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1 Theory Proofs and Extensions

1.1 Derivation of ∂ rW
∂n and ∂ rE

∂n

We derive expressions for the change in resident tuition given a uniform increase in non-resident tuition.
Note that, for state W , the budget constraint fW rW +(1− fW )nW = m can be re-written as:

PW (rW ,nE)[rW −m]+ [1−PE(rE ,nW )][nW −m] = 0

Then, considering a change in nE , we have that:(
∂PW

∂ rW

∂ rW

∂nE
+

∂PW

∂nE

)
[rW −m]+PW

∂ rW

∂nE
− ∂PE

∂ rE

∂ rE

∂nE
[nW −m] = 0

Similarly, considering a change in nW , we have that:(
∂PW

∂ rW

∂ rW

∂nW

)
[rW −m]+PW

∂ rW

∂nW
−
(

∂PE

∂ rE

∂ rE

∂nW
+

∂PE

∂nW

)
[nW −m]+ (1−PE) = 0

Now, direct effects are given by ∂PE
∂ rE

= −ρPE(1−PE) and cross-effects are given by ∂PE
∂nW

= ρPE(1−PE).

Thus, ∂PE
∂ rE

=− ∂PE
∂nW

, and, plugging this into the expressions above, we have:(
∂PW

∂ rW
(
∂ rW

∂nE
−1)

)
[rW −m]+PW

∂ rW

∂nE
− ∂PE

∂ rE

∂ rE

∂nE
[nW −m] = 0

(
∂PW

∂ rW

∂ rW

∂nW

)
[rW −m]+PW

∂ rW

∂nW
−
(

∂PE

∂ rE
(

∂ rE

∂nW
−1)

)
[nW −m]+ (1−PE) = 0

Adding these two conditions together, we have:(
∂PW

∂ rW
(
∂ rW

∂nE
+

∂ rW

∂nW
−1)

)
[rW −m]+PW (

∂ rW

∂nE
+

∂ rW

∂nW
)− ∂PE

∂ rE
(

∂ rE

∂nW
+

∂ rE

∂nE
−1)[nW −m]+ (1−PE) = 0
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Letting ∂ rW
∂n = ∂ rW

∂nE
+ ∂ rW

∂nW
and ∂ rE

∂n = ∂ rE
∂nE

+ ∂ rE
∂nW

, we have(
∂PW

∂ rW
(
∂ rW

∂n
−1)

)
[rW −m]+PW

∂ rW

∂n
− ∂PE

∂ rE
(
∂ rE

∂n
−1)[nW −m]+ (1−PE) = 0

Now, by symmetry, for the case of state E, we have:(
∂PE

∂ rE
(
∂ rE

∂n
−1)

)
[rE −m]+PE

∂ rE

∂n
− ∂PW

∂ rW
(
∂ rW

∂n
−1)[nE −m]+ (1−PW ) = 0

In the symmetric case, these simplify to:(
∂P
∂ r

(
∂ r
∂n
−1)

)
[r−n]+P

∂ r
∂n

+(1−P) = 0

Solving, we have that:
∂ r
∂n

=
−(1−P)− ∂P

∂ r (n− r)

P− ∂P
∂ r (n− r)

1.2 Proof of Proposition 1
Using some results from the prior section, we have that:(

∂PW

∂ rW
(
∂ rW

∂nE
−1)

)
[rW −m]+PW

∂ rW

∂nE
− ∂PE

∂ rE

∂ rE

∂nE
[nW −m] = 0

(
∂PW

∂ rW

∂ rW

∂nW

)
[rW −m]+PW

∂ rW

∂nW
−
(

∂PE

∂ rE
(

∂ rE

∂nW
−1)

)
[nW −m]+ (1−PE) = 0

When rW = nW = m, these simplify to:
∂ rW

∂nE
= 0

∂ rW

∂nW
=
−(1−PE)

PW

For the case of the budget of state E, we have that, by symmetry:

∂ rE

∂nW
= 0

∂ rE

∂nE
=
−(1−PW )

PE

Recall the original formula for the change in welfare:

0.5
[
{−PW

∂ rW

∂nW
− (1−PE)−PE

∂ rE

∂nW
}∆nW +{−PE

∂ rE

∂nE
− (1−PW )−PW

∂ rW

∂nE
}∆nE

]
Plugging in the above expressions, we have that there is no welfare gain when considering changes in non-
resident tuition when rW = nW = m and rE = nE = m. Thus, non-discriminatory policies are optimal.
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1.3 Proof of Proposition 2
In the symmetric case, we have that ∂P

∂n = ρP(1−P) and thus n−m = 1/ρP. Further, using the budget
constraint, one can show that P = (n−m)/(n− r). Combining these, we have that:

r = n−ρ(n−m)2

Further, note that P = exp(−ρr)/[exp(−ρr)+ exp(−ρn− ρδ )], which can be re-written as r = n+ δ −
(1/ρ)ln[P/(1−P)]. Next, note that n−m = (1/ρP) and thus P/(1−P) = 1/[ρ(n−m)− 1]. Combining
these two expressions, we have that:

r = n+δ +(1/ρ)ln[ρ(n−m)−1]

The first expression for r is quadratic in n, with a peak at n = m+(0.5/ρ), at which point r = m+(0.25/ρ).
Beyond this peak, the expression in decreasing in n. The second expression for r equals negative infinity
when n = m+(0.5/ρ) and is strictly increasing in n. Moreover, when n = m+(2/ρ), r = m+(2/ρ)+ δ .
This is greater than m+(0.25/ρ), and hence there is a single crossing between n = m+(0.5/ρ) and n =
m+(2/ρ). At this single crossing, we have that r < m < n.

To show the comparative static, combining the two expressions above, note that n can be implicitly
defined by:

−ρ
2(n−m)2 = ρδ + ln[ρ(n−m)−1]

Considering a change in ρ,we have that:

−2ρ(n−m)2−2ρ
2(n−m)

∂n
∂ρ

= δ +
(n−m)+ρ

∂n
∂ρ

ρ(n−m)−1

Re-arranging, we have that

(−2ρ(n−m)2−δ )[ρ(n−m)−1]−2ρ
2(n−m)

∂n
∂ρ

[ρ(n−m)−1] = (n−m)+ρ
∂n
∂ρ

Finally, solving, we have,

∂n
∂ρ

=
(−2ρ(n−m)2−δ )[ρ(n−m)−1]− (n−m)

ρ +2ρ2(n−m)[ρ(n−m)−1]

Thus, since ρ(n−m)− 1 > 0 and n > m, we have that the numerator is negative and the denominator is
positive. Thus, ∂n

∂ρ
< 0.

1.4 Theoretical Extension: Fixed Costs
We next extend the theoretical model to include fixed costs. In particular, continue to assume that educating
a student requires a constant expenditure, or marginal cost, equal to m, but that institutions also incur a fixed
cost equal to F . Then, college W faces the following budget constraint:

PW rW +(1−PE)nW = (PW +1−PE)m+F

Then, re-deriving ∂ rW
∂n and ∂ rE

∂n in the first appendix, we have that the budget constraint can be re-written as:

PW (rW ,nE)[rW −m]+ [1−PE(rE ,nW )][nW −m] = F
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Then, considering a changes in nE and nW we have that the key conditions are unchanged:(
∂PW

∂ rW

∂ rW

∂nE
+

∂PW

∂nE

)
[rW −m]+PW

∂ rW

∂nE
− ∂PE

∂ rE

∂ rE

∂nE
[nW −m] = 0

(
∂PW

∂ rW

∂ rW

∂nW

)
[rW −m]+PW

∂ rW

∂nW
−
(

∂PE

∂ rE

∂ rE

∂nW
+

∂PE

∂nW

)
[nW −m]+ (1−PE) = 0

Thus, the key conclusions from the welfare analysis remain unchanged.
We next consider tuition policies set under decentralization with fixed costs. In the symmetric case, Nash

equilibrium out-of-state tuition continues to be characterized by:

n = m+
(1−P)
∂P/∂n

Using the institutional budget constraint under symmetry [Pr+(1−P)n = m+F] and using the fact that
∂P/∂n = ρP(1−P), this can be re-written as:

P(n− r) =−F +
1

ρP

Thus, non-resident tuition continues to be higher than resident tuition so long as fixed costs are sufficiently
small (i.e., F < (1/ρP)).

1.5 Theoretical Extension: Increasing marginal costs
We next extend the theoretical model to increasing marginal costs. In particular, assume that marginal costs
are quadratic in enrollment, with the parameter β capturing the degree of convexity. That is, college W faces
the following budget constraint:

PW rW +(1−PE)nW = (PW +1−PE)m+β (PW +1−PE)
2

Then, re-deriving ∂ rW
∂n and ∂ rE

∂n in the first appendix, we have that the budget constraint can be re-written as:

PW (rW ,nE)[rW −m]+ [1−PE(rE ,nW )][nW −m] = β [PW (rW ,nE)+(1−PE(rE ,nW ))]2

Then, considering a changes in nE and nW we have that the key conditions are given by:(
∂PW

∂ rW

∂ rW

∂nE
+

∂PW

∂nE

)
[rW −m]+PW

∂ rW

∂nE
− ∂PE

∂ rE

∂ rE

∂nE
[nW −m] =

2β [PW (rW ,nE)+(1−PE(rE ,nW ))]

(
∂PW

∂ rW

∂ rW

∂nE
+

∂PW

∂nE
− ∂PE

∂ rE

∂ rE

∂nE

)

(
∂PW

∂ rW

∂ rW

∂nW

)
[rW −m]+PW

∂ rW

∂nW
−
(

∂PE

∂ rE

∂ rE

∂nW
+

∂PE

∂nW

)
[nW −m]+ (1−PE) =

2β [PW (rW ,nE)+(1−PE(rE ,nW ))]

(
∂PW

∂ rW

∂ rW

∂nW
− ∂PE

∂ rE

∂ rE

∂nW
− ∂PE

∂nW

)
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In the symmetric case (PE = PW ), these can be written as:(
∂PW

∂ rW

∂ rW

∂nE
+

∂PW

∂nE

)
[rW −m−2β ]+PW

∂ rW

∂nE
− ∂PE

∂ rE

∂ rE

∂nE
[nW −m−2β ] = 0(

∂PW

∂ rW

∂ rW

∂nW

)
[rW −m−2β ]+PW

∂ rW

∂nW
−
(

∂PE

∂ rE

∂ rE

∂nW
+

∂PE

∂nW

)
[nW −m−2β ]+ (1−PE) = 0

Thus, all of the previous results in the symmetric case follow, with m replaced by m+ 2β . Since the key
results do not depend upon m, they thus do not depend upon β .

Under decentralization, the relevant version of equation (14) in the symmetric case (PW = PE) is given
by:

∂PW

∂ rW

∂ rW

∂nW
[rW −m−2β ]+PW

∂ rW

∂nW
+(1−PE)−

∂PE

∂nW
[nW −m−2β ] = 0

Since ∂ rW
∂nW

= 0 in equilibrium, we have that non-resident tuition can be characterized by:

n = m+2β +
(1−P)
∂P/∂n

Moreover, the budget constraint under symmetry is equal to:

P(r−m)+(1−P)(n−m) = β

Thus, under non-distortionary tuition, we have that n = r = m+β . Since n > m+β , it is the case that n > r.

1.6 Theoretical Extension: State subsidies
Assume that colleges receive a subsidy for each resident student from the state government equal to σc.
These subsidies are financed via non-distortionary taxes that must be paid by families regardless of college
choice. These subsidies are assumed to be exogenous and thus do not respond to changes in tuition policy.
In this case, the inclusive value for a resident from state W is given by:

VW (rW ,nE) = (1/ρ) ln[exp(αρqW −ρrW )+ exp(αρqE −ρnE −ρδ )]−PW σW

where the new term represents welfare costs associated with taxes required to finance subsidies and depend
upon the likelihood of all residents attending in-state colleges.

Also, the college budget constraint for college W is adjusted as follows:

fW (rW +σW )+(1− fW )nW = m

In the symmetric case, we have that the change in welfare is given by:

∆n
[
−P

∂ r
∂n
− (1−P)−σ

∂P
∂ r

∂ r
∂n
−σ

∂P
∂n

]
where the two new terms represents the change in taxes required to fund the appropriations due to a response
in in-state enrollment probabilities. Under symmetry, we have that ∂P

∂n = −∂P
∂ r , and the expression can be

written more compactly as:

∆n
[
−P

∂ r
∂n
− (1−P)−σ

∂P
∂ r

(
∂ r
∂n
−1)

]
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The required change in resident tuition in this case can be written as:

∂ r
∂n

=
−(1−P)− ∂P

∂ r (n− r−σ)

P− ∂P
∂ r (n− r−σ)

When n = r+σ , we have that the required change in tuition equals −(1−P)/P, and the welfare gain takes
the simple form:

∆n
[

∂P
∂ r

σ

P

]
Since ∂P

∂ r < 0, we have that reductions in non-resident tuition from n = r+σ lead to an increase in welfare.
With portable subsidies, all residents receive subsidies, regardless of which institution they attend, and

taxes simply equal the subsidy. Assume that in-state students pay rc and the institution receives a subsidy
equal to σc. For out-of-state students, assume that colleges charge a higher tuition equal to nc > rc but that
students can use their portable subsidy to help to cover their tuition. Thus, the net payment, for example, for
students from W attending college E equals nE −σW . In this case, the inclusive value for a resident from
state W equals:

VW (rW ,nE) = (1/ρ) ln[exp(αρqW −ρrW )+ exp(αρqE −ρ(nE −σW )−ρδ )]−σW

Moreover, the college budget constraint is given by:

fW (rW +σW )+(1− fW )nW = m

In the symmetric case, we have that the key welfare expressions can be written as:

∆n
[
−P

∂ r
∂n
− (1−P)

]

∂ r
∂n

=
−(1−P)− ∂P

∂ r (n− r−σ)

P− ∂P
∂ r (n− r−σ)

Thus, when n = r+σ , we have that the required change in tuition again equals−(1−P)/P. Given this, there
is no welfare gain when reducing non-resident tuition from this higher level.

1.7 Theoretical Extension: More Than Two States
We next extend the model from two states to S states, indexed by s. Let Ps(t) denote the likelihood that a
student from state s attends institution t. Then, in-state attendance probabilities are given by:

Ps(s) =
exp(αρqs−ρrs)

exp(αρqs−ρrs)+∑t 6=s exp(αρqt−ρnt−ρδ )

Likewise, attendance at an out-of-state institution t 6= s occurs with the following probability:

Ps(t) =
exp(αρqt−ρrt−δ )

exp(αρqt−ρrt−δ )+ exp(αρqs−ρrs)+∑r 6=s,r 6=t exp(αρqr−ρnr−ρδ )

Then, the change in welfare given a uniform increase in non-resident tuition equals:
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(1/S)∆n

[
∑
s
−Ps(s)

∂ rs

∂n
−∑

t 6=s
(1−Ps(t))

]
Under symmetry, this reduces to:

∆n
[
−P

∂ r
∂n
− (1−P)

]
where P represents the likelihood of in-state attendance and 1−P represents the likelihood of out-of-state
attendance, aggregated over all out-of-state institutions. Moreover, it remains the case that:

∂ r
∂n

=
−(1−P)− ∂P

∂ r (n− r)

P− ∂P
∂ r (n− r)

Thus, the welfare calculations are unchanged with more than two states, under the interpretation that 1−P
is the out-of-state attendance probability, aggregated over all possible out-of-state institutions.

Turning to decentralization, we have that state s again chooses non-resident tuition to minimize resident
tuition. That is, ∂ rs/∂ns = 0. The institution budget constraint for college s in this case is given by:

Ps(s)(rs−m)+∑
t 6=s

Pt(s)(ns−m) = 0

Taking the derivative with respect to non-resident tuition (ns), we have that:

∂Ps

∂ rs

∂ rs

∂ns
[rs−m]+Ps

∂ rs

∂ns
+∑

t 6=s
Pt(s)+∑

t 6=s

∂Pt(s)
∂ns

[ns−m] = 0

Since ∂ rs
∂ns

= 0 in equilibrium and using the fact that ∂Pt(s)
∂ns

=−ρPt(s)[1−Pt(s)], we have that:

∑
t 6=s

Pt(s) = ∑
t 6=s

ρPt(s)[1−Pt(s)][ns−m]

In the symmetric case, we have that Pt(s) = (1−P)/(S−1) for t 6= s, where P is the probability of in-state
attendance. Then, this can be written as:

(1−P) =
ρ(1−P)(S+P−2)(n−m)

S−1

Solving for non-resident tuition, we have that:

n = m+
1
ρ

S−1
(S+P−2)

Since P ≤ 1, we have that n ≥ m+ 1/ρ, and, moreover, non-resident tuition converges to m+ 1/ρ as the
number of states grows large.

To further investigate how tuition policies change with the number of states, we next calibrate the model
to match current tuition and in-state attendance probabilities. To do so, we first invert the above non-resident
pricing rule to solve for ρ as follows:

ρ =
1

n−m
S−1

(S+P−2)
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We use in-state attendance probabilities of P = 0.75. Tuition is taken from the overall averages in Table
1 of the main document, yielding n =15.511 and r = 6.358. This implies that m = 8.646. Finally, using
S = 50, we have that ρ = 0.1464. With this estimate of ρ, we then choose δ to match P = 0.75. This yields
δ = 24.947.

With these parameters in hand, we can then estimate how pricing changes given a change in the number
of states. As shown in Table 1 below, increasing the number of states beyond 50 does yield a reduction in
non-resident tuition, falling from 15.512 to 15.503 for 90 states. This decrease is quite small however, and,
as noted above, non-resident tuition is bounded from below by m+1/ρ, which equals 15.477. Thus, there is
little scope in the model for reducing non-resident tuition via an increase in the number of states. In addition,
while non-resident tuition does fall as the number of states increases, the gap between non-resident and
resident tuition actually rises. This reflects the fact that the choice set also increases for students, yielding an
increase in non-resident attendance, allowing universities to reduce in-state tuition. Likewise, as the number
states decreases below 50, non-resident tuition increases but so does resident tuition, leading to a reduction
in the gap between non-resident and resident tuition.

Table 1: Competition and Tuition Policies
Number of

states
(S)

Out-of-state
tuition

(n)

In-state tuition
(r)

In-state
attendance

(P)

10 15.533 8.097 0.926
20 15.525 7.588 0.867
30 15.520 7.132 0.819
40 15.515 6.728 0.782
50 15.512 6.362 0.750
60 15.509 6.027 0.724
70 15.507 5.718 0.701
80 15.505 5.431 0.681
90 15.503 5.163 0.663

2 Additional Empirical Results

2.1 Student Payments: Private Institutions
In parallel to Section VI.A of the main document, we present in Table 2 below results on student payments to
private institutions using NPSAS data. As shown, residents pay a bit less, around $260, in tuition payments
than non-residents. This difference, however, is small when compared to the sample average of over $20,000
in tuition payments. The gap is larger for net payments, with residents paying roughly $2,800 less than
residents. This implies that residents receive around $2,500 more in grants than non-residents at private
universities. To further explore the source of this difference, we next decompose total grants into their
four components: federal grants, state grants, institution grants, and other grants. As shown, the bulk of the
difference is explained by state grants. This finding is consistent with several state aid programs that generate
financial differences between residents and non-residents at private institutions. For example, the Cal Grant
Program is a state-funded program that provides aid to California residents attending California institutions,
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both public and private.1 Likewise, the Hope scholarship in Georgia is available to state residents attending
either public or private institutions in the state of Georgia. Finally, we note that these differences in payments
between residents and non-residents are smaller than those documented for public institutions.

Table 2: Student payments in NPSAS data: private
(1) (2) (3) (4) (5) (6)

Tuition/
fees paid

Net tuition/
fees paid

Federal
grants

State grants Institution
grants

Other
grants

in-state -0.259** -2.847*** 0.634*** 1.761*** -0.086 0.278***
(0.113) (0.213) (0.041) (0.039) (0.142) (0.063)

LHS
mean

21.435 9.63 1.636 1.195 7.721 1.253

R2 0.587 0.318 0.164 0.283 0.356 0.110
All specifications include institution-by-year, state-of-residence-by-year, and cohort FE.
Net tuition and fees paid is net of all grants received by the student.
All dollar values are in thousands of 2011 dollars.
The sample consists of 32,130 full-time students attending four-year private institutions.
* p<0.1 ** p<0.05 *** p<0.01

2.2 Analysis of Private Institution Acceptance Decisions
In parallel to Section VI.E of the main document, Table 3 below presents results on private institution accep-
tance decisions using ELS data. As shown, private institutions are also more likely to admit residents, when
compared to non-residents. The difference is only statistically significant, however, when including appli-
cant fixed effects. In addition, the magnitude of any differences is smaller than the corresponding differences
for public institutions.

Table 3: Analysis of Private Institution Acceptance Decisions
(1) (2)

Accept Accept
in-state 0.021 0.040**

(0.017) (0.020)
sat 0.001***

(0.000)
gpa 0.146***

(0.017)
R2 0.245 0.821

student FE no yes
Linear probability models of acceptance decisions with institution FE
Sample consists of 5,960 students reporting SAT and GPA scores
Four-year institutions with at least 10 appearances in student application sets
* p<0.1 ** p<0.05 *** p<0.01

1For further details, see http://www.csac.ca.gov/doc.asp?id=568 (accessed October 16, 2015).
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2.3 Additional Robustness Checks of Main Specification

Table 4: Alternative Border-Side Widths
10km border-sides 30km border-sides

(1) (2) (3) (4) (5) (6)
Enroll Enroll percent Ln Enroll Enroll Enroll percent Ln Enroll

in-state 32.997*** 0.796*** 1.455*** 78.606*** 0.822*** 1.913***
(3.168) (0.008) (0.050) (6.935) (0.007) (0.053)

Observations 16422 11820 16422 17286 14336 17286
R2 0.439 0.870 0.732 0.457 0.906 0.768
#Clusters 2790 2288 2790 2882 2622 2882

Columns 1-3 at border-side level for 10km border-sides, cols 4-6 use 30km border-sides.
All specifications include university-year FE and border-side-year FE.
Sample is public universities, 1997-2011, excluding two-year colleges.
Standard errors clustered at university-border-side level
* p<0.1 ** p<0.05 *** p<0.01

Table 5: Excluding Border Institutions
(1) (2) (3)

Enroll Enroll percent Ln Enroll

in-state 46.736*** 0.814*** 1.652***
(5.397) (0.008) (0.050)

Observations 16092 12536 16092
R2 0.462 0.892 0.779
#Clusters 2682 2308 2682

Regressions run at border-side level, 20km border-sides.
Sample is public universities only, 1997-2011;
two-year colleges are excluded.
Sample also drops universities within 30km of border.
All specifications include univ-year and border side-year FE.
Standard errors clustered at university-border-side level.
* p<0.1 ** p<0.05 *** p<0.01

2.4 Confidence Intervals for Welfare Analysis
The statistic for the required increase in resident tuition equals:

S(ρ) =
−(1−P)+ρ(n− r)P(1−P)

P+ρ(n− r)P(1−P)
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This can be written as

S(ρ) =
g(ρ)
h(ρ)

To apply the Delta method, we require S′(ρ). Applying the quotient rule, we have that:

S′(ρ) =
g′(ρ)h(ρ)−g(ρ)h′(ρ)

h(ρ)2

Using the fact that g′(ρ) = h′(ρ) = (n− r)P(1−P) and that h(ρ)−g(ρ) = 1, this can be re-written as:

S′(ρ) =
(n− r)P(1−P)

h(ρ)2

Then, using the delta method, the standard error for the required change in resident tuition equals σ(ρ)|S′(ρ)|.
Following similar logic the standard error for the change in welfare for resident students equals Pσ(ρ)|S′(ρ)|

and this is also the standard error for the change in combined welfare.

2.5 Illustration of Identification Strategy

Border Side EastBorder Side West

10 distance bins (2km each)

zipcodes

20km
border‐side width

2km

zipcodes

10 distance bins (2km each)

2km 2km 2km 2km 2km
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Figure 1: Border-Sides and Distance Bins Diagram
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