apply to their second choice. In the latter case, a fraction Q2 are also admitted to their
second choice, with yield of Y12, and a fraction 1 − Q2 are denied admission to their second choice,

*Knight: Brown University, 64 Waterman Street, Providence, RI 02906, brian knight@brown.edu. Schiff: Shanghai
University of Finance and Economics, 777 GuoDing Road, Shanghai, China, nschiff@gmail.com.

1This follows the standard formula for consumer surplus in a logit model. Similar derivations apply for type 2
students, given the symmetry of the model.
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with yield for college 1 thus equal to Y1. The second term represents yield on second-choice students,
with a fraction b applying to both colleges. Among these, a fraction Q2 are also admitted to their
first choice and yield thus equals y12. The remaining fraction (1−Q2) are not admitted to their first
choice and yield on these students equals Y2.

Then, in the first stage, applying to both colleges yields a value of A12 = Q1Q2C12 + Q1(1 −
Q2)C1 + (1 − Q1)Q2C2 − F − f for type 1 students. That is, students are accepted to both colleges
with probability Q1Q2, college 1 only with probability Q1(1 − Q2), college 2 only with probability
(1 − Q1)Q2 and face application costs of F + f . For type 1 students applying to only college 1,
the value equals A1 = Q1C1 − F . In equilibrium, the fraction of students applying to both colleges
increases until the value from a second application equals the value of a single application (A12 = A1).
This can be written as:

Q2[Q1(C12 − C1)︸ ︷︷ ︸
option-value

+ (1−Q1)C2︸ ︷︷ ︸
safety-value

] = f (2)

The option value from a second application represents the benefit of being able to attend college 2 when
the student has been accepted to both colleges, which occurs with probability Q2Q1. This captures
the idea that students may learn that college 2 is actually preferred to college 1 throughout the
admissions process, following the realization of ε1 and ε2. The safety value from a second application
represents the benefit of being able to choose college 2 if not admitted to college 1, and this event
occurs with probability Q2(1−Q1).

A.2 Conditions for an Interior Solution

Regarding equation 2, the key condition for a unique solution is that the upper solution to the
quadratic equation implies an admissions rate in excess of one. To ensure that only the lower solution
is feasible requires that application costs be small, relative to the benefits of a larger choice set:

F < C12 − C1 (3)

That is, the cost of a second application must be less than the option value of also being admitted
to one’s second choice. The requirement that F is small also guarantees that a solution exists, in the
sense that the discriminant is positive.

Regarding equation 1, we require the following condition for an interior solution:

QY1 < κ < Q2(Y12 + y12) +Q(1−Q)(Y1 + Y2) (4)

where Q is set at its equilibrium value and is thus a function of model parameters. The left hand
side of the inequality requires that college capacity is more than sufficient to accommodate accepted
students when all students apply to only their first choice, given equilibrium admissions rates. The
right hand side requires that the college capacity is not sufficient to accommodate the situation when
all students apply to both colleges, given equilibrium admissions rates. Thus, capacity can be neither
too small nor too large.

A.3 Equilibrium Solution

We first solve equation 2 for the equilibrium admissions rate. While this equation is quadratic in Q
and thus has two solutions in principle, the upper solution implies an admissions rate in excess of 1,
under the assumptions outlined above, and we thus focus on the lower solution:
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Q∗ =
C2 −

√
C2

2 − 4f(C1 + C2 − C12)

2(C1 + C2 − C12)
(5)

Given this equilibrium admissions rate, one can then calculate the equilibrium fraction of students
applying to both colleges via equation 1, yielding:

b∗ =
κ−QY1

Q2[Y12 + y12 − Y1] +Q(1−Q)Y2

(6)

where Q is set at equilibrium levels.

A.4 Proof of Proposition 1

Parts 1) and 2): In Equation 5, it is clear that equilibrium admissions rates are increasing in F .
Thus, a marginal reduction in F leads to a reduction in equilibrium admissions rates. This effect is
illustrated in Figure A1 below.

Figure A1: Effects on admissions rates
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Given that Q declines under the CA, we must next show that b is decreasing in Q. Taking the
derivative of equation 6 with respect to Q, we have:

db

dQ
=
−Y1

D
− (κ−QY1)[2Q(Y12 + y12 − Y1 − Y2) + Y2]

D2
(7)

where the denominator equals D = Q2[Y12 + y12 − Y1] + Q(1 − Q)Y2. This denominator is positive
since Y12 + y12 > Y1.

Substituting back in the definition of b, we have that:

db

dQ
=
−Y1 − b[2Q(Y12 + y12 − Y1 − Y2) + Y2]

D
(8)
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Re-arranging the numerator, this relationship can be written as follows:

db

dQ
=
−2bQ(Y12 + y12 − Y1) + (bQY2 − Y1)− bY2(1−Q)

D
(9)

Each of these three terms in the numerator are negative. In particular, the first term is negative
since Y12 + y12 > Y1. The second term is negative since Y2 < Y1, b < 1, and Q¡1. Finally, the third
term is negative since Q < 1 in equilibrium. Since the denominator must be positive for b to be
positive, the slope is negative. This change in application rates is illustrated in Figure A2 below.

Figure A2: Effects on applications
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Part 3): Note that the number of admitted students is equal to Q(1 + b), the product of the
admissions rate and the number of applications received. Using the closed form solution for b, This
can be written as:

Q(1 + b) = Q+Qb = Q+
κ−QY1

Q[Y12 + y12 − Y1] + (1−Q)Y2

(10)

Taking the derivative, we have that:

dQ(1 + b)

dQ
= 1− Y1

D
− κ−QY1

D2
[Y12 + y12 − Y1 − Y2] (11)

where the denominator equals D = Q[Y12 + y12 − Y1] + (1−Q)Y2.
Using the fact that Qb = [κ−QY1]/D, the slope can be re-written as:

dQ(1 + b)

dQ
= 1− Y1

D
− Qb

D
[Y12 + y12 − Y1 − Y2] (12)

This can be re-written as:

dQ(1 + b)

dQ
=
D − Y1 −Qb[Y12 + y12 − Y1 − Y2]

D
(13)

Since D is positive, we simply need to show that the numerator is negative. Since the term
Y12 + y12 − Y1 − Y2 is negative, the numerator is increasing in b. Thus, to show that it is negative
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for all b between 0 and 1, we simply need to show that it is negative when b = 1. In this case, and
canceling terms, the numerator can be written as Y2 − Y1, which is negative.

Part 4): The increase in out-of-state students follows directly from the increase in b resulting
from the reduction in F .

A.5 Extension to 3 Colleges

We next consider the case in which two colleges (c = 1 and c = 2) join the CA but a third college
(c = 3) does not join. In this case, there are three types of students, corresponding to the ex-ante
ranking of the third college. Type 1 students have ex-ante preferences that rank college 3 last (there
are two sub-types: either U1 > U2 > U3 or U2 > U1 > U3). Type 2 students have ex-ante preferences
that rank college 3 in the middle (either U1 > U3 > U2 or U2 > U3 > U1). Type 3 students have
ex-ante preferences that rank college 3 first (either U3 > U1 > U2 or U3 > U2 > U1). Given all of this,
we can write the ex-ante preferences of the three different types (six different sub-types) of students
as follows:

U1 > U2 > U3, 1.1

U2 > U1 > U3, 1.2

U1 > U3 > U2, 2.1

U2 > U3 > U1, 2.2

U3 > U1 > U2, 3.1

U3 > U2 > U1, 3.2

Let QCA and QN denote admissions rates at the CA colleges and the non-CA college, respectively.
Capacities are symmetric and equal κ.

We focus here on the case in which students do not apply to all three colleges.2 Let b1be the
fraction of type 1 students applying to their first and second choice and likewise for b2 and b3. The
capacity constraint for college 1 (college 2 is analogous) is now given by:

QCA[(1− b1)Y1︸ ︷︷ ︸
type 1.1

+ (1− b2)Y1︸ ︷︷ ︸
type 2.1

+

b1QCAY12 + b1(1−QCA)Y1︸ ︷︷ ︸
type 1.1

+ b2QNY12 + b2(1−QN)Y1]︸ ︷︷ ︸
type 2.1

+ (14)

QCA[b1QCAy12 + b1(1−QCA)Y2︸ ︷︷ ︸
type 1.2

+ b3QNy12 + b3(1−QN)Y2︸ ︷︷ ︸
type 3.1

] = κ (15)

And for college 3 it is:

2QN [(1− b3)Y1 + b3QCAY12 + b3(1−QCA)Y1︸ ︷︷ ︸
types 3

]+

2QN [b2QCAy12 + b2(1−QCA)Y2︸ ︷︷ ︸
types 2

] = κ (16)

2This could formalized by having a large difference in preferences between the second and third choice. For type 1.1
students, for example, U2 − U3 would be large.
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Prior to the CA, the three relevant indifference conditions are given, similarly to before, by:

Q2(C12 − C1) + (1−Q)QC2 = F (17)

With the introduction of the CA, the conditions become as follows for type 1 students:

Q2
CA(C12 − C1) + (1−QCA)QCAC2 = f (18)

However, for types 2 and 3, now they incorporate the two different admission rates. For type 2
students, taking the case of 2.1, we have that:

QCAQN(C12 − C1) + (1−QCA)QNC2 = F (19)

For type 3 students, taking the case of 3.1, we have that:

QNQCA(C12 − C1) + (1−QN)QCAC1 = F (20)

Claim: these three indifference conditions cannot be simultaneously satisfied
Proof: The introduction of the CA causes the right hand side in equation 17 to fall from F to f .

This implies that, given the admissions rate at CA schools, more type 1 individuals find it profitable
to apply to a second school, increasing bCA. However, under a higher bCA, CA colleges will have
excess demand, violating their capacity constraint (equation 15). Thus, QCA must decrease until type
1 students are indifferent between applying to a second school or not.3

Now, note that the fall in QCA causes the left hand side in equation 19 to increase, implying that
more type 2 students want to apply to a second college. However, the opposite happens with type 3
applicants. The fall in QCA pushes down the left hand side in equation 20, implying that fewer type
3 students want to apply to a second college.

Due to these opposing effects of a decrease in QCA for type 2 and type 3 students, both conditions
cannot be simultaneously satisfied, meaning that either b2 or b3 must be at a corner solution. More
formally, comparing the conditions for type 2 and type 3, we have that:

QCAQN(C1,2 − C1) + (1−QCA)QNC2 = QNQCA(C1,2 − C1) + (1−QN)QCAC2

This is only satisfied when QCA = QN . However, under this condition, the left hand side of the three
conditions are equal. But this is a contradiction with the fact that the first equation equals f , the
second and third equations equal F , with f < F .

Claim: There is no equilibrium with b2 = 1 and b3 interior.
Proof: Assuming that b1 is interior, and imposing symmetry, this would require the following:

Q2
CA(C1,2 − C1) + (1−QCA)QCAC2 = f

QCAQN(C1,2 − C1) + (1−QCA)QNC2 > F

QNQCA(C1,2 − C1) + (1−QN)QCAC2 = F

Comparing the conditions for type 1 and type 3 and using the fact that f < F , we have that:

3Note that an increase in bCA must accompany the fall in QCA. Else, if only QCA were to fall, colleges would not
meet the capacity constraint, as they would have open vacancies given the smaller admission rate.
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Q2
CA(C1,2 − C1) + (1−QCA)QCAC2 < QNQCA(C1,2 − C1) + (1−QN)QCAC2

Re-arranging, this can be written as:

QCA(QCA −QN)(C1,2 − C1 − C2) < 0

Since C1,2 − C1 − C2 < 0, this requires QCA > QN .
Comparing types 2 and 3, we have that:

QCAQN(C1,2 − C1) + (1−QCA)QNC2 > QNQCA(C1,2 − C1) + (1−QN)QCAC2

Re-arranging, this can be written as:

(1−QCA)QN > (1−QN)QCA (21)

This requires that QN > QCA. This contradicts that earlier requirement that QCA > QN .
Summary: The introduction of the CA leads to an increase in b1, the fraction applying to both

CA schools and a reduction in QCA. Given this, it must be case that b2 increases to 1 or that b3

decreases to zero since both cannot be interior. However, we have shown that b2 cannot equal 1,
meaning that b3 = 0. Thus, there is a reduction, all the way to zero, in the fraction applying to a
school outside of the CA and a school inside the CA. Given this, there are network effects with more
type 1.1 students attending college 2 and more type 1.2 students attending college 1. Likewise, there
are fewer type 3.1 students attending college 1 and fewer type 3.2 students attending college 2.

Quantitative analysis: To provide further evidence on the three college case, we choose param-
eters that guarantee interior solutions before the policy change. In particular, we set U1 = 2, U2 = 1,
κ = 0.55, and F = 0.3. Prior to the CA, colleges and students are symmetric, with Q = 0.2985 and
b = 0.0776. Introduction of the CA lowers F to f = 0.29. Under the CA, imposing that b3 = 0 in
the new equilibrium, the admission rate of the CA schools falls from Q = 0.2985 to Q′CA = 0.2844,
while the admission rate of the non-CA school also falls, but by a smaller degree, to Q′N = 0.2942.
These changes reflect the direct and indirect effects of the decrease in F on the different types of
students. Type 1 students are the only ones that benefit directly by the policy and strongly increase
their applications to a second school from b = 0.0776 to b′1 = 0.3346. On the other hand, type 2
students see their application rate grow only marginally, to b′2 = 0.0908. The reason is that type 2
students have as first choice a CA college followed by the non-CA college, so they do not enjoy the
lower application fee but do face the lower admission rate from the CA school, providing them with
incentives to apply to their second choice.

A.6 Extension to Test Scores

We consider three colleges (c) and two test score types: low and high. We assume that colleges want
to attract as many high test score students as possible and thus admit them with probability one.
Low test score students are then admitted at a lower rate in order to fill any remaining capacity.
Given our interest in stratification, we can then simply study the behavior of high test score students.
Given that high test score students are admitted with certainty, the model plays out differently in this
case. In particular, students will not be indifferent when choosing their application sets, and corner
solutions are now relevant for these high test score students. Given these corner solutions, we focus
on non-marginal changes in application costs.
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We focus here on two cases. In the first case, application costs are sufficiently high that high
test score students only apply to their first choice in the absence of the CA. For students with the
preference order U1 > U2 > U3, this requires:

C12 − C1 < F (22)

Suppose now that colleges 1 and 2, but not college 3, join the CA. Further, suppose that application
costs fall sufficiently such that C12 − C1 > f , and likewise for students with preference ordering
U2 > U1 > U3. Then, these two sets of students will apply to both colleges, and students with other
preference orderings are unaffected. Since these two sets of students are now more likely to attend
college (recall that Y12 + y12 > Y1), the fraction of high test score students at CA colleges increases.
The fraction of high test score students at colleges outside of the CA is unchanged.

In the second case, suppose that application costs are sufficiently low that high test score students
apply to their top two choices, but not their third choice, in the absence of the CA. For students with
the preference order U1 > U3 > U2, not applying to the third college requires:

C123 − C13 < F (23)

where C123 represents the value from having a full choice set of all three colleges. Suppose now
that colleges 1 and 2, but not college 3, join the CA, and application costs fall sufficiently such that
C123 − C13 > f , and likewise for all students that have college 1 or 2 as their third choice. Then,
all students except those with preference orderings U1 > U2 > U3 and U2 > U1 > U3 will apply to
all three colleges. Thus, there is an increase in applications for colleges 1 and 2 and no increase in
applications for college 3. Given that the yield on students accepted to college 3 now falls (resulting
from more college 3 applicants also applying to colleges 1 and 2), this implies that colleges 1 and 2
will now draw some high test score students who would have attended college 3 in the absence of the
CA. Thus, as in the first case, the fraction of high test score students at CA colleges increases. The
new effect here is that the fraction of high test score students falls at schools outside of the CA.

A.7 Extension to Student Income

We consider three colleges (c) and two income types: low-income and high-income. There are two
types of application costs. As before, the time cost of applying to a first CA college equals F and
the time cost of applying to a second CA college equals f ≤ F. The financial costs of applying to a
first CA colleges equals φ and the cost of applying to a second CA college also equals φ. We simplify
the model by assuming that low-income students can only apply to one college, perhaps due to credit
constraints. We also assume that colleges do not distinguish between low-income and high-income
students in terms of admissions probabilities. Given all of this, only high-income students decide
whether or not to apply to a second college. Thus, all of the results from the first extension apply
to high-income students but not low-income students. In particular, colleges 1 and 2, which are
members of the CA, experience an increase in applications from high-income students, relative to
college 3, which is not a member of the CA. Given this, colleges 1 and 2 ultimately enroll more
high-income students, relative to college 3, which ends up attracting more low-income students.
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Table B1: Summary Statistics

mean sd min max count
Applications 4462.01 6469.93 29.00 97121.00 34519
Yield 0.41 0.17 0.03 1.00 34361
Admits 2672.44 3380.56 25.00 36088.00 34556
Enrollment 931.38 1130.04 25.00 11807.00 38359
Selectivity 0.70 0.18 0.04 1.00 34468
Fraction Out of State 0.31 0.25 0.00 1.00 37628
SAT 25th pctile 967.22 136.67 410.00 1510.00 28534
SAT 75th pctile 1184.60 130.36 720.00 1600.00 28540
Non-White Enroll % 0.32 0.23 0.00 1.00 27517
PhD Faculty 222.80 348.97 0.00 3792.00 33893
Application Fee 29.82 16.84 0.00 150.00 40881
Ugrad Enroll % Pell 0.43 0.22 0.00 1.00 26821

All variables from College Board data except Ugrad Enroll % Pell;

this variable uses separate IPEDS and Dept. of Ed. data.

B Additional Empirical Results

B.1 Summary Statistics for Main Variables

B.2 Event Study Plots for Additional Outcome Variables

Figure B3: CA Entry and Enrollment
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(Eq. 4 in main text) using the full sample.
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Figure B4: CA Entry and PhD Faculty Count
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(Eq. 4 in main text) using the full sample.

B.3 Trends in Geographic Integration

Hoxby (2000) documents that the percentage of students attending in-state institutions fell consis-
tently from 1949 to 1994 and that the role of distance in explaining college choice decreased as well.
We extend this study of geographic integration into our sample period by measuring trends in distance
traveled from a student’s home state to the state of their university using IPEDS data over the period
from 1986 to 2014.4 In Figure B6 we plot the mean distance traveled in each year, along with 95
percent confidence intervals.5 As shown, there is a clear increase in distance traveled over this time pe-
riod, with the average distance traveled increasing by over 100 kilometers for private universities and
roughly 40 kilometers for public universities. Thus, the trends towards greater geographic integration
documented by Hoxby between 1949 and 1994 also appear over our sample period 1986-2014.

In Table B2 we calculate the average increase in geographic integration over time for public and
private institutions, using the specification yct = β1yearst + β2yearst × publicc + µc + εct. In column
1 we find that distance traveled increases by about 3 kilometers per year for private institutions and
1 kilometer per for public institutions, while column 2 specifies average distance in logs and shows
that both types of institutions have roughly the same percentage increase over time of 1.4 percent.
In columns 3 and 4 we examine the average distance traveled by out-of-state students only, which
allows us to distinguish the effect of a change in the percentage of out-of-state students from a change
in the geographic composition of the out-of-state students. Interestingly, the results show that while

4In particular, we measure the great circle distance in kilometers between state centroids, defining the distance for
all in-state students as zero

5Letting the subscript s denote a student’s state, we define the mean distance traveled by all students from US states

at college c in year t as avdistc,t = (1/nat enrollc,t)
∑
s∈S

enrollc,s,t ∗ distc,s. The variable nat enroll is total enrollment

from the 50 US states and D.C. The home location of foreign students and students from US territories is usually not
available, and therefore we excluded these groups from the total. However, students from these groups are counted in
total enrollment when calculating percentage of students attending in-state.
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Figure B5: CA Entry and Application Fee
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(Eq. 4 in main text) using the full sample.

Figure B6: Distance Traveled per Student
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to 2014, except 1990 (missing).
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Table B2: Geographic Integration by Institution Type

(1) (2) (3) (4) (5)
Distance Log Distance Distance Log Distance Out-of-state %

years 3.1867*** 0.0136*** 5.1360*** 0.0070*** 0.0014***
(0.2797) (0.0010) (0.3278) (0.0004) (0.0002)

years X public -1.9582*** 0.0001 -5.5110*** -0.0056*** -0.0001
(0.3571) (0.0018) (0.6052) (0.0007) (0.0003)

Constant 236.9366*** 4.6789*** 876.4421*** 6.5852*** 0.2941***
(2.9090) (0.0127) (4.2712) (0.0048) (0.0022)

Observations 20685 20236 20236 20236 20685
Clusters 1708 1688 1688 1688 1708

Notes: Results from estimating yct = β1yearst +β2yearst× publicc +µc + εct, where µc is an institution fixed
effect. The dependent variable in columns 1 and 2 is distance per student, in columns 3 and 4 it is distance
per out-of-state student, while column 5 shows percentage of out-of-state students at the institution. Distance
is measured in kilometers. Standard errors clustered by institution in parentheses.

out-of-state students at private institutions are traveling further each year, there is essentially no
increase in distance for out-of-state students at public institutions (the interaction effect is the same
magnitude as the main effect). This implies that the increasing distance traveled by public university
students comes entirely from an increase in the out-of-state percentage, which increases at about 0.14
percentage points each year for both types of institutions.

B.4 CA and Geographic Integration (IPEDS data)

As shown in Table B3, universities, after joining the CA, experience a significant increase in the
average distance students travel to attend, with column 1 documenting an increase of 30 kilometers,
a roughly 10 percent increase (column 2). Restricting to only out-of-state students, the distance
increases by 55 kilometers (column 3), an increase of 7 percent for this population (column 4). In
addition to out-of-state students traveling further, joining the CA also decreases the fraction of in-
state students by about 2.3 percentage points (column 5). Generally, the magnitudes of the effects in
Table B3 are large. Comparing each coefficient in Table B3 to its counterpart in Table B2, the effect
of joining is about 10 times larger than the yearly trend for distance measures and about 15 times
larger for in-state percentage.

As a further analysis of the effect of joining CA on distance traveled, we now consider the change
in the entire distribution of a college’s enrollees over distance. To do so, we restrict our sample to
only those institutions which joined the CA and which have migration data both three or fours years
before and three or four years after joining, depending on whether the institution joined in an odd or
even year. We then sum the enrollees across all universities in each period (pre, post) and calculate
the percentage coming from each state-to-state distance. This allows us to calculate two cumulative
distribution functions (CDF), where each bin of the CDF represents a given state-to-state distance
and we are calculating the percentage of students traveling that distance to all universities in a period.
We then plot the difference between the before and after CDF in Figure B7.6 The largest difference

6We truncate the graph at 4000km since the share of students coming from a greater distance is very small in both
periods.
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Table B3: CA Entry and Geographic Integration

(1) (2) (3) (4) (5)
Distance Log Distance Distance Log Distance Out-of-state %

CA member 30.1654*** 0.1044*** 55.1233*** 0.0700*** 0.0233***
(6.1947) (0.0255) (8.5535) (0.0105) (0.0048)

Observations 20629 20176 20176 20176 20629
Clusters 1652 1628 1628 1628 1652

Notes: Results from constant coefficient specification (Eq. 3 in main text) on full sample, using IPEDS
data. The dependent variable in columns 1 and 2 is distance per student, in columns 3 and 4 it is distance
per out-of-state student, while column 5 shows percentage of out-of-state students at the institution.
Distance is measured in kilometers. All specifications include institution and year fixed effects, standard
errors clustered by institution in parentheses.

occurs at zero, indicating that most of the effect comes from a 3 percentage point decrease in the
in-state percentage. The slope of this differenced CDF increases sharply and approaches zero, so
that a distance of 1200 kilometers the change is less than 1 percent, and then flattens. This shape
suggests that CA entry increases the distance traveled by enrollees by mostly increasing the number
of enrollees from nearby states.

B.5 Future Joiners Comparison: Methodology and Data Preparation

As described earlier, a key threat to identification in our analysis is that joiners might have different
pre-trends relative to the comparison group, which includes both schools that never join during our
sample period and schools that will join in the future but before the end of our sample period. We
address this concern with an additional specification in which we compare outcomes for joiners to
outcomes for colleges that will join the CA in the near future. Specifically, we compare schools that
joined in year j to schools that will join in years [j + 3, j + 5], over a pre-join period [j − 5, j − 1] and
a post-join period [j, j + 2]. This duration is short enough to make joiners and future joiners quite
comparable, but still long enough to estimate a post-join effect. For example, for a school joining
in 2000, the comparison group includes colleges that join in 2003, 2004, and 2005, and we analyze
outcomes over the 1995-2002 period.

This empirical strategy is similar, although not identical, to that used by Deshpande and Li (2019)
and we constructed our dataset in a similar way. We first assembled separate datasets of joiners and
future joiners for every join year j, and then appended each join year’s data into a single dataset.
The resulting dataset has some duplicate observations since the same school-year may serve as a
comparison observation for multiple join-years. For example, a school joining in 2004 is a comparison
observation for schools joining from 1999-2001. In all specifications we cluster standard errors at the
school level and therefore these duplicates do not affect inference. Additionally, since we compare
joiners to future joiners, most schools serve as both treated and comparison observations, over different
join years j. Therefore, following Deshpande and Li (2019), we also include an additional indicator
for whether a school is a joiner for a specific join year j as a comparison. The regression model using
this strategy is:

ln(yjct) = β ∗ (CAcjt) + µc + µt + α ∗ 1(Jc = j) + εjct (24)

The corresponding event-study specification is:
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Figure B7: Effect of CA Entry on Enrollment Share Change by Distance
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Notes: Enrollment share change defined as enrollment share before joining the CA minus the enrollment share after

joining the CA. The before period is 3 to 4 years before the join year; the after period is 3 to 4 years after the join

year. Distance is calculated between state centroids; in-state distance defined as zero. The graph is smoothed with the

median spline method using 50 bands. Sample has 265 unique institutions.

ln(yjct) =
w−1∑
k=−w

βk[1(Jc = j)× 1(t− Jc = k)] + µc + µt + α ∗ 1(Jc = j) + εjct (25)
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Figure B8: Pre-join Differences for each Identification Strategy
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