Online Appendix
 International Sanctions and Limits of Lerner Symmetry
 Oleg Itskhoki and Dmitry Mukhin

Consider the planner's problem

$$
\max _{C_{1}^{*}, C_{2}^{*}, Y_{1}^{*}, Y_{2}^{*}} U\left(C_{1}^{*}, C_{2}^{*}\right) \quad \text { s.t. } \quad P_{1}^{*} C_{1}^{*}+\frac{P_{2}^{*} C_{2}^{*}}{R^{*}}=Q_{1}^{*} Y_{1}^{*}+\frac{Q_{2}^{*} Y_{2}^{*}}{R^{*}}, \quad F\left(Y_{1}^{*}, Y_{2}^{*}\right)=0
$$

with isoelastic preferences and CES production frontier:

$$
U\left(C_{1}^{*}, C_{2}^{*}\right)=\frac{1}{1-\frac{1}{\sigma}}\left[C_{1}^{* 1-\frac{1}{\sigma}}+\beta C_{2}^{* 1-\frac{1}{\sigma}}\right]^{\frac{1}{1-\frac{1}{\sigma}}}, \quad F\left(Y_{1}^{*}, Y_{2}^{*}\right)=a_{1}^{-\frac{1}{\theta}} Y_{1}^{* \frac{\theta+1}{\theta}}+a_{2}^{-\frac{1}{\theta}} Y_{2}^{* \frac{\theta+1}{\theta}}-1
$$

where $a_{1}+a_{2}=1$ and $\sigma, \theta>0$. The first-order conditions characterize the optimal intertemporal choice of consumption and production:

$$
\frac{C_{2}^{*}}{C_{1}^{*}}=\left(\beta R^{*} \frac{P_{1}^{*}}{P_{2}^{*}}\right)^{\sigma}, \quad \frac{Y_{2}^{*}}{Y_{1}^{*}}=\frac{a_{2}}{a_{1}}\left(\frac{Q_{2}^{*}}{R^{*} Q_{1}^{*}}\right)^{\theta}
$$

Substitute the latter condition into the production constraint to solve for Y_{1}^{*} and Y_{2}^{*}. Combining with the optimal consumption smoothing and the country's budget constraint, this leads to the welfare function

$$
V=\frac{\sigma}{\sigma-1}\left[P_{1}^{* 1-\sigma}+\beta^{\sigma}\left(\frac{P_{2}^{*}}{R^{*}}\right)^{1-\sigma}\right]^{\frac{1}{\sigma-1}}\left[a_{1} Q_{1}^{* \theta+1}+a_{2}\left(\frac{Q_{2}^{*}}{R^{*}}\right)^{\theta+1}\right]^{\frac{1}{\theta+1}} .
$$

Given the focus on the frontloaded shocks, rewrite the welfare briefly as

$$
\log V=\frac{1}{\sigma-1} \log \left[\gamma+P_{1}^{* 1-\sigma}\right]+\frac{1}{\theta+1} \log \left[\alpha+Q_{1}^{* \theta+1}\right]+\log \frac{\sigma a_{1}}{\sigma-1}
$$

where $\gamma \equiv \beta^{\sigma}\left(\frac{P_{2}^{*}}{R^{*}}\right)^{1-\sigma}, \alpha \equiv \frac{a_{2}}{a_{1}}\left(\frac{Q_{2}^{*}}{R^{*}}\right)^{\theta+1}$. The first-order derivatives of $\log V$ are given by

$$
\frac{\partial \log V}{\partial \log P_{1}^{*}}=-\frac{P_{1}^{* 1-\sigma}}{\gamma+P_{1}^{* 1-\sigma}}, \quad \frac{\partial \log V}{\partial \log Q_{1}^{*}}=\frac{Q_{1}^{* \theta+1}}{\alpha+Q_{1}^{* \theta+1}}
$$

and the second-order derivatives are

$$
\frac{\partial^{2} \log V}{\left(\partial \log P_{1}^{*}\right)^{2}}=\frac{(\sigma-1) \gamma P_{1}^{* 1-\sigma}}{\left(\gamma+P_{1}^{* 1-\sigma}\right)^{2}}, \quad \frac{\partial^{2} \log V}{\left(\partial \log Q_{1}^{*}\right)^{2}}=\frac{(\theta+1) \alpha Q_{1}^{* \theta+1}}{\left(\alpha+Q_{1}^{* \theta+1}\right)^{2}}, \quad \frac{\partial^{2} \log V}{\partial \log P_{1}^{*} \partial \log Q_{1}^{*}}=0
$$

Given the CES structure, the share of first-period revenues in total discounted income Φ and the share of first-period spendings in total discounted expenditures Ω are equal

$$
\Phi=\frac{Q_{1}^{* \theta+1}}{\alpha+Q_{1}^{* \theta+1}}, \quad \Omega=\frac{P_{1}^{* 1-\sigma}}{\gamma+P_{1}^{* 1-\sigma}},
$$

which allows us to express the derivatives of V in terms of Φ and Ω. The second-order expansion of
the welfare can then be written as $\mathrm{d} \log V=-\Omega \mathrm{d} \log P_{1}^{*}+\Phi \mathrm{d} \log Q_{1}^{*}+\frac{1}{2} \Omega(1-\Omega)(\sigma-1)\left(\mathrm{d} \log P_{1}^{*}\right)^{2}+\frac{1}{2} \Phi(1-\Phi)(\theta+1)\left(\mathrm{d} \log Q_{1}^{*}\right)^{2}$. Given the definitions $S_{1}^{*} \equiv Q_{1}^{*} / P_{1}^{*}$ and $\tilde{R}^{*} \equiv R^{*} P_{1}^{*} / P_{2}^{*}$, the first-order terms can be decomposed into the income and substitution effect

$$
\mathrm{d} \log V=\Phi \mathrm{d} \log S_{1}^{*}+(\Phi-\Omega) \mathrm{d} \log \tilde{R}^{*} .
$$

If at the point of approximation, the country does not borrow or save in the first period, then $\Omega=\Phi$ and the expansion simplifies to

$$
\mathrm{d} \log V=\Omega \mathrm{d} \log S_{1}^{*}+\frac{1}{2} \Omega(1-\Omega)\left[(\sigma-1)\left(\mathrm{d} \log P_{1}^{*}\right)^{2}+(\theta+1)\left(\mathrm{d} \log Q_{1}^{*}\right)^{2}\right]
$$

