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Appendix A: Additional Theoretical Results and Omitted Proofs

Derivation of Static Equilibrium

In this part of the Appendix, I provide a few expressions omitted from the text. First, the maximization

of (9) gives the demand for machine varieties and resource inputs as

xj(ν) =

pj ( (1− β)α

(1 + µj)ψ

)α(1− α
qRj

)1−α
 1
αβ

Lj , (A1)

and

Rj =

pj ( (1− β)α

(1 + µj)ψ

)α(1−β)
(

1− α
qRj

)1−α+αβ
 1
αβ

NjLj . (A2)

Substituting these into (4), we obtain the levels of sectoral production as

Yj =

(
(1− β)α

(1 + µj)ψ

) 1−β
β

(
1− α
qRj

) 1−α
αβ

pj
1−αβ
αβ NjLj . (A3)

Combining this expression for j = 1, 2 with (11) and rearranging yields (12) in the text.

I next show that the equilibrium characterized in the text is unique when δσ < 1 and there are always

multiple (corner) equilibria when δσ > 1. Recall from footnote 9 that each scientist has a mass s > 0,

and then we are taking the limit case where s→ 0. Then consider an allocation in which all researchers

work in sector 2 (of course, the argument is analogous when they all work in sector 1). For this allocation

to be an equilibrium, we need that switching to sector 1 is not profitable for an individual scientist. This

requires

η̃2(S̄ − s)
δ

1−δ π2 ≥ η̃1s
δ

1−δ π1.

Rearranging this equation and using the equivalent conditions from the main text, it becomes

η̃2

η̃1

(
S̄ − s

s

) δ
1−δ µ2

µ1

(
1 + µ2

1 + µ1

)− 1
β
(
qR2
qR1

)− 1−α
αβ

p
1
αβ

(
L2

L1

)
≥ 1,
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or substituting from (12) and recalling that Nj = η̃jS
1

1−δ
j , it is equivalent to

η2

η1

(
γ2

γ1

) ε
σ µ2

µ1

(
1 + µ2

1 + µ1

)−σ−(1−β)
βσ

(
qR2
qR1

)− (σ−1)(1−α)
αβσ

(
L2

L1

)σ−1
σ
(
S̄ − s

s

)− 1−δσ
(1−δ)σ

≥ 1.

Now taking the limit s → 0, we can see that this condition can never be satisfied when δσ < 1,

since
(
S̄−s
s

)− 1−δσ
(1−δ)σ → 0 , and hence the entire left-hand side limits to 0. Conversely, when δσ > 1,(

S̄−s
s

)− 1−δσ
(1−δ)σ → +∞ and thus the left-hand side limits to +∞, ensuring that this condition is always

satisfied as a strict inequality. This establishes that when δσ < 1, there are no corner equilibria and the

interior equilibrium characterized in the text is unique. Conversely, when δσ > 1, corner allocations are

always equilibria.

Derivation of Socially-Optimal Technology Ratio in the Static Model

The first-order conditions for the social planner in the static model can be written as:

η̃1S
δ

1−δ
1

[
d lnY

dN1
+
d lnE

dN1

]
= η̃2S

δ
1−δ
2

[
d lnY

dN2
+
d lnE

dN2

]
.

From this expression, using the fact that d lnNj = dNj/Nj and substituting Nj for Sj from Nj = η̃jS
1

1−δ
j

(with ηj ≡ η̃1−δ
j ), we get (19) in the main text.

Next, note that

d lnY

d lnYj
= γj

(
Yj
Y

) ε−1
ε

= γεjp
1−ε
j ,

where the second relationship exploits the representative household’s utility maximization condition (re-

calling that the social planner does not directly manipulate prices). Moreover:

d lnY2

d lnN2
= 1 +

∂ lnY2

∂ ln p2

d ln p2

d lnN2

= 1 +
1− αβ
αβ

d ln p2

d ln p

d ln p

d lnN2

d lnY2

d lnN1
=

∂ lnY2

∂ ln p2

d ln p2

d lnN1

=
1− αβ
αβ

d ln p2

d ln p

d ln p

d lnN1

d lnY1

d lnN1
= 1 +

∂ lnY1

∂ ln p1

d ln p1

d lnN1

= 1 +
1− αβ
αβ

d ln p1

d ln p

d ln p

d lnN1
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d lnY1

d lnN2
=

∂ lnY1

∂ ln p1

d ln p1

d lnN2

=
1− αβ
αβ

d ln p1

d ln p

d ln p

d lnN2

Finally, using the ideal price condition, (13),

dp1/dp

p1
= −γε2p−εp1−ε

1

dp2/dp

p2
= γε1p

ε−2p1−ε
2 .

Or

d ln p1/d ln p = −γε2p1−ε
2 and d ln p2/d ln p = γε1p

1−ε
1 .

Now combining these expressions, we have

d lnY

d lnN1
= γε1p

1−ε
1

[
1− (1− αβ)γε2p

1−ε
2

σ

]
+ γε2p

1−ε
2

[
(1− αβ)γε1p

1−ε
1

σ

]
= γε1p

1−ε
1 ,

and

d lnY

d lnN2
= γε1p

1−ε
1

[
(1− αβ)γε2p

1−ε
2

σ

]
+ γε2p

1−ε
2

[
1− (1− αβ)γε1p

1−ε
1

σ

]
= γε2p

1−ε
2 .

Combining these expressions, we obtain the desired result:

d lnY

d lnNj
= γεjp

1−ε
j for j = 1, 2.

Finally, using the same steps as in the previous subsection of the Appendix, we can show that when

δσ < 1, the second-order conditions of the social planner’s optimization problem are always satisfied

in the interior allocation given by (16). Conversely, when δσ > 1, the interior allocation is not a local

maximum, and instead there are two local maxima at the corners, with all scientists working in one of

the two sectors. One of these two local maxima is the global maximum. Which one is preferred can

be easily determined by using the expression for welfare derived in the next subsection of the Appendix

and substituting for Sj in terms of Nj (once again from Nj = η̃jS
1

1−δ
j ), and comparing the resulting

expressions as s→ 0.

Measuring Externalities

In the theoretical analysis, I simplified the discussion by assuming that externalities are created directly

by technology choices. This means that I need to convert existing externality estimates into those that

appear in the form of the τ̃j or τj variables. I now discuss how this can be done.

Automation: In the automation case, I follow Acemoglu, Manera and Restrepo’s (2020) review of
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the literature. The median estimate of quasi-rents (and thus pecuniary externalities) in labor income is

about 15%. I combine this with Acemoglu and Restrepo’s (2020) estimate of the effect of robot adoption

on the employment in local labor markets (approximated by commuting zones in the US). Namely, let us

equate automation technologies with N2, and employment with L1 (and L2 can be capital or high-skilled

labor working with automated technologies), and denote the working age population by Pop. Then we

have

τ̃2 = − d lnE

d lnN2
= − d lnE

d lnL1

d lnL1

d lnN2

= − d lnE

d lnL1

d lnL1

dL1

dL1

dL1/Pop

dL1/Pop

dN2

dN2

d lnN2

= − d lnE

d lnL1

Pop

L1

dL1/Pop

dN2
N2

= −(0.15)× 1

0.63
× (−0.39)× 0.73

= 0.07,

where −0.15 is from Acemoglu, Manera and Restrepo’s review of the literature, 0.63 is the employment to

population ratio in the United States, averaged over the years 1990-2007 in Current Population Survey,24

−0.39 is Acemoglu and Restrepo’s (2020) estimate of the impact of one more robot per 1000 industrial

workers on employment to population ratio, and 0.73 is their estimate of the stock of robots between

1993 and 2007. This number implies that a proportional increase in automation technology creates a 7%

negative pecuniary externality on workers. I then convert this into τ2 as described above.

Health care: In the health care case, the main distortion I focus on is differential markups, which

does not need any conversion. Secondarily, I compute the externalities in terms of differences in quality-

adjusted life year returns per one dollar of spending on technology between the preventative and high-

tech/late-stage curative technologies (inclusive of R&D costs and usage costs). These numbers are there-

fore directly comparable to τ̃j ’s in our model. Further details of medical procedures, drugs and tech-

nologies used in these computations and the studies from which the estimates are taken are provided in

Appendix C.

Energy: In the energy case, I use estimates of the social cost of carbon. In this framework, carbon

corresponds to the (suitably rescaled) resource input R2 (identifying dirty technologies with sector 2).

The social cost of carbon is in terms of the impact of one more metric ton of carbon emissions on

consumption-equivalent welfare. The externality in the utility equation (1) is in terms of proportional

effect on consumption. Therefore, I compute τ̃2 as follows:

τ̃2 = −d lnE2

d lnN2
= −dE2

dR2

R2

E2

d lnR2

d lnN2

= SCC × CO2 emission

Energy Consumption

d lnR2

d lnN2
,

where I am using the fact that the relevant consumption is total energy consumption and proxying

d lnR2/d lnN2 ' 1.

24From FRED, https://fred.stlouisfed.org/series/EMRATIO
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Welfare Comparisons

The welfare difference between the social optimum in the equilibrium can be written as

USP − UEQ = lnY
(
nSP

)
− lnY

(
nEQ

)
+ lnE(nSP )− lnE(nEQ),

where I am using the fact that all other endogenous variables are functions of n. The basic idea is to

develop the approximation:

∆ lnY EQ,SP ≡ lnY
(
nSP

)
− lnY

(
nEQ

)
'
d lnY

(
nEQ

)
dS

[
SSP − SEQ

]
, (A4)

where SSP is the allocation of scientists consistent with a technology ratio of nSP , and SEQ is the

allocation of scientists implied by the technology ratio of nEQ.

To do this, consider the impact of a change in the allocation of scientists from the equilibrium nEQ,

and let S1 = S and S2 = S̄ − S. Then we can write:

d lnY

dS
=

d lnY

d lnN1

d lnN1

dS
− d lnY

d lnN2

d lnN2

dS

=
d lnY

d lnN1

dN1

dS

1

N1
− d lnY

d lnN2

dN2

dS

1

N2

=
1

1− δ

[
γε1p

1−ε
1 η̃1N

−1
1 S

δ
1−δ
1 − γε2p1−ε

2 η̃2N
−1
2 S

δ
1−δ
2

]
=

1

1− δ

[
γε1p

1−ε
1 η1N

−(1−δ)
1 − γε2p1−ε

2 η2N
−(1−δ)
2

]
=

1

1− δ

[
η1γ

ε
1

[
γε1 + γε2p

1−ε]−1
N
−(1−δ)
1 − η2γ

ε
2

[
γε1 + γε2p

1−ε]−1
p1−εN

−(1−δ)
2

]
=

N
−(1−δ)
1

1− δ

[
η1γ

ε
1

[
γε1 + γε2 (p)1−ε

]−1
− η2γ

ε
2

[
γε1 + γε2 (p)1−ε

]−1
p1−εn−(1−δ)

]
(A5)

Here, the third line simply uses the expressions for dNj/dSj from the static innovation possibilities frontier

(5), while the fourth line uses the same transformation as in the text: Nj = η̃jS
1

1−δ
j and ηj ≡ η̃1−δ

j . The

penultimate line uses the ideal price condition (13) to substitute p1 and p2 in terms of the relative price

p. The final line simply factors out N1.
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Hence,

∆ lnY EQ,SP ' d lnY

dS

(
SSP − SEQ

)
=
d lnY

dS

(
S̄

1 + η1
η2

(nSP )1−δ −
S̄

1 + η1
η2

(nEQ)1−δ

)

=

(
NEQ

1

)−(1−δ)

1− δ

 η1γ
ε
1

(
γε1 + γε2

(
pEQ

)1−ε)−1

−η2γ
ε
2

(
γε1 + γε2

(
pEQ

)1−ε)−1 (
pEQ

)1−ε (
nEQ

)−(1−δ)

(SSP − SEQ)

=

(
NEQ

1

)−(1−δ)

1− δ
η1γ

ε
1

(
γε1 + γε2

(
pEQ

)1−ε)−1
(

1− η2

η1

(
γ2

γ1

)ε (
pEQ

)1−ε (
nEQ

)−(1−δ)
)(

SSP − SEQ
)

=

(
NEQ

1

)−(1−δ)

1− δ
η1γ

ε
1

(
γε1 + γε2

(
pEQ

)1−ε)−1
[
1− µ1

µ2

1 + µ2

1 + µ1

] (
SSP − SEQ

)
=

(
NEQ

1

)−(1−δ)

1− δ
η1γ

ε
1

(
γε1 + γε2

(
pEQ

)1−ε)−1
[
1− µ1

µ2

1 + µ2

1 + µ1

](
S̄

1 + η1
η2

(nSP )1−δ −
S̄

1 + η1
η2

(nEQ)1−δ

)

=
1

1− δ
γε1

(
γε1 + γε2

(
pEQ

)1−ε)−1
[
1− µ1

µ2

1 + µ2

1 + µ1

]1 + η1
η2

(
nEQ

)1−δ
1 + η1

η2
(nSP )1−δ − 1

 .

In these derivations, I have used the following steps. The second line is from (A4), while the third

line substitutes from (A5). The fourth line factors out η1γ
ε
1

(
γε1 + γε2

(
pEQ

)1−ε)−1
. The fifth line uses

the expressions for pEQ and nEQ from (12) and (16). The sixth line uses the fact that from (5), the

equilibrium and socially-optimal allocations of scientists have to satisfy

SEQ =
S̄

1 + η1
η2

(nEQ)1−δ and SSP =
S̄

1 + η1
η2

(nSP )1−δ .

The seventh line then substitutes for

NEQ
1 =

 S̄

1
η1

+ (nEQ)1−δ

η2

 1
1−δ

, (A6)

and cancels out terms.

Here everything is a function of nEQ and parameters.

With no markup differences, it can be verified that ∆ lnY EQ,SP = 0 (which also follows from an

application of the envelope theorem). Note, in particular, that the terms in square brackets are equal to
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zero. Therefore, with no markup differences (as in the automation and energy cases), we have

USP − UEQ ' lnE(nSP )− lnE(nEQ)

= (τ̃1 + τ̃2) ln

(
NEQ

1

NSP
1

)
+ τ̃2 ln

(
nEQ

nSP

)
.

This can be computed given the expression for NEQ
1 in (A6), and its analogue for the socially-optimal

level of technology:

NSP
1 =

 S̄

1
η1

+ (nSP )1−δ

η2

 1
1−δ

.

Hence,

NEQ
1

NSP
1

=

1 + η1
η2

(
nSP

)1−δ
1 + η1

η2
(nEQ)1−δ

 1
1−δ

.

To proxy for the ratio NEQ
1 /NSP

1 we only need an estimate of η2/η1. This ratio can be obtained by using

the expressions for (12), (16), and (A3). Combining these equations, we obtain:

η2

η1
=
(
nEQ

)1−δ (µ2

µ1

)−1(1 + µ2

1 + µ1

)(
p2Y2

p1Y1

)−1

,

where p2Y2/p1Y1 is the relative output of the two sectors.

When there are markup differences and no externalities (as in our baseline health care application),

then

USP − UEQ ' ∆ lnY EQ,SP

as derived above. This can be computed if we can also compute pEQ and have an estimate for γ2/γ1.

In the health care application, we have α = 1 and there is no specialized labor, so the same health care

labor forces allocated between the two technologies, which implies

wEQ2

wEQ1

= (pEQ)
1
β

(
1 + µ2

1 + µ1

)− 1−β
β

(nEQ)
σ−1
σ = 1.

Given markups and nEQ, this equation gives pEQ. To obtain an estimate for γ2/γ1, note first that

γ1 + γ2 = 1, and thus γ2/γ1 = (1− γ1)/γ1. Moreover,

p =
1− γ1

γ1

(
Y2

Y1

)− 1
ε

,

which can be rearranged to yield

γ1 =

[
1 +

(
pEQ

) ε−1
ε

(
p2Y2

p1Y1

) 1
ε

]−1

,
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which again uses an estimate of the relative output of the two sectors.25

This discussion clarifies that to compute the welfare losses from innovation distortions we need two

more numbers in each applications: nEQ and (p2Y2)/(p1Y1). We use the following estimates for these

quantities:

• Automation: nEQ is taken as the ratio of the total number of automation patents to total non-

automation patents across all countries in 2005 from Acemoglu and Restrepo (2022). This gives

nEQ = 0.15. I also set (p2Y2)/(p1Y1) = 0.38 on the basis of the model-based inference in Acemoglu,

Manera and Restrepo (2020), which yields that about 28% of tasks are automated in the US

economy.

• Health care: nEQ is taken as the ratio of the sum of the discounted stock of curative patents to that

of the sum of preventative patents across countries, which gives nEQ = 16.2. I proxy p1Y1 as total

spending on ambulatory health services and social assistance in 2020 from the U.S. Census Bureau

Service Annual Survey (SAS) and total spending on diagnostic substances and biological product

manufacturing in 2020 from the U.S. Census Bureau and Annual Survey of Manufactures (ASM).

I set p2Y2 equal to the 2020 revenues of the same industries classified as curative in Appendix C.

These revenues are also taken from the ASM. The resulting ratio is (p2Y2)/(p1Y1) = 0.13.26

• Energy: nEQ = 2.20 is taken as the sum of the stock of dirty patents to that of the stock of

clean patents across all countries in 2005, from Aghion et al. (2016). In addition, (p2Y2)/(p1Y1)

is proxied by the ratio of the revenue of renewable energy to that of non-renewable energy, where

revenue is calculated as the product of average wholesale electricity price of an energy source and

its primary energy consumption from the EIA Monthly Energy Review. The resulting ratio is

(p2Y2)/(p1Y1) = 3.08.27

25An alternative approximation for welfare in this case can be derived by taking a first-order Taylor approximation in
terms of deviations between technology ratios and then substituting out some of the technology terms by using the same

equilibrium relationship we used in the welfare computations, in particular, η1
η2

(
nEQ

)1−δ
=
(
γ2
γ1

)ε (
pEQ

)1−ε [
1− µ1

µ2

1+µ2
1+µ1

]−1

.

This gives the following approximation for output differences between the optimal and equilibrium allocations in the presence
of markup differences:

γε1

(
γε1 + γε2

(
pEQ

)1−ε)−1 [
1− µ1

µ2

1+µ2
1+µ1

]( (
γ2
γ1

)ε
(pEQ)1−ε

[
1−µ1

µ2

1+µ2
1+µ1

]−1

1+
(
γ2
γ1

)ε
(pEQ)1−ε

[
1−µ1

µ2

1+µ2
1+µ1

]−1

)
. This approximation removes the need to sep-

arately estimate η2/η1. In practice, the two expressions give very similar estimates of welfare costs of distorted technology
in the health care case.

26More specifically, the preventative categories are: NAICS 621 (Ambulatory health), NAICS 624 (Social assistance),
NAICS 325413 (In-vitro diagnostic substances manufacturing), and NAICS 325414 (Biological product manufacturing). The
curative categories are: NAICS 325412 (Pharmaceutical preparation manufacturing), NAICS 334510 (Electromedical and
electrotherapeutic apparatus manufacturing), NAICS 339112 (Surgical and medical instrument manufacturing), and NAICS
339113 (Surgical appliance and supplies manufacturing). See Appendix C for details. The SAS and ASM data can be accessed
at www.census.gov/programs-surveys/sas/data/tables.html and www.census.gov/programs-surveys/asm/data/tables.html,
respectively.

27Wholesale prices are from the United States Energy Information Agency (EIA) Power Operations Report (see
www.eia.gov/energyexplained/us-energy-facts/) and energy consumption data are from the EIA Monthly Energy Review
(www.eia.gov/todayinenergy/detail.php?id=45436).
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Dynamic Model

In this part of the Appendix, I provide a few more details about the dynamic framework provided in the

text. First recall that when a scientist invents a new machine for sector j ∈ {1, 2}, she receives the net

present discounted value of future profits from the sale of this machine, given by

Vj(t) =

∫ ∞
t

e−
∫ t′
t r(t′′)dt′′πj(t

′)dt′, (A7)

where r(t) is the market interest rate at time t, and πj(t) is the common profit that all machines for

sector j ∈ {1, 2} will make at time t.

The representative household’s optimization problem implies that the growth rate of consumption

has to satisfy
Ċ(t)

C(t)
= r(t)− %, (A8)

as well as a standard transversality condition, which requires the net present discounted value of current

and future machine varieties to be finite (see Acemoglu, 2002).

In BGP, consumption has to grow at a constant rate, and thus the interest rate will be constant.

Therefore, we have

Vj =
πj
r

for j = 1, 2.

Using these expressions for the two sectors and combining them with the equilibrium allocation of scien-

tists, we obtain (16), as claimed in the text, which also establishes Proposition 2. The proof for Proposition

3 follows the analysis in Acemoglu (2002) closely and I do not present it here to avoid repetition.

I next consider the socially optimal choice of technology in this dynamic framework. Once again,

assuming that the social planner only controls the allocation of scientists, this problem can be written as

max
[S(t),N1(t),N2(t)]∞0

∫ ∞
0

e−%tU [N1(t), N2(t)]dt

subject to

Ṅ1 (t) = η1N1(t)(1+δ)/2N2(t)(1−δ)/2S (t) (A9)

and

Ṅ2 (t) = η2N1(t)(1−δ)/2N2(t)(1+δ)/2[S̄ − S (t)]. (A10)

Here U [N1(t), N2(t)] = lnC(t) + lnE(t) is the level of utility at time t, inclusive of externalities, given

the vector of technologies (state variables), N1(t) and N2(t). This expression exploits the fact that the

level of final good production and hence consumption only depend on the current state of technologies.

(All other endogenous variables, and in particular prices of the intermediates, p1(t) and p2(t), are solved

out as in the equilibrium allocation in the text).

Suppressing time dependence when this will cause no confusion and assigning co-state variables λ1

and λ2 to (A9) and (A10), the necessary condition from the maximum principle applied to this optimal
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control problem yields:

λ1η1N
1+δ
2

1 N
1−δ
2

2 − λ2η2N
1−δ
2

1 N
1+δ
2

2


> 0 =⇒ S = S̄

= 0 =⇒ S ∈ [0, S̄]

< 0 =⇒ S = 0

. (A11)

Therefore, just like in the equilibrium, the social planner’s solution leads to a bang-bang solution. More-

over, for an interior BGP, we need scientists to be assigned to both sectors, and thus this expression

should be equal to zero. Hence, in an interior BGP, we must have:

λ1η1 = λ2η2n
δ. (A12)

In order to characterize the socially-optimal technology choices, we need to know the values and

evolution of the co-state variables, which are given by the following two differential equations:

%λ1 − λ̇1 =
dU

dN1
+

1 + δ

2
λ1η1

(
N2

N1

) 1−δ
2

S +
1− δ

2
λ2η2

(
N2

N1

) 1+δ
2 [

S̄ − S
]

=
dU

dN1
+

1 + δ

2
λ1η1n

1−δ
2 S +

1− δ
2

λ2η2n
1+δ
2
(
S̄ − S

)
=

dU

dN1
+ λ1η1n

1−δ
2

[
1 + δ

2
S +

1− δ
2

(
S̄ − S

)]
,

%λ2 − λ̇2 =
dU

dN2
+

1− δ
2

λ1η1

(
N2

N1

)− 1+δ
2

S +
1 + δ

2
λ2η2

(
N2

N1

)− 1−δ
2 [

S̄ − S
]

=
dU

dN2
+

1− δ
2

λ1η1n
− 1+δ

2 S +
1 + δ

2
λ2η2n

− 1−δ
2
(
S̄ − S

)
=

dU

dN2
+ λ2η2n

− 1−δ
2

[
1− δ

2
S +

1 + δ

2

(
S̄ − S

)]
.

In BGP, we need λ̇1 = λ̇2 = 0, and hence

λ1 =
1

%

(
dU

dN1
+ λ1η1n

1−δ
2

[
1 + δ

2
S +

1− δ
2

(
S̄ − S

)])
=

dU
dN1

%− η1n
1−δ
2

[
1+δ

2 S + 1−δ
2

(
S̄ − S

)] , and

λ2 =
1

%

(
dU

dN2
+ λ2η2n

− 1−δ
2

[
1− δ

2
S +

1 + δ

2

(
S̄ − S

)])
=

dU
dN2

%− η2n
− 1−δ

2

[
1−δ

2 S + 1+δ
2

(
S̄ − S

)] .
Moreover, the scientist allocation has to satisfy the BGP condition:

S

S̄ − S
=
η2

η1
n−(1−δ). (A13)
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Substituting the values of the co-state variables into (A12), we obtain

η1

d lnY
d lnN1

+ d lnE
d lnN1

%− η1n
1−δ
2

[
1+δ

2 S + 1−δ
2

(
S̄ − S

)] = η2n
−(1−δ)

d lnY
d lnN2

+ d lnE
d lnN2

%− η2n
− 1−δ

2

[
1−δ

2 S + 1+δ
2

(
S̄ − S

)] . (A14)

This condition is different from (19) because the social planner takes into account the knowledge

spillovers the two sectors create, which have differential effects depending on the relative technology

ratio. In the special case where δ = 1, we can combine (A13) and (A14) to show that these differential

knowledge spillovers cancel out and we end up with the following condition for the socially-optimal BGP

technology ratio:

η1

[
d lnY

d lnN1
+

d lnE

d lnN1

]
= η2

[
d lnY

d lnN2
+

d lnE

d lnN2

]
,

which is identical to (20) when δ = 1, and thus the same nSP in (20) in the text characterizes the

socially-optimal BGP technology ratio. The general case where δ < 1 captures the same economic forces

I emphasized in the text, but does not admit a closed-form solution for the technology ratio.
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Appendix B: Robustness Checks

This part of the Appendix provides robustness checks on the regression results reported in Table 2 in the

text. Table B1 considers variations for the automation regressions, Table B2 presents robustness checks

for the the regressions on the relationship between medical research and disease burden, and finally Table

B3 focuses on the relationship between fuel prices and direction of innovation in automobiles. The results

of all three tables are discussed in the text.

The formulae for the path dependence parameter δ and the elasticity of substitution σ in the various

tables and columns are:

Table B1, columns 1-8 (Long-run effects from relative market sizes)

δ̂ = max {0, 1− ρ̂} , and

σ̂ =
1 + χ̂− δ̂
1 + δ̂χ̂− δ̂

.

Table B1, columns 9-10 (Long-run effects from relative prices and with spillovers)

δ̂ = max {0, 1− ρ̂− ρ̂spillover} , and

σ̂ =
2χ̂+ δ̂ − 1− χ̂δ̂

χ̂+ δ̂ − 1
,

where ρ̂spillover is the coefficient on the (relative technology) spillover term.

Table B2, columns 1-12 (Long-run effects from relative market sizes)

δ̂ = max {0, 1− ρ̂} , and

σ̂ =
1 + χ̂− δ̂
1 + δ̂χ̂− δ̂

.

Table B3, columns 1-10 (Long-run effects from relative input prices)

δ̂ = max {0, 1− ρ̂} , and

σ̂ =
αβχ̂− (1− δ̂)(1− α)

αβδ̂χ̂− (1− δ̂)(1− α)
.

Table B3, columns 11-12 (Long-run effects from relative input prices and with spillovers)

δ̂ = max {0, 1− ρ̂− ρ̂spillover} , and

σ̂ =
αβχ̂− (1− δ̂)(1− α)

αβδ̂χ̂− (1− δ̂)(1− α)
.
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Table B1: Robustness for Automation Application

LHS ln(x) ln(x) ln(1 + x) ln(1 + x) asinh(x) asinh(x) ln(x) ln(x) ln(1 + x) ln(1 + x)
Samples Full Full Full Full Full Full OECD OECD Firm-Level Firm-Level
Frequency 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 5-year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A Parameters Estimated from Regressions
Initial Relative Stock: ρ̂ 0.78 0.81 0.41 0.67 0.26 0.52 0.19 0.46 0.83 0.83

(0.13) (0.12) (0.12) (0.14) (0.09) (0.12) (0.06) (0.17) (0.03) (0.03)
Initial Shifter: χ̂ 0.84 1.11 1.00 1.07 0.63 1.04 0.38 1.07 1.66 2.06

(0.39) (0.38) (0.51) (0.53) (0.29) (0.41) (0.20) (0.35) (0.69) (0.85)

Changes in Shifter: λ̂ 1.11 2.12 1.34 2.55 0.42 1.72 0.14 1.06 -1.58 -0.52
(0.54) (0.67) (0.51) (0.90) (0.29) (0.63) (0.16) (0.65) (0.77) (0.95)

Spillovers: -0.30 -0.23
(0.15) (0.21)

Observations 232 125 345 165 345 165 149 78 3,459 3,447
Country covariates Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes
Industry × Year fixed effects Yes Yes
Country × Year fixed effects Yes

Panel B Implied Parameters
Long-run Effects 1.09 1.36 2.43 1.61 2.40 2.02 2.00 2.34 3.13 3.43

δ̂ 0.22 0.19 0.59 0.33 0.74 0.48 0.81 0.54 0.47 0.40
σ̂ 1.68 1.88 1.41 1.70 1.22 1.53 1.15 1.47 1.78 1.85
ε̂ 4.06 4.96 2.86 4.13 2.01 3.37 1.66 3.12 4.50 4.81

δ̂σ̂ 0.38 0.35 0.83 0.57 0.91 0.74 0.93 0.80 0.84 0.74

Panel C Equilibrium and Welfare Comparison (Baseline: τ̃ = 0.07)
nSP /nEQ 0.83 0.82 0.56 0.76 0.40 0.66 0.34 0.60 0.47 0.61
USP − UEQ 0.01 0.01 0.03 0.01 0.04 0.02 0.05 0.02 0.03 0.02

Panel D Equilibrium and Welfare Comparison (Alternative: τ̃ = 0.03)
nSP /nEQ 0.91 0.90 0.75 0.87 0.64 0.82 0.58 0.78 0.69 0.78
USP − UEQ 0.002 0.002 0.01 0.003 0.01 0.004 0.01 0.01 0.01 0.01

Notes: This table presents regression estimates (Panel A), implied parameter values (Panel B) and implied distortions and welfare results (Panels C and D) for the
automation application. Regressions are estimated with ordinary least squares and heteroscedasticity-robust standard errors clustered at country-level are presented in
parentheses. All regressions are weighted by manufacturing employment in 1990. The dependent variable is relative number of newly granted patents for automation
technologies relative to other utility patents divided by relative stock of patents related to automation relative to other utility patents (in logs, unless otherwise indicated).
Shifters are expected 20-year level and change of the ratio of workers above the age of 56 to workers between 21 and 55 (in logs). Country covariates, included in columns
1-4, are region dummies, and the 1990 values of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged
21 in 1990 interacted with period dummies. Columns 1 and 2 replicate the specifications from Table 2. Columns 3 and 4 use ln(1 + x), while columns 5 and 6 use the
inverse hyperbolic sine transformation. Columns 7 and 8 are for the OECD sample (with lnx as in our main specifications). Columns 9 and 10 report estimates from
Dechezleprêtre et al.’s (2022) firm-level data, using a sample of firms with at least four automation patents. These regressions also include spillovers from country-level
relative stock of knowledge. Column 9 controls for firm fixed effects and industry by year fixed effects, while column 10 additionally includes country by time fixed effects.
The parameters δ and σ in these two columns are computed using the equations with spillovers provided above. Panel C uses 15% quasi-rents for workers, and Panel D
uses 7.5% quasi-rents.
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Table B2: Robustness for Health Application

LHS ln(x) ln(x) ln(1 + x) ln(1 + x) asinh(x) asinh(x) ln(x) ln(x) ln(x) ln(x) ln(x) ln(x)
Samples Full Full Full Full Full Full Full Full Full Full US US
Frequency 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A Parameters Estimated from Regressions
Initial Relative Stock: ρ̂ 0.93 1.11 0.36 0.83 0.38 0.84 0.45 0.48 0.93 1.09 0.94 1.27

(0.03) (0.03) (0.02) (0.04) (0.02) (0.03) (0.04) (0.04) (0.03) (0.03) (0.10) (0.12)
Initial Shifter: χ̂ 0.10 0.14 0.05 0.11 0.07 0.13 0.07 0.10 0.11 0.14 0.32 0.26

(0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.12) (0.10)

Changes in Shifter: λ̂ -0.004 0.001 -0.01 0.002 -0.01 0.002 -0.04 -0.06 -0.004 0.01 0.26 0.12
(0.02) (0.02) (0.01) (0.01) (0.01) (0.02) (0.03) (0.03) (0.02) (0.02) (0.17) (0.07)

Observations 55,699 37,389 75,399 44,569 75,399 44,569 55,702 37,394 55,625 37,358 1,243 741
Country fixed effects Yes Yes Yes Yes Yes Yes
Disease fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Period-Country fixed effects Yes Yes
Period-Disease fixed effects Yes Yes

Panel B Implied Parameters
Long-run Effects 0.11 0.14 0.15 0.13 0.18 0.16 0.16 0.22 0.11 0.14 0.34 0.26

δ̂ 0.07 0.00 0.64 0.17 0.62 0.16 0.55 0.52 0.07 0.00 0.06 0.00
σ̂ 1.10 1.14 1.05 1.11 1.06 1.13 1.07 1.09 1.11 1.14 1.31 1.26
ε̂ 1.18 1.26 1.09 1.19 1.11 1.24 1.12 1.17 1.19 1.26 1.57 1.47

δ̂σ̂ 0.08 0.00 0.67 0.19 0.66 0.18 0.58 0.57 0.08 0.00 0.08 0.00

Panel C Equilibrium and Welfare Comparison (Markups Only)
nSP /nEQ 0.43 0.45 0.11 0.39 0.11 0.38 0.17 0.17 0.43 0.45 0.37 0.42
USP − UEQ 0.06 0.05 0.15 0.06 0.15 0.07 0.12 0.12 0.06 0.05 0.06 0.06

Panel D Equilibrium and Welfare Comparison (Externalities Only)
nSP /nEQ 0.58 0.59 0.24 0.54 0.24 0.53 0.31 0.32 0.58 0.59 0.52 0.56
USP − UEQ 0.18 0.17 0.48 0.21 0.47 0.21 0.39 0.38 0.18 0.17 0.22 0.19

Notes: This table presents regression estimates (Panel A), implied parameter values (Panel B) and implied distortions and welfare results (Panels C and D) for the health
application. Regressions are unweighted and estimated with ordinary least squares and heteroscedasticity-robust standard errors clustered at country-level are presented
in parentheses. Observations are at the country-disease-period level. The dependent variable is relative number of new medical articles for each disease divided by relative
stock of medical articles for that disease (in logs, unless otherwise indicated). Columns 1 and 2 replicate the main specifications from Table 2. Columns 3 and 4 use
ln(1 + x), while columns 5 and 6 use the inverse hyperbolic sine transformation. Columns 7 and 8 drop the country fixed effects, while columns 9 and 10 include period
times country and period times disease fixed effects. Columns 11 and 12 focus on just the US observations. Panel C considers the implications of markup differences,
and Panel D depicts the implications of an externality estimate based on the shortfall of quality-adjusted life year gains from curative vs. preventative technologies.
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Table B3: Robustness for Energy Application

LHS ln(1 + x) ln(1 + x) asinh(x) asinh(x) ln(1 + x) ln(1 + x) ln(1 + x) ln(1 + x) ln(1 + x) ln(1 + x)
Frequency 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A Parameters Estimated from Regressions
Initial Relative Stock: ρ̂ 0.81 0.86 0.82 0.86 0.58 0.51 0.81 0.86 0.81 0.86

(0.03) (0.04) (0.02) (0.04) (0.03) (0.04) (0.03) (0.05) (0.03) (0.04)
Initial Shifter: χ̂ -1.52 -1.06 -1.99 -1.44 -0.07 -0.48 -1.51 -2.02 -1.50 -1.14

(0.29) (0.66) (0.36) (0.81) (0.09) (0.14) (0.28) (0.40) (0.29) (0.67)

Changes in Shifter: λ̂ -0.45 1.12 -0.61 1.38 0.21 1.16 -0.47 -0.28 -0.43 1.09
(0.20) (0.82) (0.26) (1.00) (0.13) (0.36) (0.14) (0.21) (0.21) (0.83)

Spillovers: 0.03 -0.07
(0.03) (0.05)

Observations 13,648 6,824 13,648 6,824 13,648 6,824 13,648 6,824 13,648 6,824
Firm covariates Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Panel B Implied Parameters
Long-run Effects -1.89 -1.23 -2.43 -1.68 -0.12 -0.94 -1.87 -2.34 -1.86 -1.32

δ̂ 0.19 0.14 0.18 0.14 0.42 0.49 0.19 0.14 0.19 0.14
σ̂ 2.73 2.53 3.07 2.92 1.12 1.49 2.72 3.41 2.71 2.61
ε̂ 7.27 6.56 8.51 7.99 1.44 2.78 7.24 9.75 7.21 6.86

δ̂σ̂ 0.53 0.36 0.56 0.41 0.47 0.73 0.52 0.47 0.52 0.37

Panel C Equilibrium and Welfare Comparison
nSP /nEQ 0.44 0.57 0.37 0.50 0.74 0.46 0.45 0.40 0.45 0.56
USP − UEQ 0.03 0.02 0.04 0.03 0.01 0.03 0.03 0.04 0.03 0.02

Panel D Equilibrium and Welfare Comparison (Using Global SCC)
nSP /nEQ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
USP − UEQ 13.74 8.94 16.99 11.60 3.50 12.15 13.62 15.58 13.55 9.50

Notes: This table presents regression estimates (Panel A), implied parameter values (Panel B) and implied distortions and welfare results (Panels C and D) for the health
application. Regressions are unweighted and estimated with ordinary least squares and heteroscedasticity-robust standard errors clustered at firm level are presented in
parentheses. Observations are at the firm-period level. The dependent variable is relative number of newly granted patents for dirty technologies relative to newly granted
patents for clean technologies. Shifters are firm-level fuel prices adjusted (based on firm-level fuel consumption) inclusive of taxes (in ln(1 + x) form unless otherwise
indicated). All specifications include firm and period fixed effects as well as the values of government R&D subsidies for clean innovation, regulations over emissions, the
relevant country’s GDP per capita for that period (as in Aghion et al., 2016). Columns 1 and 2 replicate the main specifications from Table 2. Columns 3 and 4 use the
inverse hyperbolic sine transformation. Columns 5 and 6 drop the firm fixed effects. Columns 7 and 8 additionally include the relative stock of knowledge in other firms
in the same country as in the baseline specification of Aghion et al. (2016). In this case, we use the equations with spillovers for computing δ and σ. Panel C uses an
externality number based on from Rennert et al.’s (2022) estimate of the social cost of CO2, converted to US-equivalent damages (see text for details), and Panel D uses
their estimate for worldwide damages.
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Appendix C: Data Sources and Construction

In this part of the Appendix, I describe the data sources for the three empirical exercises and provide

some additional details.

Automation

Data for automation patents by country are directly from Acemoglu and Restrepo (2022). The flow of

automation and non-automation patents were computed from the patents by different countries filed at

the USPTO. In particular, all patents that are in the USPTO 901 class (technologies related to industrial

robots) and all patents referencing this class are classified as automation patents. Aging variables are

from the United Nations data, while the country-level covariates (GDP per capita, population, and

average years of schooling) are from version 9.0 of the Penn World Tables (Feenstra, Inklaar and Timmer,

2015). Regressions are weighted by manufacturing value added in 1990 (sourced from the United Nations

Industrial Development Organization).

Using these definitions, the exact estimating equations for columns 1 and 2 of Table 2 are:

ln

(
∆nct
nct

)
= −ρ lnnct + χ ln zct + λ∆ ln zct + Xc,1990γt + εct, (C1)

where ∆nct is the ratio of the flow relative automation patents (compared to non-automation patents) and

nct is the relative technology stock (automation patent stock relative to non-automation patents stock).

Stocks are computed from the corresponding flow variables using a 20% depreciation rate, as explained

in the text.

The forcing variables are: the (log of) the ratio workers aged 56 and above to those between the ages

of 25 and 55 and the (log of) 15- or 20-year ahead change in the ratio workers age 56 and above to those

between the ages of 25 and 55. Finally, Xc,1990 denotes the country covariates (log GDP per capita, log

population, and average years of schooling, all in 1990), and the fact that its coefficient is time varying

designates that these covariates are allowed to have a separate effect in every time period. The sample

covers 69 countries and the time period 1986-2015. The observations are weighted by value added in

manufacturing in 1990 and standard errors are clustered by country. The models estimated in Table B1

are variations of these equations as explained in the text.

In addition, the estimates in columns 11 and 12 of Table B1 are provided directly by Dechezleprêtre

et al. (2022), based on their firm-level data set on automation and non-automation patents. The reader

is referred to their paper for variable definitions and sources.

Medical Research

Our estimates for medical research’s responsiveness to disease burden, depicted in columns 3 and 4 of Table

2 and Table B2, come directly from Acemoglu, Moscona, Sastry and Williams (2023). The estimating

equation is similar to (24) in the text:

ln

(
∆Ndct

Ndct

)
= ηd + Γc + Υt −

ρ

2
lnNdct + χ lnZdct + λ∆ lnZdct + εdct, (C2)

where Ndct (∆Ndct) is the stock (flow) of medical scientific articles on disease d in country c at time t.

Stocks are again computed from flows using a 20% depreciation rate. The forcing variables are the level

and change of disease burdens, defined as declines in the number of disability-adjusted life years caused
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by a disease in a country and time period in our sample. These calculations are based on data from the

Global Burden of Disease (GBD) project. Finally, ηd, Γc and Υt are, respectively, disease, country and

time fixed effects, and in some specifications, two-way fixed effects are also included. All regressions in

this case are unweighted. Additional details can be obtained from Acemoglu et al. (2023).

Energy

Data on the relationship between fuel prices and automobile patents come directly from Aghion et al.

(2016). The data on flows of patents are based on the World Patent Statistical Database (PATSTAT)

maintained by the European Patent Office (EPO), and innovation is measured using a count of patents by

application/filing date. The authors use data on tax-inclusive fuel prices, from the International Energy

Agency (IEA), to compute a time-varying, country-specific fuel price by averaging the prices of diesel

and gasolinespace prices. Country-specific fuel prices are then used to construct firm-level fuel prices

as a weighted average of fuel prices across countries based on the firm’s expected market share across

countries (in practice, using a time-invariant share of the firm’s sales in each market). The covariates

are log GDP per capital (sourced from World Development Indicators), log R&D subsidies (from the

IEA), and exposure to air pollution regulations. Emission regulations are for maximum level of tailpipe

emissions for pollutants for new automobiles, coded between 0 and 5, and are taken from Dechezleprêtre

et al. (2012).

The exact estimating equation for columns 5 and 6 of Table 2 is similar to but a little different from

(C1). In particular, Aghion et al. (2016) impute log patent stocks as zero when stocks are zero. We avoid

this by using ln(1 + x) consistently for both flow and stock variables throughout this application. This

gives our estimating equation as:

ln

(
∆ñfct
ñfct

)
= −ρ ln (ñfct) + χ ln zfct + λ∆ ln zfct + Xfctγ + εct, (C3)

where

ln

(
∆ñfct
ñfct

)
= ln

(
1 + Patentclean

fct

1 + Patentdirty
fct

)
− ln

(
1 + Stockclean

fct

1 + Stockdirty
fct

)
and likewise,

ln (ñfct) = ln

(
1 + Stockclean

fct

1 + Stockdirty
fct

)
,

with Patentclean
fct and Patentdirty

fct , respectively, denoting the flow of clean and dirty automobile patents for

firm f located in country c at time t, and Stockclean
fct and Stockdirty

fct likewise denoting the stocks of clean

and dirty patents. The forcing variables, as described above, are based on firm-level fuel prices and their

changes, while covariates are now time-varying but have constant coefficients. Regressions are unweighted

and estimated by ordinary least squares, and standard errors are heteroscedasticity-robust and clustered

at the country level. The models estimated in Table B3 are variations of these equations as explained in

the text.

Markup Estimation

In this part of the Appendix, I describe our markup estimation strategies. Throughout, each firm is

assumed to have a single, well-defined price at each point in time. Then, the gross markup of firm i at
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time t is defined as

Λit =
Pit
MCit

, (C4)

where Pit is this firm’s price at time t and MCit is its marginal cost. Note that in the text I focused on

net markups defined as

µit = Λit − 1.

Production Function Estimation Methods

The production function method follows De Loecker et al. (2020). Let us first focus on a single industry,

and suppose that each firm i in this industry has a production function

Qit(Vit,Kit) (C5)

at time t, with Vit denoting a composite of variable inputs (labor and material) and Kit representing its

capital stock. Suppose that the capital stock is a quasi-fixed factor, meaning that it is chosen in advance

(and hence the designation of the other factors as “variable”). The function Qit is firm and time-varying,

for example, it includes information on the firm’s (revenue) productivity upon which variable costs may

depend. In the estimation, the function Qit will be taken to be Cobb-Douglas.

Consider the elasticity of this production function with respect to variable inputs, Vit, denoted by θVit :

θVit =
∂Qit
∂Vit

Vit
Qit

=
1

MCit

P Vit Vit
Qit

,

where P Vit is the price of the composite variable input, and the second equality exploits the fact that,

becauseKit is fixed, the marginal cost of production isMCit = P Vit / (∂Qit/∂Vit). Next, using the definition

of the markup in (C4) to substitute out MCit and rearranging, we obtain

Λit = θVit
PitQit

P Vit Vit
.

Given this equation, firm-level markups can be estimated with data on revenue, PitQit, cost of variable

inputs, P Vit Vit, and crucially the elasticity of the firm’s production function with respect to variable inputs,

θVit .

Here I briefly outline De Loecker et al.’s (2020) estimation strategy, which I follow. Recall that the

capital stock is quasi-fixed. Suppose also that observed sales are given by Salesit = εitQit(Vit,Kit), where

εit is a demand shifter realized after all input decisions are made. Finally, as noted below, suppose that

the function Qit is Cobb-Douglas, and denote the Hicks-neutral productivity of firm i at time t by Ωit.

Then we have

ln Salesit = θVt lnVit + θKt lnKit + ln Ωit + εit, (C6)

which allows for the Cobb-Douglas exponents, and thus output elasticities, to be time-varying, but con-

stant across firms (within the industry being considered). The difficulty in the estimation of (C6) is that

the firm knows Ωit when choosing its composite variable input Vit, and thus OLS estimation will lead to

biased output elasticities. De Loecker et al. (2020) deal with this problem by using a control function ap-

proach based on Olley and Pakes (1996). For example, Hicks-neutral productivity Ωit can be assumed to

be measurable with respect to the firm’s capital stock Kit, investment Iit, and additional control variables
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related to factor demands denoted by Zit. This implies a relationship of the form

ln(Ωit) = φt(lnKit, ln Iit, Zit),

so that the elasticity of output with respect to variable inputs, θVt , can be estimated from the following

equation:

ln Salesit = θVt lnVit + θKt lnKit + φt(lnKit, ln Iit, Zit) + εit. (C7)

I follow De Loecker et al. (2020) and include the following terms in the φ function: a quadratic and

cubic in lnKit, a main, quadratic and cubic in ln Iit, and the interaction between these two variables,

lnKit ln Iit.
28 In addition, as in their specification, the Zit variable includes the ratio of the firm’s total

costs to the four-digit industry total cost, and the ratio of the firm’s total costs to the economy-wide total

cost.

Once estimates of the variable input elasticity θ̂Vt are obtained, (gross) markups can be computed as

Λ̂Pit = θ̂Vt
PitQit

P Vit Vit
, (C8)

where the superscript P specifies that this is a markup estimated using the production function method.

The (net) markup is then µ̂Pit = Λ̂Pit − 1.

De Loecker et al.’s (2020) baseline estimates are based on a variant based on Ackerberg, Caves and

Frazer (2015), where the composite variable input is used instead of investment and ln(Ωit) is assumed to

follow a first-order Markov process. For this specification, I directly use their estimates of these elasticities,

reported in De Loecker et al. (2020a).

One drawback of the production function method is that the estimation of θVit requires the model and

the measurability assumptions embedded in the control function to be correctly specified.

As an alternative, De Loecker et al. (2020) also use cost shares to estimate θVt . In particular, they

compute industry-level output elasticities as

θ̃Vt = median

{
P Vit Vit

P Vit Vit +RtKit

}
,

where the median is across all firms within a two-digit industry, and Rt is the user cost of capital. In this

case, (gross) markups can be obtained as

Λ̂Cit = θ̃Vt
PitQit

P Vit Vit
,

where the superscript C refers to the fact that output elasticities are now are estimated from cost shares

(but still taken to be common across firms within an industry). Then, naturally, µ̂Cit = Λ̂Cit−1. In practice,

this approach gives similar results to the production function estimation.

One drawback in this case is that, although the functional form assumptions of the production function

method are relaxed, the assumption that there is a common θVt at the industry level is challenged by the

fact that there is a large variation in cost shares, and the median is an arbitrary way of resolving this

issue.

Another drawback of both approaches from my point of view is that it is not entirely clear whether

markups relative to variable costs is the right notion for µ in the model, since this parameter captures

28As in their paper, investment in Compustat is computed from the capital stock data assuming a 10% depreciation rate,
that is, Iit = Kit − 0.9 ·Kit−1.
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how profitable a technology is and regulates incentives for innovation and entry. If one technology is

more capital intensive and has higher markup estimates using the production function methods used by

De Loecker et al. (2020), it may nonetheless have lower profitability and lower µ in the sense of the

theoretical framework in the text. This motivates the next strategy.

The Accounting Method

As an alternative, one could directly use an estimate of profits to compute markups.

Using the same notation and terminology, (gross) markups are estimated in this case as

Λ̂Ait =
PitQit

P Vit Vit +RtKit
, (C9)

where Rt is the user cost of capital (again assumed to be the same across firms in the industry). We then

have: µ̂Ait = Λ̂Ait − 1.

The drawback of this approach is well known: accounting profits do not correspond to economic profits.

The advantage, on the other hand, is related to the discussion at the end of the previous subsection. This

method takes into account capital costs explicitly, and thus may be more informative about the overall

profitability of a technology/subsector.

Data

I follow De Loecker et al. (2020) and use Compustat North America for firm-level markup estimation.

Compustat Fundamentals Annual extract is obtained through Wharton Research Data Service (WRDS),

and I use the same variables as De Loecker et al. (2020a). Namely, the variable SALE measures revenues

and variable costs are measured using the variable COGS (cost of goods sold, which includes expenses

for materials, labor, overhead and other intermediate inputs). The capital stock of each firm is measured

using the variable PPEGT (property, plant, and equipment gross total). The user cost of capital is also

computed as in their paper: Rt = nominal interest ratet−inflationt+depreciation rate.29, 30, 31 I set the

depreciation rate at 10%. We exclude firms in the top and bottom 1% of cost of goods to sales ratio

(COGS/SALE ) and cost-shares, which are likely to have extreme values due to measurement error.32

Aggregating Markups

Throughout, I aggregate firm-level markups to industry-group level (in this instance, preventative health

care vs. curative health care) by using the ratio of firm costs to industry-group costs. Specifically, our

main estimates aggregate (gross) markups with the following equation:

ΛPJt =
∑
i∈J

Costit
Costjt

× ΛPit ,

29I follow De Loecker et al. (2020) and use the federal funds rate, FEDFUNDS, and the annual percent change in the
relative price of investment goods, PIRIC. Both variables are taken from from the Federal Reserve Economic Data, FRED.

30Board of Governors of the Federal Reserve System (US), Federal Funds Effective Rate [FEDFUNDS], retrieved from
FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/FEDFUNDS, March 26, 2023.

31Relative Price of Investment Goods [PIRIC], retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/PIRIC, March 27, 2023.

32In particular, for this exercise, cost shares are measured as COGS
COGS+KEXP

and COGS
COGS+KEXP+SGA

, where SGA measures
selling, general, and administrative expenses
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where Costit = P Vit Vit+RtKit, and J denotes the industry-group in question (with i ∈ J designating that

firm i belongs to this group) such that Costjt = P VjtVjt + RtKjt. I choose cost-based aggregation rather

than using revenue-weights as in De Loecker et al. (2020), since, as these authors also recognize, revenue-

based estimation can lead to inflated aggregate markups because high markup firms, which generate

higher revenues, receive greater weights.

Firm Classification

This subsection explains how firms in Compustat are assigned to preventative and curative health care.

The classification is on the basis of the main North American Standard Industry Code (NAICS)

assigned to firms in Compustat.33

Preventative: Health care firms whose main activity is in basic health provision, diagnosis or manu-

facture of vaccines and related products are assigned to the preventative health care group.34 Firms with

the following main NAICS codes are included in this category:

• NAICS 621 - Ambulatory health services: Firms that provide health care services diresctly or indi-

rectly to to ambulatory patients and do not usually provide inpatient services. Includes outpatient

services provided by physicians, dentists, and other health practitioners. Also includes outpatient

care centers, medical and diagnostic laboratories, home health care services, and other ambulatory

health care services.

• NAICS 325413 - In-vitro diagnostic substances manufacturing: Firms that manufacture in-vitro

(i.e., not taken internally) diagnostic substances (chemical, biological, or radioactive substances).

Substances are used for diagnostic tests, such as blood glucose , HIV, pregnancy, and other tests.

It also involves manufacturing hematology, hormone, microbiology, and viral diagnostic substances,

among others.

• NAICS 325414 - Biological product (except diagnostic) manufacturing: Firms primarily involved in

manufacturing vaccines, toxoids, blood fractions, etc.

Curative: Health care firms whose main activity is in pharmaceutical preparation and high-tech

medical equipment manufacturing firms (including a few that are related to advanced diagnostics) are

assigned to the curative health care group. These firms are again identified based on their main NAICS

codes, including the following categories:

• 325412 - Pharmaceutical preparation manufacturing: Firms manufacturing in-vivo diagnostic sub-

stances and pharmaceutical preparations (except biological) intended for internal and external con-

sumption in dose forms, such as tablets, capsules, vials, ointments, powders, solutions, and suspen-

sions.

• 334510 - Electromedical and electrotherapeutic apparatus manufacturing: Firms manufacturing elec-

tromedical and electrotherapeutic apparatus such as magnetic resonance imaging equipment, medi-

cal ultrasound equipment, pacemakers, hearing aids, electrocardiographs, and electromedical endo-

scopic equipment.

33Codes and descriptions obtained from the U.S. Census Bureau North American Industry Classification System (NAICS)
at https://www.census.gov/naics/?99967.

34In addition, preventative health care should also include those in the area of social assistance, NAICS 624, which
comprises firms providing individual and family services, community food and housing, vocational rehabilitation services,
child daycare services, as well as emergency and other relief services. Nevertheless, there are no firms in this NAICS category
in Compustat.

C6

https://www.census.gov/naics/?99967


• 339112 - Surgical and medical instrument manufacturing: Firms manufacturing medical, surgical,

ophthalmic, and veterinary instruments and apparatus (except electrotherapeutic, electromedical,

and irradiation apparatus). Examples are syringes, needles, anesthesia apparatus, blood transfusion

equipment, catheters, surgical clamps, and medical thermometers.

• 339113 - Surgical applicance and supplies manufacturing: Firms manufacturing surgical appliances

and supplies such as orthopedic devices, prosthetic appliances, surgical dressings, personal safety

equipment, hospital beds, operating tables, etc.

Table D1, included in Appendix D, which is available upon request, provides a full list of health

care firms in Compustat and their assignment to preventative and curative categories. It also lists the

relevant sample period for the firm, sales, costs of goods sold, and capital stock, as well as the four

measures of (net) markup—based on production function, cost share and accounting methods. In total,

our sample includes 658 preventative and 1,069 curative health care firms. At the bottom of each panel,

(cost-weighted) averages of the markups are also presented.

The four panels of Figure C1 show the evolution of markups based on the two production function

estimation methods, cost share and accounting methods, separately for firms in the preventative and

curative categories. Each panel also gives the average (net) markup, which corresponds to µ in the model.

The trends are fairly similar with the different methods and show some fluctuations and also a significant

increase in markups among firms in the curative category. This is consistent with the patterns reported

by De Loecker et al. (2020) at a higher level of aggregation. The increase in markups among curative

firms is in fact larger than at the two-digit level patterns depicted by De Loecker et al. (2020).

Our baseline uses the averages in Panel a, which give µ1 = 1.70 for preventative firms and µ2 = 0.46

for curative firms as also shown in Table 1 in the text. The numbers in the other panels are quite similar,

and using these numbers instead yields broadly similar results to those reported in Table 2. Table C1

shows the technology ratio and welfare loss estimates corresponding to the specifications in Table B2, if

instead we use the markup estimates in Panels b, c or d of Figure C1.
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Figure C1: Aggregate Markups by Sector Group

a. Total cost-weighted average of firm-level µP1
it

(first production function estimation method)
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b. Total cost-weighted average of firm-level µP2
it

(second production function estimation method)

µ2= 1.65
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c. Total cost-weighted average of firm-level µC
it

(cost-share estimation method)

µ2= 1.75

µ1= 0.55
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d. Total cost-weighted average of firm-level µA
it

(accounting method)

µ2= 1.35

µ1= 0.51
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Note: This figure depicts total cost-weighted averages of firm-level markups across the preventative and curative technology groups. Cost shares are defined as

(COGSit + RtPPEGTit)/(COGSjt + RtPPEGTjt) (see Appendix D Table D1). The four panels use firm-level markups µPit1, µPit2, µCit and µAit, which are based,

respectively, on the first and second production function estimation methods, cost-share estimation method and the accounting method, as described in Section 6. The

list of firms is given in Appendix D Table D1.
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Table C1: Sensitivity Analysis of Technology Distortions and Welfare Losses from Markups

LHS ln(x) ln(x) ln(1 + x) ln(1 + x) asinh(x) asinh(x) ln(x) ln(x) ln(x) ln(x) ln(x) ln(x)
Samples Full Full Full Full Full Full Full Full Full Full US US
Frequency 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A Parameters Estimated from Regressions
Initial Relative Stock: ρ̂ 0.93 1.11 0.36 0.83 0.38 0.84 0.45 0.48 0.93 1.09 0.94 1.27

(0.03) (0.03) (0.02) (0.04) (0.02) (0.03) (0.04) (0.04) (0.03) (0.03) (0.10) (0.12)
Initial Shifter: χ̂ 0.10 0.14 0.05 0.11 0.07 0.13 0.07 0.10 0.11 0.14 0.32 0.26

(0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.12) (0.10)

Changes in Shifter: λ̂ -0.004 0.001 -0.01 0.002 -0.01 0.002 -0.04 -0.06 -0.004 0.01 0.26 0.12
(0.02) (0.02) (0.01) (0.01) (0.01) (0.02) (0.03) (0.03) (0.02) (0.02) (0.17) (0.07)

Observations 55,699 37,389 75,399 44,569 75,399 44,569 55,702 37,394 55,625 37,358 1,243 741
Country fixed effects Yes Yes Yes Yes Yes Yes
Disease fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Period-Country fixed effects Yes Yes
Period-Disease fixed effects Yes Yes

Panel B Implied Parameters
Long-run Effects 0.11 0.14 0.15 0.13 0.18 0.16 0.16 0.22 0.11 0.14 0.34 0.26

δ̂ 0.07 0.00 0.64 0.17 0.62 0.16 0.55 0.52 0.07 0.00 0.06 0.00
σ̂ 1.10 1.14 1.05 1.11 1.06 1.13 1.07 1.09 1.11 1.14 1.31 1.26
ε̂ 1.18 1.26 1.09 1.19 1.11 1.24 1.12 1.17 1.19 1.26 1.57 1.47

δ̂σ̂ 0.08 0.00 0.67 0.19 0.66 0.18 0.58 0.57 0.08 0.00 0.08 0.00

Panel C Equilibrium and Welfare Comparison (Markups Only), Baseline
nSP /nEQ 0.43 0.45 0.11 0.39 0.11 0.38 0.17 0.17 0.43 0.45 0.37 0.42
USP − UEQ 0.06 0.05 0.15 0.06 0.15 0.07 0.12 0.12 0.06 0.05 0.06 0.06

Panel D Equilibrium and Welfare Comparison (Markups Only), Production function estimation method 2
nSP /nEQ 0.44 0.46 0.12 0.40 0.12 0.39 0.18 0.18 0.44 0.46 0.38 0.43
USP − UEQ 0.05 0.05 0.14 0.06 0.14 0.06 0.11 0.11 0.05 0.05 0.06 0.05

Panel E Equilibrium and Welfare Comparison (Markups Only), Cost-share based estimation
nSP /nEQ 0.50 0.51 0.16 0.45 0.16 0.45 0.23 0.23 0.50 0.51 0.44 0.48
USP − UEQ 0.04 0.04 0.10 0.04 0.10 0.05 0.08 0.08 0.04 0.04 0.05 0.04

Panel F Equilibrium and Welfare Comparison (Markups Only), Accounting method
nSP /nEQ 0.53 0.55 0.19 0.49 0.20 0.48 0.26 0.27 0.53 0.55 0.47 0.52
USP − UEQ 0.03 0.03 0.08 0.04 0.08 0.04 0.07 0.07 0.03 0.03 0.04 0.03

Notes: This table shows how technology distortions and welfare losses change across the specifications considered in Table B2 for different values of markups. Panels A
and B replicate the same panels in Table B2. The remaining four panels correspond to the four sets of markup estimates, µ̂P1

it , µ̂P2
it , µ̂Cit and µ̂Ait, which are, respectively,

from the first and second production function estimation methods, cost-share estimation method and the accounting method. See Figure C1 and Section 6 on the markup
estimates, and see Table B2 on the parameter estimates and the underlying regression models for the different columns here.
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Quality-Adjusted Life Years

In this section, we describe how differences between preventative and curative technologies in terms of

quality-adjusted life years (QALYs) are estimated.

Methodology

Quality-Adjusted Life Years (QALYs) are a common measure used for evaluating the effectiveness of

medical treatments and interventions. They quantify the overall gains in quantity and quality of life.

QALYs are calculated by multiplying the number of years of life gained by a quality of life scale, which

ranges from 0 (death) to 1 (perfect health). To access cost-effectiveness analyses in a comprehensive

manner, we use the Cost-Effectiveness Analysis (CEA) Registry by the Center for the Evaluation of

Value and Risk in Health, Tufts Medical Center. This registry includes studies on a wide range of health

interventions, including drugs, medical devices, diagnostic tests, and prevention strategies and reports

detailed information on the methods used in and results of each study.

We restrict the sample to modern healthcare innovations with studies conducted in the United States

and benchmark the relevant innovation to the year of Food and Drug Administration (FDA) approval. We

exclude a large number of studies included in the registry that evaluate the effectiveness of immunization

drives and information campaigns. We focus on studies on pharmaceuticals, medical devices, and surgical

procedures, especially those that compare a drug to placebo or no treatment. For these innovations we

extract the QALYs gained per patient from the relevant journal article or website containing the study.

In the case that a drug is compared to another drug instead of a placebo or no treatment, where possible,

we search for auxiliary studies that compare one of the drugs in the main study to placebo and use that

as a reference point to impute the effect and cost of all drugs in the main study relative to placebo.35

Note that the QALY numbers obtained from this procedure can be negative, if new procedures are worse

than no treatment or placebo, and are indeed so in a few cases.

Most estimates give QALY gains per patient. To construct comparable social benefits, I convert these

estimates into QALY gains per dollar. Specifically, I use the following equation for each innovation i:

QALY per dollari =
QALY per patienti ×Number of usersi

Cost per useri ×Number of usersi + R&D costsi
. (C10)

Intuitively, this expression corresponds to total benefits divided by total costs, including R&D costs. In

estimating the number of users, I limit the horizon for each innovation to 20 years, which amounts to

assuming that this innovation will be replaced by a new one on average every 20 years. Given these

estimates, I construct the average quality-adjusted life year gains by preventative and curative technology

groups as

QALY per dollarG =
∑
i∈G

Cost sharei ×QALY per dollari,

where G is either the preventative or the curative technology group, and

Cost sharei =
Cost per useri ×Number of usersi + R&D costsi∑

i′∈G (Cost per useri′ ×Number of usersi′ + R&D costsi′)
.

In these equations, R&D costs are estimated from the medical literature, which provides average of

35In principle, one might wish to obtain QALYs relative to a single dominant treatment that exists before the innovation.
In practice, this did not prove to be straightforward, and hence I opted for making all comparisons relative to placebo or no
treatment.
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R&D costs by class of drugs, e.g., oncological, immunomodulant, therapeutic recombinant proteins and

mAbs, cardiovascular, etc. The medical papers in this literature use a variety of methods to obtain R&D

costs, including using proprietary databases with cost information at the individual drug level, mandatory

SEC filings, and industry surveys. Virtually all papers involve accounting for both failed and approved

drugs, the type and duration of clinical trials, and the status of drug review at the FDA such as fast track,

accelerated approval, or priority review. These papers are helpfully reviewed in Table 1 of Schlander et

al. (2021). We match each innovation to its pharmaceutical category and impute the cost of R&D as the

average cost for that group of drugs. For example, amlodipine is a calcium channel blocker that can treat

high blood pressure and chest pain. As it acts on the cardiovascular system, we impute its R&D cost

as the average R&D cost for all cardiovascular drugs. For surgical procedures, we use the sum of R&D

expenses over several years or total invested capital for the primary manufacturer of equipment used in

the surgical procedure, whichever data are available.

Per-patient usage costs are taken from the same papers that present the QALY benefits. These costs

are often constructed as a sum of a direct treatment cost and an indirect health care cost, which imputes

a production loss due to the patient’s injury and inability to work. Note that both the QALY estimates

and per-patient usage cost are relative to placebo or no treatment, and thus we obtain negative values in

a few cases. This is primarily because treatment avoids other costs patients incur in the future.

We use three methodologies to estimate the number of users. First, we look for direct estimates of

the number of patients using the drug. Such statistics are available on clincalc.com or the Centers for

Disease Control and Prevention (CDC) website. Second, if no direct estimate is available, we estimate

the number of users by dividing the US total sales for the innovation by the annual therapy cost, which is

itself the product of dosage, frequency, and price per dosage. Lastly, if the direct and revenue imputation

approach are infeasible, we gauge the number of patients by multiplying the incidence of disease by the

proportion of patients who undergo treatment by the innovation.

For one-time innovations, such as some surgical procedures, we focus on the number of annual patients

and multiply this by 20. For innovations that involve recurring use, such as antihypertensive medication,

the number of patients is given by the contemporaneous usage prevalence, under the assumption that a

patient uses the drug for the duration of the time horizon.

Finally, given the QALY per dollarG estimates, we set τ̃1 = 0, and compute τ̃2 on the basis of the

relative shortfall of the curative technologies compared to the preventative technologies:

τ̃2 = 1− QALY per dollarcurative
QALY per dollarpreventative

.

List of Procedures

I now provide further details on the procedures and innovations selected in the computation of the QALY

numbers.

The CEA Registry contains roughly 10,000 entries for the United States with QALY outcomes. First,

we manually considered each study to determine if it studied an innovation which constituted a modern

healthcare innovation. This step eliminated immunization drives and information campaigns. Second,

we excluded studies without a placebo or no treatment comparison. This step dropped a significant

proportion of the sample, including studies comparing dosages of a given drug, evaluating different drugs

for a given disease, or assessing the most efficacious treatment combination of a set of drugs (many of

these studies are aimed at better informing clinical use, which is very different from our purpose here).

Third, as screening procedures are not easily categorized into preventative vs. curative, we dropped all
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such studies. Lastly, we sought the background and history of each innovation and kept those which were

commercially developed in the late 20th century.

We then performed a second pass where we actively searched for cost-effectiveness studies relating to

the top 20 drugs in the United States, as listed in clincalc.org. While data were not available for all 20

drugs, we were able to add 9 additional important drugs to our list.

Table D2 in Appendix D (available upon request) lists the 71 procedures we consider. In each case

we provide reference to the source article where the medical information is taken, and list our estimates

of R&D costs, usage costs, total QALY benefits, and our final QALY benefits per dollar. The two panels

correspond to curative and preventative technologies.
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