The Long-Run Impacts of Specialized Programming for High-Achieving Students

Online Appendix

Sarah Cohodes Teachers College Columbia University and NBER cohodes@tc.columbia.edu

Contents

Α	Additional Robustness Checks	1
в	Additional Figures and Tables	9
С	Results for Additional Subgroups	26
D	Results based on 6th Grade Eligibility	31

A Additional Robustness Checks

Online Appendix A discusses additional robustness checks and provides more detail on some of the robustness checks described in Section V.

A Additional Bandwidths

In Panel B of Online Appendix Tables A.1 and A.2, I report estimates where I vary the bandwidths but otherwise continue to use local linear regression with a triangular kernel. Generally, with smaller bandwidths, magnitudes are larger and less precise due to the small sample size. With the smallest bandwidth of 0.25, in the Black and Latino student sample, no impacts are statistically significant; for all students the AP estimate is marginally significant. Given that the bandwidths employed in the main results are very close to 0.5, estimates from this specification closely conform to the baseline specification, and are useful to compare across samples using the exact same bandwidth. Treatment effects are slightly smaller with the 0.75 and 1 unit bandwidths, with standard errors predictably smaller, with the overall conclusions similar to the main findings.

Estimates using the CCT bandwidths generated for each outcome are similar, though there is small variation in both directions in terms of magnitudes. The college enrollment estimate for all students becomes statistically significant, and the high school graduation estimate for Black and Latino students is no longer significant. The Imbens and Kalyanaraman (2012) procedure typically generates larger bandwidths than the CCT bandwidths, ranging between 0.61 and 1.15 for all students and 0.47 to 0.94 for Black and Latino students. For Black and Latino students, estimates using IK bandwidths line up closely with the baseline specification, with smaller standard errors, and the college quality estimate becomes marginally statistically significant. For all students, results are quite similar though a little smaller, which is not surprising given that the IK bandwidths for this sample tend to be on the larger side.

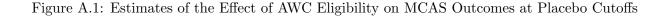
A Split Sample Test

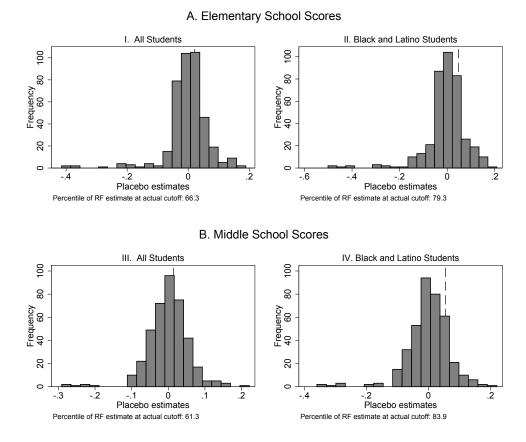
In addition to the placebo test in Section V.B, a second piece of evidence takes a different approach to the cutoffs. To address the concern that identifying the cutoff on the same sample that I am estimating the outcomes introduces endogeneity, I introduce a split sample approach as a robustness check in Online Appendix Table A.3. Here, I split each cohort into two randomly selected samples – the threshold estimation sample and the outcome estimation sample -10,000 times. On the former sample I estimate the empirical cutoffs using the exact same methods described in Section III.B.¹ I then apply that threshold to the latter sample, and estimate the fuzzy regression discontinuity estimates using my standard specification. The median estimate for each outcome from the 10,000 runs serves as the impact estimate of interest, and estimates at the 2.5th and 97.5th percentiles form a nonparametric 95 percent confidence interval, and estimates at the 5th and 95th percentiles serve as a 90 percent confidence interval. As shown in Online Appendix Table A.3, these nonparametric confidence intervals always include zero. However, the medians are generally in line with the main results, though slightly smaller, and the high school graduation and four-year college enrollment outcomes for Black and Latino students become nonzero around the 20th percentile. Given that this procedure halves the sample size used to estimate the effects, it is not surprising that there are a large number of outliers, and it is reassuring that the median of the estimates are generally

¹The correlation between these thresholds and the empirically derived thresholds for the full sample is 0.96.

similar. On the other hand, had I used the split sample approach as my main estimation strategy, I would not have found precise support for positive impacts of the program.

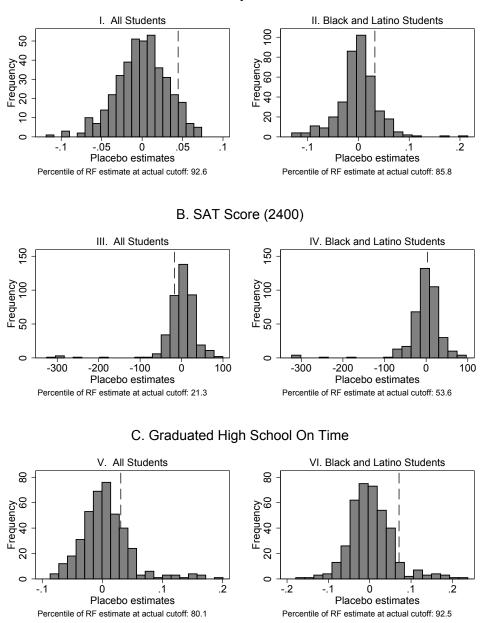
A Attrition


As discussed in Section III, there is no differential attrition by program eligibility, as shown in Online Appendix Table B.3. However, from middle school forward, there is a somewhat high level of overall attrition, with around 15 to 30 percent of the students not appearing in the data in later grades, with high school grades having the largest level of missing data. These students either leave the state, attend private schools, or drop out of high school. The state sends most students (84 percent) in my sample to match to the NSC, my source for college information, as seen in Column (10).²

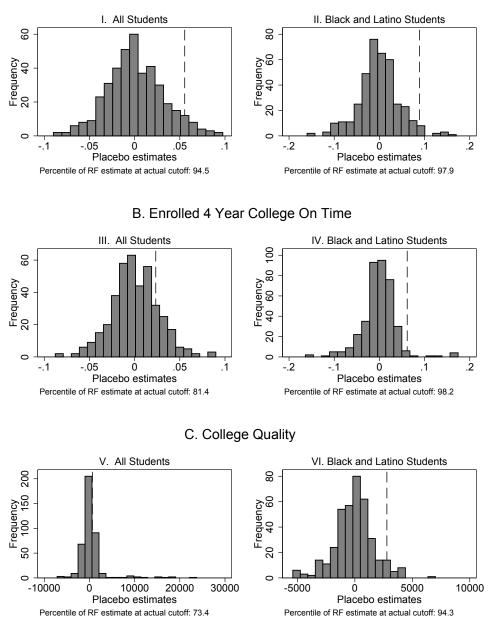

To address the concern that the somewhat high level of attrition might bias my findings, I rerun my analyses to account for attrition by substituting predicted outcomes for those missing data. To generate predicted outcomes, I use students beneath the AWC eligibility threshold to predict performance on outcome variables, using the demographic characteristics and baseline test scores listed in Panel A of Table 1, along with a year by school fixed effect. Applying these predicted probabilities to those missing data provides allows me to test whether attrition is driving my results. The findings are displayed in the last line of Panel A of Online Appendix Tables A.1 and A.2. Estimates using this strategy are quite similar, though slightly smaller than those in the baseline specification. This is not surprising, given that there is no discontinuity in the predicted probabilities applied to all students, as shown in Online Appendix Figures B.3 to B.5. In addition to this evidence using predicted outcomes, college enrollment results are some of the most consistent throughout the robustness checks, and those outcomes have lower levels of attrition. Results using only the first two cohorts of data (not shown) — in which 95 percent of students are sent to the NSC for matching — are very similar, though less precise given the smaller sample size.

References


- Calonico, Sebastian, Matias D Cattaneo, Max H Farrell, and Rocio Titiunik. 2017. "rdrobust: Software for regression discontinuity designs." *Stata Journal*, 17(2): 372–404.
- Imbens, Guido, and Karthik Kalyanaraman. 2012. "Optimal bandwidth choice for the regression discontinuity estimator." *The Review of Economic Studies*, 79(3): 933–959.


²This is because DESE sent some nongraduates to the NSC who enroll in at least 8th grade in a Massachusetts high schools and has occasionally conducted additional matches for researchers.


Notes: The above figure shows the frequency of estimates of the effect of AWC eligibility (the reduced form) on MCAS outcomes at placebo thresholds for all students (left side) and Black and Latino students (right side). Placebo thresholds place the threshold every 0.01 from [-3.2, 1], which is the area over which there are a sufficient number of observations on either side of the threshold to generate a regression discontinuity estimate. At each false cutoff, the standard specification is employed to estimate the effect of the offer of AWC on various outcomes. The dashed vertical lines are at the estimate of the reduced form (RF) at the standard cutoff. The percentile of the standard estimate is displayed under each panel. The figure displays estimates where at least 50 students are above the cutoff and 50 students are below the cutoff.



A. Took Any AP Exam

Notes: The above figure shows the frequency of estimates of the effect of AWC eligibility (the reduced form) on high school outcomes at placebo thresholds for all students (left side) and Black and Latino students (right side). Placebo thresholds place the threshold every 0.01 from [-3.2, 1], which is the area over which there are a sufficient number of observations on either side of the threshold to generate a regression discontinuity estimate. At each false cutoff, the standard specification is employed to estimate the effect of the offer of AWC on various outcomes. The dashed vertical lines are at the estimate of the reduced form (RF) at the standard cutoff. The percentile of the standard estimate is displayed under each panel. The figure displays estimates where at least 50 students are above the cutoff and 50 students are below the cutoff.

A. Enrolled Any College On Time

Notes: The above figure shows the frequency of estimates of the effect of AWC eligibility (the reduced form) on college outcomes at placebo thresholds for all students (left side) and Black and Latino students (right side). Placebo thresholds place the threshold every 0.01 from [-3.2, 1], which is the area over which there are a sufficient number of observations on either side of the threshold to generate a regression discontinuity estimate. At each false cutoff, the standard specification is employed to estimate the effect of the offer of AWC on various outcomes. The dashed vertical lines are at the estimate of the reduced form (RF) at the standard cutoff. The percentile of the standard estimate is displayed under each panel. The figure displays estimates where at least 50 students are above the cutoff and 50 students are below the cutoff.

	Elem. Scores (1)	M.S. Scores (2)	Took Any AP (3)	SAT Score (4)	H.S. Grad. (5)	Enroll Any College (6)	Enroll 4yr College (7)	College Quality (\$2014) (8)
(A) Specifications								
Baseline	0.058	0.041	0.118	-43.662	0.081	0.149^{*}	0.063	1788.007
	(0.078)	(0.079)	(0.085)	(38.057)	(0.059)	(0.080)	(0.081)	(3866.399)
With controls	0.070	0.039	0.117	-15.586	0.085	0.161^{**}	0.068	2320.541
	(0.072)	(0.074)	(0.084)	(34.913)	(0.058)	(0.081)	(0.082)	(3784.257)
With fixed effects	0.038	-0.018	0.123	-18.157	0.069	0.072	-0.020	-275.393
3 - -	(0.077)	(0.080)	(0.086)	(36.409)	(0.061)	(0.084)	(0.086)	(4104.450)
Derived cutoffs	0.041	0.021	0.138^{*}	-49.797	0.097^{*}	0.118	0.034	1401.901
	(0.074)	(0.075)	(0.080)	(35.930)	(0.055)	(0.078)	(0.077)	(3651.612)
Official cutoffs $(2003+)$	0.112	0.127	-0.054	-80.584	0.027	0.078	-0.077	-2322.835
	(0.109) 0.000	(0.108) 0.004	(0.128)	(39.788) 46.490	(0.083)	(0.112)	(0.121)	(5031.200)
Sugar and	0.029 (0.079)	0.004 (0.084)	0.133 (0.083)	40.433 (40 774)	(0.050)	0.070)	0700)	(4348 080)
Predicted	0.035	0.024	0.091	-30.201	0.070	0.132^{*}	0.054	1611.969
	(0.079)	(0.072)	(0.067)	(33.202)	(0.045)	(0.073)	(0.075)	(3514.144)
(B) Bandwidths								
BW = 0.25	0.149	0.209	0.252^{*}	38.296	0.057	0.210	0.154	2383.479
	(0.138)	(0.160)	(0.151)	(67.724)	(0.104)	(0.137)	(0.144)	(6580.986)
BW = 0.5	0.075	0.073	0.173^{*}	-31.627	0.105	0.158^{*}	0.075	1326.758
	(0.092)	(0.092)	(0.100)	(44.607)	(0.068)	(0.091)	(0.094)	(4396.205)
BW = 0.75	0.063	0.051	0.103	-35.286	0.072	0.150^{**}	0.062	2077.033
	(0.072)	(0.073)	(0.078)	(34.816)	(0.054)	(0.075)	(0.075)	(3610.297)
BW = 1	0.047	0.050	0.098	-24.674	0.056	0.149^{**}	0.077	1694.566
	(0.064)	(0.065)	(0.066)	(30.609)	(0.046)	(0.066)	(0.066)	(3200.350)
CCT	0.058	0.143	0.109	20.378	0.063	0.151^{**}	0.069	2050.880
	(0.079)	(0.124)	(0.082)	(59.830)	(0.050)	(0.074)	(0.072)	(3655.213)
ВV	0.640	0.336	0.688	0.297	0.861	0.782	0.837	0.730
IK	0.062	0.042	0.104^{*}	-37.148	0.074	0.149^{**}	0.067	1547.368
	(0.073)	(0.080)	(0.062)	(35.397)	(0.055)	(0.067)	(0.073)	(3981.550)
BW	0.727	0.628	1.150	0.728	0.717	0.940	0.796	0.613
Notes: Robust standard errors clustered by baseline school by year are in parentheses (* p<.10 ** p<.05 *** p<.01). The Baseline line follows the	rrors clustere	d by baseline	school by year	are in parentl	teses (* $p<.1$	0 ** p<.05 *** p	<.01). The Base	line line follows the
specification described in the previous tables, and each other line describes an alternative specification with deviations from the main specification	the previous	tables, and e	ach other line	describes an al	ternative spe	cification with de	viations from the	e main specification
described below. With controls which includes baseline demographics and test scores. With fixed effects includes a third grade by school fixed effect.	ntrols which in	ncludes baseli	ine demographi	cs and test sco	res. With fixe \tilde{x}	ed effects includes	a third grade by	^r school fixed effect.
Derived cutoffs uses only empirically derived AWC eligibility cutoffs. Official cutoffs uses only official AWC eligibility cutoffs and thus restricts the data	mpirically der	rived AWC ell	gibility cutoffs.	Official cutoff	s uses only of	icial AWC eligibil	ity cutoffs and the	us restricts the data
to 3rd grade cohorts from 2003 to 2005. Quadratic includes the full sample, a rectangular kernel, and a second order polynomial. Predicted substitutes	2003 to 2005. Qu	Quadratic in	cludes the full s	sample, a recta	ngular kernel.	nel, and a second ord	er polynomial. F	al. Predicted substitutes

predicted outcomes for missing data, with the prediction generated for non-Boston students applied to the Boston students. Panel B displays alternative bandwidths as noted. The CCT and IK rows respectively follow the Calonico, Cattaneo and Titiunik (2017) and Imbens and Kalyanaraman (2012)

procedures for estimating bandwidths and then apply the standard specification to that bandwidth.

Table A.1: Robustness Checks, All Students, Fuzzy Regression Discontinuity Estimates

	$\frac{\text{Scores}}{(1)}$	Scores (2)	$\begin{array}{c} \operatorname{Any} \operatorname{AP} \\ (3) \end{array}$	Score (4)	$\operatorname{Grad}_{(5)}$	College (6)	College (7)	Quality (\$2014) (8)
(A) Specifications								
Baseline	0.141	0.175	0.094	9.330	0.207^{**}	0.262^{**}	0.182	8224.384
	(0.115)	(0.129)	(0.127)	(49.072)	(0.095)	(0.116)	(0.120)	(5456.289)
With controls	0.115	0.137	0.082	16.698	0.205^{**}	0.265^{**}	0.168	8148.104
	(0.108)	(0.122)	(0.124)	(47.416)	(0.094)	(0.115)	(0.121)	(5372.983)
With fixed effects	0.094	0.081	0.113	11.205	0.168^{*}	0.209^{*}	0.102	9428.993
	(0.115)	(0.130)	(0.134)	(50.320)	(0.100)	(0.124)	(0.128)	(5799.958)
Derived cutoffs	0.115	0.136	0.125	-8.758	0.231^{***}	0.190^{*}	0.112	7998.262
	(0.109)	(0.122)	(0.117)	(46.610)	(0.087)	(0.109)	(0.113)	(5163.709)
Official cutoffs $(2003+)$	0.259	0.366^{**}	-0.033	-22.574	0.176	0.268	0.110	653.308
	(0.164)	(0.185)	(0.204)	(74.733)	(0.144)	(0.172)	(0.189)	(8624.200)
Quadratic	0.098	0.099	0.183	109.624^{*}	0.135	0.199^{*}	0.161	7456.631
	(0.120)	(0.147)	(0.131)	(59.459)	(0.096)	(0.116)	(0.121)	(5812.133)
Predicted	0.086	0.124	0.076	14.419	0.156^{**}	0.237^{**}	0.168	7973.466^{*}
	(0.115)	(0.111)	(0.095)	(39.621)	(0.069)	(0.102)	(0.107)	(4837.920)
(B) Bandwidths								
BW = 0.25	0.076	0.158	0.153	14.998	0.199	0.229	0.245	-2251.399
	(0.198)	(0.210)	(0.199)	(69.859)	(0.142)	(0.171)	(0.182)	(7399.390)
BW = 0.5	0.124	0.175	0.128	13.676	0.270^{**}	0.267^{**}	0.207	6784.605
	(0.136)	(0.148)	(0.144)	(54.596)	(0.108)	(0.129)	(0.134)	(5847.548)
BW = 0.75	0.150	0.190	0.083	15.959	0.176^{**}	0.249^{**}	0.164	8354.855
	(0.105)	(0.119)	(0.117)	(45.409)	(0.088)	(0.107)	(0.112)	(5150.498)
BW = 1	0.139	0.193^{*}	0.067	20.814	0.118	0.225^{**}	0.153	8224.834^{*}
	(0.091)	(0.104)	(0.102)	(40.631)	(0.077)	(0.094)	(0.098)	(4641.322)
CCT	0.081	0.150	0.078	9.757	0.131	0.258^{**}	0.206	2407.592
	(0.187)	(0.176)	(0.112)	(66.082)	(0.080)	(0.132)	(0.135)	(6251.161)
BW	0.272	0.328	0.818	0.278	0.926	0.464	0.492	0.361
IK	0.144	0.187^{*}	0.107	13.395	0.271^{**}	0.273^{**}	0.203	8240.749^{*}
	(0.112)	(0.107)	(0.136)	(54.186)	(0.110)	(0.123)	(0.129)	(4766.663)
BW	0.672	0.940	0.570	0.512	0.471	0.566	0.554	0.925

Table A.2: Robustness Checks, Black and Latino Students, Fuzzy Regression Discontinuity Estimates

specification described in the previous tables, and each other line describes an alternative specification with deviations from the main specification described below. With controls which includes baseline demographics and test scores. With fixed effects includes a third grade by school fixed effect. Derived cutoffs uses only empirically derived AWC eligibility cutoffs. Official cutoffs uses only official AWC eligibility cutoffs and thus restricts the data to 3rd grade cohorts from 2003 to 2005. Quadratic includes the full sample, a rectangular kernel, and a second order polynomial. Predicted substitutes predicted outcomes for missing data, with the prediction generated for non-Boston students applied to the Boston students. Panel B displays alternative bandwidths as noted. The CCT and IK rows respectively follow the Calonico, Cattaneo and Titiunik (2017) and Imbens and Kalyanaraman (2012) procedures for estimating bandwidths and then apply the standard specification to that bandwidth.

		All Students:	:S:		Black and Latino Students:	tudents:
		Nonparametric	Nonparametric		Nonparametric	Nonparametric
	Median	95% CI	90% CI	Median	95% CI	90% CI
	(1)	(2)	(3)	(4)	(2)	(6)
Elementary School Scores	-0.042	(-0.340, 0.255)	(-0.284, 0.204)	0.070	(-0.372, 0.493)	(-0.298, 0.427)
Middle School Scores	0.062	(-0.268, 0.418)	(-0.215, 0.360)	0.244	(-0.243, 0.831)	(-0.170, 0.716)
Took Any AP	0.165	(-0.163, 0.483)	(-0.108, 0.427)	0.025	(-0.471, 0.468)	(-0.376, 0.397)
SAT Score (2400)	-7.743	(-156.123, 143.674)	(-132.885, 115.745)	44.774	(-114.613, 215.579)	(-87.513, 186.764)
Graduate H.S. On Time	0.051	(-0.195, 0.285)	(-0.152, 0.250)	0.143	(-0.248, 0.536)	(-0.168, 0.454)
Any On Time College Enrollment	0.126	(-0.151, 0.424)	(-0.114, 0.372)	0.161	(-0.255, 0.609)	(-0.173, 0.539)
4-Year On Time College Enrollment	0.125	(-0.166, 0.446)	(-0.118, 0.392)	0.209	(-0.179, 0.677)	(-0.119, 0.592)
College Quality (\$2014)	3,852	(-12,101, 19,933)	(-9,238, 17,323)	7,340	$(-5,541,\ 21,746)$	(-3,390, 19,185)
Notes: In an alternative strategy for determining AWC eligibility cutoffs and estimating effects, students are randomly split into two samples, 10,000	etermining	AWC eligibility cutoffs	and estimating effects, s	students are	randomly split into two	o samples, 10,000
times. Empirical thresholds are determined in one sample, and tuzzy regression discontinuity estimates of the AWU effect are estimated for 8 key	mined in or	ie sample, and fuzzy re	gression discontinuity e	stimates of	the AWC effect are est	timated for 8 key
outcomes in the other sample, applying the thresholds from the first sample. The standard fuzzy regression discontinuity estimate is employed, except	g the thresh	olds from the first samp	ole. The standard fuzzy	regression c	liscontinuity estimate is	employed, except

Table A.3: Fuzzy Regression Discontinuity Estimates, Split Sample Test

the bandwidth is set at a standard 0.5 rather than re-estimated in each sample. This table reports the median estimate for each outcome from the 10,000 runs, as well as the 2.5th, 97.5th, 5th, and 95th percentiles. The range from the 2.5th to 97.5th percentile is thus the nonparametric 95% confidence interval and the range from the 5th to 95th percentile is the nonparametric 90% confidence interval.

B Additional Figures and Tables

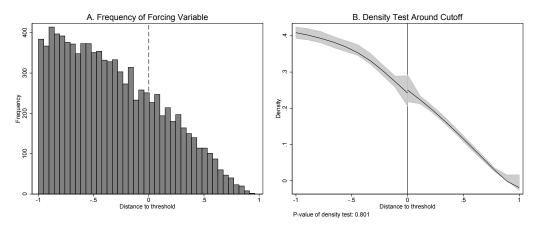
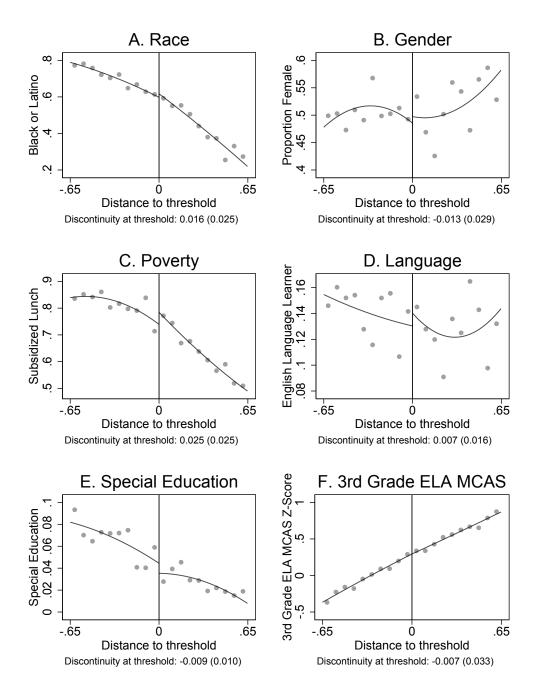



Figure B.1: Distribution of Scores near the Threshold

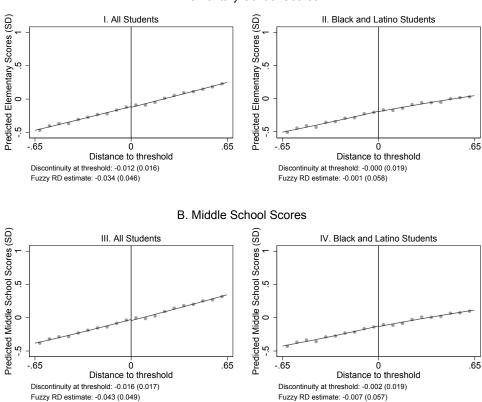
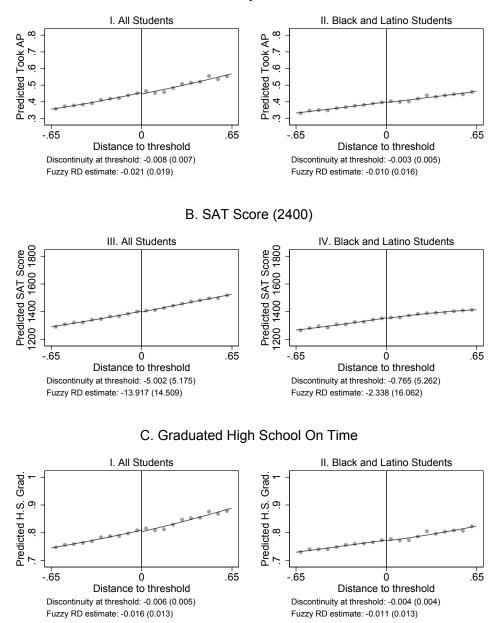
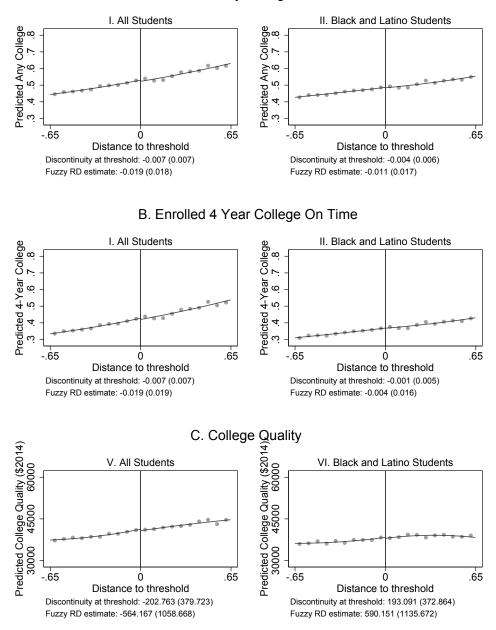

Notes: This figure shows the distribution of the running variable for the third grade cohorts from 2001 to 2005 within the bandwidth of 1 around the eligibility threshold. The running variable is the distance of a student's combined math and reading Stanford 9 scores from a given year's AWC threshold. Panel A shows the frequency of scores, and Panel B shows a density test at the threshold from Catteneo et al. (2017).

Figure B.2: Covariate Balance


Notes: The above figure shows descriptive characteristics of students by the running variable for the 3rd grade cohorts from 2001 to 2005 within the bandwidth of 0.65. A quadratic fit is imposed on either side of the threshold. Each dot represents the average of the descriptive characteristics for a bin of width 0.065.



A. Elementary School Scores


Notes: The above figure shows average predicted MCAS outcomes for bins of width 0.065 on either side of the threshold for all students (left side) and Black and Latino students (right side) within the bandwidth of 0.65 around the eligibility threshold. A quadratic fit is imposed on either side of the threshold. Predicted outcomes are generated by predicting the relationship between baseline characteristics and outcomes for students below the threshold of AWC eligibility and assigning those fitted values to students missing outcome data.

A. Took Any AP Exam

Notes: The above figure shows average predicted high school outcomes for bins of width 0.065 on either side of the threshold for all students (left side) and Black and Latino students (right side) within the bandwidth of 0.65 around the eligibility threshold. A quadratic fit is imposed on either side of the threshold. Predicted outcomes are generated by predicting the relationship between baseline characteristics and outcomes for students below the threshold of AWC eligibility and assigning those fitted values to students missing outcome data.

A. Enrolled Any College On Time

Notes: The above figure shows average predicted college outcomes for bins of width 0.065 on either side of the threshold for all students (left side) and Black and Latino students (right side) within the bandwidth of 0.65 around the eligibility threshold. A quadratic fit is imposed on either side of the threshold. Predicted outcomes are generated by predicting the relationship between baseline characteristics and outcomes for students below the threshold of AWC eligibility and assigning those fitted values to students missing outcome data.

	Below	Above
	Threshold	Threshold
	(1)	(2)
Black	-0.010	0.021
	(0.013)	(0.031)
Latino	-0.001	0.001
	(0.014)	(0.037)
Asian	-0.029	0.082***
	(0.018)	(0.030)
Other race	0.089^{*}	0.028
	(0.047)	(0.110)
Subsidized lunch	0.047^{***}	0.045^{*}
	(0.012)	(0.023)
English language learner	-0.005	-0.028
	(0.010)	(0.034)
Special education	-0.178***	-0.310***
	(0.011)	(0.060)
3rd grade ELA MCAS	0.029***	0.098***
	(0.004)	(0.020)
3rd grade school has AWC	-0.007	-0.008
-	(0.011)	(0.024)
Constant	0.513***	0.415***
	(0.015)	(0.032)
R-squared	0.033	0.030
Ν	17,441	2,309

Table B.1: Characteristics of Students who Take-Up AWC, by AWC Eligibility

Notes: Robust standard errors clustered by baseline school by year are in parentheses (* p < .10 ** p < .05 *** p < .01). This table shows the characteristics of students who enroll in AWC, both if the qualify given their test score and if they do not. The outcome is enrollment in AWC in 4th grade and the regression controls for year fixed effects. All student characteristics are measured in the 3rd grade. The excluded group are male, white students who do not participate in the subsidized lunch, special education or English language learner programs. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Columns (1) restricts this sample further to those below eligibility threshold for AWC. Column (2) restricts this sample further to those above eligibility threshold for AWC.

	Female (1)	$\operatorname{Black}(2)$	Latino (3)	Asian (4)	Subsidized lunch (5)	Eng. lang. learner (6)	Special ed. (7)	3rd grade MCAS ELA (8)
AWC Eligibility	-0.013 (0.029)	0.037 (0.027)	-0.022 (0.023)	-0.015 (0.018)	0.025 (0.025)	0.007 (0.016)	-0.009 (0.010)	-0.007 (0.033)
$ar{Y}$	0.480	0.375	0.227	0.184	0.688	0.137	0.059	0.290
Ν	6,475	6,475	6,475	6,475	6,475	6,475	6,475	6,350

AWC Eligibility
by
Balance
Covariate
Table B.2:

resurced to an graders enrolled in poston r upic actions in the lati of 2001 to 2009. Listed below each coefficient is the mean of the outcome for students between 0 and 0.05 units below the eligibility threshold. Robust standard errors clustered by 3rd grade school by year are in parentheses (* p<.10 ** p<.05 *** p<.01).

	4th Grade	5th Grade	6th Grade	7th Grade	8th Grade	9th Grade	10th Grade	11th Grade	12th Grade	Sent to NSC
	(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)
AWC Eligibility	0.001 (0.012)	0.007 (0.016)	0.024 (0.020)	0.009 (0.022)	0.013 (0.022)	0.024 (0.022)	0.011 (0.022)	-0.006 (0.024)	0.009 (0.025)	0.012 (0.019)
	0.949	0.895	0.844	0.840	0.809	0.820	0.789	0.734	0.680	0.840
Z	6,475	6,475	6,475	6,475	6,475	6,475	6,475	6,475	6,475	6,475

7	San
	ing in the Sa
	п
	stav
	s on
8	Effects
	of
	- Estimates
	Discontinuity
	Regression
	Attrition:
, , , ,	Table B.3:

16

include 3rd grade year fixed effects. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Robust standard errors clustered by 3rd grade school by year are in parentheses (* p<.10 ** p<.05 *** p<.01).

	$\begin{array}{c} 4 \mathrm{th} \\ \mathrm{Grade} \\ (1) \end{array}$	5 th Grade (2)	$\begin{array}{c} 6 \mathrm{th} \\ \mathrm{Grade} \\ (3) \end{array}$	Grade (4)	8th Grade (5)	$_{ m Grade}^{ m 9th}$	$\begin{array}{c} 10 \mathrm{th} \\ \mathrm{Grade} \\ (7) \end{array}$	$\begin{array}{c} 11 \mathrm{th} \\ \mathrm{Grade} \\ (8) \end{array}$	Grade (9)
(A) BPS Schools									
AWC Eligibility (All)	-0.006	-0.013	0.025	-0.005	0.000	0.010	0.012	0.015	0.033
)	(0.015)	(0.024)	(0.026)	(0.028)	(0.029)	(0.029)	(0.027)	(0.028)	(0.027)
$ar{Y}$	0.906	0.813	0.656	0.656	0.617	0.621	0.582	0.527	0.492
AWC Eligibility (Exam)				-0.001	0.012	0.030	0.025	0.029	0.027
ι×.				$(0.025) \\ 0.316$	(0.025) 0.289	$(0.026) \\ 0.340$	(0.026) 0.320	(0.026) 0.309	(0.026) 0.309
(B) Boston Charter Schools									
AWC Eligibility	0.002	0.012	-0.013	-0.015	-0.018	-0.012	-0.013	-0.015	-0.009
)	(0.003)	(0.010)	(0.014)	(0.013)	(0.012)	(0.012)	(0.012)	(0.012)	(0.011)
X	0.000	0.031	0.098	0.082	0.074	0.063	0.063	0.066	0.051
(C) Other MA Public Schools									
AWC Eligibility	0.005	0.008	0.012	0.029	0.030	0.026	0.011	-0.006	-0.015
	(0.012)	(0.015)	(0.016)	(0.018)	(0.019)	(0.020)	(0.019)	(0.020)	(0.019)
×.	0.043	0.051	0.090	0.102	0.117	0.137	0.145	0.141	0.137
(D) Leave MA Public Sample									
AWC Eligibility	-0.001	-0.007	-0.024	-0.009	-0.013	-0.024	-0.011	0.006	-0.009
	(0.012)	(0.016)	(0.020)	(0.022)	(0.022)	(0.022)	(0.022)	(0.024)	(0.025)
Y	0.051	0.105	0.156	0.160	0.191	0.180	0.211	0.266	0.320
Ν	6,475	6,475	6,475	6,475	6,475	6,475	6,475	6,475	6,475

Table B.4: Regression Discontinuity Estimates of Effects on Enrollment

	$\begin{array}{c} \mathrm{Apply} \\ \mathrm{Any} \ \mathrm{Exam} \\ (1) \end{array}$	Apply BLS (2)	Apply BLA (3)	Apply O'Bryant (4)	Offer Any Exam (5)	Offer BLS (6)	Offer BLA (7)	Offer O'Bryant (8)	ISEE Z-Score (9)	GPA Z-Score (10)
(A) 7th Grade Entry										
2SLS	0.001 (0.078)	0.012 (0.077)	-0.005 (0.079)	0.000 (0.079)	0.042 (0.078)	-0.041 (0.057)	0.073 (0.058)	0.010 (0.049)	0.114 (0.107)	-0.117 (0.100)
CCM	0.713	0.701	0.710	0.697	0.423	0.122	0.167	0.135	0.157	0.151
Ν	5,548	5,548	5,548	5,548	5,548	5,548	5,548	5,548	2,724	2,724
(B) 9th Grade Entry 2SLS	0.018	0.011	0.008	0.024	-0.001	0.036^{*}	-0.022	-0.015	0.015	0.169
	(0.064)	(0.063)	(0.059)	(0.060)	(0.047)	(0.020)	(0.026)	(0.035)	(0.222)	(0.261)
CCM	0.188	0.195	0.173	0.139	0.094	-0.010	0.045	0.059	0.447	0.272
Ν	5,375	5,375	5,375	5,375	5,375	5,375	5,375	5,375	739	739
Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.65. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Robust standard errors clustered by 3rd grade school by year are in parentheses (* $p<.10 ** p<.05 *** p<.01$). BLS stands for Boston Latin School, BLA for Boston Latin Academy, and O'Bryant for John D. O'Bryant School of Math and Science.	abeled "2SLS" or scoring abo ular kernel of l The sample is school by year	is the fuzzy ve the AWC bandwidth (restricted t are in parer o'Brvant Sch	regression of qualification (1).65. Listed (2) 3rd grade (2) theses (* p (* p	the fuzzy regression discontinuity es- the AWC qualification threshold is dwidth 0.65 . Listed below each coe tricted to $3rd$ graders enrolled in E in parentheses (* $p<.10$ ** $p<.05$ vant School of Math and Science.	the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear dwidth 0.65. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd stricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Robust standard errors in parentheses (* $p<.10$ ** $p<.05$ *** $p<.01$). BLS stands for Boston Latin School, BLA for Boston Latin vant School of Math and Science.	grade AWC It for AWC control com Schools in t ILS stands f	attendance attendance uplier mean he fall of 20 or Boston	timate of 4th grade AWC attendance on the outcome listed in the column the instrument for AWC attendance. The specification uses local linear efficient is the control complier mean (CCM). All regressions include 3rd 3oston Public Schools in the fall of 2001 to 2005. Robust standard errors *** p<.01). BLS stands for Boston Latin School, BLA for Boston Latin	the listed in that ation uses lo egressions in obust stands BLA for Bos	ie column cal linear clude 3rd ard errors ton Latin

Table B.5: Fuzzy Regression Discontinuity Estimates of Effects on Exam School Application and Offers

18

	$\begin{array}{c} \text{ELA} \\ (1) \end{array}$	Math (2)	Science (3)	Writing Composition (4)	Writing Topic Development (5)	Top Score Any Subject (6)
(A) Elementary School						
2SLS	$0.105 \\ (0.096)$	0.044 (0.090)	$0.077 \\ (0.104)$	$\begin{array}{c} 0.122 \\ (0.126) \end{array}$	-0.025 (0.122)	$\begin{array}{c} 0.032 \\ (0.042) \end{array}$
CCM	0.321	0.239	-0.034	0.153	0.323	0.290
N (students)	6,123	6,112	5,843	6,077	6,077	6,161
(B) Middle School						
2SLS	$\begin{array}{c} 0.020 \\ (0.096) \end{array}$	$\begin{array}{c} 0.016 \\ (0.082) \end{array}$	$0.043 \\ (0.122)$	-0.024 (0.128)	$0.103 \\ (0.130)$	-0.007 (0.031)
CCM	0.493	0.308	-0.080	0.270	0.294	0.231
$\frac{N \text{ (students)}}{(C) 10 \text{th Grade}}$	5,737	5,684	5,352	5,419	5,419	5,741
2SLS	0.223^{*} (0.115)	0.237^{**} (0.104)	$0.023 \\ (0.124)$	$0.157 \\ (0.142)$	$\begin{array}{c} 0.053 \\ (0.125) \end{array}$	$\begin{array}{c} 0.011 \\ (0.069) \end{array}$
CCM	0.407	0.084	0.236	0.087	0.263	0.797
N (students)	4,904	4,914	5,087	4,914	4,914	5,202

Table B.6: Fuzzy Regression Discontinuity Estimates of Effects on Subject Specific MCAS Scores

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.65. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Elementary school regressions stack 4th and 5th grade outcomes, include grade fixed effects, and double cluster standard errors by 3rd grade school by year and student. Middle school regressions stack 6th, 7th, and 8th grade outcomes, include grade fixed effects, and double cluster standard errors by 3rd grade school by year and student (* p < .10 * p < .05 *** p < .01).

	С	lass Rank:		MCAS Thr	esholds:
	Elementary School (1)	Middle School (2)	$\begin{array}{c} 10 \mathrm{th} \\ \mathrm{Grade} \\ (3) \end{array}$	Passed Grad. Req. (4)	$\begin{array}{c} \text{Adams} \\ \text{Eligible} \\ (5) \end{array}$
(A) All Students	(1)	(2)	(0)	(4)	(0)
		1.045	1 501	0 1 1 0 **	0.100
2SLS	-5.775^{**} (2.877)	$1.947 \\ (3.151)$	4.501 (5.087)	0.110^{**} (0.052)	$0.128 \\ (0.081)$
CCM	71.704	65.678	53.884	0.848	0.536
N (students)	$6,\!159$	5,741	4,878	5,098	5,098
(B) Black and Latino Students					
2SLS	-5.060	4.976	5.566	0.160^{*}	0.151
	(4.082)	(4.689)	(7.521)	(0.088)	(0.124)
CCM	74.571	67.095	59.971	0.798	0.432
N (students)	$3,\!836$	3,523	2,950	$3,\!110$	$3,\!110$
(C) Asian and White Students					
2SLS	-5.779	-1.219	4.157	0.074	0.119
	(4.520)	(4.205)	(6.548)	(0.062)	(0.101)
CCM	67.869	63.930	47.219	0.889	0.642
N (students)	2,323	2,218	1,928	1,988	$1,\!988$

Table B.7: Fuzzy Regression Discontinuity Estimates of Effects on Class Rank and MCAS Thresholds

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.65. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Elementary school regressions stack 4th and 5th grade outcomes, include grade fixed effects, and double cluster standard errors by 3rd grade school by year and student. Middle school regressions stack 6th, 7th, and 8th grade outcomes, include grade fixed effects, and double cluster standard errors by 3rd grade school by year and student (* p < .10 ** p < .05 *** p < .01). Class rank is generated by determining the percentile of a student's academic index in the distribution of scores in their school in that year and grade. Class rank is measured between the 0th and 99th percentile, with larger numbers indicating the higher end of the score distribution. Students who are score at least proficient on math and ELA MCAS subjects meet Massachusetts' high school graduation requirement. Students are eligible for the Adams Scholarship if they score at least proficient in both math and ELA, advanced on one of those subjects, and are in the top 25% of scores in the district. Students without test scores are marked as zeroes for the two indicator variables.

	Elementary	Middle	10th
	School	School	Grade
	(1)	(2)	(3)
2SLS	0.060	-0.017	0.036
	(0.067)	(0.070)	(0.114)
CCM	0.184	0.362	0.275
N (students)	$14,\!825$	11,752	6,332
(B) Black and Latino Students			
2SLS	0.057	0.066	0.183
	(0.092)	(0.102)	(0.191)
CCM	0.165	0.267	0.085
N (students)	9,676	7,564	3,953
(C) White and Asian Students			
2SLS	0.079	-0.105	-0.096
	(0.100)	(0.103)	(0.138)
CCM	0.224	0.512	0.499
N (students)	$5,\!149$	4,188	2,379

Table B.8: Fuzzy Regression Discontinuity Estimates of Effects on MCAS Indices (All Years)

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.65. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade school by year fixed effects and controls for demographic characteristics and baseline status for in subsidized lunch, special education, and English learner. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2012. The MCAS index is the mean of all available MCAS subject test z-scores, standardized to be mean zero, standard deviation one. Elementary school regressions stack 4th and 5th grade outcomes, include grade fixed effects, and double cluster standard errors by 3rd grade school by year and student. Middle school regressions stack 6th, 7th, and 8th grade outcomes, include grade fixed effects, and double cluster standard errors by 3rd grade school by year and student (* p < .10 ** p < .05 *** p < .01).

	Any AP	Any English	U.S. Hist or Gov't	Any Econ	Any Science	Any Calculus
	(1)	(2)	(3)	(4)	(5)	(6)
(A) Took AP Exam						
2SLS	0.118	-0.046	-0.001	0.107^{**}	-0.042	0.021
	(0.085)	(0.075)	(0.071)	(0.055)	(0.079)	(0.062)
CCM	0.540	0.371	0.193	0.066	0.304	0.107
(B) Scored above 2						
2SLS	0.062	-0.096	0.031	0.056	-0.030	0.014
	(0.080)	(0.073)	(0.068)	(0.048)	(0.068)	(0.048)
CCM	0.487	0.365	0.149	0.064	0.206	0.074
(C) Scored above 3						
2SLS	0.007	-0.107^{*}	-0.022	0.048	0.010	-0.013
	(0.079)	(0.060)	(0.056)	(0.045)	(0.062)	(0.042)
CCM	0.369	0.242	0.125	0.042	0.102	0.059
(D) Scored above 4						
2SLS	-0.125^{*}	-0.101**	-0.037	0.010	-0.039	0.014
	(0.069)	(0.042)	(0.044)	(0.035)	(0.044)	(0.037)
CCM	0.269	0.097	0.075	0.026	0.054	0.034
Ν	4,671	4,671	4,671	4,671	4,671	4,671

Table B.9: Fuzzy Regression Discontinuity Estimates of Effects on Advanced Placement Test Taking and Scores

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.65. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects . The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Robust standard errors clustered by 3rd grade school by year are in parentheses (* p<.10 ** p<.05 *** p<.01).

	Composite (2400) (1)	Verbal (800) (2)	$\begin{array}{c} \text{Math} \\ (800) \\ (3) \end{array}$	Writing (800) (4)
(A) Took SAT				
2SLS	$0.058 \\ (0.059)$			
CCM	0.820			
(B) Scored above MA Median				
2SLS	$0.031 \\ (0.083)$	-0.017 (0.079)	0.001 (0.084)	$\begin{array}{c} 0.077 \\ (0.080) \end{array}$
CCM	0.427	0.435	0.600	0.350
N (C) Assure as a construction (for The borns)	4,671	4,671	4,671	4,671
(C) Average score (for Takers) 2SLS	-43.662 (38.057)	-17.200 (14.430)	-15.595 (15.819)	-10.867 (14.345)
CCM	1565	511	556	499
Ν	3,844	3,844	3,844	3,844

Table B.10: Fuzzy Regression Discontinuity Estimates of Effects on SAT Test Taking and Scores

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.65. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Robust standard errors clustered by 3rd grade school by year are in parentheses (* p<.10 ** p<.05 *** p<.01).

		Days Attended:	ended:			Days Suspended:	ended:	
	Elementary (1)	Middle (2)	$\operatorname{High}(3)$	Total (4)	Elementary (5)	Middle (6)	$\substack{\mathrm{High}\\(7)}$	Total (8)
(A) All Students								
2SLS	4.578	-3.784	14.236	20.667	-0.020	-0.023	0.085	-0.162
	(3.833)	(6.570)	(12.579)	(18.446)	(0.083)	(0.365)	(0.479)	(0.709)
CCM	340.623	519.719	655.015	1519.972	0.042	0.438	0.497	1.001
Ν	5,933	5,336	4,808	4,548	5,933	5,336	1,891	1,787
(B) Black and Latino Students								
2SLS	8.321	7.533	38.984^{*}	62.012^{*}	-0.051	-0.446	-0.276	-1.056
	(6.277)	(10.669)	(22.310)	(31.730)	(0.145)	(0.632)	(0.840)	(1.229)
CCM	334.014	511.160	622.226	1471.226	0.075	1.098	0.714	1.801
Ν	3,662	3,277	2,916	2,748	3,662	3,277	1,125	1,063
(C) Asian and White Students								
2SLS	1.073	-13.454	-6.543	-9.418	0.027	0.459	0.357	0.441
	(4.959)	(8.651)	(13.525)	(20.237)	(0.033)	(0.332)	(0.488)	(0.717)
CCM	348.293	528.807	686.129	1562.259	-0.009	-0.271	0.368	0.509
Ν	2,271	2,059	1,892	1,800	2,271	2,059	766	724
Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.65 for all students, bandwidth 0.489 for Black and Latino students, and bandwidth 0.551 for White and Asian students. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Robust standard errors clustered by 3rd grade school by year are in parentheses (* $p<.10^{**}$ $p<.05^{***}$ $p<.01$). Attendance outcomes are calculated for students with nonzero attendance in the relevant years. Elementary school outcomes are the sum of days in the first and second school year subsequent to 3rd grade (6th, 7th, and 8th for on time students). High school outcomes are the sum of days for the third through fifth year subsequent to 3rd grades for on time students). High school outcomes are the sum of days for the sixth through ninth year post 3rd grade (9th-12th grades for on time students). Lettenting suspension data in the SIMS database beginning in 2013-2013, so high school and total suspension outcomes are limited to the sixth through ninth year post 3rd grade (9th-12th grades for on time students). LESE stopped collecting suspension data in the SIMS database beginning in 2013-2013, so high school and total suspension outcomes are limited to the first two cohorts.	LS" is the fuzzy re above the AWC q of bandwidth 0.65 each coefficient is t l in Boston Public (.05 *** p<.01). he sum of days in utcomes are the st in the SIMS data	egression disco qualification th 5 for all studer the control con the control con Schools in thu Attendance of the first and s the first and s the sixth base beginning	ntinuity estime treshold is the tts, bandwidth nplier mean (C e fall of 2001 to theomes are ca tecond school y the third thro through ninth g in 2013-2013,	ate of 4th grade instrument for 0.489 for Blacl CM). All regre 2 2005. Robust lculated for stu lculated for stu lculated for stu lculated for stu lculated for stu vigh fifth year is ugh fifth year is v pigh school	the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear dwidth 0.65 for all students, bandwidth 0.489 for Black and Latino students, and bandwidth 0.551 for White efficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects. The sample ston Public Schools in the fall of 2001 to 2005. Robust standard errors clustered by 3rd grade school by year * $p<.01$). Attendance outcomes are calculated for students with nonzero attendance in the relevant years. of days in the first and second school year subsequent to 3rd grade (4th and 5th grade for students making stare the sum of days for the third through fifth year subsequent to 3rd grade (6th, 7th, and 8th for on time sum of days for the sixth through ninth year post 3rd grade (9th-12th grades for on time students). DESE SIMS database beginning in 2013-2013, so high school and total suspension outcomes are limited to the first	e on the outcor e. The specifi ents, and ban ers, and ban grade year fi clustered by 3 clustered	me listed in t cation uses l dwidth 0.551 ced effects. T cd grade scho e in the relev de for studen th, and 8th fi time student are limited t	he column ocal linear for White he sample ol by year ant years. ts making or on time s). DESE o the first

Table B.11: Fuzzy Regression Discontinuity Estimates of Effects on Days Attended and Days Suspended

		On Time	Enrollment	in Grade:		On Time 12th $\&$
	8	9	10	11	12	MCAS Grad. Req.
	(1)	(2)	(3)	(4)	(5)	(6)
(A) All Students						
2SLS	0.005	-0.013	0.023	0.062	0.018	0.131^{**}
	(0.029)	(0.040)	(0.050)	(0.046)	(0.036)	(0.052)
CCM	0.966	0.946	0.901	0.877	0.926	0.820
Ν	$5,\!488$	$5,\!375$	5,098	4,784	$4,\!671$	4,540
(B) Black and Latino Students						
2SLS	-0.007	-0.002	0.044	0.062	0.075	0.194^{**}
	(0.045)	(0.062)	(0.077)	(0.071)	(0.055)	(0.082)
CCM	0.975	0.924	0.878	0.889	0.888	0.760
Ν	$3,\!371$	3,303	$3,\!110$	$2,\!882$	$2,\!814$	2,714
(C) Asian and White Students						
2SLS	0.022	-0.027	0.002	0.066	-0.036	0.087
	(0.037)	(0.047)	(0.061)	(0.056)	(0.045)	(0.066)
CCM	0.951	0.969	0.929	0.868	0.972	0.870
N	2,117	2,072	1,988	1,902	1,857	1,826

Table B.12: Fuzzy Regression Discontinuity Estimates of Effects on On Time Grade Progress

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.65. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Robust standard errors clustered by 3rd grade school by year are in parentheses (* p < .10 ** p < .05*** p < .01). The outcome in the final column is an indicator for both on time enrollment in grade 12 and meeting Massachusetts' MCAS high school graduation requirement for students present in the data in both 10th and 12th grade.

C Results for Additional Subgroups

	Elementary	Middle	10th
	School	School	Grade
	(1)	(2)	(3)
(A) All Students			
2SLS	0.058	0.041	0.149
	(0.078)	(0.079)	(0.113)
CCM	0.228	0.363	0.226
N (students)	6,161	5,741	5,209
(B) Low-Income Students			
2SLS	0.050	0.072	0.130
	(0.091)	(0.090)	(0.139)
CCM	0.169	0.320	0.206
N (students)	4,733	4,418	4,016
(C) Non-Low-Income Students			
2SLS	0.115	0.001	0.311
	(0.163)	(0.171)	(0.220)
CCM	0.381	0.447	0.197
N (students)	1,428	1,323	$1,\!193$
(D) High MCAS Students			
2SLS	0.005	-0.056	-0.019
	(0.096)	(0.104)	(0.154)
CCM	0.402	0.525	0.454
N (students)	3,096	2,858	2,590
(E) Low MCAS Students			
2SLS	0.063	0.115	0.308^{*}
	(0.127)	(0.128)	(0.166)
CCM	0.077	0.238	0.013
N (students)	3,018	2,835	2,573

Table C.1: Fuzzy Regression Discontinuity Estimates of Effects on MCAS Indices for Additional Subgroups

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of of bandwidth 0.65. High MCAS students are defined as those who score 0.25σ or higher on their 3rd grade ELA MCAS; lower MCAS students are those who score below that threshold. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. The MCAS index is the mean of all available MCAS subject test z-scores, standardized to be mean zero, standard deviation one. Elementary school regressions stack 4th and 5th grade outcomes, include grade fixed effects, and double cluster standard errors by 3rd grade school by year and student. Middle school regressions stack 6th, 7th, and 8th grade outcomes, include grade fixed effects, and double cluster standard errors by 3rd grade school by year and student (* p<.10 ** p<.05 *** p<.01).

	Algebra 1	Took	# APs	Took	SAT	On Time	Late
	by 8th (1)	Any AP (2)	Taken	$\operatorname{SAT}_{(4)}$	Score	HS Grad.	HS Grad
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
(A) All Students	_						
2SLS	0.254^{*}	0.118	0.075	0.058	-43.662	0.081	0.034
	(0.131)	(0.085)	(0.354)	(0.059)	(38.057)	(0.059)	(0.044)
CCM	0.505	0.540	1.546	0.820	1565.433	0.810	0.912
Ν	$4,\!456$	$4,\!671$	$4,\!671$	$4,\!671$	$3,\!844$	$4,\!671$	3,771
(A) Low-Income Students	-						
2SLS	0.121	0.130	0.124	0.043	-5.265	0.115^{*}	0.046
	(0.153)	(0.095)	(0.414)	(0.068)	(39.510)	(0.067)	(0.053)
CCM	0.645	0.548	1.641	0.828	1524.262	0.771	0.895
Ν	$3,\!342$	$3,\!543$	$3,\!543$	$3,\!543$	$2,\!870$	$3,\!543$	$2,\!844$
(C) Not Low-Income Students	-						
2SLS	- 1.004**	0.096	-0.076	0.135	-124.345	-0.027	0.013
	(0.425)	(0.176)	(0.761)	(0.131)	(94.604)	(0.117)	(0.068)
CCM	-0.270	0.480	1.113	0.771	1662.115	0.942	0.962
Ν	1,114	$1,\!128$	$1,\!128$	$1,\!128$	974	$1,\!128$	927
(D) High MCAS Students	-						
2SLS	0.225	0.078	0.193	-0.074	-23.135	0.017	-0.005
	(0.196)	(0.109)	(0.473)	(0.080)	(46.715)	(0.086)	(0.061)
CCM	0.581	0.596	1.498	0.939	1571.832	0.878	0.961
Ν	2,163	$2,\!384$	$2,\!384$	$2,\!384$	2,053	$2,\!384$	$1,\!948$
(E) Low MCAS Students	-						
2SLS	0.217	0.099	-0.253	0.253***	-66.472	0.157^{*}	0.075
	(0.202)	(0.133)	(0.498)	(0.096)	(60.158)	(0.087)	(0.070)
CCM	0.496	0.546	1.837	0.641	1567.942	0.720	0.845
Ν	2,272	2,247	$2,\!247$	2,247	1,760	2,247	1,787

Table C.2: Fuzzy Regression Discontinuity Estimates of Effects on Academic Outcomes for Additional Subgroups

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of of bandwidth 0.65. High MCAS students are defined as those who score 0.25σ or higher on their 3rd grade ELA MCAS; lower MCAS students are those who score below that threshold. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Robust standard errors clustered by 3rd grade school by year are in parentheses (* p<.10 ** p<.05 *** p<.01). For Algebra 1 by 8th grade, the sample to students who match to the student course data (2011-2014), which are the fall cohorts from 2005-2008. On time high school graduation is an indicator for high school graduation 10 years after the third grade exam for AWC eligibility; late high school graduation is an indicator for 11 years after.

		On Time	Enrollment	in Grade:		On Time 12th $\&$
	8	9	10	11	12	MCAS Grad. Req.
	(1)	(2)	(3)	(4)	(5)	(6)
(A) All Students						
2SLS	0.005	-0.013	0.023	0.062	0.018	0.131^{**}
	(0.029)	(0.040)	(0.050)	(0.046)	(0.036)	(0.052)
CCM	0.966	0.946	0.901	0.877	0.926	0.820
Ν	$5,\!488$	$5,\!375$	5,098	4,784	$4,\!671$	$4,\!540$
(A) Low-Income Students						
2SLS	-0.000	-0.013	0.048	0.087^{*}	0.039	0.153^{***}
	(0.035)	(0.048)	(0.059)	(0.053)	(0.041)	(0.059)
CCM	0.971	0.944	0.874	0.867	0.920	0.802
Ν	4,259	$4,\!155$	$3,\!935$	$3,\!641$	$3,\!543$	$3,\!441$
(C) Not Low-Income Students						
2SLS	0.029	-0.023	-0.052	-0.021	-0.049	0.066
	(0.053)	(0.061)	(0.087)	(0.092)	(0.090)	(0.124)
CCM	0.947	0.956	0.990	0.916	0.950	0.881
N	1,229	$1,\!220$	$1,\!163$	$1,\!143$	$1,\!128$	1,099
(D) High MCAS Students						
2SLS	0.025	0.012	0.074	0.093	0.044	0.138^{*}
	(0.041)	(0.059)	(0.073)	(0.069)	(0.053)	(0.075)
CCM	0.948	0.918	0.842	0.849	0.904	0.819
N	2,709	$2,\!643$	2,537	$2,\!422$	$2,\!384$	2,323
(E) Low MCAS Students						
2SLS	-0.017	-0.037	-0.045	0.007	-0.039	0.061
	(0.045)	(0.060)	(0.081)	(0.069)	(0.061)	(0.082)
CCM	0.978	0.968	0.977	0.925	0.974	0.875
N	2,735	$2,\!689$	2,517	2,321	2,247	$2,\!179$

Table C.3: Fuzzy Regression Discontinuity Estimates of Effects on On Time Grade Progress for Additional Subgroups

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of of bandwidth 0.65. High MCAS students are defined as those who score 0.25σ or higher on their 3rd grade ELA MCAS; lower MCAS students are those who score below that threshold. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Robust standard errors clustered by 3rd grade school by year are in parentheses (* p<.10 ** p<.05 *** p<.01). The outcome in the final column is an indicator for both on time enrollment in grade 12 and meeting Massachusetts' MCAS high school graduation requirement for students present in the data in both 10th and 12th grade.

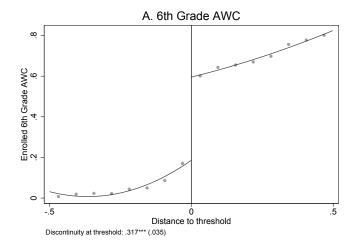

	On T	ime College En	rollment:	College	Late
	$\begin{array}{c} \text{Any} \\ (1) \end{array}$	Four-year (2)	Two-year (3)	Quality \$2014 (4)	Enrollment Any (5)
(A) All Students					
2SLS	0.149^{*} (0.080)	0.063 (0.081)	0.087^{*} (0.045)	1788.007 (3866.399)	0.169^{**} (0.084)
CCM	0.532	0.522	0.009	43653.586	0.548
Ν	5,502	5,502	5,502	5,502	4,567
(B) Low-Income Students					
2SLS	0.141 (0.089)	0.065 (0.091)	0.076 (0.053)	96.222 (4451.520)	0.148 (0.093)
CCM	0.574	0.544	0.029	46208.528	0.611
Ν	$4,\!189$	$4,\!189$	4,189	4,189	$3,\!473$
(C) Not Low-Income Students					
2SLS	0.226 (0.163)	0.100 (0.164)	0.126 (0.080)	8684.839 (8519.128)	0.299^{*} (0.158)
CCM	0.373	0.427	-0.054	34973.373	0.310
Ν	$1,\!313$	$1,\!313$	1,313	1,313	1,094
(D) High MCAS Students					
2SLS	0.148 (0.103)	0.058 (0.103)	0.090^{*} (0.054)	8451.068^{*} (4885.616)	0.159 (0.104)
CCM	0.539	0.514	0.025	37204.101	0.570
N	2,756	2,756	2,756	2,756	2,299
(E) Low MCAS Students					
2SLS	0.174 (0.134)	0.092 (0.131)	0.083 (0.074)	-5177.410 (6772.978)	0.229 (0.141)
CCM	0.500	0.528	-0.029	51100.623	0.465
N	$2,\!680$	$2,\!680$	$2,\!680$	$2,\!680$	2,206

Table C.4: Fuzzy Regression Discontinuity Estimates of Effects on College for Additional Subgroups

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 4th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of of bandwidth 0.65. High MCAS students are defined as those who score 0.25σ or higher on their 3rd grade ELA MCAS; lower MCAS students are those who score below that threshold. Listed below each coefficient is the control complier mean (CCM). All regressions include 3rd grade year fixed effects. The sample is restricted to 3rd graders enrolled in Boston Public Schools in the fall of 2001 to 2005. Robust standard errors clustered by 3rd grade school by year are in parentheses (* p<.10 ** p<.05 *** p<.01). On time college entrance is calculated based on entry into college 10 years after the 3rd grade exam for AWC eligibility. Late college entrance is calculated based on entry into college 11 years after the 3rd grade exam for AWC eligibility. College quality earnings outcomes are measured by the estimated 2014 earnings of college attendees from the 1980-1982 birth cohorts from Chetty, et al. (2017). Students are assigned the earnings outcomes of the college they attend, by gender, even if they are not on time attendees. Students who do not attend college are assigned the outcomes for non-attendees of the same gender.

D Results based on 6th Grade Eligibility

Figure D.1: AWC Enrollment by Distance to Eligibility Threshold (6th Grade)

Notes: The above figure shows 6th grade AWC enrollment by the running variable for the 5th grade cohorts from 2001 to 2007 within the bandwidth of 0.5 around the eligibility threshold. A quadratic fit is imposed on either side of the threshold. Each dot represents the average enrollment for a bin of width 0.05.

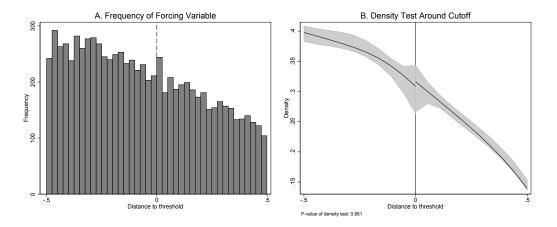
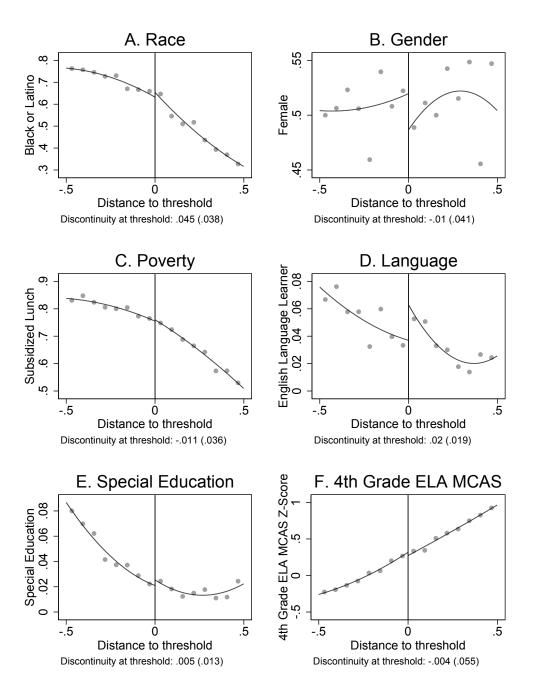
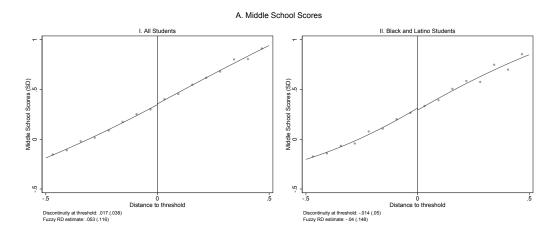
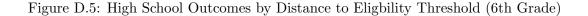
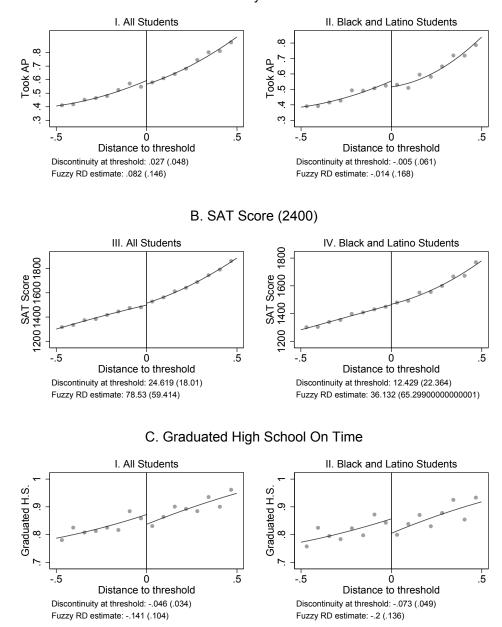


Figure D.2: Distribution of Scores near the Threshold (6th Grade)

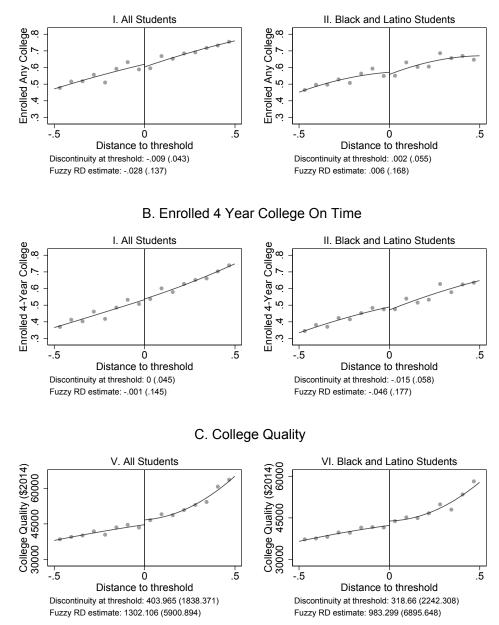
Notes: The above figure shows the distribution of the running variable for the 5th grade cohorts from 2001 to 2007 within the bandwidth of 1 around the eligibility threshold. The running variable is the distance of a student's combined math and reading Stanford 9 scores from a given year's AWC threshold. Panel A shows the frequency of scores, and Panel B shows a density test at the threshold from Catteneo et al. (2017).


Figure D.3: Covariate Balance (6th Grade)


Notes: The above figure shows descriptive characteristics of students by the running variable for the 5th grade cohorts from 2001 to 2007 within the bandwidth of 0.5. A quadratic fit is imposed on either side of the threshold. Each dot represents the average of the descriptive characteristics for a bin of width 0.05

Notes: The above figure shows average MCAS outcomes for bins of width 0.05 on either side of the threshold for all students (left side) and Black and Latino students (right side) within the bandwidth of 0.5 around the eligibility threshold. A quadratic fit is imposed on either side of the threshold. Elementary school scores are the MCAS index for 4th and 5th grade students; middle school scores are the MCAS index for 6th, 7th, and 8th grade students.



A. Took Any AP Exam

Notes: The above figure shows average high school outcomes for bins of width 0.05 on either side of the threshold for all students (left side) and Black and Latino students (right side) within the bandwidth of 0.5 around the eligibility threshold. A quadratic fit is imposed on either side of the threshold.

A. Enrolled Any College On Time

Notes: The above figure shows average college enrollment outcomes for bins of width 0.05 on either side of the threshold for all students (left side) and Black and Latino students (right side) within the bandwidth of 0.5 around the eligibility threshold. A quadratic fit is imposed on either side of the threshold. College quality earnings outcomes are measured by the estimated 2014 earnings of college attendees from the 1980-1982 birth cohorts from Chetty, et al. (2017). Students are assigned the earnings outcomes of the college they attend, by gender, even if they are not on time attendees. Students who do not attend college are assigned the outcomes for non-attendees of the same gender.

	All	Enrolled in	RD
	Students	6th Grade AWC	Sample
	(1)	(2)	(3)
(A) Demographics			
Female	0.482	0.529	0.509
Black	0.461	0.248	0.350
Latino	0.313	0.193	0.256
White	0.122	0.265	0.196
Asian	0.091	0.278	0.181
Other Race	0.013	0.016	0.017
Subsidized Lunch	0.832	0.637	0.756
English Language Learner	0.120	0.033	0.045
4th Grade ELA	0.223	0.013	0.024
Special Education	-0.677	0.613	0.276
(B) AWC Enrollment			
6th Grade AWC	0.107	1.000	0.355
(C) MCAS Standardized Index			
4th Grade	-0.541	0.829	0.458
10th Grade	-0.482	0.649	0.329
(D) High School Milestones			
Took Any AP	0.352	0.743	0.574
Took SAT	0.656	0.903	0.850
On Time H.S. Graduation	0.728	0.899	0.855
(E) On Time College Enrollment			
Any College	0.424	0.711	0.615
4-Year College	0.317	0.655	0.537
2-Year College	0.107	0.056	0.079
College Quality (\$2014)	37,410	55,121	45,793
N	$27,\!436$	2,945	2,751

Table D.1: Summary Statistics (6th Grade)

Notes: Mean values of each variable are shown by sample. Column (1) is the full sample of 5th graders enrolled in BPS in the fall years from 2001-2007. Column (2) restricts that sample to students enrolled in AWC in 6th grade. Column (3) restricts the full sample to those within 0.363 of the eligibility threshold. College quality earnings outcomes are measured by the estimated 2014 earnings of college attendees from the 1980-1982 birth cohorts from Chetty, et al. (2017). Students are assigned the earnings outcomes of the college they attend, by gender, even if they are not on time attendees. Students who do not attend college are assigned the outcomes for non-attendees of the same gender.

AWC Eligibility -0.010 0.022 0.034 -0.026 <th< th=""><th></th><th>$\begin{array}{c} \text{learner} & \text{ed.} \\ (6) & (7) \end{array}$</th><th>MCAS ELA (8)</th></th<>		$\begin{array}{c} \text{learner} & \text{ed.} \\ (6) & (7) \end{array}$	MCAS ELA (8)
0.365 0.340	-0.011 (0.036)	$\begin{array}{cccc} 0.020 & 0.005 \\ (0.019) & (0.013) \end{array}$	-0.004 (0.055)
0.240	0.186 0.745	0.037 0.022	0.266
N 2,751 2,751 2,751 2,751 2,751	2,751	2,751 $2,751$	2,260

(6th Grade)
y AWC Eligibility
Covariate Balance by
Table D.2:

restricted to build grades emotion in poson 1 upper build with the fail of 2001 to 2001. Discu below each connected is the mean of the outcome for students between 0 and 0.05 units below the eligibility threshold. Robust standard errors clustered by 5th grade school by year are in parentheses (* $p<.10^{**} p<.05^{***} p<.01$).

	$\begin{array}{c} 6 \mathrm{th} \\ \mathrm{Grade} \\ (1) \end{array}$	7th Grade (2)	8th Grade (3)	$\begin{array}{c} 9 \mathrm{th} \\ \mathrm{Grade} \\ (4) \end{array}$	$\begin{array}{c} 10 \mathrm{th} \\ \mathrm{Grade} \\ (5) \end{array}$	$\begin{array}{c} 11 \mathrm{th} \\ \mathrm{Grade} \\ (6) \end{array}$	$\begin{array}{c} 12 \mathrm{th} \\ \mathrm{Grade} \\ (7) \end{array}$	Sent to NSC (8)
AWC Eligibility	0.036^{**} (0.017)	0.019 (0.024)	0.026 (0.026)	-0.010 (0.028)	0.044 (0.031)	0.052 (0.035)	0.035 (0.035)	
$ar{\Gamma}$	0.939	0.907	0.885	0.875	0.814	0.748	0.740	
N	2,751	2,751	2,751	2,751	2,751	2,751	2,751	

e)
ad
Ъ
- С
3t]
٣
le
dur
am]
∞
the S
L t
ing in
ng
yin
ta.
$\tilde{\mathbf{v}}$
on
ts C
G
Effect
茁
of
s
te
na
÷
$\mathbf{E}_{\mathbf{S}^{I}}$
ontinuity
tinuit
ti
cont
isc
D
[0]
ess
e
щ
n:
10
trit
At
ŝ
Table
La
L .

5th grade year fixed effects. The sample is restricted to 5th graders enrolled in Boston Public Schools in the fall of 2001 to 2007. Robust standard errors clustered by 5th grade school by year are in parentheses (* p<.10 ** p<.05 *** p<.01).

	6th Grade and Above (1)
6th Grade AWC	$\begin{array}{c} 0.317^{***} \\ (0.035) \end{array}$
$ar{Y}$	0.194
N	2,751

Table D.4: First Stage Estimates of AWC Enrollment (6th Grade)

Notes: Robust standard errors clustered by baseline school by year are in parentheses (* p < .10 ** p < .05 *** p < .01). All regressions include baseline school by year fixed effects and controls for demographic characteristics and baseline program participation. Each coefficient is generated by local linear regression with a triangular kernel of bandwidth 0.16. The sample is restricted to 5th graders enrolled in Boston Public Schools in the fall of 2001 to 2007. Listed below each coefficient is the mean of the outcome for students between 0 and 0.05 units below the eligibility threshold.

	$\begin{array}{c} 6 \mathrm{th} \\ \mathrm{Grade} \\ (1) \end{array}$	$_{ m Crade}^{ m 7th}$	$\begin{array}{c} 8 \mathrm{th} \\ \mathrm{Grade} \\ (3) \end{array}$	$\begin{array}{c} 9 \mathrm{th} \\ \mathrm{Grade} \\ (4) \end{array}$	$\begin{array}{c} 10 \mathrm{th} \\ \mathrm{Grade} \\ (5) \end{array}$	$\begin{array}{c} 11 \mathrm{th} \\ \mathrm{Grade} \\ (6) \end{array}$	$\begin{array}{c} 12 \mathrm{th} \\ \mathrm{Grade} \\ (7) \end{array}$
(A) BPS Schools							
AWC Eligibility (All)	0.065**	0.048	0.043	-0.022	0.034	0.044	0.021
Ż	(0.031) 0.811	(0.765)	(0.037) 0.730	(0.040) 0.711	(0.050)	(0.042) 0.586	(0.042) 0.598
AWC Eligibility (Exam)		0.033	0.025	-0.021	0.004	0.028	-0.004
4		(0.040) 0.306	$(0.041) \\ 0.297$	(0.042) 0.380	(0.042) 0.355	$(0.041) \\ 0.316$	(0.041) 0.331
(B) Boston Charter Schools							
AWC Eligibility	-0.020	-0.022	-0.010	0.018	0.020	0.016	0.012
Ň	(0.019) 0.069	(0.018) 0.061	(0.017) 0.056	(0.018) 0.042	$(0.016) \\ 0.037$	(0.016) 0.034	(0.015) 0.034
(C) Other MA Public Schools							
AWC Eligibility	-0.009	-0.007	-0.007	-0.006	-0.011	-0.008	0.002
$ar{Y}$	(0.017) 0.059	(0.022) 0.081	(0.025) 0.098	(0.027) 0.123	(0.026) 0.127	(0.027) 0.127	(0.025) 0.108
(D) Leave MA Public Sample							
AWC Eligibility	-0.036^{**}	-0.019	-0.026	0.010	-0.044	-0.052	-0.035
$ar{Y}$	(0.017) 0.061	$(0.024) \\ 0.093$	(0.026) 0.115	(0.028) 0.125	(0.031) 0.186	(0.035) 0.252	(0.035) 0.260
Ν	2,751	2,751	2,751	2,751	2,751	2,751	2,751

	,)		\$				-		-	、
	$\begin{array}{c} \operatorname{Apply} \\ \operatorname{Any} \operatorname{Exam} \\ \overset{(1)}{} \end{array}$	Apply BLS	$\begin{array}{c} \operatorname{Apply}\\ \operatorname{BLA}\\ \end{array}$	$\operatorname{Apply}_{O'Bryant}$	Offer Any Exam	Offer BLS	Offer BLA	Offer O'Bryant	ISEE Z-Score	GPA Z-Score
(A) 7th Grade Entry	(T)	(7)	(0)	(4)	(c)	(0)	()	(0)	(8)	(11)
2SLS	0.324^{***} (0.116)	0.307^{***} (0.118)	0.342^{***} (0.118)	0.311^{***} (0.120)	$0.132 \\ (0.123)$	-0.060 (0.066)	0.144 (0.109)	0.049 (0.096)	0.193 (0.177)	-0.479^{**} (0.202)
CCM	0.509	0.499	0.486	0.505	0.293	0.101	0.137	0.055	-0.031	0.423
Ν	2,499	2,499	2,499	2,499	2,499	2,499	2,499	2,499	1,632	1,632
(B) 9th Grade Entry 2SLS	0.022 (0.105)	0.023 (0.105)	0.065 (0.103)	0.003 (0.101)	0.060 (0.082)	0.005 (0.026)	-0.029 (0.050)	0.084 (0.068)	-0.483 (0.328)	0.857^{*} (0.437)
CCM	0.223	0.223	0.174	0.175	0.052	0.033	0.025	-0.006	0.797	-0.268
N 2,386 2,386 2,386 2,386 2,386 2,386 2,386 2,386 2,386 2,386 2,386 2,386 518 518 NATO EXAMPLE TO A MADE T	2,386 1.55.01.4 "SCT C"	2,386	2,386	2,386	2,386	2,386	2,386	2,386	518 518	518
Notes: Each coefficient above 120.5 is the fuzzy regression discontantity estimate of our grade AWC autendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.16. Listed below each 2SLS coefficient is the control complier mean (CCM). All regressions include 5th grade year fixed effects. The sample is restricted to 5th graders enrolled in Boston Public Schools in the fall of 2001 to 2007. Robust standard errors clustered by 5th grade school by year are in parentheses (* $p < .10 ** p < .01$). BLS stands for Boston Latin School, BLA for Boston Latin Academy, and O'Bryant for John D. O'Bryant School of Math and Science.	for scoring abo for scoring abo rular kernel of l ects. The sam grade school b Bryant for Joh	we the AWC bandwidth 0. ple is restric y year are in n D. O'Brya	regression of qualification 16. Listed b ted to 5th g parentheses parentheses nt School of	a threshold is elow each 2SL raders enrollee (* p<.10 **) Math and Sci	the AWC qualification threshold is the instrument for AWC autendance. The specification uses local linear dwidth 0.16. Listed below each 2SLS coefficient is the control complier mean (CCM). All regressions include is restricted to 5th graders enrolled in Boston Public Schools in the fall of 2001 to 2007. Robust standard ear are in parentheses (* $p<00 ** p<05 *** p<01$). BLS stands for Boston Latin School, BLA for Boston Latin School, BLA for Boston . O'Bryant School of Math and Science.	t for AWC of the control the control iblic Schools 01). BLS sti	attendance attendance complier n s in the fal ands for Bo	The specific The specific near (CCM). Job 2011 to 21 of 2001 to 21 oston Latin Sc	ation used in utation uses lo All regression 007. Robust thool, BLA f	the continue ocal linear is include standard or Boston

	Middle	10th
	School	Grade
	(1)	(2)
(A) All Students		
2SLS	0.053	0.272
	(0.116)	(0.173)
CCM	0.303	0.154
N (students)	2,597	2,269
(B) Black and Latino Students		
2SLS	-0.040	0.125
	(0.148)	(0.212)
CCM	0.261	0.133
N (students)	1,608	1,394
(C) White and Asian Students		
2SLS	0.237	0.610**
	(0.196)	(0.299)
CCM	0.398	0.181
N (students)	989	875

Table D.7: Fuzzy Regression Discontinuity Estimates of Effects on MCAS Indices (6th Grade)

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 6th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.16. Listed below each coefficient is the control complier mean (CCM). All regressions include 5th grade year fixed effects. The sample is restricted to 5th graders enrolled in Boston Public Schools in the fall of 2001 to 2007. The MCAS index is the mean of all available MCAS subject test z-scores, standardized to be mean zero, standard deviation one. Elementary school regressions stack 4th and 5th grade outcomes, include grade fixed effects, and double cluster standard errors by 5th grade school by year and student. Middle school by 5th grade school by year and student (* p<.10 ** p<.05 *** p<.01).

	Took	# APs	Took	SAT	On Time	Late
	Any AP	Taken	SAT	Score	HS Grad.	HS Grade
	(1)	(2)	(3)	(4)	(5)	(6)
(A) All Students						
2SLS	0.082	0.748	0.057	78.530	-0.141	0.018
	(0.146)	(0.535)	(0.099)	(59.414)	(0.104)	(0.150)
CCM	0.511	1.362	0.815	1401.174	0.976	0.534
Ν	2,078	2,078	2,078	1,767	2,078	2,078
(B) Black and Latino Students						
2SLS	-0.014	0.431	-0.073	36.132	-0.200	-0.110
	(0.168)	(0.563)	(0.122)	(65.299)	(0.136)	(0.172)
CCM	0.525	1.299	0.867	1381.749	0.977	0.556
Ν	1,264	1,264	1,264	1,037	1,264	1,264
(C) Asian and White Students						
2SLS	0.351	1.931	0.379^{**}	203.799^{*}	0.009	0.380
	(0.263)	(1.197)	(0.176)	(121.014)	(0.151)	(0.267)
CCM	0.469	1.329	0.700	1434.921	0.977	0.469
Ν	814	814	814	730	814	814

Table D.8: Fuzzy Regression Discontinuity Estimates of Effects on Academic Outcomes (6th Grade)

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 6th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.16. Listed below each coefficient is the control complier mean (CCM). All regressions include 5th grade year fixed effects. The sample is restricted to 5th grades enrolled in Boston Public Schools in the fall of 2001 to 2007. Robust standard errors clustered by 5th grade school by year are in parentheses (* p < .10 ** p < .05*** p < .01). On time high school graduation looks for high school graduation 8 years after the 5th grade exam for AWC eligibility. Late graduation is one year after that.

	On T	ime College En	rollment	College Quality	Late Enrollment
	Any	Four-year	Two-year	\$2014	Any
	(1)	(2)	(3)	(4)	(5)
(A) All Students					
2SLS	-0.028	-0.001	-0.020	1302.106	0.138
	(0.137)	(0.145)	(0.079)	(5900.894)	(0.139)
CCM	0.737	0.670	0.059	47543.338	0.701
Ν	$2,\!497$	$2,\!497$	$2,\!497$	$2,\!497$	$2,\!193$
(B) Black and Latino Students					
2SLS	0.006	-0.046	0.061	983.299	0.149
	(0.168)	(0.177)	(0.099)	(6895.648)	(0.185)
CCM	0.769	0.761	-0.001	50642.633	0.742
Ν	$1,\!544$	$1,\!544$	$1,\!544$	1,544	$1,\!337$
(C) Asian and White Students					
2SLS	-0.066	0.117	-0.178	3393.939	0.140
	(0.238)	(0.242)	(0.129)	(10701.673)	(0.246)
CCM	0.666	0.493	0.167	41176.015	0.608
Ν	953	953	953	953	856

Table D.9: Fuzzy Regression Discontinuity Estimates of Effects on College (6th Grade)

Notes: Each coefficient labeled "2SLS" is the fuzzy regression discontinuity estimate of 6th grade AWC attendance on the outcome listed in the column heading. An indicator for scoring above the AWC qualification threshold is the instrument for AWC attendance. The specification uses local linear regression with a triangular kernel of bandwidth 0.16. Listed below each coefficient is the control complier mean (CCM). All regressions include 5th grade year fixed effects. The sample is restricted to 5th graders enrolled in Boston Public Schools in the fall of 2001 to 2007. Robust standard errors clustered by 5th grade school by year are in parentheses (* p < .10 ** p < .05 *** p < .01). On time college entrance looks at entry into college 10 years after the 5th grade exam for AWC eligibility. Late college entrance is calculated based on enrollment in college 9 years after the 5th grade exam for AWC eligibility and includes on time enrollment. College quality earnings outcomes are measured by the estimated 2014 earnings of college attendees from the 1980-1982 birth cohorts from Chetty, et al. (2017). Students are assigned the earnings outcomes of the college they attend, by gender, even if they are not on time attendees. Students who do not attend college are assigned the outcomes for non-attendees of the same gender.