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1 Details about Model Calibration

1.1 Details about Price Calibration

We assume prices follow Geometric Brownian Motion and estimate the corresponding drift and

volatility parameters by maximum likelihood estimation with data on historical EU ETS prices.

Prices following GBM will evolve according to the following (stochastic) law of motion:
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We estimate the drift and volatility coefficients using maximum likelihood estimation. Re-
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In this case, we have weekly price data, but it is more reasonable to assume that the relevant

decision period is quarterly or annually. Therefore, we set t = 1
52 (to reflect 52 weeks/year) when

estimating α̂ and σ̂. Using this procedure with EU ETS prices from 2008 through 2018 yields

α̂ = 0.0508 and σ̂ = 0.3925.

From the set-up above, we have:

E[Pt+1] = E[P0 exp ((α− σ2

2
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2
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= Pt exp (α)

For estimated drift parameters around 0.0508, this yields expected price increases of exp (0.0508) =

1.0522, or 5.22%. Data on historical EU ETS allowance prices is taken from Sandbag - Smarter

Climate Policy (2018); we convert to real allowance prices using inflation data data from European

Central Bank: Statistical Data Warehouse (2020).

1.2 Details about Abatement Function Calibration

We obtained data for the abatement function calibration from Barron et al. (2018b). From

reviewing the results of this modeling exercise, it seems reasonable to assume that the estimated

emissions reductions in each period relative to the baseline scenario depends on a) expectations

of future allowance prices; b) the existing stock of abatement, insofar as the “low hanging fruit”

is addressed first; and c) technology improvements over time. With the exception of expected

allowance prices, we do not observe these components of the underlying model. Furthermore, the

observed emissions reductions likely include both variable abatement (e.g., behavioral responses to

reduce energy consumption, carbon capture, etc.) and fixed abatement investment (e.g., retrofitting

plant to reduce energy consumption, installing carbon capture equipment, etc.), yet we do not

observe the relative contribution of these two types of emissions reductions. As a consequence, we

make certain assumptions about the abatement cost function, which we describe below.

As a first step, note that the Stanford EMF data includes estimated emissions at different years

over the period 2010 to 2020 for the 10 different models. We extract emissions data for 2015,

2020, 2025, and 2030 specifically, since these years are included for (almost) all models; then we
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average over all 10 models for each price scenario, to obtain the values underlying the red lines

from Figure 1 in Barron et al. (2018a). (See McFarland et al. (2018) for a technical discussion of

the models underlying this data.) We calculate net emissions reductions over these periods for each

price scenario, averaged across all models and adjusted for any changes in baseline emissions.

We adopt the simplifying assumption that all abatement is long-lived and thus abatement

in the current period persists into the next period, adjusting for depreciation; this assumption

matches our theoretical modeling of abatement as durable capital stock. Likewise, we also assume

that abatement investment in a given year becomes available for compliance in the following year.

Based on these assumptions, we calculate the discounted value of the tax payment avoided through

abatement investment in each period. Following the Stanford EMF price scenarios, we assume

that the emissions price increases at either 1% or 5% annually from 2020 to 2050, after which the

price levels off (indefinitely); we also assume that firms correctly anticipate this price trajectory

beginning in 2015. We set depreciation δ = 0.10 and the firm’s discount factor β = 0.9505.1

As illustration, a firm reducing emissions by A2020 in the year 2020 avoids the following tax

payment:

Avoided Tax = β ·A2020 · P2021 ·
1− [(1 + g)(1− δ)β]2050−2021+1

1− (1 + g)(1− δ)β

+ β2051−2020 · (1− δ)2051−2021−1 ·A2020 · P2050 ·
1

1− (1− δ)β

where the first term refers to the avoided tax payment up to 2050, while the price is growing at

rate g, and the second term refers to the avoided tax payment for all periods thereafter.

After computing the avoided tax payment from abatement investments in each year 2015 to

2030, we then rewrite each of these expressions to solve for At explicitly:

Avoided Tax2020/{β · P2021 ·
1− [(1 + g)(1− δ)β]2050−2021+1

1− (1 + g)(1− δ)β

+ β2051−2020 · (1− δ)2051−2021−1 · P2050 ·
1

1− (1− δ)β
} = A2020

By assuming that the investment cost function takes the form ψ(A) = φA2, we use the firm’s

first-order conditions to set the marginal investment cost equal to the discounted stream of avoided

1This discount factor corresponds to 1/ exp(α).
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tax payments. We calculate the depreciated sum of abatement and compare that to average emis-

sions reductions observed in the modeling scenarios (relative to the baseline scenario). Setting these

two values equal then allows use to estimate the abatement cost parameter φ.

To illustrate, the total accumulated abatement stock in 2030 is given by:

K2030 = A2015 · (1− δ)14 +A2016 · (1− δ)13 + ...+A2028 · (1− δ) +A2029

Emissions reductions relative to baseline are then given by:

∆E2030 = Ē2030 −K2030

Substituting my expressions for each At into this equation then allows me to solve for φ. For A

denoted in metric tons of CO2, estimated φ̂ values are provided in the table below:

Modeling Scenario

Years $25, 5% $25, 1% $50, 5% $50, 1%

2015-2030 8.30 · 10−07 6.74 · 10−07 1.19 · 10−06 8.15 · 10−07

Table 1: Estimated Abatement Cost Function Parameter from Stanford EMF-32 Modeling Scenar-
ios

We use the parameter associated with a $25 tax growing at 5% annually. Figure 1 shows the

annual emissions reduction predicted by our calibrated model versus each of the ten modeling

scenarios from the Stanford EMF-32 exercise.

2 Details about Model Simulations

To model the representative firm’s response to simulated price trajectories, we first performed

backward induction to determine the firm’s optimal abatement policy as a function of the accumu-

lated abatement cost stock, the realized allowance price in the previous compliance period, and the

number of elapsed compliance periods. Given computational limitations and the need to discretize

the state space, the representative firm is able to accumulate abatement capital stock in multiples

of 1 million metric tons of avoided annual CO2 emissions; the upper bound on permitted abatement
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Figure 1: Annual Emissions from Calibrated Model versus EMF 32 Results

The points refer to the projected U.S. CO2 emissions levels from each of the ten models in EMF
32, assuming an initial price of $25/ton of CO2 in 2020, rising at 5% annually until 2050 and then
leveling off. The line reflects implied emissions reduction from our calibrated abatement investment
cost function, when applying the same carbon price trajectory.
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capital stock is total annual U.S. emissions in 2020, as modeled in EMF 32 baseline scenarios. We

construct the price transition matrix by simulating 10 million evolutions of a stochastic process

with our calibrated drift and volatility parameters and then calculating the probability that the

next period allowance price will fall into each “price bin,” conditional on the current period price.

Each price bin is defined as a particular integer dollar value. Note that we set an effective price

ceiling at $1000 per ton when discretizing the state space to perform backwards induction; however,

given our drift and volatility parameters and the number of periods considered, this upper bound

affects fewer than 0.1% of simulated price trajectories.

After constructing the representative firm’s optimal policy matrix, we perform forward simula-

tion to model abatement investment paths for 100,000 simulated stochastic price trajectories. To be

consistent with the Stanford EMF modeling exercise, we assume that the price levels off indefinitely

after period T . We then sum the total avoided emissions from each year of abatement investment

and the firm’s total current value cost of that investment. To compare the representative firm’s

response under each of these stochastic trajectories to responses under “tax trajectories,” we cal-

culate the initial price P0 that would yield the same total emissions reduction if that initial price

were to increase smoothly each period at the rate of interest. In this scenario, we assume that firms

have perfect information about the price path. We then calculate the difference in total abatement

investment costs between the “stochastic” and “tax” scenarios, having constrained total emissions

reductions to be the same in both cases.2
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