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A Proofs of Propositions

Proposition 1. The second-best-optimal uniform per-gallon gasoline tax, τ ∗, is (from Dia-
mond (1973)):

τ ∗ =
−
∑

i

∑
h6=i

∂Uh

∂αi
α′i∑

i α
′
i

. (1)

where α′i is the derivative of consumer i’s demand for gasoline with respect to the price of
gasoline.

Proof. Consumers have quasi-linear utility functions, given as:

max
αh

Uh(α1, α2, ..., αh, ..., αn) + µh, (2)

s.t. (pg + τ)αh + µh = mh, (3)

where pg is the price, τ the tax per gallon, αh the consumption of the polluting good by
consumer h, µh consumption of a numeraire, and mh consumer h’s income. Assuming an
interior solution, we have:

∂Uh

∂αh
= (p+ τ). (4)

This yields demand curves, which we represent by α∗h, given by:

α∗h = αh (pg + τ) . (5)

The SBO gasoline tax maximizes social welfare, or the sum of utilities:

W (τ) =
∑
h

Uh[α∗1, ..., α
∗
h, ...α

∗
n]− pg

∑
h

α∗h +
∑
h

mh. (6)

The first-order condition for the SBO gasoline tax is given as:

W ′(τ) =
∑
i

∑
h

∂Uh

∂αi
α′i − pg

∑
h

α′h = 0. (7)

Rewriting this and plugging in the result from the consumers’ problem, ∂Uh

∂αh
− pg = τ , we

have:
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W ′(τ) =
∑
i

∑
h6=i

∂Uh

∂αi
α′i + τ

∑
i

α′i = 0. (8)

Solving for the second-best tax yields:

τ ∗ =
−
∑

i

∑
h6=i

∂Uh

∂αi
α′i∑

i α
′
i

. (9)

Proposition 2. Suppose drivers are homogenous in their demand for gasoline, but vehicles’
per-gallon emissions differ. In particular, let β denote the derivative of the demand for
gasoline with respect to the price of gasoline.

If the distribution of the per-gallon externality, E, is log normal, with probability density
function:

ϕ(Ei) =
1

Ei
√

2σ2
E

exp

(
−(Ei − µE)2

2σ2
E

)
, (10)

the DWL absent any market intervention will be given as:

D =
1

2β
e2µE+2σ2

E .

Proof. Given these assumptions, the deadweight loss absent any market intervention will be
given as:

D =

∫ ∞
0

(Ei)
2

2β
ϕ(Ei)dEi

=
1

2β
E[E2

i ] (11)

=
1

2β
e2µE+2σ2

E .

Proposition 3. Under the assumptions in Proposition 1, the ratio of the remaining DWL
with the deadweight loss after the tax is:

R =
D − e2µE+σ2E

2β

D
= 1− e2µE+σ2

E

e2µE+2σ2
E

= 1− e−σ2
E . (12)
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Proof. The level of the externality is given as:

E = τ = eµE+σ2
E/2. (13)

The deadweight loss associated with all vehicles is given as:

D(τ) =

∫ ∞
0

(τ − Ei)2

2β
ϕ(Ei)dEi

=
1

2β
E[τ 2 − 2τEi + E2

i ]

=
1

2β
(τ 2 − 2τE[Ei] + E[E2

i ]) (14)

=
1

2β
(τ 2 − 2τeµE+

σ2E
2 + e2µE+2σ2

E)

=
1

2β
(τ 2 − 2τeµE+

σ2E
2 ) +D

= D − e2µE+σ2
E

2β
.

The ratio of remaining DWL with the deadweight loss absent the tax is therefore:

R =
D − e2µE+σ2E

2β

D
= 1− e2µE+σ2

E

e2µE+2σ2
E

= 1− e−σ2
E . (15)

Proposition 4. When Bi = 1
βi

and Ei are distributed lognormal with dependence parameter
ρ, the optimal tax, represented by τ ∗, is:

τ ∗ = eµE+
σ2E
2

+ρσEσB

Proof. The slope of the demand curve with respect to the cost of driving, defined as Bi = 1
βi

,
where βi is the VMT elasticity for the vehicle owned by consumer i is distributed lognormal
with parameters µB and σ2

B. ρ is the dependence parameter of the bivariate lognormal
distribution (the correlation coefficient of lnE and lnB). The optimal tax is:

τ ∗ =

∑
Eiβi∑
βi

=
1
N

∑
Eiβi

1
N

∑
βi

=
E[Eiβi]

E[ 1
Bi

]
(16)

=
eµE+

σ2E
2
−µB+

σ2B
2 eρσEσB

e−µB+
σ2
B
2

= eµE+
σ2E
2

+ρσEσB .
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Proposition 5. When Bi = 1
βi

and Ei are distributed lognormal with dependence parameter
ρ, the ratios of the remaining deadweight loss after the SBO gasoline tax to the original
deadweight loss will be:

R(τ ∗) = 1− e−σ2
E , (17)

and, the ratios of the remaining deadweight loss after the naive uniform tax to the original
deadweight loss will be:

R(τnaive) = 1− e−σ2
E(2e−ρσEσB − e−2ρσEσB). (18)

Proof. The deadweight loss with no gasoline tax is:

D =

∫ ∞
0

(∫ ∞
0

(Ei)
2Bi

2
ϕ(Ei)dEi

)
ϕB(Bi)dBi

=
1

2
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iBi] (19)

=
1

2
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2

+2ρσEσB .

The deadweight loss with the optimal uniform tax is:

D(τ ∗) =

∫ ∞
0

(∫ ∞
0

(τ − Ei)2Bi

2
ϕ(Ei)dEi

)
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=
1
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=
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+ρσEσB + e2µE+2σ2
E+µB+

σ2B
2

+2ρσEσB)

=
1

2
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2

+2ρσEσB − e2µE+σ2
E+µB+

σ2B
2

+2ρσEσB +D

= D − 1

2
e2µE+σ2

E+µB+
σ2B
2

+2ρσEσB ,

while the deadweight loss with the naive tax, equal to the average externality level is:

D(τnaive) = D − 1

2
(2e2µE+σ2

E+µB+
σ2B
2

+ρσEσB − e2µE+σ2
E+µB+

σ2B
2 ). (21)

Then the ratios of the remaining deadweight loss after a tax to the original deadweight
loss will be:

R(τ ∗) = 1− e2µE+σ2
E+µB+

σ2B
2

+2ρσEσB

e2µE+2σ2
E+µB+

σ2
B
2

+2ρσEσB

= 1− e−σ2
E , (22)
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R(τnaive) = 1− 2e2µE+σ2
E+µB+

σ2B
2
ρσEσB − e2µ+σ2

E+µB+
σ2B
2

e2µE+2σ2
E+µB+

σ2
B
2

+2ρσEσB

= 1− e−σ2
E(2e−ρσEσB − e−2ρσEσB). (23)

B Steps to Clean Smog Check Data

California implemented its first inspection and maintenance program (the Smog Check Pro-
gram) in 1984 in response to the 1977 Clean Air Act Amendments. The 1990 Clean Air
Act Amendments required states to implement an enhanced inspection and maintenance
program in areas with serious to extreme non-attainment of ozone limits. Several of Cal-
ifornia’s urban areas fell into this category, and in 1994, California’s legislature passed a
redesigned inspection program was passed by California’s legislature after reaching a com-
promise with the EPA. The program was updated in 1997 to address consumer complaints,
and fully implemented by 1998. Among other improvements, California’s new program in-
troduced a system of centralized “Test-Only” stations and an electronic transmission system
for inspection reports.1 Today, more than a million smog checks take place each month.

Since 1998, the state has been divided into three inspection regimes (recently expanded
to four), the boundaries of which roughly correspond to the jurisdiction of the regional Air
Quality Management Districts. “Enhanced” regions, designated because they fail to meet
state or federal standards for CO and ozone, fall under the most restrictive regime. All of
the state’s major urban centers are in Enhanced areas, including the greater Los Angeles,
San Francisco, and San Diego metropolitan areas. Vehicles registered to an address in an
Enhanced area must pass a biennial smog check in order to be registered, and they must
take the more rigorous Acceleration Simulation Mode (ASM) test. The ASM test involves
the use of a dynamometer, and allows for measurement of NOx emissions. In addition, a
randomly selected two percent sample of all vehicles in these areas is directed to have their
smog checks at Test-Only stations, which are not allowed to make repairs.2 Vehicles that
match a “High Emitter Profile” are also directed to Test-Only stations, as are vehicles that
are flagged as “gross polluters” (those that fail an inspection with twice the legal limit of one
or more pollutant in emissions). More recently some “Partial-Enhanced” areas that require
a biennial ASM test have been added, but no vehicles are directed to Test-Only stations.

Areas with poor air quality not exceeding legal limits fall under the Basic regime. Cars
in a Basic area must have biennial smog checks as part of registration, but they are allowed
to take the simpler Two Speed Idle (TSI) test and are not directed to Test-Only stations.
The least restrictive regime, consisting of rural mountain and desert counties in the east and
north, is known as the Change of Ownership area. As the name suggests, inspections in
these areas are only required upon change of ownership; no biennial smog check is required.

1For more detailed background see http://www.arb.ca.gov/msprog/smogcheck/july00/if.pdf.
2Other vehicles can be taken to Test-Only stations as well if the owner chooses, although they must get

repairs elsewhere if they fail.
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Our data from the Smog Check Program essentially comprise the universe of test records
from January 1, 1996 to December 31, 2010. We were able to obtain test records only
going back to 1996 because this was the year when the Smog Check Program introduced its
electronic transmission system. Because the system seems to have been phased in during
the first half of 1996, and major program changes took effect in 1998 we limit our sample to
test records from January 1998 on. For our analyses, we use a 10 percent sample of VINs,
selecting by the second to last digit of the VIN. We exclude tests that have no odometer
reading, with a test result of “Tampered” or “Aborted” and vehicles that have more than
36 tests in the span of the data. Vehicles often have multiple smog check records in a year,
whether due to changes of ownership or failed tests, but we argue that more than 36 in what
is at most a 12 year-span indicates some problem with the data.3

A few adjustments must be made to accurately estimate VMT and emissions per mile.
First, we adjust odometer readings for “roll overs” and typos. Many of the vehicles in our

analysis were manufactured with 5-digit odometers–that is, five places for whole numbers
plus a decimal. As such, any time one of these vehicles crosses over 100,000 miles, the
odometer “rolls over” back to 0. To complicate matters further, sometimes either the vehicle
owner or smog check technician notices this problem and records the appropriate number
in the 100,000s place, and sometimes they do not. To address this problem, we employ an
algorithm that increases the hundred thousands place in the odometer reading whenever a
rollover seems to have occurred. The hundred thousands are incremented if the previous test
record shows higher mileage, or if the next test record is shows more than 100,000 additional
miles on the odometer (indicating that the odometer had already rolled over, but the next
check took this into account). The algorithm also attempts to correct for typos and entry
errors. An odometer reading is flagged if it does not fit with surrounding readings for the
same vehicle–either it is less than the previous reading or greater than the next–and cannot
be explained by a rollover. The algorithm then tests whether fixing one of several common
typos will make the flagged readings fit (e.g., moving the decimal over one place). If no
correction will fit, the reading is replaced with the average of the surrounding readings.
Finally, if after all our corrections any vehicle has an odometer reading above 800,000 or has
implied VMT per day greater than 200 or less than zero, we exclude the vehicle from our
analysis. All of our VMT analyses use this adjusted mileage.

Emissions results from smog checks are given in either parts per million (for HC and NOx)
or percent (O2, CO, and CO2). Without knowing the volume of air involved, there is no
straightforward way to convert this to total emissions. Fortunately, as part of an independent
evaluation of the Smog Check Program conducted in 2002-2003, Sierra Research Inc. and
Eastern Research Group estimated a set of conversion equations to convert the proportional
measurements of the ASM test to emissions in grams per mile traveled. These equations are
reported in Morrow and Runkle (2005), NOx, and CO, and estimate grams per mile for each
pollutant as a non-linear function of all three pollutants, model year, and vehicle weight.

3For instance, there is one vehicle in particular, a 1986 Volvo station wagon, which has records for more
than 600 smog checks between January 1996 and March 1998. The vehicle likely belonged to a smog check
technician who used it to test the electronic transmission system.
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The equations for vehicles of up to model year 1990 are

FTP HC = 1.2648 · exp(−4.67052 +0.46382 ·HC∗ + 0.09452 · CO∗ + 0.03577 ·NO∗

+0.57829 · ln(weight)− 0.06326 ·MY ∗

+0.20932 · TRUCK)

FTP CO = 1.2281 · exp(−2.65939 +0.08030 ·HC∗ + 0.32408 · CO∗ + 0.03324 · CO∗2

+0.05589 ·NO∗ + 0.61969 · ln(weight)− 0.05339 ·MY ∗

+0.31869 · TRUCK)

FTP NOX = 1.0810 · exp(−5.73623 +0.06145 ·HC∗ − 0.02089 · CO∗2 + 0.44703 ·NO∗

+0.04710 ·NO∗2 + 0.72928 · ln(weight)− 0.02559 ·MY ∗

−0.00109 ·MY ∗2 + 0.10580 · TRUCK)

Where

HC∗ = ln((Mode1HC ·Mode2HC).5)− 3.72989

CO∗ = ln((Mode1CO ·Mode2CO).5) + 2.07246

NO∗ = ln((Mode1NO ·Mode2NO).5)− 5.83534

MY ∗ = modelyear − 1982.71

weight = Vehicle weight in pounds

TRUCK = 0 if a passenger car, 1 otherwise

And for model years after 1990 they are:

FTP HC = 1.1754 · exp(−6.32723 +0.24549 ·HC∗ + 0.09376 ·HC∗2 + 0.06653 ·NO∗

+0.01206 ·NO∗2 + 0.56581 · ln(weight)− 0.10438 ·MY ∗

−0.00564 ·MY ∗2 + 0.24477 · TRUCK)

FTP CO = 1.2055 · exp(−0.90704 +0.04418 ·HC∗2 + 0.17796 · CO∗ + 0.08789 ·NO∗

+0.01483 ·NO∗2 − 0.12753 ·MY ∗ − 0.00681 ·MY ∗2

+0.37580 · TRUCK)

FTP NOX = 1.1056 · exp(−6.51660 +0.25586 ·NO∗ + 0.04326 ·NO∗2 + 0.65599 · ln(weight)

−0.09092 ·MY ∗ − 0.00998 ·MY ∗2 + 0.24958 · TRUCK)

7



Where:

HC∗ = ln((Mode1HC ·Mode2HC).5)− 2.32393

CO∗ = ln((Mode1CO ·Mode2CO).5) + 3.45963

NO∗ = ln((Mode1NO ·Mode2NO).5)− 3.71310

MY ∗ = modelyear − 1993.69

weight = Vehicle weight in pounds

TRUCK = 0 if a passenger car, 1 otherwise

C Steps to Clean DMV Data

We deal with two issues associated with DMV data. The main issue is that DMV entries for
the same addresses will often have slightly different formats. For example, “12 East Hickory
Street” may show up as “12 East Hickory St,” “12 E. Hickory St.”, etc. To homogenize the
entries, we input each of the DMV entries into mapquest.com and then replace the entry
with the address that mapquest.com gives.

Second, the apartment number is often missing in DMV data. Missing apartment num-
bers has the effect of yielding a large number of vehicles in the same “location.” We omit
observations that have over seven vehicles in a given address or more than three last names
of registered owners.

D Robustness Checks

In this appendix, we report the results of several robustness checks to our main results
on the intensive margin. Table A.2 reports elasticities by quartile for all five categories of
externality.

Our base specification controls for the fixed effect of a each NOx quartile on miles trav-
eled. One might be concerned, however, that variation in dollars per mile (DPM) might be
correlated with other characteristics such as age, odometer, and demographics, and that the
DPM-quartile interactions may be picking up this correlation, rather than true heterogene-
ity. To test for this, in Table A.5 we present results with vehicle fixed effects and interactions
between NOx quartiles and various control variables. Adding these interaction terms actu-
ally makes the heterogeneity in the effect of DPM more pronounced. The final column in
Table A.5 includes month-by-year fixed effects, therefore allowing for a completely flexible
time trend. Our point estimates suggest that the degree of heterogeneity increases when we
include these fixed effects, although we lose statistical power due to the limited remaining
variation on DPM.

Table A.6 repeats the same exercise, but uses levels rather than logs of DPM as the
variable of interest. The results are qualitatively similar, with substantial heterogeneity in
every specification. However, with a log-linear specification we do not observe the cleanest
vehicles having a positive coefficient.
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We also investigate the functional forms of these relationships in a semi-parametric way.
For each externality, we define vehicles by their percentile of that externality. We then esti-
mate Equation (8) with separate elasticities for vehicles falling in the zero to first percentile,
first to second, etc. Appendix Figure A.3 plots a LOWESS smoothed line through these 100
separate elasticity estimates. For the three criteria pollutants, we find that the relationship
is quite linear with the elasticity being positive for the cleanest 10 percent of vehicles. The
dirtiest vehicles have elasticities that are roughly 0.4. For fuel economy, the relationship is
fairly linear from the 60th percentile onwards, but begins steeply and flattens out from the
20th percentile to the 40th. The elasticity of the lowest fuel economy vehicles is nearly 0.6.
To put these numbers into context across the different years, the average fuel economy of
the 20th percentile is 18.7, while the average for the 40th percentile is 21.75. The variation
in elasticities across weight is not monotonic. The relationship begins by increasing until
roughly the 20th percentile, and then falls more or less linearly thereafter. The elasticity of
the heaviest vehicles is roughly 0.3.

Note that the roughly linear relationship between criteria pollutant emissions and the
elasticity is not due to “over smoothing.” Appendix Figure A.4 plots the LOWESS smoothed
lines for HCs under different bandwidths. The top left figure simply reports the 100 elas-
ticities. There is some evidence that the relationship is not monotonic early on, but from
the 5th percentile on, the relationship appears monotonic. Doing this exercise for the other
criteria pollutants yields similar results.

E Details of the Gasoline Tax Policy Simulation

For the intensive margin, we estimate a regression as in column 6 of Tables ?? and A.2, except
that we interact ln(DPM) with quartile of fuel economy, vehicle weight, and emissions of HC,
NOx, and CO, and dummies for vehicle age bins, again using bins of 4-9, 10-15, and 16-29
years, and control for the direct effects of quartiles of HC, NOx, and CO emissions. We use
quartiles calculated by year and age bin. The coefficients are difficult to interpret on their
own, and too numerous to list. However, most are statistically different from zero, and the
exceptions are due to small point estimates, not large standard errors.

As in Section G, we compress our dataset to have at most one observation per vehicle per
year. Each vehicle is then assigned an elasticity based on its quartiles and age bin. Vehicle
i’s VMT in the counterfactual with an additional $1 tax on gasoline is calculated by:

VMT icounterfactual = VMT iBAU ·
(
Pi + 1

Pi
· βi
)
,

where VMT iBAU is vehicle i’s actual average VMT per day between its current and previous
smog check, Pi is the average gasoline price over that time, and βi is the elasticity for the
fuel economy/weight/HC/NO/CO/age cell to which i belongs.

For the extensive margin, we estimate a Cox regression on the hazard of scrappage for
vehicles 10 years and older, stratifying by VIN prefix and interacting DPM with all five
type of quartiles and age bins 10-15 and 16-29. Similar to the intensive margin, we assign

9



each vehicle a hazard coefficient based on its quartile-age cell. Cox coefficients can be
transformed into hazard ratios, but to simulate the affect of an increase in gasoline prices on
the composition of the vehicle fleet, we must convert these into changes in total hazard.

To do this, we first calculate the actual empirical hazard rate for prefix k in year t as:

OrigHazardkt =
Dkt

Rkt

,

where Dkt is the number of vehicles in group k, that are scrapped in year t, and Rkt is the
number of vehicle at risk (that is, which have not previously been scrapped or censored).
We then use the coefficients from our Cox regression to calculate the counterfactual hazard
faced by vehicles of prefix k in quartile-age group q during year t as:4

NewHazardqkt = OrigHazardkt · exp

{
1

MPGk

· γq
}
,

where MPGk is the average fuel economy of vehicle of prefix k and γq is the Cox coefficient
associated with quartile group q. We then use the change in hazard to construct a weight
Hqkt indicating the probability that a vehicle of prefix k in quartile group q in year t would
be in the fleet if a $1 gasoline tax were imposed. Weights greater than 1 are possible, which
should be interpreted as a Hqkt − 1 probability that another vehicle of the same type would
be on the road, but which was scrapped under “Business as Usual.” Because the hazard is
the probability of scrappage in year t, conditional on survival to year t, this weight must be
calculated interactively, taking into account the weight the previous year. Specifically, we
have:

Hqkt =
t∏

j=1998

(1− (NewHazardqkj −OrigHazardkt)).

We also assign each vehicle in each year a population weight. This is done both to scale
our estimates up to the size of the full California fleet of personal vehicles, and to account for
the ways in which the age composition of the smog check data differs from that of the fleet.
We construct these weights using the vehicle population estimates contained in CARB’s
EMFAC07 software, which are given by year, vehicle age, and truck status. Our population
weight is the number of vehicles of a given age and truck status in a each year given by
EMFAC07, divided by the number of such vehicle appearing in our sample. For instance, if
EMFAC07 gave the number of 10-year-old trucks in 2005 as 500, while our data contained
50, each 10-year-old truck in our data would have a population weight of 10. Denote the
population weight by Ptac, where t is year, a is age, and c is truck status.

There is an additional extensive margin that we have not estimated in this paper: new
car purchases. To ensure that the total vehicle population is accurate, we apply an ad hoc
correction based on Busse, Knittel and Zettelmeyer (forthcoming), who find that a $1 increase
in gasoline prices would decrease new car sales by 650,000 per year. Because California’s
vehicle fleet makes up about 13 percent of the national total, we decrease the population

4Note that age group is determined by model-year and year.
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of model years 1998 and later by 84,500 when constructing the population weight for the
counterfactual. We apply 40 percent of the decrease to trucks, and 60 percent to passenger
cars. Denote the “new car effect” nc.

We estimate the total annual emissions by passenger vehicle in California of NOx, HC,
CO, and CO2 as actually occurred, and under a counterfactual where a $1 gasoline tax was
imposed in 1998. Let i denote a vehicle, a vehicle age, c truck status. Then the annual
emissions of pollutant p in year t under “business as usual” are:

EmissionptBAU =
∑
i

Ptac · VMT iBAU · ri(p) · 365,

and under the counterfactual they are:

Emissionptcounterfactual =
∑
i

(Ptac−1(model year >= 1998)·nc)·Hqkt·VMT icounterfactual·ri(p)·365,

where ri(p) is the emissions rate per mile of pollutant p for vehicle i. For NOx, HC, and
CO, this is the last smog check reading in grams per mile, while for CO2 this is the vehicle’s
gallons per mile multiplied by 19.2 pounds per gallon.

F California versus the Rest of the United States

Given that our empirical setting is California, it is natural to ask whether our results are
representative of the country as a whole. At the broadest level, the local-pollution benefits
from carbon pricing are a function of the per-capita number of miles driven, the emission
characteristics of the fleet of vehicles, and the marginal damages of the emissions. We present
evidence that the benefits may, in fact, be larger outside of California. The reason for this
is that while the marginal damages are indeed larger in California, the vehicle stock in
California is much cleaner than the rest of the country because California has traditionally
led the rest of the U.S. in terms of vehicle-emission standards.

The results in Muller and Mendelsohn (2009) provide a convenient way to test whether
California differs in terms of marginal damages. Table A.9 presents points on the distribution
of marginal damages for NOx, HCs, and the sum of the two, weighted by each county’s annual
VMT.5 Figure A.5 plots the kernel density estimates of the distributions. We present the
sum of because counties are typically either “NOx constrained” or “VOC (HC) constrained,”
and the sum is perhaps more informative. As expected, the marginal damages are higher in
California for HCs, but lower for NOx, as California counties tend to be VOC-constrained.
The sum of the two marginal damages is 78 percent higher in California. Higher points in
the distribution show an even larger disparity.

Larger marginal damages are offset, however, by the cleaner vehicle stock within California—
a result of California’s stricter emission standards. To illustrate this, we collected county-
level average per-mile emission rates for NOx, HCs, and CO from the EPA Motor Vehicle

5All of the points on the distribution and densities discussed in this section weight each county by its
total VMT.
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Emission Simulator (MOVES). MOVES reports total emissions from transportation and an-
nual mileage for each county. Table A.9 also presents points on the per-mile emissions, and
Figure A.6 plots the distributions.6 Mean county-level NOx, HCs, and CO are 67, 36, and
31 percent lower in California, respectively. Other points in the distributions exhibit similar
patterns.

Finally, we calculate the county-level average per-mile externality for each pollutant, as
well as the sum of the three. Table A.9 and Figure A.7 illustrates these. As expected,
the HC damages are higher, but the average county-level per-mile externality from the sum
of the three pollutants is 30 percent lower in California than the rest of the country; the
25th percentile, median, and 75th percentile are 35, 30, and 9 percent lower, respectively.
These calculations suggest that, provided the average VMT elasticities are not significantly
smaller outside of California and/or the heterogeneity across vehicle types is not significantly
different (in the reverse way), our estimates are likely to apply to the rest of the country.

G Scrappage Decisions

Our next set of empirical models examines how vehicle owners’ decisions to scrap their vehi-
cles due to gasoline prices. Again we will also examine how this effect varies over emissions
profiles.

We determine whether a vehicle has been scrapped using the data from CARFAX Inc.
We begin by assuming that a vehicle has been scrapped if more than a year has passed
between the last record reported to CARFAX and the date when CARFAX produced our
data extract (October 1, 2010). However, we treat a vehicle as being censored if the last
record reported to CARFAX was not in California, or if more than a year and a half passed
between the last smog check in our data and that last record. As well, to avoid treating
late registrations as scrappage, we treat all vehicles with smog checks after 2008 as censored.
Finally, to be sure we are dealing with scrapping decisions and not accidents or other events,
we only examine vehicles that are at least 10 years old.

Some modifications to our data are necessary. To focus on the long-term response to
gasoline prices, our model is specified in discrete time, denominated in years. Where vehicles
have more than one smog check per calendar year, we use the last smog check in that year.
Also, because it is generally unlikely that a vehicle is scrapped at the same time as its last
smog check, we create an additional observation for scrapped vehicles either one year after
the last smog check, or six months after the last CARFAX record, whichever is later. For
these created observations, odometer is imputed based on the average VMT between the
last two smog checks, and all other variables take their values from the vehicle’s last smog
check. An exception is if a vehicle fails the last smog check in our data. In this case, we
assume the vehicle was scrapped by the end of that year.

6We note that the emissions reported in MOVES exceed the averages in our data. This may reflect the
fact that smog checks are not required for vehicles with model years before 1975, and these vehicles likely
have very high emissions because this pre-dates many of the emission standards within the U.S.
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Because many scrapping decisions will not take place until after our data ends, a hazard
model is needed to deal with right censoring. Let Tjivg be the year in which vehicle i, of
vehicle type j, vintage v, and geography g, is scrapped. Assuming proportional hazards, our
basic model is:

Pr[t < Tijvg < t+ 1|T > t] = h0
jv(t) · exp{βxDPMigt + γDfailit + ψGigt + αXit},

where DPMigt is defined as before; Dfailit is a dummy equal to one if the vehicle failed a
smog check any time during year t; G is a vector of demographic variables, determined by
the location of the smog check; X is a vector of vehicle characteristics, including a dummy
for truck and a sixth-order polynomial in odometer; and h0

ijv(t) is the baseline hazard rate,
which varies by time but not the other covariates. In some specifications, we will allow each
vehicle type and vintage to have its own baseline hazard rate.

We estimate this model using semi-parametric Cox proportional hazards regressions,
leaving the baseline hazard unspecified. We report exponentiated coefficients, which may
be interpreted as hazard ratios. For instance, a 1 unit increase in DPM will multiply the
hazard rate by exp{β}, or increase it by (exp{β} − 1) percent. In practice, we scale the
coefficients on DPM for a 5-cent change, corresponding to a $1.00 increase in gasoline prices
for a vehicle with fuel economy of 20 miles per gallon.

Tables A.3 and A.4 show the results of our hazard analysis. Models 1 and 2 of Table A.3
assign all vehicles to the same baseline hazard function. Model 1 allows the effect of gasoline
prices to vary by whether or not a vehicle failed a smog check. Model 2 also allows the effect
of gasoline prices to vary by quartiles of NOx.

7 Models 3 and 4 are similar, but stratify the
baseline hazard function, allowing each VIN prefix to have its own baseline hazard function.
Model 5 allows the effect of gasoline prices to vary both by externality quartile and age
group, separating vehicles 10 to 15 years old from vehicles 16 years and older.

Models 1 and 2 indicate that increases in gasoline prices actually decrease scrapping on
average, with the cleanest vehicles seeing the largest decreases. The effect is diminished
once unobserved heterogeneity among vehicle types is controlled for, but is still statistically
significant. However, the true heterogeneity in the effect of gasoline prices on hazard seems
to be over age groups. Model 5 shows that when the cost of driving a mile increases by five
cents, the hazard of scrappage decreases by about 23 percent for vehicles between 10 and
15 years old, while it increases by around 3 percent for vehicles age 16 and older, with little
variation across NOx quartiles within age groups. These results suggests that when gasoline
prices rise, very old cars are scrapped, increasing demand for moderately old cars and thus
reducing the chance that they are scrapped.

Table A.4 presents the quartile by age by DPM interactions for each of the 5 externality
dimensions. Hydrocarbons and CO have the identical pattern to NOx, with no heterogeneity
within age-group. With fuel economy and vehicle weight, there is within-age heterogeneity,
although the form is counter-intuitive. The heaviest and least fuel-efficient vehicles are
relatively less likely thank the lightest and most fuel-efficient vehicles to be scrapped when
gasoline prices increase. That is, while all 10- to 15-year-old vehicles are less likely to be

7Quartiles in these models are calculated by year among only vehicles 10 years and older.
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scrapped, the decrease in hazard rate is larger for heavy, gas-guzzling vehicles. For vehicles
16 years and older, the heaviest quartile is less likely to be scrapped when gasoline prices
increase, even though the lightest (and middle quartiles) are more likely. As the model
stratifies by VIN prefix, this cannot be simply that more durable vehicles have lower fuel
economy.

In summary, increases in the cost of driving a mile over the long term increase the
chance that old vehicles are scrapped, while middle-aged vehicles are scrapped less, perhaps
because of increased demand. Although vehicle age is highly correlated with emissions of
criteria pollutants, there is little variation in the response to gasoline prices across emissions
rates within age groups.

H Income Distribution Adjustment

In section VI, we assign income brackets to individual consumers using the method of Boren-
stein (2012). Here we briefly describe the details of that procedure; for more details see
Borenstein (2012).

Borenstein shows that household consumption levels of some commodity (gasoline in
our case) within income brackets can be bounded between the case where the ranking of
household incomes is sorted by consumption levels (usage-ranking), and the case where
the ranking of household incomes is random with respect to consumption levels (random
ranking). If one can calculate the average consumption by income bracket, one can calculate
a weighting between usage-ranking and random-ranking that correctly assigns households to
income brackets based on their consumption. Borenstein proposes calculating these averages
from a separate dataset that contains individual level income and consumption, if one can
be found. We utilize the 2009 NHTS for this purpose.

Formally, let ḡb denote the average gasoline consumption for consumers living in Cali-
fornia in income group b in the 2009 NHTS. The N vehicles registered in each census block
group (CBG) in California and appearing in the Smog Check data are to be assigned an
integer rank from 1 to N , intended to correspond to the income ranking of the household
those vehicles belong to. If scb denotes the number of households falling into income bracket b
in CBG c in the 2000 Census, and hb denotes the number of vehicles per household in income
bracket b, then, for instance, vehicles ranked from 1 to fracNsb ∗ hb will fall into bracket 1.
The ranking for vehicle i will be vi(w) = (1−w) · rrr +w · rur, where rrr is drawn randomly
from a uniform distribution over [1, N ], producing random-ranking, while rur sorts vehicles
by gasoline consumption, producing usage ranking. Any choice of w will produce a joint
ranking within CBGs, leading to a statewide average within-bracket gasoline consumption
level of g̃b within the Smog Check data.8

The income brackets given at the CBG level in the 2000 census can be pooled into groups
roughly approximating deciles of the total income distribution in California. The NHTS gives
income in brackets as well, which can be grouped into 8 groups corresponding to the first 7

8Ideally this calculation would use a CBG-specific w, however the NHTS does not provide geographic
data at that level. Borenstein (2012) has the same limitation.
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“deciles” in the Census data, plus the top 3 deciles topcoded into one income bracket. We
calculate w based on the 8 groupings in the NHTS data, but when using that w to assign
vehicles to income brackets, we use the ranking implied by w to distribute vehicles across
the top 3 deciles. We choose w to minimize the following goodness-of-fit measure:

G =
8∑
b=1

sb(g̃b − ḡb)

That is, we choose w such that when vehicles in the Smog Check Data are ranked into
income brackets, the average gasoline usage in each income bracket matches the average
gasoline usage for that income bracket in the 2009 NHTS.
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Table A.2: Vehicle Miles Travelled, Dollars Per Mile, and Externality Quartiles

Quartile Nitrogen Oxides Hydrocarbons Carbon Monoxide Fuel Economy Vehicle Weight

1 0.0425 0.0486 0.0466 -0.169 -0.111

2 -0.0540 -0.0550 -0.0527 -0.159 -0.114

3 -0.152 -0.149 -0.149 -0.104 -0.145

4 -0.280 -0.305 -0.307 -0.0986 -0.167

Coefficients are elasticities calculated by regressing the log of average daily VMT between Smog Checks on the log
of the gas price in dollars per mile, interacted with quartiles of the pollutants indicated. Quartiles are based on
rankings of within the calendar year in which the Smog Check occurs. All regressions control for direct effects of
the quartiles, a quadratic time trend, a sixth-order polynomial in lagged odometer, demographics of the zip code
where the Smog Check occurs, calendar-year fixed effects, vehicle age fixed effects, and vehicle fixed effects.
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Table A.3: Hazard of Scrappage: Cox Proportional Hazard Model

Model 1 Model 2 Model 3 Model 4 Model 5

Dollars per Mile 0.920* 0.965*
(0.039) (0.018)

DPM * Failed Smog Check 1.105** 1.074** 1.063** 1.043*
(0.029) (0.026) (0.021) (0.020)

Failed Last Smog Check 7.347** 7.800** 7.639** 8.155**
(0.242) (0.246) (0.161) (0.173)

DPM * NO Quartile 1 0.801** 0.893**
(0.044) (0.035)

DPM * NO Quartile 2 0.862** 0.923**
(0.038) (0.026)

DPM * NO Quartile 3 0.883** 0.956*
(0.034) (0.017)

DPM * NO Quartile 4 0.929* 0.983
(0.033) (0.010)

Vehicle Ages 10-15

DPM * NO Quartile 1 1.285**
(0.023)

DPM * NO Quartile 2 1.287**
(0.018)

DPM * NO Quartile 3 1.291**
(0.014)

DPM * NO Quartile 4 1.254**
(0.012)

Failed Smog Check 8.732**
(0.380)

DPM * Failed Smog Check 0.910**
(0.014)

Vehicle Ages 16+

DPM * NO Quartile 1 0.751**
(0.016)

DPM * NO Quartile 2 0.745**
(0.014)

DPM * NO Quartile 3 0.745**
(0.011)

DPM * NO Quartile 4 0.737**
(0.008)

Failed Smog Check 7.765**
(0.286)

DPM * Failed Smog Check 1.185**
(0.026)

Station ZIP Code Characteristics Yes Yes Yes Yes Yes
Quadratic Time Trend in Days Yes Yes Yes Yes Yes
Vehicle Characteristics Yes Yes Yes Yes Yes
Quartiles of NO No Yes No Yes Yes
Stratified on Vin Prefix No No Yes Yes Yes
Observations 31567473 26720283 31567473 26720283 26720283

Note: Coefficients on dollars per mile scaled for a 5-cent change
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Table A.5: Robustness Check—Intensive Margin Interacting NOx Quartiles With Other
Controls

(1) (2) (3) (4) (5) (6)

ln(DPM) * NO Q1 0.0406 0.0381 0.0678∗ 0.0605 0.0590 0.0666
(0.0231) (0.0250) (0.0339) (0.0335) (0.0333) (0.121)

ln(DPM) * NO Q2 -0.0617∗ -0.0581∗ -0.0453 -0.0478 -0.0484 -0.0410
(0.0261) (0.0269) (0.0309) (0.0310) (0.0308) (0.121)

ln(DPM) * NO Q3 -0.158∗∗∗ -0.155∗∗∗ -0.166∗∗∗ -0.165∗∗∗ -0.165∗∗∗ -0.157
(0.0271) (0.0272) (0.0282) (0.0291) (0.0294) (0.120)

ln(DPM) * NO Q4 -0.288∗∗∗ -0.298∗∗∗ -0.355∗∗∗ -0.353∗∗∗ -0.351∗∗∗ -0.344∗∗

(0.0300) (0.0302) (0.0325) (0.0332) (0.0331) (0.120)

NO Q2 0.378 0.327 -2.622 -3.925∗ -3.954∗ -4.916∗∗

(0.800) (0.735) (1.622) (1.693) (1.673) (1.732)

NO Q3 -1.246 -1.447 -5.233∗∗∗ -6.846∗∗∗ -6.793∗∗∗ -7.987∗∗∗

(1.012) (0.899) (1.447) (1.524) (1.508) (1.566)

NO Q4 -2.297∗ -2.951∗∗ -9.696∗∗∗ -11.39∗∗∗ -11.26∗∗∗ -12.60∗∗∗

(1.116) (1.084) (2.257) (2.253) (2.271) (2.301)

Quartile-Time Trend Interactions Yes Yes Yes Yes Yes Yes

Vintage-Quartile Interactions No Yes Yes Yes Yes Yes

Quartile-Year Interactions No No Yes Yes Yes Yes

Quartile-Lagged Odometer Interactions No No No Yes Yes Yes

Quartile-Demographics Interactions No No No No Yes Yes

Calendar Month Fixed-Effects No No No No No Yes

N 2979289 2979289 2979289 2979289 2979289 2979289

Note: All regressions include vehicle fixed-effects, year fixed effects, vintage/truck fixed effects, a quadratic time trend, a
sixth order polynomial in the odometer reading at previous Smog Check, and ZIP code level demographic characteristics.
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Table A.6: Robustness Check—Intensive Margin Interacting NOx Quartiles With Other
Controls

(1) (2) (3) (4) (5) (6)

DPM * NO Q1 -2.676∗∗∗ -2.807∗∗∗ -2.294∗∗∗ -2.412∗∗∗ -2.421∗∗∗ -5.089∗∗∗

(0.359) (0.350) (0.301) (0.347) (0.345) (0.696)

DPM * NO Q2 -3.337∗∗∗ -3.358∗∗∗ -3.075∗∗∗ -3.128∗∗∗ -3.129∗∗∗ -5.339∗∗∗

(0.359) (0.357) (0.334) (0.355) (0.354) (0.631)

DPM * NO Q3 -3.925∗∗∗ -3.941∗∗∗ -3.858∗∗∗ -3.881∗∗∗ -3.875∗∗∗ -5.728∗∗∗

(0.389) (0.391) (0.397) (0.395) (0.394) (0.631)

DPM * NO Q4 -4.642∗∗∗ -4.720∗∗∗ -4.970∗∗∗ -4.974∗∗∗ -4.957∗∗∗ -6.482∗∗∗

(0.425) (0.433) (0.444) (0.440) (0.442) (0.653)

NO Q2 0.958 0.821 -5.997∗∗∗ -7.404∗∗∗ -7.433∗∗∗ -4.917∗∗

(0.674) (0.613) (1.330) (1.391) (1.384) (1.567)

NO Q3 0.242 -0.00702 -8.999∗∗∗ -10.74∗∗∗ -10.69∗∗∗ -6.708∗∗∗

(0.889) (0.798) (1.563) (1.619) (1.605) (1.527)

NO Q4 0.615 0.124 -12.63∗∗∗ -14.43∗∗∗ -14.34∗∗∗ -9.222∗∗∗

(1.015) (0.999) (2.173) (2.181) (2.205) (2.227)

Quartile-Time Trend Interactions Yes Yes Yes Yes Yes Yes

Vintage-Quartile Interactions No Yes Yes Yes Yes Yes

Quartile-Year Interactions No No Yes Yes Yes Yes

Quartile-Lagged Odometer Interactions No No No Yes Yes Yes

Quartile-Demographics Interactions No No No No Yes Yes

Calendar Month Fixed-Effects No No No No No Yes

N 2979289 2979289 2979289 2979289 2979289 2979289

Note: All regressions include vehicle fixed-effects, year fixed effects, vintage/truck fixed effects, a quadratic time trend, a
sixth order polynomial in the odometer reading at previous Smog Check, and ZIP code level demographic characteristics.

Table A.7: Within and Between Standard Deviations of Vehicle Emissions Rates

Total Within Zip Code Between Zip Code

Grams/mile HC emissions 1.177 0.996 0.250
Grams/mile CO emissions 12.912 10.788 2.220
Grams/mile NOx emissions 0.638 0.535 0.182
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Table A.8: Ratio of Remaining Deadweight Loss With Tax to Deadweight Loss with No
Tax: Calibration

σ2 σ2
B ρ R(τnaive) R(τ ∗)

1998 1.407 1.465 0.322 0.789 0.755
1999 1.408 1.471 0.299 0.785 0.755
2000 1.438 1.486 0.308 0.794 0.763
2001 1.457 1.496 0.311 0.799 0.767
2002 1.492 1.506 0.283 0.802 0.775
2003 1.517 1.535 0.283 0.807 0.781
2004 1.525 1.531 0.265 0.806 0.782
2005 1.474 1.539 0.265 0.796 0.771
2006 1.482 1.539 0.251 0.795 0.773
2007 1.487 1.547 0.247 0.796 0.774
2008 1.498 1.533 0.252 0.799 0.777

Average 1.471 1.513 0.281 0.797 0.770

Table A.9: Percentage Difference Between California and the rest of the US

25th Percentile Median 75th Percentile Mean

NOx g/mi -0.230 -0.291 -0.338 -0.282

NOx Damage/ton (MM) -0.439 -0.525 -0.558 -0.685

NOx Damage/mi -0.595 -0.657 -0.712 -0.761

HC g/mi -0.262 -0.321 -0.410 -0.354

HC Damage/ton 1.475 2.558 5.318 1.821

HC Damage/mi 0.602 1.134 3.358 1.035

CO g/mi -0.226 -0.321 -0.366 -0.320

CO Damage/mi -0.226 -0.321 -0.366 -0.320

NOx + HC Damage/ton (MM) 0.0191 0.994 2.337 0.787

NOx + HC + CO Damage/mi -0.353 -0.299 -0.0883 -0.295

Notes: The table reports the coefficient on the California dummy divided by the constant.

All differences are statistically significant at the 0.001 level, except for NOx g/mi and

HC Damage/mi at the 25th percentile (significant at the 0.05 level), and NOx Damage/mi.
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