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J Numerical Examples for Section 4

J.1 Non-monotonicity of flow payoffs under a stationary privacy policy

Consider the following parametrization: A = {0, 1, 3}, u(1) = 1, u(3) = 1.04, v = 2, δ = 0.9,

σ2
0 = 0.1, and γt = 0 for all t ∈ N. Define U(a) :=

∑∞
t=1 δ

t−1

[
u(a)− v

(
σ2

0 − 1
1

σ2
0

+ta

)]
. First,

under the consumer’s optimal policy, there is some period t∗ such that at∗−1 = 1 and at∗ = 3 if

U(1) > U(3) > U(0). The reason is as follows. Proposition 1 states that the optimal policy under

a stationary privacy policy is either at = 0 for all t, or at is positive and weakly increasing in t.

U(3) > U(0) implies that the consumer chooses the latter, and U(1) > U(3) implies that a1 = 1.

Because a1 = 1 and at = 3 for some finite t, there is a t∗ such that at∗−1 = 1 and at∗ = 3. The flow

payoff increases from t∗−1 to t∗ if u(3)−v

(
σ2

0 − 1
1

σ2
t∗−2

+1+3

)
> u(1)−v

(
σ2

0 − 1
1

σ2
t∗−2

+1

)
. The

inequality holds if u(3) − u(1) > B := 3v(
1

σ2
0

+4

)(
1

σ2
0

+1

) . We can numerically show that U(1) ≈

9.17, U(3) = 9.13, u(3) − (1) = 0.04, and B = 0.039. Thus we have U(1) > U(3) > U(0) and

u(3) − u(1) > B, so the consumer receives a higher flow payoff in period t∗ than in t∗ − 1. This

example shows that the consumer’s flow payoffs are non-monotone, because once at hits amax, the

flow payoffs strictly decrease in t.

J.2 Non-monotonicity of at in equilibrium

Figure 1 depicts the equilibrium dynamics for a myopic consumer. I assumeA = {0, 0.01, 0.02, . . . , 2}

and use Claim 1 in Appendix K to compute an equilibrium. (Claim 1 also implies that long-run

commitment and one-period commitment lead to the same outcome given a myopic consumer.)

Figure 1(a) shows that the platform offers a decreasing privacy level, hitting zero in t = 5. Figure

1(b) shows that the equilibrium activity level first decreases but eventually approaches amax = 2.

The non-monotonicity of a∗t contrasts with the case of a stationary privacy policy.
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Figure 1(a): Privacy level γt
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Figure 1(b): Activity level at

Figure 1: Equilibrium under u(a) = 2a− 1
2
a2, v = 10, and σ2

0 = 1.

J.3 Non-monotonicity of γt in equilibrium

Under different parameters, Figure 2 depicts another equilibrium dynamics for a myopic consumer.

Figure 2(a) shows that γt can be non-monotone. In particular, the platform increases a privacy

level from t = 1 to t = 2 because it becomes less costly to induce the highest activity level through

privacy protection.

K Myopic Consumer

I characterize the equilibrium under a myopic consumer, which facilitates numerical analysis. Let

a∗(γ, σ2) ∈ A denote the best response of a myopic consumer, given a privacy level γ in the current

period and the posterior variance σ2 from the previous period:

a∗(γ, σ2) := max

arg max
a∈A

u(a)− v

σ2
0 −

1
1

σ2
+

1
1
a

+ γ



 . (46)

The following result characterizes the equilibrium.

Claim 1. Consider the game with long-run commitment. If the consumer is myopic, the plat-
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Figure 2(a): Privacy level γt

period
1 2 3 4 5 6 7 8 9 10

A
c
ti
v
ty

 l
e
v
e
l

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 2(b): Activity level at

Figure 2: Equilibrium under A = {0, 1, 2}, u(1) = 10, u(2) = 11, v = 20, and σ2
0 = 1.

form adopts a greedy policy that myopically maximizes the precision of the signal in each period.

Formally, the equilibrium policy (γ∗1 , γ
∗
2 , . . . ) is recursively defined as follows:

γ∗t ∈ arg min
γ≥0

1

a∗(γ, σ̂2
t−1)

+ γ, ∀t ∈ N, (47)

σ̂2
0 = σ2

0, (48)

σ̂2
t =

1
1

σ̂2
t−1

+ 1
1

a∗(γ∗t ,σ̂
2
t−1)

+γ∗t

,∀t ∈ N. (49)

Proof. Lemma 1 implies a∗(γ, σ2) is increasing in γ and decreasing in σ2. Take any privacy policy

(γt)t∈N and let (σ2
t )t∈N denote the sequence of posterior variances induced by a∗(·, ·). I show

σ̂2
t ≤ σ2

t for all t ∈ N. The inequality holds with equality for t = 0. Take any τ ∈ N. Suppose

σ̂2
t ≤ σ2

t for t = 0, . . . , τ − 1. It holds that

σ2
τ =

1
1

σ2
τ−1

+ 1
1

a∗(γτ ,σ2
τ−1)

+γτ

≥ 1
1

σ̂2
τ−1

+ 1
1

a∗(γτ ,σ̂2
τ−1)

+γτ

≥ 1
1

σ̂2
τ−1

+ 1
1

a∗(γ∗τ ,σ̂2
τ−1)

+γ∗τ

= σ̂2
τ .

The first inequality follows from the inductive hypothesis and decreasing a∗(γ, ·). The second

inequality follows from (47). We now have σ̂2
t ≤ σ2

t for all t, which implies the privacy policy
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described by (47), (48), and (49) is optimal.

L General Payoffs of the Platform

Most of the results continue to hold if the platform’s final payoff from a sequence of posterior

variances is Π((σ2
t )t∈N), where Π : R∞+ → R is coordinate-wise strictly decreasing. This general-

ization does not change the analysis, because in equilibrium a deviation by the platform increases

σ2
t for all t ∈ N. An exception is Theorem 1, where the platform’s deviation may not uniformly

increase posterior variances. However, the proof of this theorem rests on the argument that if the

equilibrium fails to meet certain conditions such as σ2
t → 0, the platform can deviate and uniformly

decrease posterior variances. Thus, Theorem 1 continues to hold with the same proof under this

general Π(·).

For example, suppose the platform sells information to a sequence of short-lived data buyers.

Any information sold in period t is freely replicable later and thus has a price of zero in any period

s ≥ t + 1. The profit in period t equals the value of information generated in period t—i.e., the

platform’s ex ante payoff is
∑∞

t=1 δ
t−1
P (σ2

t−1 − σ2
t ), which is decreasing in each σ2

t .

M Full Commitment

This appendix considers the platform with action-contingent commitment power: Before t = 1,

the platform publicly commits to a mapping γ(·) : {φ} ∪ (∪∞s=1A
s) → R+, which determines

γ1 = γ(φ) and maps past actions (a1, . . . , at−1) ∈ At−1 to the privacy level γt in every period

t ≥ 2.

To provide a condition under which action-contingent commitment benefits the platform, we

prepare some notations. First, take any equilibrium under long-run commitment. Let (ât)t, (γ̂t)t,

and (σ̂2
t )t denote the activity levels, privacy levels, and posterior variances at the equilibrium,

respectively. Let Û2(σ2) denote the consumer’s continuation value starting from t = 2 when the

posterior variance at the beginning of t = 2 is σ2 and the consumer faces (γ̂t)t≥2. Also, let U0(σ2)

denote the consumer’s sum of discounted payoffs when the platform always set γt = 0 and the

posterior variance is σ2.

Claim 2. Suppose â1 < amax. The platform’s payoff under action-contingent commitment is
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strictly greater than the one under long-run commitment if

u(amax)− v

σ2
0 −

1
1
σ2

0
+ 1

1
amax

+γ̂1

+ δCÛ2

 1
1
σ2

0
+ 1

1
amax

+γ̂1

 (50)

≥max
a∈A

{
u(a)− v

[
σ2

0 −
1

1
σ2

0
+ 1

1
a

+γ̂1

]
+ δCU

0

(
1

1
σ2

0
+ 1

1
a

+γ̂1

)}
. (51)

Proof. Given the deterministic policy (γ̂t)t under long-run commitment, we create an action-

dependent policy that is strictly better for the platform. Consider the following policy γ∗(·). If

the consumer chooses a1 < amax in t = 1, the platform sets γt = 0 in any period t ≥ 2. If the con-

sumer chooses amax in t = 1, the platform sets γ̂t in any period t ≥ 2, i.e., it adopts a deterministic

policy from t = 2 on. The left-hand side (50) is the consumer’s payoff when she chooses amax in

t = 1 and behave optimally from t = 2 on. The right-hand side (51) is the consumer’s payoff from

the best possible deviation in t = 1. Thus the display inequality means that the consumer chooses

amax > â1 in t = 1. Note that the consumer’s behavior after t = 2 under γ∗(·) is different from

that under long-run commitment. However, the consumer faces a lower posterior variance in t = 2

under the former. Proposition 4 implies that the consumer’s activity level under γ∗(·) is greater

than the one under long-run commitment in any period t ≥ 2. Thus, γ∗(·) gives the platform a

higher payoff in any period than under long-run commitment.
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