Online appendix for "Placebo Tests" for the Impacts of Air Pollution on Health: The Challenge of Limited Healthcare Infrastructure

By Bruna Guidetti *, Paula Pereda †, and Edson Severnini ‡

Table A1—: Impacts of wind speed on PM10 – First stage

	PM_t
ws_t	- 0.68***
	(0.056)
ws_{t-1}	- 0.21***
	(0.050)
Dep. var. mean	2.99
Kleibergen-Paap rk Wald F-statistic	84.39
Number of districts	85
Number of days	1095
Observations	89492

Notes: This table reports the first stage results for PM_t (in $10\mu g/m^3$). We use districts whose centroid is within 5km from a pollution monitor. We include district, day-of-week, month-of-year, and year fixed effects. We also add temperature and humidity in quadratic form as controls. Standard errors in parentheses are two-way clustered by district and calendar date. Regressions are weighted by children population. *** p<0.01, ** p<0.05, * p<0.1.

 $^{^{\}ast}$ Department of Economics, University of Michigan. Email address: guidetti@umich.edu.

 $^{^\}dagger$ Department of Economics, University of Sao Paulo. Email address: pereda@usp.br.

[‡] Heinz College, Carnegie Mellon University. Email address: edsons@andrew.cmu.edu.

Table A2—: OLS coefficients of PM impacts on public hospitalizations – Children 1-5 years old

	Panel A: Respiratory Diseases				
	Respiratory	Asthma	Pneumonia	Influenza	
PM_t	$0.65 \\ (0.465)$	0.10 (0.113)	0.27 (0.278)	0.03* (0.017)	
Dep. var. mean	62.57	6.63	34.21	0.18	
	Panel B: Non-respiratory Diseases				
	Epilepsy	Phimosis	Appendicitis	Bone Fracture	
PM_t	$0.07 \\ (0.053)$	0.13 (0.145)	$0.03 \\ (0.029)$	$0.03 \\ (0.034)$	
Dep. var. mean	2.32	7.60	0.82	0.94	
Number of districts Number of days Observations	85 1095 89492	85 1095 89492	85 1095 89492	85 1095 89492	

Notes: Hospitalization rate is measured as the number of hospital admissions per one million children aged one to five. The table displays the effects on respiratory and non-respiratory diseases (elective care procedures: epilepsy-related procedures and phimosis surgery; and urgent procedures: appendectomy, and bone fracture repair). Each column in each panel reports coefficients from a different regression. We use 85 districts whose centroid is within 5km from a pollution monitor, and 1,095 days. We include district, day-of-week, month-of-year, and year fixed effects, as well as temperature and humidity in quadratic form as controls. Standard errors in parentheses are two-way clustered by district and calendar date. Regressions are weighted by children population. *** p<0.01, ** p<0.05, * p<0.1.