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This online appendix contains proofs of omitted results and details from the main paper.

B Further properties of the baseline demand function

We examine the continuity and differentiability of the complete demand functionQi

(
pbi , p

s
i ; p̂
)
derived

in Section A.1 of the appendix of the main text.

Claim B.1 For any p̂, Qi

(
pbi , p

s
i ; p̂
)
is continuous in pbi and psi .

Proof. Continuity with respect to pbi is obvious. To show continuity with respect to psi , note from

Lemma 3 that limps
i→p̂s− v̂m = p̂s for m = 2, ..., n. Similarly, note from Lemma 1 that limps

i→p̂s+ v̂ = p̂s.

Thus,

lim
ps
i→p̂s−

Qi

(
pbi , p

s
i ; p̂
)

= [1−G (p̂s)]B
(N)
i +

n−2∑
m=0

[G (p̂s)−G (p̂s)]B
(Ni,m)
i

= [1−G (p̂s)]B
(N)
i

= lim
ps
i→p̂s+

Qi

(
pbi , p

s
i ; p̂
)
,

so Qi

(
pbi , p

s
i ; p̂
)
is continuous for all pbi and psi , which includes

(
pbi , p

s
i

)
= p̂.

Claim B.2 For any p̂,

lim
ps
i→p̂s−

dQi

dpsi

(
p̂b, psi ; p̂

)
≥ lim

ps
i→p̂s+

dQi

dpsi

(
p̂b, psi ; p̂

)
.

Equality holds if in addition (i) n = 2, or (ii) F , F0 ∼Gumbel(µ).

Proof. Consider first psi ≥ p̂s. Then the right-hand side derivative is

lim
psi→p̂s+

dQi

dpsi

(
pbi , p

s
i ; p̂
)

= lim
psi→p̂s+

− dv̂

dpsi
B

(N)
i g (psi )

= lim
psi→p̂s+

−B(N)
i∑

j∈N,j ̸=i

(
B

(N)
j −B

(N−i)

j

)
+B

(N)
i

B
(N)
i g (psi )

=
−B(N)

i∑
j∈N,j ̸=i

(
B

(N)
j −B

(N−i)

j

)
+B

(N)
i

B
(N)
i g (p̂s) .

Evaluating the above at pbi = p̂b, all platforms become symmetry so that functions B
(Θ)
j are the same for any set

Θ and any given j ∈ Θ. So, for simplicity we denote any such generic term as B(Θ). Hence we have

lim
psi→p̂s+

dQi

dpsi

(
pbi , p

s
i ; p̂
)

=
−B(N)B(N)

nB(N) − (n− 1)B(N−i)
g (p̂s) . (B.1)
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When psi > p̂s, the left hand side derivative is

lim
psi→p̂s−

dQi

dpsi

(
pbi , p

s
i ; p̂
)

= lim
psi→p̂s−

n−1∑
m=0

[
dv̂m+1

dpsi
g (v̄m+1) − dv̂m

dpsi
g (v̄m)

]
B

(Ni,m)

i

= g (p̂s)

[
n−1∑
m=0

[
dv̂m+1

dpsi
− dv̂m
dpsi

]
B(Ni,m)

]
, (B.2)

where dv̂n
dpsi

= 0 because v̂n ≡ v̄, dv̂0
dpsi

= 1 since v̂0 ≡ psi , while

dv̂m
dpsi

=
B

(Ni,m)

i −B
(Ni,m−1)

i

B
(Ni,m)

i −B
(Ni,m−1)

i +mB
(Ni,m)

j − (m− 1)B
(Ni,m−1)

j

for m = 1, ..., n− 1

dv̂m
dpsi

|pbi=p̂b =
B(Ni,m) −B(Ni,m−1)

(m+ 1)B(Ni,m) −mB(Ni,m−1)
,

in which B(.) is as denoted earlier due to symmetry. Hence, evaluating at pbi = p̂b, (B.2) can be expanded

1

g (p̂s)
lim

psi→p̂s−

dQi

dpsi

(
pbi , p

s
i ; p̂
)

= −dv̂n−1

dpsi
B(N) +

n−2∑
m=1

[
dv̂m+1

dpsi
− dv̂m
dpsi

]
B(Ni,m) +

(
dv̂1
dpsi

− 1

)
B(Ni,0)

=
−B(Ni,n−1)B(Ni,n−1)

nB(Ni,n−1) − (n− 1)B(Ni,n−2)

+
B(Ni,n−2)B(Ni,n−1)

nB(Ni,n−1) − (n− 1)B(Ni,n−2)

+

n−2∑
m=1

[
B(Ni,m+1) −B(Ni,m)

(m+ 2)B(Ni,m+1) − (m+ 1)B(Ni,m)
− B(Ni,m) −B(Ni,m−1)

(m+ 1)B(Ni,m) −mB(Ni,m−1)

]
B(Ni,m) (B.3)

+

(
B(Ni,1) −B(Ni,0)

2B(Ni,1) −B(Ni,0)
− 1

)
B(Ni,0).

By definition, proving differentiability at
(
pbi , p

s
i

)
= p̂ requires us to show

lim
psi→p̂s−

dQi

dpsi

(
p̂b, psi ; p̂

)
= lim

psi→p̂s+

dQi

dpsi

(
p̂b, psi ; p̂

)
. (B.4)

To prove this, we note that Ni,n−1 = N and that when all platforms are symmetry we have Ni,n−2 = N−i

(because both sets denote a set of n− 1 symmetry platforms). Then, substituting for (B.1) we can rewrite (B.3)

as

lim
psi→p̂s−

dQi

dpsi

(
p̂b, psi ; p̂

)
= lim

psi→p̂s+

dQi

dpsi

(
p̂b, psi ; p̂

)
+ g (p̂s) Φ (n) ,

where Φ (n) is defined as the last three lines of (B.3), i.e.

Φ (n) ≡ B(Ni,n−2)B(Ni,n−1)

nB(Ni,n−1) − (n− 1)B(Ni,n−2)

+

n−2∑
m=1

[
B(Ni,m+1) −B(Ni,m)

(m+ 2)B(Ni,m+1) − (m+ 1)B(Ni,m)
− B(Ni,m) −B(Ni,m−1)

(m+ 1)B(Ni,m) −mB(Ni,m−1)

]
B(Ni,m)

+

(
B(Ni,1) −B(Ni,0)

2B(Ni,1) −B(Ni,0)
− 1

)
B(Ni,0).

To conclude (B.4), it suffices to prove by induction that Φ (n) ≥ 0 for all n ≥ 2. First, when n = 2 we have
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Ni,1 = N so

Φ (2) =
B(Ni,0)B(Ni,1)

2B(Ni,1) −B(Ni,0)
+

(
B(Ni,1) −B(Ni,0)

2B(Ni,1) −B(Ni,0)
− 1

)
B(Ni,0)

=
2B(Ni,0)B(Ni,1)

2B(Ni,1) −B(Ni,0)
−
[

B(Ni,0)B(Ni,0)

2B(Ni,1) −B(Ni,0)
+B(Ni,0)

]
= 0.

Note that this also proves the first part of the claim, that is, the case of n = 2. By the inductive hypothesis,

suppose Φ (n− 1) ≥ 0. For n ≥ 3, if we expand one more term from the summation in Φ (n) and rearrange terms

we get

Φ (n) =
B(Ni,n−2)B(Ni,n−1)

nB(Ni,n−1) − (n− 1)B(Ni,n−2)

+

[
B(Ni,n−1) −B(Ni,n−2)

nB(Ni,n−1) − (n− 1)B(Ni,n−2)
− B(Ni,n−2) −B(Ni,n−3)

(n− 1)B(Ni,n−2) − (n− 2)B(Ni,n−3)

]
B(Ni,n−2)

+

n−3∑
m=1

[
B(Ni,m+1) −B(Ni,m)

(m+ 2)B(Ni,m+1) − (m+ 1)B(Ni,m)
− B(Ni,m) −B(Ni,m−1)

(m+ 1)B(Ni,m) −mB(Ni,m−1)

]
B(Ni,m)

+
B(Ni,n−2)B(N)

nB(N) − (n− 1)B(Ni,n−2)

=

(
2B(Ni,n−1) −B(Ni,n−2)

)
B(Ni,n−2)

nB(Ni,n−1) − (n− 1)B(Ni,n−2)
− B(Ni,n−2)B(Ni,n−2)

(n− 1)B(Ni,n−2) − (n− 2)B(Ni,n−3)
+ Φ (n− 1) .(B.5)

By inductive hypothesis Φ (n− 1) ≥ 0. Therefore, to prove Φ (n) ≥ 0, it remains to show

2B(Ni,n−1) −B(Ni,n−2)

nB(Ni,n−1) − (n− 1)B(Ni,n−2)
≥ B(Ni,n−2)

(n− 1)B(Ni,n−2) − (n− 2)B(Ni,n−3)
.

Rearranging the terms and cancelling out common coefficients, the inequality above is equivalent to

0 ≤

(
B(Ni,n−2) −B(Ni,n−1)

)
B(Ni,n−1)

−

(
B(Ni,n−3) −B(Ni,n−2)

)
B(Ni,n−3)

(B.6)

≃ ∂B(Ni,k)

∂k
|k=n−1 −

∂B(Ni,k)

∂k
|k=n−3.

We know ∂B
∂k

≤ 0, so we simply need to show that B is decreasing in k with a decreasing magnitude, i.e. B is

convex in k. Recall that for k ∈ {0, ..., n− 1}, we have

B(Ni,k) =

∫ ϵ̄−p̂b

ϵ

[
1 − F

(
ϵ0 + p̂b

)k+1

k + 1

]
dF0 (ϵ0) .

Convexity of B in k then follows from the observation that
1−F(ϵ0+p̂b)k+1

k+1
is convex in k, and that convexity is

preserved by integration when the integrand is always positive over the entire region of integration. So, Φ (n) ≥ 0

for all n ≥ 2 as required. Finally, in the special case of Gumbel distribution, IIA property of logit-demand form

implies that the right-hand side of (B.6) equals zero, so that Φ (n) = 0 for all n ≥ 2.

In order to determine the global quasi-concavity of the profit function in Section 3 for other dis-

tribution functions, we rely on numerical calculations. Details and codes of the numerical calculations

are available from the authors upon request. Specifically, we focus on n ∈ {2, 3, 4} and c = 0.1 and

consider F, F0 ∼ Gumbel(µ) and G ∼ Normal(µnorm, σ) where the parameters are repeatedly picked

in random from intervals: µ ∈ [1, 4], and µnorm ∈ [−10, 10], σ ∈ [1, 6]. We also repeat the same exer-

cise with (i) F, F0 ∼ Gumbel(µ) and G ∼ Exponential(θ), θ ∈ [1/2, 2]; (ii) F, F0 ∼ Exponential(θF )

and G ∼ Exponential(θG), θF , θG ∈ [1/2, 2]; and F, F0 ∼ Normal(µnorm, σ) and G ∼ Exponential(θ),

µnorm ∈ [1, 2], σ ∈ [1, 2] and θ ∈ [1/2, 2].

In all the cases considered, the quasi-concavity assumption was satisfied, suggesting it does not
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require very special conditions to hold. Figure 7 below provides an example of the plot of platform profit

function that shows quasi-concavity (assuming all other platforms are setting the equilibrium fees).

Figure 7: Profit function of firm i, assuming c = 0.1, F and F0 ∼ Gumbel(1), and G ∼ Normal(−4, 2).

C Membership fee component

As stated in the main text, when buyers and sellers coordinate to not participating on any platform

that charges strictly positive buyer or seller membership fees, then no platform has incentive to deviate

from the equilibrium in Proposition 1 by charging positive membership fee component.

Meanwhile, given that all buyers are already multihoming in the equilibrium, no platform can profit

from offering negative buyer membership fees. It remains to rule out deviations from the symmetric

equilibrium with a negative seller fee (denoted as P s
i < 0). We will focus on the case of logit buyer

demand and show that, whenever a deviating platform i wants to set P s
i < 0 to attract additional seller

participation, it is instead better off setting psi < p̂s to attract the same amount of participation.

Starting from the symmetric equilibrium, when P s
i < 0, all sellers with v ≥ p̂s will continue to join

all platforms while sellers with v ∈
[

P s
i

B
({i})
i

+ p̂s, p̂s
]
will singlehome on platform i. We reframe the

platform’s problem as choosing the marginal participating seller type

tsi ≡
P s
i

B
({i})
i

+ p̂s ≤ p̂s.

Then, platform i’s profit when it charges a negative seller membership fee is

Π̃i (t
s
i ) =

(
p̂s + p̂b − c

) (
(1−G (p̂s))B

(N)
i + (G (p̂s)−G (tsi ))B

({i})
i

)
+ (tsi − p̂s) (1−G (tsi ))B

({i})
i

where
dΠ̃i

dtsi
= (1−G (tsi ))B

({i})
i −

(
tsi + pbi − c

)
g (tsi )B

({i})
i .

Meanwhile, from Section A.6 of the appendix of the main text, we know that when platform i deviates

by lowering its seller transaction fee psi < p̂s, the marginal participating seller type is tsi = psi (and is

singlehoming on platform i). Reframe the platform’s problem as choosing the marginal participating

seller type:

Πi (t
s
i ) =

(
tsi + p̂b − c

) ((
1−G

(
(p̂s − tsi ) exp

{
−pb/µ

}
+ p̂s

))
B

(N)
i + (G

(
(p̂s − tsi ) exp

{
−pbi/µ

}
+ p̂s

)
−G(tsi ))B

({i})
i

)
.
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Using B
(N)
i < B

({i})
i , it is easily shown

dΠi

dtsi
< (1−G(tsi ))B

({i})
i −

(
tsi + pbi − c

)
g (tsi )B

({i})
i . (C.1)

Consider a scenario where platform i wants to lower the participation threshold from tsi ≤ p̂s to

tsi + ∆, where ∆ < 0. Whenever the platform finds it profitable to do so through a deviation with a

negative seller membership fee (dΠ̃i

dtsi
∆ > 0), inequality (C.1) immediately implies

dΠi

dtsi
∆ >

dΠ̃i

dtsi
∆ > 0,

that is, a deviation by lowering seller transaction fee is more profitable.

D Multihoming behaviors of buyers

This section corresponds to the equilibrium analysis of Section 5 in the main text.

Demand derivation. We first derive the demand functions facing each platform. Consider a

deviating platform i that charges
(
pbi , p

s
i

)
̸=
(
p̂b, p̂s

)
. Note that the decisions of buyers are shown in the

main text and so are omitted here. Consider psi ≥ p̂s. For a seller with type v, we write her total surplus

from joining all platforms j ̸= i as

(v − p̂s)
∑

j∈N−i

(
(1− λ)B

(N)
j + λB

(N−i)
j

)
(D.1)

= (v − p̂s)
∑

j∈N−i

B̃
(N−i)
j ,

where

B̃
(Θ)
j ≡ (1− λ)B

(N)
j + λB

(Θ)
j (D.2)

can be thought of as a “composite” buyer quasi-demand. Likewise, if the seller joins all platforms

including i, then her total surplus is

(v − p̂s)

(1− λ)
∑

j∈N−i

B
(N)
j + λ

∑
j∈N−i

B
(N)
j

+ (v − psi )
[
(1− λ)B

(N)
i + λB

(N)
i

]
= (v − p̂s)

∑
j∈N−i

B̃
(N)
j + (v − psi ) B̃

(N)
i . (D.3)

Denote

σ̃i ≡ 1−
∑

j∈N−i
(B̃

(N)
j − B̃

(N−i)
j )

B̃
(N)
i

.

Comparing (D.1) and (D.3), we can pin down the threshold ṽ as in Lemma 1:

ṽ =
psi
σ̃i

− 1− σ̃i
σ̃i

p̂s.

Likewise, when psi < p̂s, with similar calculations we can pin down thresholds ṽm for m = 1, ..., n− 1 as

in Lemma 3:

ṽm ≡
psi

[
B̃

(Ni,m)
i − B̃

(Ni,m−1)
i

]
+ p̂s

[
mB̃

(Ni,m)
j − (m− 1) B̃

(Ni,m−1)
j

]
B̃

(Ni,m)
i − B̃

(Ni,m−1)
i +mB̃

(Ni,m)
j − (m− 1) B̃

(Ni,m−1)
j

.
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We can further define ṽn ≡ v̄ and ṽ0 ≡ psi . Then the formal characterization of seller participation

decisions is the same as Lemma 3 after replacing the relevant thresholds with v̂m.

Equilibrium. To derive the equilibrium fees, it suffices to focus on the seller participation profile

after an upward deviation by platform i, that is, psi ≥ p̂s. Note

Πi =
(
pbi + psi − c

)
Qi

=
(
pbi + psi − c

)
(1−G (ṽ))B

(N)
i ,

where we use B̃
(N)
i = B

(N)
i given (D.2). We assume that Πi is quasi-concave in

(
pbi , p

s
i

)
so that the

equilibrium can be characterized by the usual first-order condition. We numerically verified that Πi is

quasi-concave for λ ∈ {0.1, 0.5, 0.9} over all the distributional and parameter configurations considered

in the baseline model. The details and codes of the numerical exercises are available from the authors

upon request.

The demand derivatives, after imposing symmetry, can be calculated as follows:

dQi (p̂; p̂)

dpbi
= (1−G (p̂s))

∂B
(N)
i

∂pbi
|p=p̂ = − 1

X
Qi (p̂; p̂)

and

dQi (p̂; p̂)

dpsi
= − dṽ

dpsi
g (p̂s)B

(N)
i |p=p̂

= − 1

σλ

g (p̂s)

1−G (p̂s)
Qi (p̂; p̂) .

Then, the standard first-order conditions yield the equilibrium in (17).

The proofs of the propositions are provided in the Appendix A.4 and A.5.

D.1 Observable seller fee

We now extend our analysis in Section 5 of the main text to the case where buyers can observe the

fees set on the seller side. We will focus on the polar cases where λ → 0 and λ → 1. We know that

λ→ 1 corresponds to our baseline model. In what follows, we focus on the equilibrium for λ→ 0.

Denote the symmetric fee equilibrium with λ → 0 as p̃ =
(
p̃b, p̃s

)
. Consider a deviating platform i

that sets pi =
(
pbi , p

s
i

)
̸= p̃, while all the remaining platforms continue to set p̃. We first note that the

seller’s participation decision is the same as in the baseline model, such that the number of sellers joining

platform i is 1−G (psi ). Then, a given buyer’s total utility from participating and being able to transact

with sellers through platform i is

U b
i = max

{
ϵi − pbi , ϵ0

}
(1−G (psi )) + ϵ0G (psi )

= max
{
ϵi − pbi − ϵ0, 0

}
(1−G (psi )) + ϵ0.

A buyer joins platform i if and only if U b
i ≥ maxj∈N U b

j , and then uses it for a transaction (with each

seller) if ϵi − pbi > ϵ0. Therefore, the total mass of buyers using platform i for transactions (or buyer

quasi-demand) is

Bi ≡ Pr

(
(ϵi − pbi − ϵ0) (1−G (psi )) ≥ max

j∈N

{
(ϵj − p̃b − ϵ0) (1−G (p̃s)) , 0

})
=

∫ ϵ̄

ϵ

∫ ϵ̄

ϵ

1− F

(
max

{
ϵ− p̃b − ϵ0, 0

} 1−G(p̃s)

1−G(psi )
+ pbi + ϵ0

)
dFn−1(ϵ)dF0(ϵ0).
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Notice that when buyers observe the seller fee, their quasi-demand for platform i is decreasing in psi
because a higher seller fee decreases seller participation, making it less attractive to buyers.

The total demand is Qi (pi; p̂) = (1−G (psi ))Bi. The usual demand derivative terms can be calcu-

lated as

− Qi (p̂; p̂)

dQi (p̂; p̂) /dpbi
= X(p̃b;n)

and

− Qi (p̂; p̂)

dQi (p̂; p̂) /dpsi
=

1−G(p̃s)Bi

g(p̃s)
(
Bi +

∫ ϵ̄0
ϵ0

∫ ϵ̄

pb+ϵ0
f (ϵ) dFn−1 (ϵ) dF0 (ϵ0)

)
=

1−G(p̃s)

g(p̃s)
δ(p̃b;n),

where we have defined, for any arbitrarily given (symmetric) equilibrium buyer fee pb,

δ(pb;n) ≡

1 +

∫ ϵ̄0
ϵ0

∫ ϵ̄

pb+ϵ0
f (ϵ) dFn−1 (ϵ) dF0 (ϵ0)∫ ϵ̄0

ϵ0

∫ ϵ̄

ϵ
(1− F (max {ϵ, pb + ϵ0})) dFn−1(ϵ)dF0 (ϵ0)

−1

. (D.4)

Here, δ(pb;n) is an inverse measure of how changes in seller participation affect the total demand for

platform i. The first component in (D.4) reflects that, each additional seller participating increases the

number of transactions that can be made by inframarginal buyers who have participated on platform i.

The second component in (D.4) reflects that, each additional seller participating also makes platform i

more attractive to buyers, expanding the number of buyers that participate on platform i.

Provided that the profit function Πi =
(
pbi + psi − c

)
Qi (pi; p̂) is quasiconcave in pi, the usual first-

order condition shows that a pure symmetric pricing equilibrium is characterized by all platforms setting

p̃ = (p̃b, p̃s) which solves

p̃b + p̃s − c = X(p̃b;n) =
1−G(p̃s)

g(p̃s)
δ(p̃b;n). (D.5)

D.2 Comparative statics with observable seller fees

To derive further results, we focus on the special case in which F , F0 ∼ Gumbel with scale parameter

µ. In this case, it can be shown that

δ(p̃b;n) =
1 + n exp

{
−p̃b/µ

}
1 +

(
n+ n−1

µ

)
exp {−p̃b/µ}

,

which is decreasing in n and increasing in p̃b. Meanwhile, the expressions for X
(
pb;n

)
and σ

(
pb;n

)
follow from (9) in Section A.6 of the appendix of the main text.

The following proposition corresponds to Proposition 3. We compare the equilibrium with λ → 1

(p̂b and p̂s) and the equilibrium with λ→ 0 (p̃b and p̃s).

Proposition D.1 (Effect of buyer multihoming) Suppose µ ≥ 1. A change from λ → 0 to λ → 1

decreases total fees (p̂b + p̂s < p̃b + p̃s), decreases the seller fee (p̂s < p̃s), and increases the buyer fee

(p̂b > p̃b).

Proof. First, it is straightforward to verify that µ ≥ 1 implies n exp
{
−p̃b/µ

}
≥ 1

µ − 1, which implies

σ(p̃b;n) =
1

1 + (n− 1) exp {−p̃b/µ}
<

1 + n exp
{
−p̃b/µ

}
1 +

(
n+ n−1

µ

)
exp {−p̃b/µ}

= δ(p̃b;n).
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From the respective equilibrium conditions, σ(p̃b;n) < δ(p̃b;n) immediately implies p̂b + p̂s < p̃b + p̃s.

Next, define the function P s
(
pb
)
= X(pb;n)− pb + c, which is decreasing in pb. Notice p̃s = P s

(
p̃b
)
and

p̂s = P s
(
p̂b
)
. Using this notation, p̃b is pinned down by

X(p̃b;n)
g
(
P s
(
p̃b
))

1−G (P s (p̃b))
− δ(p̃b;n) = 0.

We know σ(p̃b;n) < δ(p̃b;n), so

X(p̃b;n)
g
(
P s
(
p̃b
))

1−G (P s (p̃b))
− σ(p̃b;n) > 0.

Notice the left-hand side of this expression is decreasing in pb. To show p̃b < p̂b, suppose by contradiction

p̃b ≥ p̂b. Then it implies

X(p̂b;n)
g
(
P s
(
p̂b
))

1−G (P s (p̂b))
− σ(p̂b;n) ≥ X(p̃b;n)

g
(
P s
(
p̃b
))

1−G (P s (p̃b))
− σ(p̃b;n) > 0,

contradicting the definition of p̂b. Therefore, we must have p̃b < p̂b, which immediately implies p̂s < p̃s.

The next proposition corresponds to the second part of Proposition 4 in the main text (recall that

the first part of the proposition is exactly Proposition 2).

Proposition D.2 (Increased platform competition) Suppose buyers observe seller fees. In the equilib-

rium characterized by (D.5), an increase in n (i.e. platform entry) decreases the total fee p̃s + p̃b.

Furthermore, an increase in n decreases the buyer fee p̃b if exp
{
−p̃b/µ

}
> 1

µ , and increases the seller

fee p̃s if in addition exp
{
−p̃b/µ

}
> Γ, where Γ is a threshold defined in (D.8) and Γ is decreasing in µ.

Proof. Denote M (p̂s) ≡ 1−G(p̂s)
g(p̂s) . Total differentiation on the equilibrium (D.5), in matrix form, gives

[
1−X ′ 1

1−M ∂δ
∂p̃b 1− δ ∂M

∂p̃s

][
dp̃b

dn
dp̃s

dn

]
=

[
∂X
∂n

M ∂δ
∂n

]
. (D.6)

Since X ′ ≤ 0, ∂M
∂p̂s < 0, so accordingly the matrix in (D.6) has determinant

Det ≡ (1−X ′)

(
1− δ

∂M

∂p̃s

)
︸ ︷︷ ︸

>1

− 1 +M
∂δ

∂p̃b︸︷︷︸
>0

> 0.

By Cramer’s rule,

dp̃s

dn
=

1

Det

∣∣∣∣∣ 1−X ′ ∂X
∂n

1−M ∂δ
∂p̃b M ∂δ

∂n

∣∣∣∣∣ = 1

Det

(M ∂δ

∂n
− ∂X

∂n

)
+M

 ∂δ

∂p̃b
∂X

∂n︸ ︷︷ ︸
<0

− ∂δ

∂n
X ′︸ ︷︷ ︸

≥0


 ;

dp̃b

dn
=

1

Det

∣∣∣∣∣ ∂X
∂n 1

M ∂σ
∂n 1− σ ∂M

∂p̃s

∣∣∣∣∣ = 1

Det


(
∂X

∂n
−M

∂δ

∂n

)
− δ

∂M

∂p̃s
∂X

∂n︸ ︷︷ ︸
≥0

 .
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Clearly, dp̃b

dn + dp̃s

dn < 0. Next, after appropriate substitutions, we can arrive at

M
∂δ

∂n
− ∂X

∂n

=
µ exp

{
−p̃b/µ

}
1 + (n− 1) exp {−p̃b/µ}

(
exp

{
−p̃b/µ

}
1 + (n− 1) exp {−p̃b/µ}

−
1 + exp

{
−p̃b/µ

}
µ+ (µn+ n− 1) exp {−p̃b/µ}

)
,

which is positive if and only if exp
{
−p̃b/µ

}
> 1

µ . Therefore, dp̃b

dn < 0 if exp
{
−p̃b/µ

}
> 1

µ holds.

Similarly, we can calculate

M

(
∂δ

∂p̂b
∂X

∂n
− ∂δ

∂n

∂X

∂p̂b

)
= −

µ exp
{
−p̃b/µ

}2 [
1 + (n− 1) exp

{
−p̃b/µ

}
+ exp

{
−p̃b/µ

}]
[1 + (n− 1) exp {−p̃b/µ}]3 [µ+ (n+ µn− 1) exp {−p̃b/µ}]

.

Substituting these expressions and rearranging, we get dp̃s

dn > 0 if and only if

2

exp {−p̃b/µ}
+

1

n+ 1

(
1

exp {−p̃b/µ}
+ 1

)2

− µ− (n− 1)
(
µ exp

{
−p̃b/µ

}
− 1
)
< 0. (D.7)

Notice that the left-hand side of (D.7) is decreasing in exp
{
−p̃b/µ

}
. Therefore, an application of the

intermediate value theorem implies that there exists a unique cutoff Γ, defined implicitly by

2

Γ
+

1

n+ 1

(
1

Γ
+ 1

)2

− µ− (µΓ− 1) (n− 1) = 0, (D.8)

such that (D.7) holds if and only if exp
{
−p̃b/µ

}
> Γ. Notice that Γ is decreasing in µ and n.

To the extent that exp
{
−p̃b/µ

}
is bounded below (e.g. when p̃b ≤ 0 so that exp

{
−p̃b/µ

}
≥ 1), then

the conditions in Proposition D.2 hold whenever µ is sufficiently large (i.e. platforms are sufficiently

differentiated from buyers’ perspective).

E Value of transactions and user heterogeneity

This section corresponds to Section 6 in the main text. Throughout, we denote

M (p̂s) ≡

(
1−G( p̂

s−αs

γs )

g( p̂
s−αs

γs )

)
γs,

where ∂M
∂p̂s < 0 by log-concavity of 1−G.

Proof of Proposition 5. By linearity, note that ∂X
∂αb = − ∂X

∂p̂b = − 1
γbX

′ ≥ 0 and ∂σ
∂αb = − ∂σ

∂p̂b =

− 1
γbσ

′ < 0, where X ′ ≤ 0 and σ′ > 0 are the derivatives of X and σ with respect to the first argument

(Lemma 4 and Lemma 5). Total differentiation of the equilibrium (18), in matrix form, gives[
1−X ′ 1

1− M
γb σ

′ 1− σ ∂M
∂p̂s

][
dp̂b

dαb

dp̂s

dαb

]
=

[
−X ′

−M
γb σ

′

]
. (E.1)

The matrix in (E.1) has a strictly positive determinant

Det = − (1−X ′)σ
∂M

∂p̂s
+
M

γb
σ′ −X ′ > 0,
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By Cramer’s rule,

dp̂s

dαb
=

−1

Det

[
M

γb
σ′ −X ′

]
= −

(
1 +

(1−X ′)

Det
σ
∂M

∂p̂s

)
∈ (−1, 0) (E.2)

dp̂b

dαb
=

1

Det

[(
M

γb
σ′ −X ′

)
+ σ

∂M

∂p̂s
X ′
]
= 1 +

1

Det
σ
∂M

∂p̂s
∈ (0, 1) (E.3)

dp̂s

dαb
+
dp̂b

dαb
=

1

Det
σ
∂M

∂p̂s
X ′ ≥ 0.

The results of dp̂b

dαs < 0, dp̂s

dαs > 0, and dp̂s

dαb + dp̂b

dαb ≥ 0 can be proven similarly by applying Cramer’s rule

to the following matrix: [
1−X ′ 1

1− M
γb σ

′ 1− σ ∂M
∂p̂s

][
dp̂b

dαs

dp̂s

dαs

]
=

[
0

−∂M
∂p̂s σ

]
,

where

dp̂s

dαs
=

1

Det

[
∂M

∂p̂s
σ

]
< 0

dp̂b

dαs
=

−1

Det
(1−X ′)

∂M

∂p̂s
σ =

− (1−X ′) ∂M
∂p̂s σ

− (1−X ′)σ ∂M
∂p̂s + M

γb σ′ −X ′
∈ (0, 1) .

Proof of Proposition 6. To prove the first result, we note from the proof of Proposition 5 that

p̂b − αb is strictly decreasing in αb while p̂s + αb is strictly increasing in αb. Thus, if αb is sufficiently

small, we have p̂b − αb ≥ 0 and p̂s + αb ≤ 0. From equilibrium (18),

∂X

∂γb
= −

(
p̂b − αb

γb2

)
X ′ ≥ 0 and

∂σ

∂γb
= −

(
p̂b − αb

γb2

)
σ′ ≤ 0.

Total differentiation of the equilibrium (18), in matrix form, gives[
1−X ′ 1

1− M
γb σ

′ 1− σ ∂M
∂p̂s

][
dp̂b

dγb

dp̂s

dγb

]
=

[
X + γb ∂X

∂γb

M ∂σ
∂γb

]
,

where the matrix on the left hand side is the same as in (E.1). By Cramer’s rule,

dp̂b

dγb
=

1

Det

[(
X + γb

∂X

∂γb

)(
1− σ

∂M

∂p̂s

)
−M

∂σ

∂γb

]
≥ 0

dp̂s

dγb
=

1

Det

[
(1−X ′)M

∂σ

∂γb
−
(
1− M

γb
σ′
)(

X + γb
∂X

∂γb

)]
=

1

Det

[
−
(
X + γb

∂X

∂γb

)
+M

∂σ

∂γb
+
M

γb
σ′X

]
=

1

Det

[
−
(
X + γb

∂X

∂γb

)
+ σ′ M

(γb)2
(
p̂s + αb − c

)]
≤ 0,

where the last equality uses the equilibrium condition p̂b + p̂s − c = γbX. Finally,

dp̂b

dγb
+
dp̂s

dγb
=

1

Det

[
Mσ′X

γb
− σ

∂M

∂p̂s

(
X + γb

∂X

∂γb

)]
≥ 0.

To prove the second result, we note from the proof of Proposition 5 that p̂s−αs is strictly decreasing
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in αs. Thus, if αs is sufficiently small, we have p̂s − αs ≥ 0 so that

∂M

∂γs
=

1−G( p̂
s−αs

γs )

g( p̂
s−αs

γs )
+

1−G( p̂
s−αs

γs )

g( p̂
s−αs

γs )

(
p̂s − αs

γs

)
≥ 0.

Applying Cramer’s rule to the following matrix yields the stated results.[
1−X ′ 1

1− M
γb σ

′ 1− σ ∂M
∂p̂s

][
dp̂b

dγs

dp̂s

dγs

]
=

[
0

∂M
∂γsσ

]
.

11


	Further properties of the baseline demand function
	Membership fee component
	Multihoming behaviors of buyers
	Observable seller fee
	Comparative statics with observable seller fees

	Value of transactions and user heterogeneity

