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Assume f̂ with f̂(z) ∈ R is fitted usingK-fold cross-validation with fixedK, f̂(z)→ f(z) in large

samples (in a way we will make precise later), and there are additional covariates z0 ∈ R`, z∗ ∈ Rm.

Let

v =

 z0

z∗

f(z)

 , v̂ =

 z0

z∗

f̂(z)

 .

Write δ = (α′, β′, γ)′ for the population regression coefficient of y on v and δ̂ = (α̂′, β̂′, γ̂)′ for

the sample regression coefficient of Y = (y1, . . . , yn)′ ∈ Rn on V̂ = (v̂1, . . . , v̂n)′ ∈ Rn×(`+m+1).

Specifically,

δ = E[vv′]−1E[vy], δ̂ = (V̂ ′V̂ )−1V̂ ′Y.

Similarly, write V = (v1, . . . , vn)′ ∈ Rn×(`+m+1), Z0 = (z0
1 , . . . , z

0
n)′ ∈ Rn×`, Z∗ = (z∗1 , . . . , z

∗
n)′ ∈

Rn×m, F = (f(z1), . . . , f(zn))′ ∈ Rn, F̂ = (f̂1(z1), . . . , f̂n(zn))′ ∈ Rn, E = (ε1, . . . , εn)′.

Assumption 1 (Sampling). (z0
i , z
∗
i , zi, εi) are sampled iid from some fixed population distribution

P, where Eε = 0 and, for fixed f , E[vε] = 0. For δ = δn (with δn → δ∞), yi = v′δn + ε, yielding

the sampling distribution Pn over Y, V̂ , V .

Assumption 2 (Fitting). The sample is randomly partitioned into K (which is fixed) approximately

equally sized folds
⋃K
k=1 Ik = {1, . . . , n} (where

∣∣|Ik| − n
K

∣∣ < 1). For i ∈ Ik, f̂i = f̂k, and f̂ is a

function only of data {(yj , z0
j , z
∗
j , zj)}j /∈Ik from the other folds.

Assumption 3 (Convergence). As n → ∞, for all k, E[En[(f̂k(z) − f(z))2]] → 0 (where the

expectations are over the sampling distribution Pn yielding f̂k, and over an additional, independent

draw of z from P).
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Assumption 4 (Existence of moments). E[ε4],E[‖v‖4] < ∞, and there exists an integrable g(z)

with (f̂(z)−f(z))2 ≤ g(z) for P-almost all z and Pn-a.s., uniformly in n, and E[g(z)ε2],E[g(z)‖z0‖2],

E[g(z)‖z∗‖2] <∞.

Proposition 1 (Component consistency). Under Assumptions 1, 2, 3, and 4,

Ĥ =
1

n
V̂ ′V̂

Pn−→ H = E[vv′],
1

n
V̂ ′Y

Pn−→ Hδ∞

as n→∞.

Proof. Note first that

1

n
V̂ ′V̂ =

1

n
(V ′V + V ′(V̂ − V ) + (V̂ − V )′V + (V̂ − V )′(V̂ − V ),

1

n
V̂ ′Y =

1

n
(V ′Y + (V̂ − V )′Y ).

Since 1
nV
′Y = 1

nV
′V δn+ 1

nV
′E, by the LLN (using the existence of second moments) we know that

1

n
V ′V

Pn−→ E[vv′] = H,
1

n
V ′Y

Pn−→ E[vv′]δ∞ = Hδ∞.

It remains to show that the residual parts vanish. To this end, note that (V̂ − V )′Y = (V̂ −
V )′V δn + (V̂ − V )′E, and that by sub-multiplicativity of the Frobenius norm ‖ · ‖∥∥∥∥ 1

n
(V̂ − V )′V

∥∥∥∥2

≤
∥∥∥(V̂ − V )/

√
n
∥∥∥2

︸ ︷︷ ︸
=‖(F̂−F )/

√
n‖2

∥∥V/√n∥∥2
=
‖F̂ − F‖2

n

‖V ‖2

n

and similarly
∥∥∥ 1
n(V̂ − V )′E

∥∥∥2
≤ ‖F̂−F‖

2

n
‖E‖2
n . By the LLN,

‖E‖2

n
=

1

n

n∑
i

ε2
i

Pn−→ E[ε2] <∞ ‖V ‖2

n
=

1

n

n∑
i

‖vi‖2
Pn−→ E[‖v‖2] <∞.

The claims of the proposition then follow from

En

[
‖F̂ − F‖2

n

]
=

1

n

n∑
i=1

En(f̂i(zi)− f(zi))
2

=
1

n

K∑
k=1

∑
i∈Ik

En(f̂k(zi)− f(zi))
2︸ ︷︷ ︸

=E[En[(f̂k(z)−f(z))2]]

=

K∑
k=1

|Ik|
n

E[En[(f̂k(z)− f(z))2]]

which vanishes by Assumption 3, so ‖F̂−F‖
2

n

Pn−→ 0 and all residual parts vanish asymptotically.
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Proposition 2 (Component Normality). Under Assumptions 1, 2, 3, and 4, for any fixed matrix

B ∈ RM×(`+m+1), writing b for the `+m+ 1-th column of B, with

a. b = 0 and E[Bvf̂k(z)] = 0 for any k, Pn-almost all f̂k or

b. lim supn→∞
√
n|γn| <∞ and E[f̂k(z)ε] = 0 for any k, Pn-almost all f̂k

we have that

1√
n
BV̂ ′(Y − V̂ δn)

d−→ N (0, BJB′) (J = E[ε2vv′])

as n→∞.

Proof. Writing ∆ = F̂ − F ∈ Rn, we first decompose

BV̂ ′(Y−V̂ δn)√
n

= B
V ′(Y−V δn) + V ′(V−V̂ )δn + (V̂−V )′(Y−V δn) + (V̂−V )′(V−V̂ )δn√

n

=
BV ′E√

n
+
BV ′∆γn√

n
+
B(V̂−V )′E√

n
+
B(V̂−V )′∆γn√

n

=
BV ′E√

n
+
BV ′∆γn√

n
+
b∆′E√
n

+
b∆′∆γn√

n
.

By the CLT,

BV ′E√
n

=
1√
n

n∑
i=1

Bviεi
d−→ N (0,Var(Bvε)) (Var(Bvε) = BVar(vε)B′ = BJB′).

It remains to show that the remaining parts vanish asymptotically. As a preliminary step, note

that from E[xf̂k(z)] = 0 for some square-integrable random variable x and Pn-almost all f̂k, it

follows that E[xf(z)] = 0. Indeed, Pn-almost surely

E[xf(z)] = E[xf̂k(z)]︸ ︷︷ ︸
=0

+E[x(f(z)− f̂k(z))]

and ‖E[x(f(z) − f̂k(z))]‖2 ≤ E[‖x(f(z) − f̂k(z))‖]2 ≤ E[‖x‖2]E[(f(z) − f̂k(z))2] → 0 as n → 0, so

we must have E[xf(z)] = 0. Turning now to the two cases of the proposition:

a. The last two parts are zero. For the second part,

1√
n
BV ′∆γn =

γn√
n

n∑
i=1

Bvi(f̂i(zi)− f(zi)) =
γn√
n

K∑
k=1

∑
i∈Ik

Bvi(f̂
k(zi)− f(zi))
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with En[Bvi(f̂
k(zi)− f(zi))|f̂k] = E[Bv(f̂k(z)− f(z))] = 0 a.s. and thus

Varn

∑
i∈Ik

Bvi(f̂
k(zi)− f(zi))

 = EnVarn

∑
i∈Ik

Bvi(f̂
k(zi)− f(zi))

∣∣∣∣∣∣f̂k


= En

[
|Ik|E[Bvv′B(f̂k(z)− f(z))2]

]
.

Hence, by Cauchy–Schwarz,

∥∥∥∥Varn

(
1√
n
BV ′∆

)∥∥∥∥ ≤ K

n

K∑
k=1

∥∥∥∥∥∥Varn

∑
i∈Ik

Bvi(f̂
k(zi)− f(zi))

∥∥∥∥∥∥
≤ KEn

[∑
k=1

K
|Ik|
n

E[‖Bvv′B‖(f̂k(z)− f(z))2]

]
.

By dominated convergence, EnE[‖Bvv′B‖(f̂k(z) − f(z))2] → 0. Since also γn → γ∞ ∈
(−∞,+∞), 1√

n
BV ′∆γn

Pn−→ 0. The statement of the proposition follows.

b. The third term vanishes by the same argument as in a.. For the second and fourth term,

BV ′∆γn√
n

= V
V ′∆

n
(
√
nγn),

b∆′∆γn√
n

= b
∆′∆

n
(
√
nγn),

and V ′∆
n

Pn−→ 0, ∆′∆
n

Pn−→ 0 as in the proof of Proposition 1.

In both cases, we note that
∥∥∥BV̂ ′(Y−V̂ δn)√

n
− BV ′(Y−V δn)√

n

∥∥∥ Pn−→ 0 together with convergence in

distribution of B V ′(Y−V δn)√
n

implies the statement of the proposition.

For the linear regression to be well-behaved, we assume that regressors are (asymptotically) not

collinear. This is a technical restriction that puts assumptions on ML-generated regressors that

we would like to avoid. We believe that this assumption can be relaxed in the present context (by

replacing inverses by generalized inverses and deriving analogous results for that case), but such

an extension goes beyond the scope of this appendix.

Assumption 5 (No collinearity). H = E[vv′] is invertible.

Putting all results together, we obtain the asymptotic distribution of ML-augmented linear

regression in the cases discussed in the main paper:

Proposition 3 (Asymptotic distribution for ML-augmented linear regression). Under Assump-

tions 1, 2, 3, 4, and 5, as n→∞):

1. δ̂
Pn−→ δ∞;
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2. If lim supn→∞
√
n|γn| <∞ and E[εf̂k(z)] = 0 for any k, Pn-almost all f̂k, then

√
n(δ̂ − δn)

d−→ N (0, H−1JH−1);

3. If E[z∗f̂k(z)] = 0 for any k, Pn-almost all f̂k, and also E[z0(z∗)′] = O, then

√
n(β̂ − βn)

d−→ N (0, AH−1JH−1A′),

where A ∈ Rm×(`+m+1) selects the components β = Aδ.

Proof. The first statement follows from Proposition 1 and Assumption 5. The second statement is

immediate from Proposition 1, Proposition 2 (with B the identity), and Assumption 5 by noting

that

√
n(δ̂ − δn) =

(
1

n
V̂ ′V̂

)−1 1√
n
V̂ ′(Y − V̂ δ).

For the third statement, note that E[z∗f̂k(z)] = 0, E[z∗(z0)′] = O imply that B = AH−1 fulfils

the assumptions of Part a. in Proposition 2. The conclusion follows by decomposing

√
n(β̂ − βn) = A

√
n(δ̂ − δn) = A

(
1

n
V̂ ′V̂

)−1 1√
n
V̂ ′(Y − V̂ δ)

=
1√
n
AH−1︸ ︷︷ ︸

=B

V̂ ′(Y − V̂ δ) +
1√
n

(
A

(
1

n
V̂ ′V̂

)−1

−AH−1

)
V̂ ′(Y − V̂ δ)

where Proposition 2 applies to 1√
n
BV̂ ′(Y − V̂ δ). It remains to show that the remainder vanishes.

To that end, writing V̂ = (V̂1, V̂2) with V̂1 = Z∗, V̂2 = (Z0, F̂ ) (i.e., changing the order of columns

for ease of exposition) we have that (using general results for the inverses of block matrices)

A
(
V̂ ′V̂

)−1
=
((
V̂ ′1 V̂1

)−1
O
)

+ (V̂ ′1 V̂1)−1V̂ ′1 V̂2(V̂ ′2 V̂2−V̂ ′2 V̂1(V̂ ′1 V̂1)−1V̂ ′1 V̂2)−1
(
V̂ ′2 V̂1(V̂ ′1 V̂1)−1 −I

)
︸ ︷︷ ︸

=r̂

.

Also writing H1, H2 for the respective sub-matrices of H along the diagonal, by Proposition 1

1

n
V̂ ′1 V̂1

Pn−→ H1,
1

n
V̂ ′1 V̂2

Pn−→ O = O,
1

n
V̂ ′2 V̂2

Pn−→ H2.

Also, for ∆ = F̂ − F ,

1√
n
V̂ ′1 V̂2 =

(
(Z∗)′Z0
√
n

(Z∗)′F√
n

+ (Z∗)′∆√
n

)
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where (Z∗)′∆√
n

Pn−→ 0 as in the proof of Proposition 2, and thus by the CLT under the conditions on

moments in Assumption 4 (and orthogonality)

1√
n

vec
(
V̂ ′1 V̂2

)
d−→ N

(
0,ΣV̂ ′1 V̂2

)
for an appropriate variance matrix ΣV̂ ′1 V̂2

. Consequently, and putting everything together,

1√
n

(
A

(
1

n
V̂ ′V̂

)−1

−AH−1

)
V̂ ′(Y − V̂ δ)

=

(
1

n
V̂ ′1 V̂1 −H1

)
︸ ︷︷ ︸

Pn−→0

converges by Proposition 2︷ ︸︸ ︷
1√
n
AV̂ ′(Y − V̂ δ) +n3/2r̂︸ ︷︷ ︸

converges

Pn−→0 by Proposition 1︷ ︸︸ ︷
V̂ ′(Y − V̂ δ)

n

Pn−→ 0

where we have applied the above to

n3/2r̂ =

(
V̂ ′1 V̂1

n

)−1
V̂ ′1 V̂2√
n

 V̂ ′2 V̂2

n
− V̂ ′2 V̂1

n

(
V̂ ′1 V̂1

n

)−1
V̂ ′1 V̂2

n

−1(
V̂ ′2 V̂1
n

(
V̂ ′1 V̂1
n

)−1

−I
)
.

This concludes the proof of the third part, and thus of the proposition.

Inference and testing can be performed based on the standard (Eicker–Huber–White) heteroscedasticity-

robust estimators of the OLS variance matrix. To that end, let

Ĵ =
1

n

n∑
i=1

v̂i(yi − v̂′iδ̂)2v̂′i.

The following result establishes valid asymptotic inference based on Σ̂ = Ĥ−1ĴĤ−1:

Remark 1 (Asymptotic inference). Under the assumptions of Proposition 3, and also E[g(z)2] <∞
in Assumption 4,

Ĥ
Pn−→ H, Ĵ

Pn−→ J,

and thus Σ̂ = Ĥ−1ĴĤ−1 Pn−→ H−1JH−1 = Σ.

Proof. Convergence of Ĥ is established in Proposition 1. For Ĵ , as a preliminary step,

Ĵ − 1

n

n∑
i=1

v̂i(yi − v̂′iδ)2v̂′i =
1

n

n∑
i=1

v̂i

(
2(yi − v̂′iδ)v̂′i(δ̂ − δ) + (v̂′i(δ̂ − δ))2

)
v̂′i,
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so the norm of this difference is bounded by

‖δ̂ − δ‖ 1

n

n∑
i=1

2‖v̂i‖3‖yi − v̂′iδ‖+ ‖δ̂ − δ‖2 1

n

n∑
i=1

‖v̂i‖4.

Since ‖δ̂ − δ‖ Pn−→ 0 by Proposition 3 and the sum terms have uniformly bounded expectation,

the difference converges to zero in probability by Markov’s inequality. We can therefore consider

directly

1

n

n∑
i=1

v̂i (yi − v̂′iδ)2︸ ︷︷ ︸
=ε̂i

v̂′i −
1

n

n∑
i=1

viε
2
i v
′
i︸ ︷︷ ︸

Pn−→J

=
1

n

n∑
i=1

(v̂iv̂
′
i − viv′i)(ε̂2

i − ε2
i ) + viv

′
i(ε̂

2
i − ε2

i ) + (v̂iv̂
′
i − viv′i)ε2

where, writing ∆ = F̂ − F as in earlier proofs,

ε̂i − εi = ∆iγ

ε̂2
i − ε2

i = (ε̂i − εi)(ε̂i + εi) = (ε̂i − εi)2 + 2(ε̂i − εi)εi = ∆2
i γ

2 + 2∆iγεi

‖v̂iv̂′i − viv′i‖ = ∆2
i + 2|∆i|‖vi‖.

Consequently,∥∥∥∥∥ 1

n

n∑
i=1

v̂i(yi − v̂′iδ)2v̂′i −
1

n

n∑
i=1

viε
2
i v
′
i

∥∥∥∥∥
≤ 1

n

n∑
i=1

(∆2
i + 2|∆i|‖vi‖)(∆2

i γ
2 + 2|∆i||γ||εi|) + viv

′
i(∆

2
i γ

2 + 2|∆i||γ||εi|) + (∆2
i + 2|∆i|‖vi‖)ε2.

Since ∆2
i ≤ g(zi) and the expectation of the resulting upper bound for the above difference is

uniformly bounded, this difference converges to zero in mean (and thus in probability) by dominated

convergence. Hence,

Ĵ =
1

n

n∑
i=1

viε
2
i v
′
i + oPn

Pn−→ J,

finishing the proof.
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Remark 2 (Asymptotic power and variance). Write δbn = ((αbn)′, (βbn)′)′ for the baseline population

regression coefficient of y on vb = ((z0)′, (z∗)′)′, and δ̂b = ((α̂b)′, (β̂b)′)′ for their sample analog,

and maintain the assumptions of Proposition 3.

1. Then, δ̂b
Pn−→ δb∞ = limn→∞ δ

b
n where

δbn =

(
αn

βn

)
+ E−1[vb(vb)′]E[vbf(z)]γn

and also

√
n(δ̂b − δbn)

d−→ N (0, (Hb)−1Jb(Hb)−1), Hb = E[vb(vb)′], Jb = E[(y − (vb)′δb∞︸ ︷︷ ︸
ε+(f(z)−(vb)′(Hb)−1E[vbf(z)])γ∞

)2vb(vb)′].

Specifically, this implies for the relative performance of the augmented OLS regression:

2. Under the assumptions of 2. in Proposition 3 and Remark 1, for βn = β√
n
, γn = γ√

n
(implying

βbn = βb
√
n

), the Wald test statistics

x̂ =

(
β̂

γ̂

)′
Σ̂−1
β,γ

(
β̂

γ̂

)
, x̂b = (β̂b)′

(
Σ̂b
β

)−1
β̂b

based on the corresponding (robust) variance estimates Σ̂, Σ̂b have asymptotic distributions

x̂
d−→ χ2

m+1

((
β

γ

)′
Σ−1
β,γ

(
β

γ

))
, x̂b

d−→ χ2
m

(
(βb)′

(
Σb
β

)−1
βb
)
.

Since we can verify that (
β

γ

)′
Σ−1
β,γ

(
β

γ

)
≥ (βb)′

(
Σb
β

)−1
βb,

the maximal cost in power from including the additional regressor corresponds to one addi-

tional degree of freedom in the χ2 distribution that is used to construct critical values.

3. Under the assumptions of 3. in Proposition 3, with γn → γ = γ∞,

√
n(β̂ − βn)

d−→ N (0,Σβ),
√
n(β̂b − βn)

d−→ N (0,Σb
β)
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with

Σβ = E−1[z∗(z∗)′]E[z∗ε2(z∗)′]E−1[z∗(z∗)′]

Σb
β = E−1[z∗(z∗)′]E[z∗(ε+ (f(z)− (z0)′E−1[z0(z0)−1]E[z0f(z)])︸ ︷︷ ︸

=f⊥(z)

γ)2(z∗)′]E−1[z∗(z∗)′],

so the asymptotic variance decreases, Σβ ≺ Σb
β (wrt the partial ordering implied by positive

definiteness) relative to the baseline OLS regression iff E[z∗ε2(z∗)′] ≺ E[z∗(ε+f⊥(z)γ)2(z∗)′].
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