
Online Appendix: Optimal Climate Policy when

Damages are Unknown - Ivan Rudik

The online appendix gives full details on the dynamic stochastic climate-economy

model, describes how I use a linear climate model consistent with recent developments

in climate science, describes my computational algorithms, provides an error analysis

of the results, shows the full derivation of the carbon tax, and plots the certainty tax.

A The Full Stochastic Climate-Economy Model

The model is a Ramsey-Cass-Koopmans growth model coupled to a climate system.

The model is governed by a representative policymaker whose objective is to maximize

her expected discounted welfare. Each period lasts one year and the model begins in

2005.

In each period t, the policymaker has an endowment of capital Kt, labor Lt, and

technology At. To improve numerical accuracy I express capital in effective labor

terms, kt = Kt

AtLt
(Traeger, 2014). Capital, labor and technology are combined in a

Cobb-Douglas production function to produce gross output

Y g
t = kκtt .

Warming of the Earth’s surface causes damage to output, resulting in net output

after damages

Y n
t = Y g

t Lt,

where Lt is the fraction of output remaining after damages as defined in the main

text (fractional net output)

Lt =
1

1 + d1 [T st ]d2 wt
.

The policymaker has three ways to use her remaining output after damages. First,

she can use it for consumption Ct, also expressed in effective labor terms ct = Ct

AtLt
to
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increase flow utility

U(ct) =
c1−η
t

(1− η)
, η 6= 1.

Second, she can use it to abate some fraction αt ∈ [0, 1] of emissions from factor

production with a cost given by

C(αt) = Ψtα
a2
t .

The residual output is left for investment into increasing the future capital stock,

which depreciates at an annual rate of δk. Net emissions after abatement et is

et = σt(1− αt)Y g
t +Bt.

Bt is emissions from exogenous land use change, and σt is the emissions intensity of

output. Following the recent climate science literature (e.g. Matthews et al., 2009;

IPCC, 2014; Knutti et al., 2017), I use a 1 state climate system that is a function

of cumulative CO2 emissions. Contemporaneous surface temperature (relative to

preindustrial) is proportional to cumulative CO2 emissions since preindustrial times

T st = ζ
t∑

s=1880

es,

where ζ is the transient climate response to emissions (TCRE). Cumulative emissions

has a Markov transition

Et = Et−1 + et

so that I can write temperature as

T st = ζEt.

The model’s exogenously evolving processes are

Lt = L0 + (L∞ − L0) (1− exp(−δLt)) (Labor population)

gL,t = δL

(
L∞

L∞ − L0

exp(δLt)− 1

)−1

(Labor growth rate)

At = A0 exp

(
(1− exp(−δAt))

gA,0
δA

)
(Production technology)
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gA,t = gA,0 exp(−δA t) (Production technology growth rate)

βt = exp (−ρ+ (1− η)gA,t + gL,t) (Growth adjusted discount factor)

σt = σ0 exp

[
gσ,0
δσ

(1− exp(−δσt))
]

(Gross emissions per unit of output)

Ψt =
a0 σt
a2

(
1− 1− exp(gΨt)

a1

)
(Abatement cost coefficient)

Bt = B0 g
t
B (Non-industrial CO2 emissions)

Table A1 reports the values of the model parameters. The calibration of the

distribution over d1, d2, and ωt+1 are described in the main text.
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Table A1: The parameters of the model.

Parameter Value Description

A0 0.027 Initial production technology

gA,0 0.009 Initial growth rate of production technology

δA 0.001 Change in growth rate of production technology

L0 6514 Year 2005 population (millions)

L∞ 8600 Asymptotic population (millions)

δL 0.035 Rate of approach to asymptotic population level

σ0 0.13 Initial emission intensity of output (Gigatons of carbon per unit output)

gσ,0 -0.0073 Initial growth rate of decarbonization

δσ 0.003 Change in growth rate of emissions intensity

a0 1.17 Cost of backstop technology in 2005 ($1000 per ton of carbon)

a1 2 Initial backstop technology cost / Final backstop technology cost

a2 2.8 Abatement cost function exponent

gΨ -0.005 Growth rate of backstop technology cost

B0 1.1 Initial non-industrial CO2 emissions (Gigatons of carbon)

gB -0.01 Growth rate of non-industrial emissions

κ 0.3 Capital elasticity in production

δk 0.1 Capital depreciation rate

E0 454.90 Cumulative emissions in initial model year (Gigatons of carbon in 2005)

ρ 0.015 Pure rate of time preference

η 2 1/EIS, and RRA

ζ 0.0016 TCRE (◦C per 1,000 gigatons of carbon)

k0 137/(A0L0) Year 2005 effective capital

µc -5.38 d1 location parameter

σ2
c 0.38 d1 scale parameter

exp
(
µc +

σ2
c

2

)
0.00556 d1 mean

exp
(
2µc + σ2

c

) [
exp

(
σ2
c

)
− 1
]

0.003792 d1 variance

µ0 1.88 Year 2005 d2 mean

Σ0 0.20 Year 2005 d2 variance

µω -0.59 ωt location parameter

σ2
ω 1.18 ωt scale parameter

exp
(
µω +

σ2
ω

2

)
1 ωt mean

exp
(
2µω + σ2

ω

) [
exp

(
σ2
ω

)
− 1
]

1.222 ωt variance
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Without loss of generality, the robust control policymaker’s problem is then

Vt(kt, Et,Lt, µt,Σt) =

max
ct,αt

{
u(ct) + Ed2

[
−θlog

(
Ed1,ωt+1

[
exp

(
−βt Vt+1(kt+1, Et+1,Lt+1, µt+1,Σt+1)

θ

)])]}
subject to transitions:

kt+1 = exp (−(gL,t + gA,t)) [(1− δk)kt − ct + (1−Ψtα
a2
t )Y g

t Lt] ,

Et+1 = Et + σt(1− αt)Y g
t +Bt,

Lt+1 =
1

1 + d1 [ζEt+1]d2 ωt+1

,

µt+1 =
(σ2

w + σ2
c )µt + log (ζEt+1) Σt

[
log
(

1
Lt+1
− 1
)
− (µc + µw)

]
(σ2

w + σ2
c ) + [log (ζEt+1)]2 Σt

,

Σt+1 =
Σt (σ2

w + σ2
c )

(σ2
w + σ2

c ) + [log (ζEt+1)]2 Σt

.

Finally I constrain abatement to be less than 100 percent and I impose the resource

constraint

αt ≤ 1,

ct + Ψtα
a2
t Y

g
t Lt ≤ Y g

t Lt.

If the policymaker does not learn, then µt+1 = µt and Σt+1 = Σt. Note that the

transition for µt+1 is stochastic and depends on the realization of ωt+1 and the true

values of d1 and d2.

A.1 Climate System

To make the model tractable to solve numerically, I take advantage of recent find-

ings in climate science that find warming is proportional to cumulative emissions of

carbon (Matthews et al., 2009; IPCC, 2014; Knutti et al., 2017). This relationship

comes about because a pulse of carbon into the atmosphere increases equilibrium

temperature quickly by a constant amount (Matthews and Caldeira, 2008). This

has lead scientists to conclude that contemporaneous temperature is almost entirely

determined by the level of cumulative past emissions (Allen et al., 2009; Matthews

et al., 2009). Past cumulative emissions is translated into temperature by a factor of
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proportionality called the transient climate response to emissions (TCRE).

Define the TCRE as (Williams et al., 2016; Dietz and Venmans, 2019)

ζ ≡ ∆T

∆E
=

∆T

∆M

∆M

∆E
,

where T is temperature, M is atmospheric carbon, and E is cumulative emissions.

Let ∆ denote changes since preindustrial levels. ∆T
∆M

gives the change in warming

from additional carbon in the atmosphere and ∆M
∆E

gives the change in atmospheric

carbon concentrations given a change in emissions. Each of these terms is individually

non-linear but the product of this ends up being a simple proportional relationship for

two key reasons: (1) warming from a pulse of emissions realizes quickly, and then is

constant over time and (2) the marginal effect of emissions on temperature is constant

and independent of the state of the climate.

How does this come about?1 First, ∆T
∆M

is increasing and concave. Over time,

greater CO2 concentrations lead to more warming as additional heat gets trapped.

The relationship is concave because both the relationship between CO2 concentra-

tions and temperature is approximately logarithmic, and the oceans’ significant heat

capacity leads to thermal inertia: a lag between changes in carbon concentrations and

equilibrium warming. The second term, ∆M
∆E

, is increasing and convex. Additional

emissions initially go into the atmosphere and increase atmospheric CO2, while some

of these emissions eventually get absorbed in land and ocean carbon sinks. The con-

vex relationship arises because the strength of these sinks is decreasing in cumulative

emissions. If there has been greater past cumulative emissions, a larger fraction of

the next emission will remain in the atmosphere instead of being absorbed by one of

the sinks. The curvature in ∆T
∆M

and ∆M
∆E

effectively cancel out so that ζ is constant

and positive.

Using the TCRE climate model allows me to reduce the climate system to 1

state as opposed to other options such as the 5 state DICE climate system. This

makes using standard tensor product approximation methods tractable and updates

the climate system to match the most recent developments in climate science. I

use a TCRE value of ζ = 0.0016 (◦C/1,000 gigatons of carbon). This value and

the proportional translation of cumulative emissions to temperature follow closely to

parallel work on climate model uncertainty (Berger and Marinacci, 2017) and recent

1See Figure 1 of Millar et al. (2016) for plots of these relationships.
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Figure A1: The temperature trajectories for DICE-2016 along the DICE-optimal
emissions path (gray circles), DICE-2016 along an emissions path that grows cumu-
lative emissions by 1% per year (gray triangles), the TCRE-based model used in this
paper along the DICE-optimal emissions path (black circles) and the TCRE-based
model used in the paper along an emissions path that grows cumulative emissions by
1% per year (black triangles).

climate economics papers (e.g. Dietz and Venmans, 2019; van der Ploeg, 2018). This

value for the TCRE is in the middle of the most likely range estimated by the IPCC

(IPCC, 2014; Knutti et al., 2017). ζ has been found to be constant up to various levels

of cumulative emissions, including up to 2,000 GtC (Matthews et al., 2009), or 3,000

GtC (Leduc et al., 2015), and the TCRE has also been found to be approximately

constant across all RCP scenarios (MacDougall and Friedlingstein, 2015).

Figure A1 plots temperature trajectories comparing the DICE climate system to

the TCRE system. The DICE temperature trajectories are shown in gray and the

TCRE trajectories are shown in black. Circle markers denote emissions trajectories

that correspond to the optimal emissions trajectory from DICE-2016 while triangle

markers correspond to an emissions trajectory that grows cumulative emissions by

1% per year. Both trajectories result in cumulative emissions of 1,300-1,400 GtC by

2105. The TCRE system predicts approximately 2.1◦C of warming along these two

trajectories which is well within the range of predicted temperatures of global climate

models at this cumulative emissions level (IPCC, 2013). The DICE model predicts
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about 1◦C more warming than the TCRE model and tends to be on the high end of

temperature predictions from the suite of global climate models used in IPCC (2013).

A.2 Model Solution Method and Error Analysis

General approximation scheme The model is solved using value function iter-

ation on a finite horizon. The collocation grid and polynomial interpolant are built

using standard tensor product methods. The grid is constructed from a tensor prod-

uct of one dimensional vectors of zeros of Chebyshev polynomials. For the learning

frameworks, the grid has 2,100 grid points for 2005–2505 and 1,575 grid points for

2506–2605.2 For the non-learning frameworks, the grid has 729 grid points.3 The

polynomial interpolant is constructed from a tensor product of Chebyshev polynomi-

als. Below I test the sensitivity of my results to the number of collocation grid points,

quadrature points, and the bounds for the state space.

Terminal value function The terminal year is 2605. The terminal continuation

value function corresponding to 2606 has the policymaker not learning while holding

her initial beliefs about {d2, d1, ωt+1}, and has all exogenous processes held constant at

their 2606 levels. Changing the terminal value function to one where the policymaker

does not expect damage stochasticity and believes the damage function to be exactly

equal to that in the conventional DICE model does not significantly alter the results

since the continuation value 600 years in the future is effectively discounted to zero.

Expectations Expectations over future states are taken using Gauss-Hermite quadra-

ture with 11 unique points over the d2 distribution, and 11 unique points over the joint

{d1, ωt+1} distribution for a total of 121 quadrature points. Note that the support of

the location parameter for a lognormal distribution is the entire real line. Depending

on the draws of the random variables, it can take on any value in (−∞,∞). Below

I test the sensitivity of my results to the number of quadrature points to determine

whether evaluating the random variables at additional points further into the tail of

the distribution significantly affects my results.

2These correspond to 5 unique grid points for cumulative emissions, 3 for the location parameter,
7 for the scale parameter, 5 for fractional net output, and either 3 or 4 for effective capital.

3This corresponds to 9 on each state.

VIII



Table A2: Upper and lower bounds for each state. In the case of learning and RC+L
frameworks the bounds are only for the first iteration of the adaptive grid algorithm.

k E µ Σ L

State Upper Bound: Uncertainty and RC 4.30 3500.0 – – 1.0
State Lower Bound: Uncertainty and RC 0.65 454.9 – – 0.3
Initial State Upper Bound: Learning and RC+L 6.0 5000.0 3.13 .452 1.0
Initial State Lower Bound: Learning and RC+L 0.0 454.9 0.63 0.5 0.4

Adaptive grid I use a time-varying set of bounds to approximate the learning and

RC+L value functions.4 Earlier years have tighter bounds since the set of possible

realized states is smaller, while later years have wider bounds.5 This allows me to

use significantly fewer collocation points than on a standard hyperrectangle grid. I

generate this adaptive grid using the following algorithm:

1. Solve the model on the time-invariant set of bounds given by Table A2. Use

3 unique grid points for effective capital, 5 for cumulative emissions, 3 for the

location parameter, 7 for the scale parameter, and 5 for fractional net output.

2. Perform 1,000 simulations that are 301 years in length.

3. For each state

(a) Recover the maximum and minimum simulated values in each year over

the 1,000 simulations.

(b) These time series will be noisy in later years even with a very large number

of simulations, so fit a spline to the time series of maxima and another

spline to the time series of minima.6

(c) Set the new time t upper/lower bounds to a be weighted average of the

fitted maxima/minima splines evaluated at time t, and the previous time

4This scheme is similar to that used in a number of recent stochastic implementations of DICE
with even more states (Cai et al., 2015; Lontzek et al., 2015; Cai et al., 2016, Forthcoming). Cai
(2018) provides more details on why this approach is particularly efficient for climate-economy
models related to DICE and how it can allow researchers to solve extremely complicated models in
minutes.

5For example, cumulative emissions can only grow so much in the first five years and the trajectory
is non-decreasing since there are no negative emissions technologies.

6Smoothing out a time series of maxima or minima takes many more simulation runs than
smoothing out the mean. The process can be greatly accelerated by fitting a spline.
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t bounds, where weights on the bounds given by the splines are shown in

Table A3.7

4. Solve the model on the new time-varying set of bounds obtained in Step 3. Use

3 unique grid points for effective capital, 5 for cumulative emissions, 3 for the

location parameter, 7 for the scale parameter, and 5 for fractional net output.

5. Repeat steps 2–4 16 times.

6. Repeat steps 2–4 4 times but use 5 grid points for effective capital starting at

year 2505.

7. Set the bounds in 2005 to effectively be an epsilon ball around the initial state

since it is the only state reached in that year.

8. Solve the model on this final set of adapted bounds using 4 unique grid points

for effective capital, 5 for cumulative emissions, 3 for the location parameter, 7

for the scale parameter, 5 for fractional net output.

I do not adapt the bounds for the scale parameter (i.e. the 0.0 weights in Table A3)

because the misspecified damage function simulations tend to result in it jumping

outside the bounds if its bounds are adapted, while the other states stay within the

bounds even when the damage function is misspecified. I do not adapt the upper

bound for fractional net output because the maximum simulated values are generally

very close to 1.0, the initial upper bound. The scale parameter bounds are not adapted

except for the initial period. The algorithm allows for tight bounds on the remaining

states compared to the non-learning frameworks’ hyperrectangle grid.

Figure A2 depicts the bounds and 1,000 simulated state trajectories. The final

set of adapted grid bounds are the thick black lines, the simulated state trajectories

are the thin gray lines, and the expected state trajectories are the dotted black lines.

For the states where the bounds were adapted, the bounds are tight around the set

of states actually reached in simulations. For about 20 total simulation years each,

fractional net output and the location parameter are no longer within the state bounds

where the value function approximant is reliable. Although this introduces error, 20

years outside the bounds is a negligible fraction of the 101,000 total years displayed in

7This is similar to damping procedures used in other iterative algorithms like infinite-horizon
value function iteration.
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Figure A2: The bounds for each state for the learning framework and the robust
control and learning framework (thick black line). The bounds for each state for the
learning framework and the robust control and learning framework in the second-
to-last iteration of the adaptive grid algorithm (thick dashed gray line). Simulated
state trajectories from the first 1,000 simulations (thin gray lines). Expected state
trajectory (dotted black line).

the simulations (101 year simulation × 1,000 simulations). The figure also shows the

bounds from the second-to-last iteration of the adaptive grid algorithm as a thick gray

dashed line. These are almost identical to the actual state bounds in black, except for

the capital lower bound. The average relative difference in the capital lower bounds

between the final two algorithm iterations is less than 1%.

The non-learning frameworks do not use the adaptive grid. This is for two reasons.

First, the non-learning frameworks have low dimensionality and can be solved on a

standard hyperrectangle grid. Second, without learning, the states often drift outside

adapted approximation bounds when facing a misspecified damage function. If the

policymaker’s beliefs about the damage function are correct, the adaptive grid can
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Table A3: Weights on fitted spline bounds obtained from Step 3c in the adaptive grid
algorithm. Weights on the previous iteration’s bounds are 1 minus the weights in the
table.

k E µ Σ L

Upper Bound Weight 0.3 0.4 0.5 0.0 0.0
Lower Bound Weight 0.1 0.3 0.5 0.0 0.5

easily be used for a non-learning policymaker. The state bounds for the non-learning

frameworks are contained in Table A2.

Error analysis I investigate the accuracy of the model by calculating the relative

differences in simulated policy trajectories when (i) increasing the number of unique

collocation points by 1 by over each dimension (e.g. capital goes from 4→ 5, cumula-

tive emissions goes from 5→ 6, etc), (ii) increasing the number of quadrature points

by 2 over the d2 distribution and the joint {d1, ωt+1} distribution, (iii) increasing the

collocation upper bound by 10% and decreasing the collocation lower bound by 10%

for the non-adapted grids,8 and (iv) only doing the first 10 adaptive grid iterations

instead of the full 20. For the frameworks with learning, (i)-(iii) use the same adaptive

grid bounds as the baseline results. Tables A4 displays the maximum and average

relative differences of the simulated trajectories’ carbon taxes and consumption levels

over the first 100 years.

Average differences in taxes and consumption for all frameworks are on the order

of 10−3 or smaller, while the maximum error is larger but still relatively small.9

B Carbon Tax Derivation

The conventional definition of the time t carbon tax used in the dynamic stochastic

integrated assessment literature is that it is the shadow cost of time t emissions. It

is converted into dollar terms using time t marginal utility evaluated at the optimal

consumption level. Without loss of generality I derive the carbon tax using the value

8For fractional net output I reduce the lower bound by 20% since increasing the upper bound
beyond 1.0 corresponds to generating more than 100% of possible output without climate change.

9Changing the number of collocation points on capital by 2 instead of 1 generates similarly sized
errors of about 10−3 for averages and 10−2 for maximums.
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Table A4: Average and maximum differences in carbon taxes and consumption from
increasing the number of collocation grid points or quadrature points, expanding the
size of the approximation domain for the non-learning frameworks, and performing
10 fewer iterations of the adaptive grid algorithm for the frameworks with learn-
ing. The average and maximum carbon tax trajectory differences are taken from
50,000 simulations over 2005–2105 where each simulation has a random draw of
{d1, d2, ω2005, ..., ω2105}.

Parameters Changed Relative Differences Uncertainty Learning RC RC+L

# Collocation Points:
Add 1 unique point

to each state

Tax: Max 1.1% 1.4% 1.2% 0.7%
Tax: Avg 0.2% 0.5% 0.2% 0.4%

Consumption: Max 0.2% 0.08% 0.2% 0.06%
Consumption: Avg 0.02% 9× 10−3% 0.02% 8× 10−3%

# Quadrature Points:
Add 2 unique points
to both distributions:
{d2} and {d1, ωt+1}

Tax: Max 0.06% 0.6% 0.04% 0.5%
Tax: Avg 0.02% 0.3% 0.02% 0.2%

Consumption: Max 0.03% 0.08% 0.03% 0.03%
Consumption: Avg 7× 10−3% 7× 10−3% 8× 10−3% 8× 10−3%

Domain Bounds:
Increase UB and

decrease LB by 10%

Tax: Max 0.8% – 0.9% –
Tax: Avg 0.3% – 0.3% –

Consumption: Max 0.4% – 0.2% –
Consumption: Avg 0.1% – 0.09% –

# Adaptive Iterations:
Decrease from 20 to 10

Tax: Max – 0.8% – 0.8%
Tax: Avg – 0.3% – 0.3%

Consumption: Max – 0.2% – 0.2%
Consumption: Avg – 0.06% – 0.06%
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function for the robust control and learning framework. Recall the right hand side of

the Bellman equation is

Vt(St) = max
ct,αt

{
U(ct) + Ed2

[
−θlog

(
Ed1,ωt+1

[
exp

(
−βt Vt+1(St+1)

θ

)])]}
where St+1 ≡ {kt+1, Et+1,Lt+1, µt+1,Σt+1} and expectations are taken using the time

t information set. To economize on space I omit the value function arguments for

now. The shadow cost of emissions is the negative partial derivative of the right hand

side of the Bellman with respect to time t emissions et, which yields

θEd2

Ed1,ωt+1

[
−βt

θ
exp

(
−βtVt+1

θ

)
∂Vt+1

∂St+1

∂St+1

∂et

]
Ed1,ωt+1

[
exp

(
−βtVt+1

θ

)]
 .

The θ terms cancel. Expand the expectation term over d1, ωt+1 in the numerator of

the fraction using the covariance identity to obtain

βtEd2

Ed1,ωt+1

[
exp

(
−βtVt+1

θ

)]
Ed1,ωt+1

[
−∂Vt+1

∂St+1

∂St+1

∂et

]
Ed1,ωt+1

[
exp

(
−βtVt+1

θ

)] +
covd1,ωt+1

(
exp

(
−βtVt+1

θ

)
, −∂Vt+1

∂St+1

∂St+1

∂et

)
Ed1,ωt+1

[
exp

(
−βtVt+1

θ

)]
 .

We can cancel the expectations over the exponentials in the first term, and bring

the denominator of the second term inside of the covariance operator such that it

multiplies the first argument. The last step to obtain the optimal carbon tax is to

divide by u′(ct) to translate into dollar terms

βt
u′(ct)

Ed2

{
Ed1,ωt+1

[
−∂Vt+1

∂St+1

∂St+1

∂et

]
+ covd1,ωt+1

( exp
(
−βtVt+1

θ

)
Ed1,ωt+1

[
exp

(
−βtVt+1

θ

)] , −∂Vt+1

∂St+1

∂St+1

∂et

)}
.

(1)

The first term is the standard carbon tax expression without robust control. The

second term is the additively separable adjustment for robust control.

Now focus on the first term (the standard carbon tax expression term) and ignore

the leading βt
u′(ct)

for clarity. Expanding out the state vector, and recognizing that
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time t+ 1 capital is not a function of time t emissions, we have that

Ed2,d1,ωt+1

[
−∂Vt+1

∂St+1

∂St+1

∂et

]
=Ed2,d1,ωt+1

[
−∂Vt+1

∂Et+1

∂Et+1

∂et

]
+ Ed2,d1,ωt+1

[
−∂Vt+1

∂Lt+1

∂Lt
∂et

]
+Ed2,d1,ωt+1

[
−∂Vt+1

∂µt+1

∂µt+1

∂et

]
+ Ed2,d1,ωt+1

[
−∂Vt+1

∂Σt+1

∂Σt+1

∂et

]
.

Next pass the expectations through. Recognize ∂Lt+1

∂et
and ∂µt+1

∂et
are random variables

so we can apply the covariance identity to the expectations over those terms. And

finally note that Ed2,d1,ωt+1

[
∂µt+1

∂et

]
= 0 for a Bayesian, and ∂Et+1

∂et
= 1 by definition.

Then we arrive at the final standard carbon tax expression before performing Taylor

expansions

Ed2,d1,ωt+1

[
−∂Vt+1

∂St+1

∂St+1

∂et

]
=Ed2,d1,ωt+1

[
−∂Vt+1

∂Et+1

]
(2)

+Ed2,d1,ωt+1

[
−∂Vt+1

∂Lt+1

]
Ed2,d1,ωt+1

[
∂Lt
∂et

]
+ covd2,d1,ωt+1

(
−∂Vt+1

∂Lt+1

,
∂Lt+1

∂et

)
+covd2,d1,ωt+1

(
−∂Vt+1

∂µt+1

,
∂µt+1

∂et

)
+ Ed2,d1,ωt+1

[
−∂Vt+1

∂Σt+1

]
∂Σt+1

∂et
.

Recall that for a simple bivariate case, a second-order Taylor expansion of Ex,y[f(x, y)]

about (c, d) is

Ex,y[f(x, y)] ≈Ex,y
[
f(c, d)

+ fx(x, y)(x− c) + fy(c, d)(y − d)

+
1

2

[
fxy(c, d)(x− c)2 + fxy(c, d)(x− c)(y − d)

+ fyx(c, d)(y − d)(x− c) + fyy(c, d)(y − d)2
]]

where the term on the first line and on right hand side of the equality is the zeroth-

order term, the second line contains the first-order terms, and the third and fourth

lines contain the second-order terms. Now perform a second-order Taylor expansion

of the expectations of the value function partial derivatives around

υ :=
{
kt+1, Et+1,Ed2,d1,ωt+1 [Lt+1],Ed2,d1,ωt+1 [µt+1],Σt+1

}
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where Ed2,d1,ωt+1 [µt+1] = µt.

Here I show the second-order Taylor expansion for Ed2,d1,ωt+1

[
−∂Vt+1

∂Et+1

]
evaluated at

υ. It consists of 1 zeroth-order Taylor term, five first-order Taylor terms, and twenty

five second-order Taylor terms

Ed2,d1,ωt+1

[
−∂Vt+1

∂Et+1

]
≈Ed2,d1,ωt+1

[
−∂Vt+1

∂Et+1

∣∣∣∣
υ

(Zeroth-order)

+
−∂2Vt+1

∂Et+1∂kt+1

∣∣∣∣
υ

(kt+1 − Ed2,d1,ωt+1 [kt+1]) (First-order)

+
−∂2Vt+1

∂E2
t+1

∣∣∣∣
υ

(Et+1 − Ed2,d1,ωt+1 [Et+1])

+
−∂2Vt+1

∂Et+1∂Lt+1

∣∣∣∣
υ

(Lt+1 − Ed2,d1,ωt+1 [Lt+1])

+
−∂2Vt+1

∂Et+1∂µt+1

∣∣∣∣
υ

(µt+1 − Ed2,d1,ωt+1 [µt+1])

+
−∂2Vt+1

∂Et+1∂Σt+1

∣∣∣∣
υ

(Σt+1 − Ed2,d1,ωt+1 [Σt+1])

+
1

2

−∂3Vt+1

∂Et+1∂k2
t+1

∣∣∣∣
υ

(kt+1 − Ed2,d1,ωt+1 [kt+1])2 (Second-order)

+
1

2

−∂3Vt+1

∂Et+1∂kt+1∂Et+1

∣∣∣∣
υ

(kt+1 − Ed2,d1,ωt+1 [kt+1])(Et+1 − Ed2,d1,ωt+1 [Et+1])

+
1

2

−∂3Vt+1

∂Et+1∂kt+1∂Lt+1

∣∣∣∣
υ

(kt+1 − Ed2,d1,ωt+1 [kt+1])(Lt+1 − Ed2,d1,ωt+1 [Lt+1])

+
1

2

−∂3Vt+1

∂Et+1∂kt+1∂µt+1

∣∣∣∣
υ

(kt+1 − Ed2,d1,ωt+1 [kt+1])(µt+1 − Ed2,d1,ωt+1 [µt+1])

+
1

2

−∂3Vt+1

∂Et+1∂kt+1∂Σt+1

∣∣∣∣
υ

(kt+1 − Ed2,d1,ωt+1 [kt+1])(Σt+1 − Ed2,d1,ωt+1 [Σt+1])

+
1

2

−∂3Vt+1

∂E2
t+1∂kt+1

∣∣∣∣
υ

(Et+1 − Ed2,d1,ωt+1 [Et+1])(kt+1 − Ed2,d1,ωt+1 [kt+1])

+
1

2

−∂3Vt+1

∂E3
t+1

∣∣∣∣
υ

(Et+1 − Ed2,d1,ωt+1 [Et+1])2

+
1

2

−∂3Vt+1

∂E2
t+1∂Lt+1

∣∣∣∣
υ

(Et+1 − Ed2,d1,ωt+1 [Et+1])(Lt+1 − Ed2,d1,ωt+1 [Lt+1])

+
1

2

−∂3Vt+1

∂E2
t+1∂µt+1

∣∣∣∣
υ

(Et+1 − Ed2,d1,ωt+1 [Et+1])(µt+1 − Ed2,d1,ωt+1 [µt+1])
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+
1

2

−∂3Vt+1

∂E2
t+1∂Σt+1

∣∣∣∣
υ

(Et+1 − Ed2,d1,ωt+1 [Et+1])(Σt+1 − Ed2,d1,ωt+1 [Σt+1])

+
1

2

−∂3Vt+1

∂Et+1∂Lt+1∂kt+1

∣∣∣∣
υ

(Lt+1 − Ed2,d1,ωt+1 [Lt+1])(kt+1 − Ed2,d1,ωt+1 [kt+1])

+
1

2

−∂3Vt+1

∂Et+1∂Lt+1∂Et+1

∣∣∣∣
υ

(Lt+1 − Ed2,d1,ωt+1 [Lt+1])(Et+1 − Ed2,d1,ωt+1 [Et+1])

+
1

2

−∂3Vt+1

∂Et+1∂L2
t+1

∣∣∣∣
υ

(Lt+1 − Ed2,d1,ωt+1 [Lt+1])2

+
1

2

−∂3Vt+1

∂Et+1∂Lt+1∂µt+1

∣∣∣∣
υ

(Lt+1 − Ed2,d1,ωt+1 [Lt+1])(µt+1 − Ed2,d1,ωt+1 [µt+1])

+
1

2

−∂3Vt+1

∂Et+1∂Lt+1∂Σt+1

∣∣∣∣
υ

(Lt+1 − Ed2,d1,ωt+1 [Lt+1])(Σt+1 − Ed2,d1,ωt+1 [Σt+1])

+
1

2

−∂3Vt+1

∂Et+1∂µt+1∂kt+1

∣∣∣∣
υ

(µt+1 − Ed2,d1,ωt+1 [µt+1])(kt+1 − Ed2,d1,ωt+1 [kt+1])

+
1

2

−∂3Vt+1

∂Et+1∂µt+1∂Et+1

∣∣∣∣
υ

(µt+1 − Ed2,d1,ωt+1 [µt+1])(Et+1 − Ed2,d1,ωt+1 [Et+1])

+
1

2

−∂3Vt+1

∂Et+1∂µt+1∂Lt+1

∣∣∣∣
υ

(µt+1 − Ed2,d1,ωt+1 [µt+1])(Lt+1 − Ed2,d1,ωt+1 [Lt+1])

+
1

2

−∂3Vt+1

∂Et+1∂µ2
t+1

∣∣∣∣
υ

(µt+1 − Ed2,d1,ωt+1 [µt+1])2

+
1

2

−∂3Vt+1

∂Et+1∂µt+1∂Σt+1

∣∣∣∣
υ

(µt+1 − Ed2,d1,ωt+1 [µt+1])(Σt+1 − Ed2,d1,ωt+1 [Σt+1])

+
1

2

−∂3Vt+1

∂Et+1∂Σt+1∂kt+1

∣∣∣∣
υ

(Σt+1 − Ed2,d1,ωt+1 [Σt+1])(kt+1 − Ed2,d1,ωt+1 [kt+1])

+
1

2

−∂3Vt+1

∂Et+1∂Σt+1∂Et+1

∣∣∣∣
υ

(Σt+1 − Ed2,d1,ωt+1 [Σt+1])(Et+1 − Ed2,d1,ωt+1 [Et+1])

+
1

2

−∂3Vt+1

∂Et+1∂Σt+1∂Lt+1

∣∣∣∣
υ

(Σt+1 − Ed2,d1,ωt+1 [Σt+1])(Lt+1 − Ed2,d1,ωt+1 [Lt+1])

+
1

2

−∂3Vt+1

∂Et+1∂Σt+1∂µt+1

∣∣∣∣
υ

(Σt+1 − Ed2,d1,ωt+1 [Σt+1])(µt+1 − Ed2,d1,ωt+1 [µt+1])

+
1

2

−∂3Vt+1

∂Et+1∂Σ2
t+1

∣∣∣∣
υ

(Σt+1 − Ed2,d1,ωt+1 [Σt+1])2

]
.

(3)

Note that the expectation is taken over all terms in the expansion. The term on the

right hand side of the equality on the first line is the zeroth-order term, the value
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function partial evaluated at υ, which is the state vector about which I do the Taylor

expansion. This term is not random since it is evaluated at a specific state, so the

expectation passes through.

The next five lines are the first-order Taylor terms. Here, another partial derivative

of the value function is taken with respect to each state, then it is multiplied by the

difference between the state and that state’s value at υ, which is just the expectation

of the state. The value function terms here have two partial derivatives, and are

evaluated at υ. They also are not random so the expectation passes through those

terms onto the terms capturing the difference between the state and its value at υ.

The expectation of the difference between a variable and its expectation is zero so all

first-order Taylor terms of the expansion are zero.

The second-order Taylor terms take another partial derivative, so these are the

terms that include all of the triple value function partial derivatives. The triple

partials are multiplied by the product of two differences between a state and that

state’s value at υ. The state in each difference corresponds to the state with respect to

which the second and third partial derivatives are taken. As in zeroth-order and first-

order Taylor terms, the triple partial derivatives are not random and the expectation

passes through all of them onto the two difference terms. In the cases where at

least one of the differences in the second-order Taylor term consists of a deterministic

state (kt+1, Et+1,Σt+1), the expectation of the product of the two differences is again

zero and the Taylor terms are zero. The remaining case is when both states in

the product of differences are uncertain (Lt+1, µt+1). After passing the expectation

through the triple partial derivative terms, the difference terms are variances (e.g.

Ed2,d1,ωt+1 [(µt+1 − Ed2,d1,ωt+1 [µt+1])2] = vard2,d1,ωt+1(µt+1) on the seventh to last line)

or covariances (e.g. Ed2,d1,ωt+1 [(µt+1 − Ed2,d1,ωt+1 [µt+1])(Lt+1 − Ed2,d1,ωt+1 [Lt+1])] =

covd2,d1,ωt+1(µt+1,Lt+1) on the eighth to last line). Similar logic follows for Taylor

expansions for the other value function partials in equation (2).

Now define

ce :=

{
kt+1, Et+1,Lt+1

∣∣∣∣
d1=exp(µc+ 1

2
σ2
c ), ωt+1=exp(µω+ 1

2
σ2
ω)

, µt, 0

}
.

ce is a certainty state. Terms evaluated at ce are the terms that would arise if the

policymaker happened to arrive at the same state at time t but states transitioned

deterministically (with d1, d2, ωt fixed to their expectations). I will add and sub-
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tract value function partial derivatives evaluated at ce, effectively adding 0, to obtain

the certainty tax and the state uncertainty adjustment. After omitting the Taylor

terms that are zero, the expectation of the cumulative emissions partial derivative is

approximately

Ed2,d1,ωt+1

[
−∂Vt+1

∂Et+1

]
≈ −∂Vt+1

∂Et+1

∣∣∣∣
ce

+

[
−∂Vt+1

∂Et+1

∣∣∣∣
υ

− −∂Vt+1

∂Et+1

∣∣∣∣
ce

]
+

1

2

−∂3Vt+1

∂Et+1∂L2
t+1

∣∣∣∣
υ

vard2,d1,ωt+1(Lt+1) +
−∂3Vt+1

∂Et+1∂Lt+1∂µt+1

∣∣∣∣
υ

covd2,d1,ωt+1(Lt+1, µt+1)

+
1

2

−∂3Vt+1

∂Et+1∂µ2
t+1

∣∣∣∣
υ

vard2,d1,ωt+1(µt+1)

The expectation of the fractional net output partial derivative is approximately

Ed2,d1,ωt+1

[
−∂Vt+1

∂Lt+1

]
≈ −∂Vt+1

∂Lt+1

∣∣∣∣
ce

+

[
−∂Vt+1

∂Lt+1

∣∣∣∣
υ

− −∂Vt+1

∂Lt+1

∣∣∣∣
ce

]
+

1

2

−∂3Vt+1

∂L3
t+1

∣∣∣∣
υ

vard2,d1,ωt+1(Lt+1) +
−∂3Vt+1

∂L2
t+1∂µt+1

∣∣∣∣
υ

covd2,d1,ωt+1(Lt+1, µt+1)

+
1

2

−∂3Vt+1

∂Lt+1∂µ2
t+1

∣∣∣∣
υ

vard2,d1,ωt+1(µt+1)

The expectation of the scale parameter partial derivative is approximately

Ed2,d1,ωt+1

[
−∂Vt+1

∂Σt+1

]
≈ −∂Vt+1

∂Σt+1

∣∣∣∣
ce

+

[
−∂Vt+1

∂Σt+1

∣∣∣∣
υ

− −∂Vt+1

∂Σt+1

∣∣∣∣
ce

]
+

1

2

−∂3Vt+1

∂Σt+1∂L2
t+1

∣∣∣∣
υ

vard2,d1,ωt+1(Lt+1) +
−∂3Vt+1

∂Σt+1∂Lt+1∂µt+1

∣∣∣∣
υ

covd2,d1,ωt+1(Lt+1, µt+1)

+
1

2

−∂3Vt+1

∂Σt+1∂µ2
t+1

∣∣∣∣
υ

vard2,d1,ωt+1(µt+1)

Substituting the Taylor expansion terms into equation (2) and then substituting equa-

tion (2) into equation (1) yields the full carbon tax expression.

C Certainty Tax

Figure A3 displays the certainty tax channel for each framework. The certainty tax

is the remaining difference between the carbon tax in Figure 5 and the uncertainty

channels in Figure 7 in the main text.
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Figure A3: The mean certainty tax channel over 50,000 simulations for each frame-
work. Each simulation samples a different set of {d1, d2, ω2005, ..., ω2105}.
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