Online Appendix

Common Ownership and the Secular Stagnation Hypothesis

José Azar and Xavier Vives

IESE Business School

PROOF OF PROPOSITION 1: The objective function of the firm is strictly concave. The second derivative of the objective function with respect to labor is:

$$
F_{L L}-2 \omega^{\prime}-\omega^{\prime \prime} \cdot\left(L_{j}+\lambda L_{-j}\right)<0
$$

since $F_{L L}<0$ and $-2 \omega^{\prime}-\omega^{\prime \prime} \cdot\left(L_{j}+\lambda L_{-j}\right)<0$ because we are assuming that labor supply is constant elasticity. The second derivative of the objective function with respect to capital is

$$
F_{K K}-2 \rho^{\prime}-\rho^{\prime \prime}\left(K_{j}+\lambda K_{-j}\right)<0
$$

since $F_{K K}<0$ and $-2 \rho^{\prime}-\rho^{\prime \prime}\left(K_{j}+\lambda K_{-j}\right)<0$. The latter inequality follows because $-2 \rho^{\prime}-$ $\rho^{\prime \prime}\left(K_{j}+\lambda K_{-j}\right)=-\rho^{\prime}(K)\left[2+\rho^{\prime \prime}(K) K / \rho^{\prime}(K)\left(s_{j}^{K}+\lambda\left(1-s_{j}^{K}\right)\right)\right]$, where s_{j}^{K} is firm j 's share of capital and the expression in brackets is positive because $\rho^{\prime \prime}(K) K / \rho^{\prime}(K) \geq-1$. To see this, note that $\rho^{\prime}(K)=\frac{\gamma}{1-\gamma} \frac{E}{E-K} \frac{\rho(K)}{K}$ and $\rho^{\prime \prime}(K)=\frac{\gamma}{1-\gamma} \frac{\rho(K)}{K^{2}} \frac{E}{E-K}\left[\frac{K}{E-K}+\frac{\rho^{\prime}(K) K}{\rho(K)}-1\right]$. Thus, $\rho^{\prime \prime}(K) K / \rho^{\prime}(K)=$ $K /(E-K)+\rho^{\prime}(K) K / \rho(K)-1 \geq-1$.

The fact that $F_{L L} \cdot F_{K K}-F_{L K}^{2}$ is positive (since F is concave) implies that the determinant of the matrix of second derivatives is positive, which is the last condition we needed to establish strict concavity of the objective function. From the first-order conditions, it is then clear that the reaction functions are continuous, and therefore a Nash equilibrium exists.

To prove that there is a unique symmetric equilibrium, we consider the system of FOCs when employment and capital are symmetric across firms, and show that there is a unique solution. From
the FOC for labor, we can solve for labor as a function of capital, obtaining:

$$
L=\left[\frac{A \alpha}{\chi^{\frac{1}{1-\sigma}}\left(1+\frac{H}{\eta}\right)}\right]^{\frac{1}{1-\alpha+\frac{1}{\eta}}} K^{\frac{1-\alpha}{1-\alpha+\frac{1}{\eta}}} .
$$

Replacing this in the FOC for capital, we obtain an implicit equation for capital:

$$
A(1-\alpha)\left[\frac{A \alpha}{\chi^{\frac{1}{1-\sigma}}\left(1+\frac{H}{\eta}\right)}\right]^{\frac{\alpha}{1-\alpha+\frac{1}{\eta}}} K^{-\frac{\frac{\alpha}{\eta}}{1-\alpha+\frac{1}{\eta}}}-[\rho(K)(1+H / \varepsilon(K))-(1-\delta)]=0 .
$$

The limit when $K \rightarrow 0^{+}$of this expression is $+\infty$, while the limit when $K \rightarrow E^{-}$is $-\infty$. The derivative of this expression with respect to K is negative, which implies that there is a unique solution to the equation. The two-equation characterization of the equilibrium obtains directly from imposing symmetry in the FOCs of the firm.

PROOF OF PROPOSITION 2:

(a) We start by noting that the number of firms J and the common ownership parameter ϕ enter the equilibrium equation for capital only through market concentration H. We then use the equilibrium equation for capital to define capital as an implicit function of $H \in(0,1]$:

$$
A(1-\alpha)\left[\frac{A \alpha}{\chi^{\frac{1}{1-\sigma}}\left(1+\frac{H}{\eta}\right)}\right]^{\frac{\alpha}{1-\alpha+\frac{1}{\eta}}} K^{*}(H)^{-\frac{\frac{\alpha}{\eta}}{1-\alpha+\frac{1}{\eta}}} \equiv \rho\left(K^{*}(H)\right)\left(1+H / \varepsilon\left(K^{*}(H)\right)\right)-(1-\delta)
$$

Taking \log and derivative with respect to $\log H$ yields

$$
-\frac{\alpha}{1-\alpha+\frac{1}{\eta}}\left(\frac{\frac{H}{\eta}}{1+\frac{H}{\eta}}+\frac{1}{\eta} \frac{d \log K^{*}}{d \log H}\right)=\frac{\rho \cdot(1+H / \varepsilon)}{\rho \cdot(1+H / \varepsilon)-(1-\delta)}\left[\frac{1}{\varepsilon} \frac{d \log K^{*}}{d \log H}+\frac{\frac{H}{\varepsilon}}{1+\frac{H}{\varepsilon}}\left(1+\frac{d \log K^{*}}{d \log H} \frac{s}{1-s}\right)\right] .
$$

Solving for $\varepsilon_{K H} \equiv \frac{d \log K^{*}}{d \log H}$:

$$
\varepsilon_{K H}=-\frac{\frac{\alpha}{1-\alpha+\frac{1}{\eta}} \frac{\frac{H}{\eta}}{1+\frac{H}{\eta}}+\frac{\rho \cdot(1+H / \varepsilon)}{\rho \cdot(1+H / \varepsilon)-(1-\delta)} \frac{\frac{H}{\varepsilon}}{1+\frac{H}{\varepsilon}}}{\frac{\alpha}{1-\alpha+\frac{1}{\eta}} \frac{1}{\eta}+\frac{\rho \cdot(1+H / \varepsilon)}{\rho \cdot(1+H / \varepsilon)-(1-\delta)}\left(\frac{1}{\varepsilon}+\frac{\frac{H}{\varepsilon}}{1+\frac{H}{\varepsilon}} \frac{s}{1-s}\right)}<0
$$

(b) We know that

$$
L^{*}=\left[\frac{A \alpha}{\chi^{\frac{1}{1-\sigma}}\left(1+\frac{H}{\eta}\right)}\right]^{\frac{1}{1-\alpha+\frac{1}{\eta}}} K^{\frac{1-\alpha}{1-\alpha+\frac{1}{\eta}}}
$$

which is decreasing in H and increasing in K. Since H increases when the number of firms decreases or common ownership increases, and K decreases with them, L must decline with both lower J and higher ϕ.
(c), (d), and (e) Since the equilibrium real wage and real interest rates are increasing in L and K, they also must decline when the number of firms decreases or common ownership increases. A lower level of employment and capital also implies lower output.
(f) The labor share of income is $\frac{\omega(L) L}{F(K, L)}=\frac{\alpha}{1+H / \eta}$. A decrease in the number of firms or an increase in the common ownership parameter ϕ increases H and therefore decreases the labor share.
(g) We can obtain:

$$
\operatorname{sgn}\left\{\frac{d \log \mu_{K}^{*}}{d \log H}\right\}=\operatorname{sgn}\left\{\frac{s}{1-s}\left[\rho\left(K^{*}\right)-\left(\frac{\gamma}{(1-\gamma) s}+1\right)(1-\delta)\right] \varepsilon_{K H}+\rho\left(K^{*}\right)-(1-\delta)\right\}
$$

All else equal, given that $\varepsilon_{K H}<0$ the expression above is minimized for $\gamma=0$ for which it becomes:

$$
\operatorname{sgn}\left\{\frac{d \log \mu_{K}^{*}}{d \log H}\right\}=\operatorname{sgn}\left\{\frac{1-s}{s}+\varepsilon_{K H}\right\} .
$$

Thus, a sufficient condition for the real interest rate markup μ_{K}^{*} to be increasing in H is that the
elasticity of (equilibrium) capital with respect to H be low enough:

$$
\left|\varepsilon_{K H}\right|<\frac{1-s}{s}
$$

PROOF OF PROPOSITION 3:

As in Azar and Vives (2018), the competitive equilibrium relative price of sector n 's good is $\frac{p_{n}}{P}=\left(\frac{1}{N}\right)^{1 / \theta}\left(\frac{c_{n}}{C}\right)^{-1 / \theta}$, where P is the price index $\left(\frac{1}{N} \sum_{n=1}^{N} p_{n}^{1-\theta}\right)^{1 /(1-\theta)}$. The competitive equilibrium relative price of sector n is

$$
\psi_{n}(K, L)=\left(\frac{1}{N}\right)^{1 / \theta}\left(\frac{\sum_{j=1}^{J} F\left(K_{j n}, L_{j n}\right)}{\left[\sum_{m=1}^{N}\left(\frac{1}{N}\right)^{1 / \theta}\left(\sum_{j=1}^{J} F\left(K_{j n}, L_{j n}\right)\right)^{(\theta-1) / \theta}\right]^{\theta /(\theta-1)}}\right)^{-1 / \theta}
$$

The derivative with respect to $L_{j n}$ is, as in Azar and Vives (2018):

$$
\frac{\partial \psi_{n}}{\partial L_{j n}}=-\frac{1}{\theta} \psi_{n}\left(1-\frac{p_{n} c_{n}}{P C}\right) \frac{F_{L}\left(K_{j n}, L_{j n}\right)}{c_{n}}<0
$$

The derivative with respect to $K_{j n}$ is similar:

$$
\frac{\partial \psi_{n}}{\partial K_{j n}}=-\frac{1}{\theta} \psi_{n}\left(1-\frac{p_{n} c_{n}}{P C}\right) \frac{F_{K}\left(K_{j n}, L_{j n}\right)}{c_{n}}<0
$$

Also similarly to Azar and Vives (2018), the derivatives of the relative price in other sectors $m \neq n$ are given by:

$$
\frac{\partial \psi_{m}}{\partial L_{j n}}=\frac{1}{\theta} \psi_{n} \frac{p_{m} c_{m}}{P C} \frac{F_{L}\left(K_{j n}, L_{j n}\right)}{c_{m}}>0
$$

and

$$
\frac{\partial \psi_{m}}{\partial K_{j n}}=\frac{1}{\theta} \psi_{n} \frac{p_{m} c_{m}}{P C} \frac{F_{K}\left(K_{j n}, L_{j n}\right)}{c_{m}}>0
$$

The first-order condition of firm j with respect to $L_{j n}$ is

$$
\begin{aligned}
& \psi_{n} F_{L}\left(K_{j n}, L_{j n}\right)-\omega-\omega^{\prime}\left(L_{j n}+\lambda_{\text {intra }} \sum_{k \neq j} L_{k n}+\lambda_{\text {inter }} \sum_{m \neq n} \sum_{k=1}^{J} L_{k m}\right) \\
&+\frac{\partial \psi_{n}}{\partial L_{j n}}\left(F\left(K_{j n}, L_{j n}\right)+\lambda_{\text {intra }} \sum_{k \neq j} F\left(K_{k n}, L_{k n}\right)\right)+\lambda_{\text {inter }} \sum_{m \neq n} \frac{\partial \psi_{m}}{\partial L_{j n}} \sum_{k=1}^{J} F\left(K_{k m}, L_{k m}\right)=0 .
\end{aligned}
$$

The first-order condition with respect to $K_{j n}$ is

$$
\begin{aligned}
& \psi_{n} F_{K}\left(K_{j n}, L_{j n}\right)-\rho-\rho^{\prime}\left(K_{j n}+\lambda_{\text {intra }} \sum_{k \neq j} K_{k n}+\lambda_{\text {inter }} \sum_{m \neq n} \sum_{k=1}^{J} K_{k m}\right)+(1-\delta) \\
&+\frac{\partial \psi_{n}}{\partial K_{j n}}\left(F\left(K_{j n}, L_{j n}\right)+\lambda_{\text {intra }} \sum_{k \neq j} F\left(K_{k n}, L_{k n}\right)\right)+\lambda_{\text {inter }} \sum_{m \neq n} \frac{\partial \psi_{m}}{\partial K_{j n}} \sum_{k=1}^{J} F\left(K_{k m}, L_{k m}\right)=0 .
\end{aligned}
$$

In a symmetric equilibrium, similarly to Azar and Vives (2018), the first-order condition with respect to $L_{n j}$ simplifies to

$$
\begin{aligned}
\frac{F_{L}\left(\frac{K}{J}, \frac{L}{J}\right)-\omega(L)}{\omega(L)}=\frac{\omega^{\prime}(L) L}{\omega(L)}\left[s_{j n}^{L}+\right. & \left.\lambda_{\text {intra }} s_{-j, n}^{L}+\lambda_{\text {inter }}\left(1-s_{j n}^{L}-s_{-j, n}^{L}\right)\right] \\
& +\frac{1}{\theta}\left(1-\frac{1}{N}\right) \frac{F_{L}\left(\frac{K}{J N}, \frac{L}{J N}\right)}{\omega(L)}\left[s_{j n}+\lambda_{\text {intra }}\left(1-s_{j n}\right)-\lambda_{\text {inter }}\right]
\end{aligned}
$$

where $s_{j n}^{L} \equiv L_{j n} / L$ is the labor market share of firm j in sector $n, s_{-j, n}^{L} \equiv \sum_{k \neq j} L_{k n} / L$ is the combined labor market share of the other firms in sector n, and $s_{j n} \equiv F\left(K_{j n}, L_{j n}\right) / c_{n}$ is the product market share of firm j in sector n.

Analogously, the first-order condition with respect to $K_{j n}$ simplifies to

$$
\begin{gathered}
\frac{F_{K}\left(\frac{K}{J N}, \frac{L}{J N}\right)-\rho(K)+1-\delta}{\rho(K)-1+\delta}=\frac{\rho^{\prime}(K) K}{\rho(K)-1+\delta}\left[s_{j n}^{K}+\lambda_{\text {intras }}^{K} s_{-j, n}^{K}+\lambda_{\text {inter }}\left(1-s_{j n}^{K}-s_{-j, n}^{K}\right)\right]+(1-\delta) \\
+\frac{1}{\theta}\left(1-\frac{1}{N}\right) \frac{F_{K}\left(\frac{K}{J N}, \frac{L}{J N}\right)}{\rho(K)-1+\delta}\left[s_{j n}+\lambda_{\text {intra }}\left(1-s_{j n}\right)-\lambda_{\text {inter }}\right]
\end{gathered}
$$

where $s_{j n}^{K} \equiv K_{j n} / K$ is the capital market share of firm j in sector $n, s_{-j, n}^{K} \equiv \sum_{k \neq j} K_{k n} / L$ is the combined capital market share of the other firms in sector n.

In a symmetric equilibrium the labor market share of firm j in sector n is $\frac{1}{J N}$, its capital market share is also $\frac{1}{J N}$, and its product market share is $\frac{1}{J}$. Since $\frac{\omega^{\prime}(L) L}{\omega(L)}=\frac{1}{\eta}$, and defining $\mu_{L}=F_{L} / \omega-1$, the first-order condition with respect to $L_{j n}$ can be written as

$$
\mu_{L}^{*}=\frac{1}{\eta} \underbrace{\left[\frac{1}{J N}+\lambda_{\text {intra }} \frac{J-1}{J N}+\lambda_{\text {inter }} \frac{N-1}{N}\right]}_{H_{\text {labor }}}+\frac{1+\mu_{L}}{\theta}\left(1-\frac{1}{N}\right)[\underbrace{\frac{1}{J}+\lambda_{\text {intra }} \frac{J-1}{J}}_{H_{\text {product }}}-\lambda_{\text {inter }}] .
$$

Similarly, since $\frac{\rho^{\prime}(K) K}{\rho(K)-1+\delta}=\frac{1}{\varepsilon(K)} \frac{1}{1-\frac{1-\delta}{\rho(K)}}$, and defining $\mu_{K}=F_{K} /(\rho-1+\delta)-1$, the first-order condition with respect to capital can be written as
$\mu_{K}^{*}=\frac{1}{\varepsilon(K)\left(1-\frac{1-\delta}{\rho(K)}\right)} \underbrace{\left[\frac{1}{J N}+\lambda_{\text {intra }} \frac{J-1}{J N}+\lambda_{\text {inter }} \frac{N-1}{N}\right]}_{H_{\text {capital }}}+\frac{1+\mu_{K}}{\theta}\left(1-\frac{1}{N}\right)[\underbrace{\frac{1}{J}+\lambda_{\text {intra }} \frac{J-1}{J}}_{H_{\text {product }}}-\lambda_{\text {inter }}]$.

Solving for $1+\mu_{L}^{*}$ and $1+\mu_{K}^{*}$, we obtain

$$
\begin{array}{r}
1+\mu_{L}^{*}=\frac{1+H_{\text {labor }} / \eta}{1-\left(H_{\text {product }}-\lambda_{\text {inter }}\right)(1-1 / N) / \theta} \\
1+\mu_{K}^{*}=\frac{1+H_{\text {capital }} /(\varepsilon(K)(1-(1-\delta) / \rho(K)))}{1-\left(H_{\text {product }}-\lambda_{\text {inter }}\right)(1-1 / N) / \theta}
\end{array}
$$

which are the expressions for the markdowns in the proposition.

