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This Online Appendix has four sections. The first section describes the data and the process
of creating the dataset used to estimate the structural model. The second section provides addi-
tional background on the European pharmaceutical market. The third section presents additional
empirical results and robustness checks that were not included in the main body of the paper. The
fourth section presents theoretical results that complement and extend the model presented in the
paper.

A Data Appendix

A.1 Description of the MIDAS dataset

A.1.1 Data coverage

The IMS MIDAS database we use has data on retail (i.e. pharmacies) and hospital sales for 27
European countries and 48 quarters, starting in 2001 (either Q2 or Q3) and ending in 2013 (either
Q1 or Q2), giving us almost complete coverage of the European Economic Area during that time
span.1

Several countries are partially missing data. Most commonly this means missing certain years
of data, missing hospital sales data, and having sales data in Euro instead of local currency (for
countries where the Euro is not the local currency). The problem with having data in Euros instead
of the local currency is that the raw data were originally converted using a fixed exchange rate
(for the entire 12-year sample) instead of a quarter-specific exchange rate. This affects makes the
sales figures unreliable in countries that do not have a fixed exchange rate with the Euro. Table 1
describes our data coverage by country.

Since the problem that we study concerns spillover effects across countries, it is imperative that
we try to include in our sample as many countries as possible. Ultimately, we end up discarding 2
of the 27 countries in our sample due to unsolvable data problems: Czech Republic and Slovakia.
These two countries had non-Euro currencies with fluctuating exchange rates during our sample
period, which means that their sales data are unreliable. We include them in the reduced form
results that do not involve prices but drop them from the structural analysis.

Twelve of the remaining 25 countries have some missing data: Denmark, Estonia, Greece,
Ireland, Latvia, Lithuania, Luxembourg, Netherlands, Portugal, Romania, Slovenia, and Sweden.
Some of these are minor issues that do not affect the analysis. Denmark and Slovenia report retail
and hospital sales jointly, which limits our ability to separate retail and hospital products in some
robustness checks but leaves our main specification unaffected. We have sales in Euros only for
Denmark and Estonia, but the currency of these two countries was pegged to the Euro throughout
the duration of our sample period, so the conversion leaves the sales figures unaffected. Slovenia
also only reports sales in Euros, and for the first 3 years of our sample data its currency was not

1We are missing data for Cyprus, Iceland, Lichtenstein, and Malta. Croatia is also a current member of the EEA, but
only entered in 2015, which is outside our sample.
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Table 1: DATA AVAILABILITY BY COUNTRY

Country Years Hospital Sales Data Currency

Austria 2001Q2-2013Q1 Available Euro

Belgium 2001Q2-2013Q1 Available Euro

Bulgaria 2001Q3-2013Q2 Available Local

Czech Republic 2001Q2-2013Q1 Available Euroa

Denmark 2001Q2-2013Q1 Not distinguished separately Eurob

Estonia 2001Q3-2013Q2 Not available Euroc

Finland 2001Q2-2013Q1 Available Euro

France 2001Q2-2013Q1 Available Euro

Germany 2001Q2-2013Q1 Available Euro

Greece 2001Q2-2013Q1 Not available Euro

Hungary 2001Q3-2013Q2 Available Local

Ireland 2001Q2-2013Q1 Available starting 2006Q1 Euro

Italy 2001Q2-2013Q1 Available Euro

Latvia 2001Q3-2013Q2 Not available Locald

Lithuania 2001Q3-2013Q2 Available starting 2002Q3 Locald

Luxembourg 2001Q2-2013Q1 Not available Euro

Netherlands 2007Q2-2013Q1 Not available Euro

Norway 2001Q3-2013Q2 Available Local

Poland 2001Q3-2013Q2 Available Local

Portugal 2001Q2-2013Q1 Available starting 2010Q1 Euro

Romania 2001Q3-2013Q2 Available starting 2005Q1 Local

Slovakia 2001Q3-2013Q2 Available Euroe

Slovenia 2001Q3-2013Q2 Not distinguished separately Eurof

Spain 2001Q2-2013Q1 Available Euro

Sweden 2004Q1-2013Q2 Available Local

Switzerland 2001Q3-2013Q2 Available Local

UK 2001Q3-2013Q2 Available Local
a The Czech koruna appreciated substantially against the Euro between 2001 and 2012. The average rate fell from

34.021 Ck for 1 Euro in 2002Q1, to 25.167 Ck for 1 Euro in 2012Q4.
b The value of a Danish Krona oscillated between 0.13398 and 0.13468 Euros in the period from 2001 to 2012.
c The Estonian kroon was pegged to the Euro (at a rate of 15.6466 krooni per Euro) until adoption of the Euro in 2011.
d Latvia and Lithuania adopted the Euro after the end of our data (in 2014 and 2015 respectively).
e The Slovak koruna appreciated substantially against the Euro until its adoption in 2009. The average rate fell from

42.234 Sk for 1 Euro in 2002Q1, to 30.35 Sk for 1 Euro in 2008Q4.
f The value of the Slovenian tolar depreciated from 219.3683 to 239.9533 SIT for 1 Euro between 2001Q3 and 2004Q3.

After that, the exchange rate remained constant until the country adopted the Euro in 2007.
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Table 2: VARIABLES IN THE IMS MIDAS DATABASE

Variable Name Description Variable Type

country Country

distributionchannel Distribution Channel Hospital/Retail

mlist Active Ingredient Product definition

crp Marketing Firm Product definition

atc4 ATC4 Product definition

internationalproduct International Product Name Product definition

prd Local Product Name Product definition

productform Product Form Product definition

productinternationalstrength Strength Product definition

internationpack International Package Identifier Product definition

localpack Local Package Identifier Product definition

rxorotc Rx or OTC Product characteristics

localproductlaunchdate Local Product Launch date Product characteristics

estpatentexpirydate Estimated Patent Expiration Date Product characteristics

protection Protection Status Product characteristics

producttype Product Type Product characteristics

licensinginformation Licensing Information Product characteristics

sales_mnf_qtr_‘qrt’_‘yr’_local_curr Sales in local currency Sales information

sales_mnf_qtr_‘qrt’_‘yr’_lceuro Sales in Euro Sales information

standard_units_qtr_‘qrt’_‘yr’ Quantity sold Sales information

pegged to the Euro. However, the Slovenian Tolar fluctuated considerably less than the Czech and
Slovak currencies, so we ultimately decided to keep the data in the sample (without additional
corrections).

The remaining data issues concern the lack of hospital sales data in 9 countries, and missing
years for Netherlands and Sweden. We address these problems by imputing the missing data.
These steps are detailed in section A.4.

A.1.2 Variables

The variables contained in each file are described in Table 2. Each drug is identified by a com-
bination of active ingredient (molecule), marketing firm, therapeutic class (defined by the ATC4
classification), name (both international and country-specific), form, strength, and package.2 Be-

2For more details on the ATC classification, please see http://www.ephmra.org/classification.
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sides revenue and quantity sales, the data provide a few additional characteristics: whether the
product is a prescription or an over-the-counter medication, the launch date, the estimated patent
expiration date, the product type (brand or generic), protection status, and licensing information.

A.1.3 Prices and rebates

The sales figures in the MIDAS database do not include hidden discounts and rebates that firms
occasionally grant to private payers. While we acknowledge this issue, we note that estimates
of non-US rebates tend to be low. For example, Feng (2020) shows in Appendix G that there
is a near-perfect correspondence between US rebates and overall rebates in financial filings of
pharmaceutical companies (Figure A1). However, his analysis is limited to the market for statins.
Other markets may function in different ways. We also conducted several informal interviews
with pharmaceutical executives with firsthand knowledge of pricing in Europe. All the people we
talked to (all of whom asked to remain anonymous), confirmed that rebates for brand drugs in
Europe exist, but are in a range from single-digit to low teens (in percentage terms).

Nonetheless, we believe it is important to consider how the presence of rebates might affect
our analysis. Below, we discuss some possible scenarios. While some of them suggest that the
presence of rebates may lead us to overestimate strategic delays, most scenarios actually imply
that the presence of rebates makes our model more conservative.

The presence of rebates create two issues. First hidden rebates imply that we are overestimat-
ing revenues and prices, and disproportionately so in countries where rebates are higher. Second,
governments may or may not observe rebates, which in turn affects our estimation of the reference
pricing mechanism. We consider each issue separately.

Consider our estimation of revenue and prices. The presence of hidden rebates in lower in-
come countries does not significantly affect the predictions of our model. To see why consider a
concrete example in a stylized, two-country setting. Suppose the government of Poland decides
to grant a hidden rebate to Pfizer in order to induce them to launch their drug sooner. By doing
so they prevent the government of Italy from applying a costly reference. In this case, we would
see the product enter Italy and Poland within a relatively short interval. Since the observed “list”
price has to be high enough that Italy does not reference it (or they do, but the impact is very
small), our model predicts that it makes sense for Pfizer to launch everywhere, and therefore there
are no strategic delays. The only meaningful difference is that our model will predict that Pfizer’s
revenue in Poland is higher than it really is (because it does not account for the rebate). In general,
the reason behind the absence of strategic delays does not matter. Poland may surrender a high
price, or a high “list” price, with a hidden rebate. From the point of view of the model, the two
are equivalent.

The presence of hidden rebates in higher income countries may be more problematic. Hidden
rebates in higher-income countries raise the possibility that a lower price elsewhere might not
actually matter for reference pricing. In the example above, suppose Pfizer sets a price of 10 in
Italy, but with a 50% discount. Later, it enters Poland, at a price of 7. In our data, a few things
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might happen:

1. The “list” price in Italy falls from 10 to 7, but the “real” price of 5 does not move. In this case,
our model could wrongly attribute any idiosyncratic delay to entry in Poland to a strategic
motive.

2. The list price in Italy does not move. In this case, our pricing equation may be affected, as
we would underestimate the µk coefficient for Italy. This is a problem for our estimation,
but, in general, lower values of µk lead to more conservative estimates of strategic delays,
so, if anything, this may lead us to underestimate the extent of strategic delays.

More generally, the presence of hidden rebates in higher countries means we overestimate revenue
in these countries, which in turn implies that we will overestimate the how important reference
pricing is, and in turn could bias our estimates upward.

Next, consider the issue of whether or not governments observe rebates. If governments do
not observe rebates, then our reference pricing function is actually specified correctly, because we
have access to the same data that the government has access to. If governments do observe rebates,
the true specification of the model would need to include a structural error in the price equation.
As noted in the main body of the paper, this makes estimation incredibly challenging, as the
unobserved error would propagate through the reference pricing mechanism in ways that seem
hard to account for. It is unclear what impact this would have on our estimates. If we believed
this to be the case—and that rebates were sizable—we probably would consider estimation of the
reference pricing mechanism to be a futile exercise. However, we believe that this is the least likely
scenario.

Our conclusion is that any assumption about imperfect information would be ad-hoc, so using
the data as is seems to us the most reasonable course of action.

A.2 Additional data sources

Additional data sources are reported in Table 3. We use approval dates from the EMA and the
Heads of Medicines Agencies to calculate launch delays. We use data from the Global Burden of
Disease study to calculate market size for the demand system. We use exchange rates to transform
sales reported in local currencies to Euros. Finally, we use data on GDP and population to run
some simple reduced-form checks.

All these additional data sources are publicly available (the links in Table A.2 are accurate as
of November 20th, 2017). Updated instructions on how to find more recent versions of these data
can be obtained in the README file of the replication package associated with this paper.

A.3 Data cleaning and construction of the main dataset

The dataset we ultimately use in the analysis is a collapsed version of the original dataset de-
scribed in section A.1. In this section we describe how we construct each of the main variables in
that dataset.
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Table 3: ADDITIONAL DATA SOURCES

Data Use Source Source Link

Drug Approval Date
(EMA)

Calculate launch
delays

European
Medicines
Agency

http://www.ema.

europa.eu/ema/index.

jsp?curl=pages/

medicines/landing/

epar_search.jsp

Drug Approval Date
(Mutual Recognition
Procedure)

Calculate launch
delays

Heads of
Medicines
Agencies

http://mri.cts-mrp.

eu/Human/about

Incidence of Disease

Calculate market size
for each market
(therapeutic area and
country)

Global Burden of
Disease Study

http://ghdx.

healthdata.org/

gbd-results-tool

Exchange Rates Adjust sales to Euros
European
Central Bank

https:

//www.ecb.europa.eu/

stats/policy_and_

exchange_rates/euro_

reference_exchange_

rates/html/index.en.

html

GDP and Population
Regression controls
and market size
construction

Eurostat

http://ec.europa.eu/

eurostat/web/

national-accounts/

data/database

An observation in our data is identified by a product, country, and year. A product is defined
as a molecule, firm, and therapeutic class. Table 4 reports the main variables included in the
dataset.3 Below we describe the procedure we used to calculate each of them.

Corp_aggr This variable is what we use to identify the firms that are marketing a specific prod-
uct. Across the EEA, more than one firm can market the same brand product. This occurs mainly
because the firm that received approval sells the marketing rights for specific countries to a differ-
ent company.4 We also sometimes see multiple firms marketing the same product within the same
country. Usually, these are instances of parallel traders, which we can easily identify because they
first appear at least a few quarters after the original product has already been launched. However,

3We omit several variables for the sake of brevity. Some, like form or strength, are additional product characteristics
that we lift from the original data in a straightforward way. Others, like market share, we calculate directly from the
variables we do include in our list.

4This can occur for a variety of reasons. Sometimes, small companies may lack the necessary infrastructure to sell
their drug in certain countries (this is more likely to occur in small Eastern European countries), so they license their
product to a larger, established company. Other times, a company may license their product to a local company who
can navigate the approval process more efficiently.
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Table 4: MAIN VARIABLES IN THE DATASET USED FOR ESTIMATION

Variable Name Description Variable Type

country Country Panel variable 1

year Year Panel variable 2

mlist Active ingredient Product definition

corp_aggr List of all marketing firms Product definition

lotherclass2 Therapeutic class Product definition

authorization_dt Date of EEA-wide marketing approval Product characteristics

launch_date Date of launch in country Product characteristics

end_exclusivity Date of generic entry Product characteristics

main_sample Indicator for main sample Product characteristics

main_dynamic Indicator for dynamic sample Product characteristics

sales_adjusted Revenue sales Sales information

standard_units Volume sales Sales information

mkt_size Market size in country, year, and therapeutic class Sales information

we also see some rare instances of co-marketing agreements, whereby two firms sell the same
product at the same time in the same country. Since we do not have information on who holds
the marketing rights in a given country, we assume that the first company to launch a product
is the one holding the marketing rights. The corp_aggr variable then lists all firms that hold the
marketing rights in at least one country.

Lotherclass2 This variable indicates the therapeutic class. Broadly speaking, our therapeutic
classes are defined at the Anatomical Therapeutic Classification (ATC) 3 level, which corresponds
to a therapeutic-pharmacological subgroup within one of the 14 main systems (Table 5). In ad-
dition, we aggregate classes that contain classes of products that share the same molecules (e.g.
D7A&D7B|CORTICOSTEROID, TOPICAL, PLAIN & COMBO is a therapeutic class that com-
bines both plain and combination corticosteroids), and classes of products that have broad appli-
cations (e.g. oncologics, which are separated in three large classes: cytotoxics, hormonals, and
targeted therapies). We also separate classes of products that have similar pharmacological profile
but are used to combat different diseases (e.g. J5B, which includes non-HIV antivirals, is separated
in J5B1, Viral Hepatitis; J5B3, Herpes Antivirals; J5B4, Flu Antivirals; and J5B5,9, Other Respira-
tory Antivirals). Finally, we make a few adjustments for complex diseases with therapies that
come from a broad spectrum of therapeutic areas (e.g. Multiple Sclerosis includes Beta interferons
(the L3B2 ATC4 code), plus a handful of drugs from other classes, mainly monoclonal antibodies).
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Table 5: ATC MAIN SYSTEMS

Code Contents

A Alimentary tract and metabolism

B Blood and blood forming organs

C Cardiovascular system

D Dermatologicals

G Genito-urinary system and sex hormones

H Systemic hormonal preparations, excluding sex hormones and insulins

J Antiinfectives for systemic use

L Antineoplastic and immunomodulating agents

M Musculo-skeletal system

N Nervous system

P Antiparasitic products, insecticides and repellents

R Respiratory system

S Sensory organs

V Various

This table describes the classification of the first digit of the ATC code (or ATC1). Each letter roughly corre-
sponds to an organ system. For more details on the ATC classification system, see http://www.ephmra.org/

classification

Authorization_dt The authorization date variable identifies the date when a product received
marketing approval for the entire EEA. We create this variable by aggregating information from
a variety of sources. First, we looked on the website of the European Medicines Agency (EMA)
to find drugs that received approval directly from the EMA. The marketing authorization date for
these products is the date published on the EMA’s website. Then, we looked on the website of the
Heads of Medicines Agencies (HMA) to identify products that received a marketing authorization
through the mutual recognition process. The HMA is a network of the heads of the National Com-
petent Authorities whose organizations are responsible for the regulation of medicinal products
for human and veterinary use in the European Economic Area. On its website, the HMA lists all
mutual recognition applications filed for each drug. We use the date of the earliest successful mu-
tual recognition application as the date of marketing authorization.5 After matching our data to
the EMA and HMA data, we are left with a handful of drugs that still do not have an authorization
date. In these cases, we impute the authorization date as the date of the fifth launch. We believe

5In practice, mutual recognition applications are rarely for all European countries. However, since these applications
are rarely challenged, we believe that choosing to apply only to specific countries is a strategic decision that is equivalent
to the choice to delay entry. Firms may only apply for mutual recognition in a given country only when it makes sense
for them to actually launch there.
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this is a conservative estimate, as virtually all drugs for which we have data have authorization
dates that predate the fifth launch.

Launch_date This variable reports the date when the product was first launched in a country.
It is largely based on the variable “localproductlaunchdate” in the original IMS database. The
only two imputation steps we implement are to anticipate or delay the launch date to the earliest
available quarter with positive sales in the rare instances when the quarter of the launch date does
not match the quarter when sales first appeared.6

End_exclusivity This variable identifies the time when a product loses exclusivity and becomes
subject to generic competition. This is an important date in our model because it determines
the end of the dynamic problem of the firm. To calculate this variable we first take the variable
“estpatentexpirydate” from the IMS data. We then define the loss of exclusivity (LOE) date by
country as the earliest of “estpatentexpirydate” and the date of first generic entry in that country.
In most cases, this calculation yields a unique LOE date for a single product.7 In all other cases,
we use as the LOE date the latest of the LOE dates in France, Spain, and Italy. We do this because
France, Spain, and Italy are the largest countries that use ERP. Once a product loses exclusivity
in all three of these countries, we believe that the incentives to manage entry will become quite
small. Consistent with this idea, we find that only a very small fraction of launches occur after our
estimated date of end of exclusivity.

Main_sample The main sample variable identifies all products that we include in our analysis
of price and demand. The sample includes prescription drugs (i.e. excluding over-the-counter
products) that satisfy the following requirements:

• First launched on or after January 1st, 1995

• Patent expiration occurred on or after January 1st, 2003 (giving at least one full year of po-
tential observations)

• At least one launch in a country on or after January 1st, 2002

• The firm selling the product is classified as the originator firm (i.e. the first recorded launch
date of the molecule is associated to that firm)

• At least 50% of the launches occurred prior to patent expiration (this condition eliminates a
handful of products that did not receive EU-wide approval)

• The product satisfies at least one of these three conditions:

– It received approval from the EMA

6Note that we can only perform this imputation step for products whose launch date is on or after January 1st 2002.
7Patents generally expire at the same time in all EEA member states, so it is common for drugs to lose exclusivity in

the same year in all EEA member states.

11



– It received at least one approval using the Mutual Recognition Procedure

– It is sold in at least 11 countries as of December 31st, 2012

481 products satisfy these requirements.

Main_dynamic This variable identifies a subset of main sample products whose end_exclusivity
date occurs on December 2012 or earlier. We use this smaller sample (87 products in total) in the
dynamic analysis.

Sales_adjusted and standard_units We calculated these variables by aggregating spending and
volumes for each product on a yearly basis. In doing this aggregation we sum over sales numbers
for all possible formulations of a product.

mkt_size This variable represents our estimate of the market size in each therapeutic area, coun-
try, and year. It is expressed in standard units (the same units used to report drug volume sales).
Since we do not have direct data on market size—which includes individuals who could be pre-
scribed a drug—we approximate it using data on population size and incidence rates. We describe
our procedure below, in steps.

1. First, we match each product to a specific disease. We do so, by using a dataset that maps
ATC 4-digit codes (Anatomical Therapeutic Chemical classification) to diseases listed on
the Global Burden of Disease data. This map was kindly provided to us by the authors of
Costinot et al. (2019), prior to that paper’s publication. In the mapping, each product has a
unique ATC-4 code, and each ATC-4 code maps to a unique disease. However, the map does
not include all ATC-4 codes, so we are unable to match a small percentage of drugs (~3.5%)
in three therapeutic areas: N1A|ANAESTHETICS, GENERAL, N1B|ANAESTHETICS, LO-
CAL, and N2A|NARCOTIC ANALGESICS.

2. Next, we map each therapeutic areas to the diseases associated with all products in that ther-
apeutic area. This map is time- and country-invariant. In other words, we use the diseases
associated to all drugs in the therapeutic area, including ones that have not been approved
yet, and ones that have been approved but may not have been launched yet. Our reason-
ing here is that future users of not-yet-launched drugs should still be counted as potential
patients.

3. We then use the “prevalence” variable from the GBD data to calculate that number of po-
tential patients in a given therapeutic area. To do so, we simply sum the prevalence of all
diseases associated with that therapeutic area. Note that the prevalence variable in the GBD
data is year- and country-specific, so our estimated prevalence also varies over years and
countries. In the three therapeutic areas listed above, where we cannot match disease data
to drugs, we use the entire population over 15 years of age as an estimate of prevalence.
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4. Finally, we need to express the prevalence variable (whose unit is number of patients) to
standard units. We do this to be able to calculate market shares (our drug quantity data is
expressed in standard units). The right conversion rate that we should use is the average
number of standard units that a patient uses in one year of treatment. Unfortunately, there is
no available estimate for this number, so we have to come up with an alternative conversion
rate. To do so we calculate the ratio of total quantity sold to prevalence for each therapeutic
class, country, and year. Formally, denote

rconv
akt =

∑j∈a qjkt

Pakt

where qjkt is total standard units sold by drug j in country k and year t, and Pakt is the preva-
lence of therapeutic area a in country k and year t (i.e. the estimated number of potential
customers for that class, country, and year). rconv

akt would represent the average standard
units used by a patient in one year of treatment if all patients were taking medications. Obvi-
ously, not all potential patients will be undergoing treatment in a given year. Therefore, rconv

akt

represents a lower bound for the true conversion rate. Assuming that the conversion rate is
the same across countries and years, the best possible approximation we can get for the true
conversion rate is the maximum of rconv

akt for each class, i.e.

rconv
a = max

k,t
rconv

akt

Then, to get a market size estimate we calculate

Makt =

(
∑
j∈a

qjkt

)
× rconv

a × 1.01

The 1.01 multiplier ensures that the outside option has positive market share—as dictated
by the underlying assumptions of the logit model we use to estimate demand.

Figure 1 plots the distribution of market share for the outside option that we recover using this
procedure.

A.4 Imputation of missing data

We need to account for three types of instances of missing data. First, some products are missing
some years of data, or have negative sales recorded in a small number of instances. Second, a
handful of countries have partially or completely missing data for the hospital channel. Third, the
Netherlands and Sweden have missing data for a few years in the initial part of the sample.
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Figure 1: Distribution of the market share for the outside option

A.4.1 Imputation of missing years of data for individual products

Occasionally, we see some years of missing data or negative sales for some drugs.8 This can
happen in three instances. First, in some cases we observe a launch date, but no sales (e.g. a
product is recorded as having been launched in 2002 but first sale is recorded in 2004). Second, in
other cases we may see a product disappear (e.g. it is sold every year up to 2007, but never after
that). Finally, we may see sales recorded in non-consecutive years (e.g. 2003 and 2005), but not in
years in between (e.g. 2004).

In the first instance, we adjust the launch date instead of the sales variable, and replace it
with the date when sales are first recorded. In the second instance, we apply no adjustment and
simply assume that the product exited exogenously (i.e. the firm did not choose to withdraw the
product). We manually checked all these cases, and they all fall in one of two categories: either
(i) the product had been declining in sales for a few years, until it disappeared; or (ii) the product
was subject to a forced withdrawal by the EMA (we note these instances in Table 6).

In the last instance, we use linear interpolation to fill in the missing years. This imputation is
potentially problematic. Data could be missing for two reasons: either the data were not collected
for a specific drug in a particular year, or the drug did not record any sales. Our imputation strat-
egy is appropriate in the former case, but not in the latter. We chose to impute the data this way
because these occurrences are largely confined to Eastern European countries. If we mistakenly

8Negative sales can occur when pharmacies or hospitals reconcile inventory stock at the end of the year. We treat
negative sales as missing when we do this imputation.
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Table 6: WITHDRAWN PRODUCTS

Molecule Name Approval Date Withdrawal Year

DROTRECOGIN ALFA (ACTIVATED) 22aug2002 2011

EPOETIN DELTA 01jan2007 2009

GLIMEPIRIDE#ROSIGLITAZONE 01nov2006 2010

LUMIRACOXIB 01jan2005 2007

METFORMIN#ROSIGLITAZONE 20oct2003 2010

RIMONABANT 19jun2006 2009

ROSIGLITAZONE 11jul2000 2010

SIBUTRAMINE 01apr2001 2010

SITAXENTAN 10aug200 2010

VALDECOXIB 27mar2003 2008

This table lists all molecule that received approval by the EMA and later had that approval rescinded for safety reasons.
An exact withdrawal date is not available since recalls generally take place over at least a few months.

attribute non-existing sales to products sold in Eastern Europe, our model will overestimate the
incentive of firms to launch in Eastern Europe, which goes against the result that we find. Hence,
our choice is conservative in that regard.

A.4.2 Imputation of missing data from the hospital channel

Ireland, Lithuania, Portugal, and Romania are missing hospital sales for a few years at the begin-
ning of the sample, but all have at least a few years of hospital sales available. Estonia, Greece,
Latvia, Luxembourg, and the Netherlands are missing hospital sales entirely. We impute hospital
sales using information contained in other years and other countries.

Wherever possible, we calculate drug-country specific share of sales through the hospital chan-
nels and use it to project sales for missing years. This strategy is only available for countries that
have partially missing hospital sales. For countries that are missing hospital sales entirely, we use
the drug-specific share of hospital sales.

The imputation works in two steps. First, we calculate the share of hospital sales MSh
jk (or

MSh
j , for the drug-specific share) using data from other years and countries. Then, hospital sales

are equal to

Sales
Hospital
jkt = SalesRetail

jkt ·
MSh

jk

1−MSh
jk

We do the same imputation for quantity sold and revenue sales.
For countries that are missing hospital sales in all years, we cannot impute sales of products

that are sold exclusively through the hospital channel. This is a shortcoming of the data, but
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unfortunately we cannot address it.

A.4.3 Imputation of missing years of data for specific countries

The only information we have on the fully missing years for Sweden and the Netherlands is what
products are sold during those years, which we can deduct using the launch date.9 To impute
quantity sold we use the demand primitives implied by our structural demand system. From our
demand system we recover the parameters that determine the mean utility of each product j in
Sweden and the Netherlands, namely αjSWEDEN, αjNETHERLANDS, β j, and ηj. We also recover σ ,
which is the parameter that governs the covariance of the error term across the various nests. The
other variables that go into calculating the predicted market share are the age of the product—
which we can recover from the launch date—and the number of competitors—which we can also
build by looking at which product where launched before that year. From the predicted market
shares, we then calculate total sales using the market size variable.

To impute prices, we use the first available price and assume it remained constant since launch.

A.4.4 Imputation of price data

The prices recorded in the MIDAS database are best understood as average ex-factory prices,
calculated as total revenue received by the firm in a given period divided by total units sold in
the same period. These prices can fluctuate for reasons that are not related to changing pricing
guidelines at the government level. For example, revenues may be recorded at a different time
than units sold. In other occasions, firms may provide some units of a yet unapproved drug at no
charge for compassionate use.

This introduces some measurement error in the data. Since our model will work best if mea-
surement error is limited, we run the price data through some sanity checks to parse out prices
that seem unlikely to be accurate. Broadly speaking, we encounter two types of suspicious price
patterns. The first one is a one-off movement in price for a given country. Usually this occurs
in the first year during which a product is sold and is more likely to occur when the product is
introduced late in the year. What we generally observe is a very low price, which then jumps up
immediately in the following year. There are two explanations for this. One is that payments may
have occurred in the following fiscal year, so they are not reflected in the current year data (but
quantity is). The other is that some fraction of the product sold was used under compassionate use
rules, which basically mean that the company provided it for free to certain patients even before
it had officially completed the negotiation process.10 The second one is a price for a given country
that is completely inconsistent with the prices charged in the rest of Europe. This pattern is more
likely to occur in Eastern Europe. Compassionate use might be the reason for these prices. When

9If a product that was available in a missing year disappeared before it could be recorded in our data we will not be
able to observe it. However, product withdrawals are rare.

10For more details on compassionate use, see https://www.ema.europa.eu/en/human-regulatory/research-
development/compassionate-use, retrieved March 2020.
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Table 7: OBSERVATIONS FLAGGED FOR PRICE BY COUNTRY

Country Number of observations Flagged

AUSTRIA 3,327 0
BELGIUM 2,867 1
BULGARIA 1,841 6
DENMARK 3,003 0
ESTONIA 1,516 23
FINLAND 3,067 7
FRANCE 3,107 5
GERMANY 3,632 2
GREECE 2,487 8
HUNGARY 2,423 0
IRELAND 3,032 10
ITALY 3,068 2
LATVIA 1,799 10
LITHUANIA 1,909 28
LUXEMBOURG 2,073 0
NETHERLANDS 1,614 3
NORWAY 3,104 4
POLAND 2,545 27
PORTUGAL 2,893 15
ROMANIA 1,906 4
SLOVENIA 2,289 11
SPAIN 3,225 3
SWEDEN 2,776 1
SWITZERLAND 3,075 0
UK 3,375 14

Total 65,953 184

prices are that much lower in Eastern Europe, we suspect that they cannot be used in reference
pricing functions.

The exact set of rules that we use to select potential measurement error in prices are the fol-
lowing:

1. Price values that deviate from the current average European price by a factor of 3 (either
higher or lower), AND are the result of an abrupt price change (i.e. the previous year’s price
and the following year’s price are in line with European averages)

2. Flag price values that deviate from the current European average by a factor of 10

3. Extend the flag to price values in previous or following years if the price is within 10% of the
flagged value.

We then clear the flag if 4 or more countries have flagged prices for a given molecule (because this
means that it is more likely that there is something real going on in the market). The remaining
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flagged observations are imputed as follows. For one-off flags, we replace them with the average
of the price in the previous and following year (when only one price is available, as in the case
of a one-off price in the launch year, we simply use the price in the following year). Whenever
all prices for a country and drug are flagged, we exclude that country and drug altogether (i.e.
we assume the product was never launched there). In total, we flag 184 values out of more than
65,000. Table 7 shows the distribution of flagged values across countries.

B Additional Background on the European Pharmaceutical Market

In this section, we present some evidence on the impact that the introduction of the EMA had on
delays. We also include the reference pricing matrices that we constructed for each year.

B.1 The Effect of the European Medicines Agency on Delays

Prior to 1995, pharmaceutical companies seeking to sell prescription drugs in Europe needed to
separately apply for marketing approval in each country. The EMA was founded in 1995 to reduce
the administrative burden faced by companies.

Figure 2 plots the number of new molecular entities approved each year since 1995. We dis-
tinguish between approvals obtained directly from the EMA, through the centralized procedure,
approvals obtained through the Mutual Recognition Procedure (which was also installed after the
EMA was introduced), and other approvals. We can see that within a few years virtually every
drug is using one of the two main procedures introduced by the EMA. In recent years, drugs are
also increasingly reliant on the centralized procedure, rather than the Mutual Recognition Proce-
dure.

In the data, we observe a market decrease in the average launch delay before and after the
founding of the EMA (Figure 3). A variety of factors likely contributes to this decrease. First, the
new centralized approval procedure should reduce the fixed cost of entry in each country. This
should be especially helpful for small low-income countries. Second, it should reduce the time
necessary to receive approval. Third, it may reduce the protectionist tendency of member states to
prevent entry from firms whose drugs compete with drugs produced by domestic manufacturers.

The clear discontinuity in delays between the pre-1995 sample, and the post-1995 sample is
what motivated our choice to restrict the analysis to drugs that were first launched after January
1st, 1995.

B.2 External Reference Pricing Functions, 2002-2012

We constructed reference pricing functions by combining several published sources (Carone et
al., 2012; European Federation of Pharmaceutical Industries and Associations, 2014; Kanavos et
al., 2011; Leopold et al., 2012; Wilsdon et al., 2013) with unpublished IMS reports. Even though
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Figure 2: NUMBER OF DRUG APPROVALS BY YEAR
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This stacked bar chart shows the number of new molecular entities approved in Europe by year, starting in 1995 (the
year the EMA was founded). Approvals are divided according to the procedure used by the firm (for more details on
each procedure, please consult Section 2.1 of the paper).

external reference pricing functions differ significantly across countries, only a few changes oc-
curred to these functions over the period between 2002 and 2012, We list them in Table 8. Only
four countries made changes that did not coincide with entry of new member states in the EU or
Eurozone: Belgium (changed reference formula in 2011), Greece (changed basket and formula in
2010), Poland (changed basket in 2012) and Portugal (changed basket in 2007 and 2012). This re-
inforces our belief that most changes to the ERP function can be considered exogenous. We report
reference pricing functions for all countries and years in Figure 4.

We use the reference basket and formulas to estimate reference prices in our model, but we
exclude a few additional characteristics of ERP policies that can also vary across countries. We
briefly list them here for completeness. First, countries update the reference prices with varying
frequency, from as little as every 6 months (e.g. Greece, and Slovenia), to as many as 60 (Finland).
Second, countries can use raw ex-factory prices, or apply a PPP adjustment (all Scandinavian
countries do so). Third, not all countries apply ERP to the same set of drugs. Most countries apply
ERP only to drugs that are reimbursed through the national health insurance system, but some
apply it to all new innovative drugs (e.g. France), and others to all drugs, regardless of reim-
bursement status (e.g. Greece). Table 9 provides an overview of these additional characteristics.
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Figure 3: DELAY PATTERNS BEFORE AND AFTER THE EMA

This scatter-plot shows the distribution of the launch of new drugs. Each launch in each country is recorded separately,
and is defined by two coordinates: the date in which the product was approved, and the date in which it was launched.
If there were no delays, then all points should lie on the 45-degree line. It’s very clear from the plot that drugs approved
after 1995 experienced fewer delays (this is clear from the increased concentration of dots close to the 45-degree line),
which suggests that the EMA had a large negative effect on delays. This result is what motivated our choice to focus
only on the post-1995 sample.
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Table 8: CHANGES TO REFERENCE PRICING FUNCTIONS

Year Country Implemented change

2005 AUSTRIA Added new EU member states (CZ EE HU LT LV PL SL SK).

2008 AUSTRIA Added new EU member states (BG RO).

2005 BELGIUM Added new EU member states (CZ EE HU LT LV PL SL SK).

2008 BELGIUM Added new EU member states (BG RO).

2011 BELGIUM Changed formula to average.

2005 FINLAND Added new EU member states (CZ EE HU LT LV PL SL SK).

2008 FINLAND Added new EU member states (BG RO).

2010 GREECE Removed DK, EE, and SE. Changed formula to average of 3 lowest prices.

2011 HUNGARY Added BG, CH, DK, EE, LT, LU, LV, NL, NO, RO, SE, UK.

2005 ITALY Added new EU member states (CZ EE HU LT LV PL SL SK).

2008 ITALY Added new EU member states (BG RO).

2012 POLAND Added AT, BG, EE, FI, LV, NO, RO, SL, SK.

2007 PORTUGAL Added Greece.

2012 PORTUGAL Changed basket to Italy, Spain, Slovenia.

2008 SPAIN Added Slovenia (new EURO member).

2009 SPAIN Added Cyprus and Malta (new EURO members).

2010 SPAIN Added Slovakia (new EURO member).

2012 SPAIN Added Estonia, Latvia, and Lithuania (new EURO members).

This table lists all the changes that were made to reference pricing functions, sorted by country and year. Most changes
involved the addition of new EU/EURO Member States. Figure 4 also plots the full reference pricing matrices for all
countries and years. Please refer to it for more details.
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Table 9: ADDITIONAL ERP DETAILS FOR EEA COUNTRIES

Country Price referenced ERP used for Frequency of re-referencing (months) a

Austria MNF Reimbursed drugs
Belgium MNF Reimbursed drugs Undefined
Bulgaria MNF Prescription drugs 6
Switzerland MNF 36
Czech Republic MNF All drugs 36
Germany
Denmark
Estonia MNF Reimbursed drugs 6
Greece MNF All drugs 6
Spain MNF Innovative drugs
Finland PPP Reimbursed drugs Up to 60
France MNF Innovative drugs 60b

Hungary PPP Reimbursed drugs 12
Ireland MNF Innovative drugs 24
Italy MNF Reimbursed drugs 24
Lithuania MNF Reimbursed drugs 12
Luxembourg MNF All drugs 18
Latvia MNF Reimbursed drugs 12
Netherlands PPP Prescription drugs 6
Norway PPP Prescription drugs 12
Poland MNF Reimbursed drugs 24
Portugal MNF Prescription drugs 12
Romania MNF Reimbursed drugs 12
Sweden
Slovenia MNF Reimbursed drugs 6
Slovakia MNF Reimbursed drugs 6
United Kingdom

a European Federation of Pharmaceutical Industries and Associations. 2014. "Principles for Application of International Reference Pricing Systems." EFPIA Position Paper.
b France uses ERP at launch, and then guarantees the agreed upon price for five years. ERP is updated yearly after that (IMS Pharmaceutical Pricing & Reimbursement Concise

Guide, France; December 2012)

We did not include these features in our model because we lacked data to do so. First, we
do not know exactly when reference prices are updated, so we chose a simple rule (a one-period
delay) that is roughly consistent with the average updating frequency across European countries
(which is about 12 months). Second, we do not know the exact details of how PPP is applied.
Finally, we do not know which drugs ERP applied to. Our parameter µk captures some of this
cross-country variation.
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Figure 4: EXTERNAL REFERENCE PRICING MATRICES

(a) 2002

(b) 2003
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Figure 4: EXTERNAL REFERENCE PRICING MATRICES

(c) 2004

(d) 2005
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Figure 4: EXTERNAL REFERENCE PRICING MATRICES

(e) 2006

(f) 2007
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Figure 4: EXTERNAL REFERENCE PRICING MATRICES

(g) 2008

(h) 2009
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Figure 4: EXTERNAL REFERENCE PRICING MATRICES

(i) 2010

(j) 2011
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Figure 4: EXTERNAL REFERENCE PRICING MATRICES

(k) 2012

C Additional results and robustness checks

In this section, we report additional results and robustness tests for some of the model specifica-
tions. The section is divided in three subsections. In the first subsection, we explore alternative
explanations for launch delays that do not involve ERP, and find that none of these alternative
explanations fits all patterns in the data.

In the second subsection, we report some reduced-form evidence on the correlation between
price levels and delays. One of the other possible avenues that firms can exploit to push back
against reference price is increase prices in lower income countries. We find some suggestive
evidence that backs this idea: price levels are strongly correlated with GDP per capita among
higher-income Western European countries, but the relationship flattens significantly among East-
ern European countries suggesting that firms apply some sort of price floor for European coun-
tries, possibly as a response to ERP.

In the third subsection, we report results of a placebo test of the pricing model where we
assigned a fake reference function to the four countries that do not use reference pricing. The test
shows that the µk coefficient—which measures the weight given to the reference function in the
pricing equation— is zero for all four countries.
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C.1 Testing alternative explanations of launch delays

The presence of delays does not represent, in and of itself, enough evidence that firms are respond-
ing strategically to reference pricing. Delays could be caused by fixed costs of entry, capacity con-
straints, or because firms can only send a limited number of entry applications to each country. In
this section, we check whether reduced form patterns in the data are consistent with these alter-
native explanations, and find that none of these possible alternatives can fully explain all patterns
in the data.

We begin by introducing a stylized model of entry. Suppose a monopolistic firm has a license
to sell a new drug in two countries. The drug has a lifetime of two periods, after which a generic
enters, and profits fall to zero. Assume that prices are set through an exogenous mechanism, so
the firm’s only choice variable is the launch sequence, which we denote as (s1, s2), where sj is the
period in which the product is launched in country k. We also assume that demand and prices are
constant over time, and that there are no costs of production. Denote demand and price in country
k as qk and pk respectively and assume WLOG that p1 > p2.

Within this framework, we consider four possible frictions that could lead to delays: reference
pricing, fixed costs of entry, capacity constraints, and limits to the number of launches that can be
completed in each period.

External reference pricing. First, assume that differential pricing can only be sustained for one
period. After that, if the drug is available abroad, governments take notice of each other’s prices
and demand the lowest one. In this scenario, the optimal strategy can either be to launch imme-
diately in both countries or wait until the second period before launching in the country with a
lower price. Let the profits of a given launch sequence (s1, s2) be expressed as π (s1, s2). Then

π (1, 2) = p1q1 + (p1q1 + p2q2)

π (1, 1) = (p1q1 + p2q2) + (q1 + q2) p2

Hence, a delay will occur if and only if

π (1, 1) > π (1, 2) ⇐⇒ q1 (p1 − p2) > q2 p2 (1)

The LHS of this equation represents the revenue loss caused by reference pricing in the second
period, while the RHS represents the additional sales from anticipating entry in country 2. Since
the loss depends on the difference between p1 and p2, delays in country 2 should be inversely
correlated with prices even after controlling for revenue.

Fixed costs of entry. Second, assume that in order to enter in a country the firm must pay a
stochastic fixed cost of entry ζkt ∼ Fkζ

(
θkζ

)
. We can treat the entry problem in each country
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separately. In period 1, the firm decides whether to delay or not based on

max {2pkqk − ζk1; pkqk −E [ζk2]}

In particular, there will be a delay in country k in period 1 if and only if

ζk1 > pkqk −E [ζk2] (2)

According to this model, the probability of delay should respond to revenue, but should not de-
pend on price once revenue is accounted for.

Capacity constraints. Third, assume that the firm has unlimited capacity in period 2, but can
only produce a fixed amount q̄ < q1 + q2 in period 1. In this scenario, the firm would sell first
in the country with a higher price, that is, country 1. Then, if q̄ > q1 it would sell the remaining
units in country 2. Delays in country 2 arise if q̄ < q1. This model predicts that delays should be
inversely correlated with price even after accounting for revenue.

Limited number of applications. Finally, assume that firms can launch in at most one country
in each period. In the first period, the firm will choose to launch in country k if and only if

pkqk = max
`∈{1,2}

{p`q`} (3)

As in the model with fixed costs of entry, prices shouldn’t matter after accounting for revenue.

While delays can arise in all four variations of the model, each scenario predicts different delay
patterns. To test which models fits the data best we run three tests. First, we check whether delays
are inversely correlated with prices after controlling for revenue. As a test of this hypothesis we
regress delays on revenue and price:

Delayjk = αj + ln
(

Yearly Revjk

)
+ ln

(
pjk
)
+ ε jk

To address the issue that revenue will mechanically be lower in countries where entry is delayed,
we use average yearly revenue. With price, the main concern is that what we observe in the data is
a combination of a country’s true underlying price and the reference price. We test three different
measures of price: average price, price at launch, and maximum price. Each has some advantages
and disadvantages. Average price is more robust to year-to-year fluctuations but will also suffer
the most from the impact of reference pricing. Price at launch and maximum price are less likely to
be influenced by reference pricing but are also potentially noisier. Our results (Table 10) show that
while the exact measure of price matters for the magnitude of the correlation, all three measure
are significantly and negatively correlated with delays. Hence, this test rules out both fixed costs
of entry and limits to the number of applications as the explanations behind delays.
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Table 10: IMPACT OF PRICE AND REVENUE ON DELAYS

(1) (2) (3) (4) (5) (6)

ln
(

Yearly Revij

)
−2.752 −3.725 −2.756 −3.769 −2.756 −3.757
(0.092) (0.096) (0.092) (0.097) (0.092) (0.096)

ln
(
avg

(
pjkt
))

−0.207 −8.782
(0.087) (0.767)

ln
(

Pijt0

)
−0.170 −5.907
(0.088) (0.726)

ln
(
max

{
pjkt
})

−0.163 −8.701
(0.087) (0.718)

Drug FE Y Y Y Y Y Y
Country FE N Y N Y N Y

R2 0.09 0.38 0.09 0.38 0.09 0.39
N 8, 819 8, 819 8, 819 8, 819 8, 819 8, 819

Second, we test whether capacity constraints are likely to exist. We use total output as a proxy
for capacity and exploit the fact that some drugs have declining sales towards the end of their
life-cycle. In the data, we can see the year in which the firm reached peak output and calculate
the fraction of countries where the product is not yet available after output has already started
declining. We find that approximately 22% of launches are missing at the end of the year in which
peak output is achieved (Figure 5). Hence, this test suggests that capacity constraints cannot
entirely explain delays.

Third, we run an indirect test of the reference pricing model by looking at how prices change
across countries that use ERP and countries that don’t. To do so, we run the following regression:

ln
(

pjkt
)
= θj + γka + δt + ε jkt

where γka is a fixed effect for country and drug age, measured in years starting from the approval
year. We also include drug fixed effects θk and year fixed effects δt. We focus on the four largest
countries in the Eurozone: France, Germany, Italy, and Spain. Germany does not use ERP, while
the three other countries do. To check whether prices diverge over time we plot the difference
between the γka coefficients for Germany and those of the the three other countries (Figure 6).
The results show that relative prices in France, Spain and Italy fall over time relative to Germany.
This is consistent with the additional downward pressure that we would expect to see through
the external reference pricing channel: as the product is launched in more countries, prices fall
wherever ERP is used relative to countries where ERP is not used.
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Figure 5: FRACTION OF LAUNCHES OCCURRING AFTER PEAK CAPACITY IS REACHED
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Figure 6: CHANGE IN PRICES OVER TIME AND ACROSS COUNTRIES
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Figure 7: Market size variation within country: Italy and Bulgaria

C.2 Additional output from the demand system

In this section, we provide additional output from the estimation of the demand system. We
highlight three findings.

First, we find that there is broad heterogeneity in both market size and drug preferences within
country. In other words, overall sales relative to the European average across therapeutic areas
in a given country fluctuate quite a bit. Figure 7 shows variation in market size relative to the
European average for Italy and Bulgaria. Each observation in the graph is a therapeutic area and
year. Bulgaria’s market size is roughly around the European average, while Italy’s is much larger.
However, there are therapeutic areas where Bulgaria’s market size is well above average, and,
conversely, there are therapeutic areas where Italy’s market size is only slightly above average.

Moreover, even within therapeutic areas, it is often the case that specific products are more
popular in certain countries than in others. Figure 8 plots the distribution of relative market share
of products in the same two countries. Each observation is a drug in our main sample of 481.
Once again, we see large dispersion. Bulgaria’s average market share is lower, which reflects the
propensity of lower-income countries to rely more heavily on generic and drugs produced for the
local market only (neither of which appear in our main sample). However, the distribution shows
large variance around the mean.

These two patterns are crucial for our findings: market size and drug preferences are likely
known by firms in advance, and will be a key input in their pricing decisions. The ability to
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Figure 8: Drug preference variation within country: Italy and Bulgaria

estimate these in a flexible way is an important feature of our model, and motivated our choice to
use drug-country specific fixed effects (as opposed to separate drug and country fixed effects).

Second, we plot the distribution of the coefficient β j, which in the model estimates the change
in demand with age (Figure 9). On average, age has a positive impact on demand, though there
are a few exceptions. The distribution in the overall sample (which includes drugs with more
recent authorization dates) has a longer right tail, which may reflect faster growth in demand in
the first few years after launch.

Third, and final, we plot the distribution of the nesting parameters σ (Figure 10). The nesting
parameter falls outside the unit interval in around half of the therapeutic classes, though most
coefficients fall in the interval between 0 and 2. This is somewhat surprising, since drugs with
sharing the same molecule are probably close substitutes. However, in our model, the only type
of same-molecule competition that can occur is between originator products and parallel traded
products (in the estimation, we aggregate all other products at the molecule level to avoid ex-
cessive entry and exit). Parallel-traded products only exist in a handful of countries, and can be
perceived as different or lower quality.

C.3 Correlation between prices and GDP per capita

Delaying launches is only one of many possible strategic reactions to ERP. Another possible strat-
egy that firms can use is to try to increase the prices they charge in lower-income countries. While
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it is hard to estimate what prices in lower-income countries could be in the absence of ERP, we
do find some evidence that this is the case. In Figure 11 we plot GDP per capita in 2012 against
average country-level drug prices.11 We find a strong positive correlation between the two among
Western European countries. However, the relationship is significantly flatter among Eastern Eu-
ropean countries. Not only that, but the price level in Easter Europe is on average only marginally
lower than the price level in the Western European countries with the lowest drug prices (e.g. Italy,
Spain). These small differences are in spite of large differences in GDP per capita. Put together,
these results suggest that firms do try to charge higher-than-expected prices in lower-income Eu-
ropean countries.

Notice however, that this does not affect the estimation or the counterfactual of our main paper.
We estimate country-level price fixed effects, which capture price levels in the current equilibrium.
This would be problematic if we were running counterfactual that required computing prices with
a different pricing rule. Instead, our counterfactual exercise is only concerned with computing
delays, which are unaffected by the change in pricing rule. As long as ERP is replaced by another
policy, the optimal strategy, under relatively weak conditions, is to apply for entry in all countries
at the same time.

The calculation of the lump sum transfer is equally unaffected, because it is done under the
assumption that government keep the same pricing rules as in the current equilibrium.

C.4 Correlation between quantity, prices, and delays

To decide what control variables to include in our models of demand and price, we tested whether
within-country variation in demand and drug prices is also correlated with launch behavior. To
do this, we ran regressions of volume sales and price on drug and country fixed-effects:

ln
(
qjkt
)

= θ
q
j + γ

q
k + ε

q
jkt

ln
(

pjkt
)

= θ
p
j + γ

p
k + ε

p
jkt

In these regressions j indexes products, k indexes country, and t indexes periods. The residuals
ε

q
jkt and ε

p
jkt reflect both a fully stochastic component (reflecting uncertainty that the firm cannot

observe in advance), as well as information that is not reflected in the drug and country fixed
effect, but that the firm may see in advance. For example, if Italy had a disproportionately large
number of diabetes patients, we would expect ε

q
iITAt to be large for insulin and other diabetes

medication. To check whether within-country variation in market outcomes is correlated with

11The country-level drug prices are coefficients from a regression of log price on drug and country fixed effects.
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Figure 11: CORRELATION BETWEEN DRUG PRICES AND GDP PER CAPITA
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firm behavior, we regress delays on the residuals ε
q
jkt0 and ε

p
jkt0 (where t0 is the launch year)12

yjk = γ
y
k + βqε

q
jkt0 + ε

y
jk

yjk = γ
y
k + βpε

p
jkt0 + ε

y
jk

We test both delay in months, and the order of launch (i.e. the rank of the country k in the launch
sequence of drug i).

We report our results in Table 11. We find that ε
q
ijt0 is negatively correlated with both months

of delay as well as order of launch, meaning that within each country, products with low demand
tend to enter later.

Surprisingly, we do not find the same result for ε
p
ijt0 . There are two possible reasons to explain

this phenomenon. First, it could be that ε
p
ijt0 only contains information that the firm does not

observe in advance. In this case, we would not expect the firm’s actions to reflect anything that is
unknown about price prior to entry. Second, it is possible that there is not enough within-country,
cross-drug variation in price. In the data, we note that a price regression on drug and country fixed
effects achieves a coefficient of variation of approximately 0.97, meaning that these two variables
soak up a lot of variation. The equivalent regression on sales has a much lower coefficient (around

12When we do not observe sales in the launch year (because launch occurred before 2002), we use the residual from
the first available year.
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Table 11: CORRELATION OF WITHIN-COUNTRY VARIATION AND FIRM BEHAVIOR

Launch Order Delay

ε
q
ijt −0.396 −1.544

[−0.443,−0.348] [−1.758,−1.331]
ε

p
ijt −0.089 −0.794

[−0.369, 0.191] [−2.041, 0.453]

Country FE Y Y Y Y
N 8872 8872 8872 8872
R2 0.50 0.48 0.24 0.22

0.77), which suggests that there may be more variation in quantity that the firm can act upon.
These regressions motivate our choice of demand and price functions. In our demand func-

tions, we include drug-country fixed effects, since our regressions suggest that using a separate
set of fixed effects may fail to capture important variation that is known to the firm. In our price
functions however, we include drug and country fixed effects separately. The regression results in
this section suggest this is enough to capture the relevant variation in price.

C.5 Placebo tests on the pricing model

To test whether our pricing model could be simply capturing correlations between price across
Europe that are generated by other confounding factors, we run a falsification test where we assign
fictitious reference pricing functions to the four countries that do not use ERP: Denmark, Germany,
Sweden, and the UK. If our model is correctly specified, the value of µ for these countries should
be close to zero, since the reference pricing should not affect their prices.

To Denmark and Sweden, we assign the same reference function as Norway. To Germany, we
assign the same reference function as France, and to the UK, we assign the same reference function
as Ireland.13

13Since countries cannot reference their own price, we replace it with the price of the country whose reference func-
tion we use (e.g. since France references Germany, we replace Germany with France in the reference function used by
Germany).
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Table 12: FALSIFICATION TEST RESULTS

Country ln
(

γj

)
µk

Austria -0.103 0.340
Belgium -0.121 0.222
Bulgaria -0.200 1.000
Denmarkb -0.082 2× 10−6

Estonia -0.188 1.000
Finland -0.132 0.307
France -0.094 2× 10−6

Germanya,b 0.000 2× 10−7

Greece -0.093 1.000
Hungary -0.240 0.998
Ireland -0.076 0.592
Italy -0.174 1.000
Latvia -0.242 0.902
Lithuania -0.242 1.000
Luxembourgc -0.236 0
Netherlands -0.206 1× 10−5

Norway -0.167 1.000
Poland -0.064 0.932
Portugal -0.194 1.000
Romania -0.280 1.000
Slovenia -0.258 0.769
Spain -0.158 1.000
Swedenb -0.107 2× 10−6

Switzerland -0.003 1× 10−6

UKb -0.192 5× 10−18

a The price level is normalized to Germany’s.
b Denmark, Germany, Sweden, and the UK do not actually use ERP

during 2002-2012.
c Luxembourg references the price of the country of origin of the drug.

Since we do not know country of origin, we assume that µj equals
zero.

We find that for all four countries, the µ coefficient is almost exactly 0 (Table 12). We note that
this does not conclusively prove that our model does not suffer from misspecification, or other
estimation issues. However, the test gives us confidence that the µ parameters are picking up the
impact of ERP correctly.

C.6 Evidence in support of the pricing model results and specification

In this section, we present a few pieces of evidence in support of the specification we chose for
the price function. We present three results. First, we show reduced-form evidence that prices fall
following entry in Eastern European countries, but only in countries using ERP, and more so in
countries that reference Eastern Europe directly. Second, we present evidence from a few examples
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Table 13: Impact of entry in Eastern European countries on prices in Italy, Spain, and Germany

Italy Spain Germany

Individual
regression

Joint
regressions

Individual
regression

Joint
regressions

Individual
regression

Joint
regressions

Bulgaria -0.052 -0.032 -0.001 0.017 0.045 0.015
(0.013) (0.013) (0.013) (0.015) (0.011) (0.013)

Estonia -0.071 -0.037 -0.050 -0.038 0.070 0.038
(0.013) (0.014) (0.015) (0.017) (0.013) (0.016)

Hungary -0.028 0.021 -0.021 0.000 0.046 0.016
(0.020) (0.021) (0.017) (0.021) (0.012) (0.015)

Latvia -0.070 -0.042 -0.045 -0.039 0.050 0.002
(0.013) (0.015) (0.017) (0.019) (0.013) (0.016)

Lithuania -0.048 -0.003 -0.015 0.009 0.065 0.036
(0.014) (0.015) (0.016) (0.018) (0.012) (0.014)

Poland -0.056 -0.003 -0.037 -0.025 0.033 0.000
(0.015) (0.018) (0.017) (0.019) (0.011) (0.013)

Romania -0.028 0.006 -0.006 0.009 0.040 0.011
(0.011) (0.013) (0.014) (0.015) (0.010) (0.013)

Slovenia -0.059 -0.030 -0.018 -0.001 0.026 -0.024
(0.017) (0.018) (0.019) (0.019) (0.012) (0.016)

of specific price paths, showing that prices do not seem to react very strongly to reference prices
that are above them. Third, we show that the data does not fit the predictions of a more standard
Bertrand Nash model.

C.6.1 Evidence of prices falling after entry in Eastern European countries

We present some evidence that prices fall following entry in Eastern European countries. We do
this by running a simple regression of log price on drug fixed effects, plus an indicator variable for
entry in each Eastern European country (we also run separate regressions for each indicator, since
they tend to be somewhat collinear). We test the impact on prices in three countries: Italy and
Spain (both of whom appear to follow ERP closely according to our structural estimation results),
and Germany (which has a similar market size and also uses the Euro, minimizing measurement
issues from exchange rate fluctuation).

Table 13 reports our results. Italy shows the clearest results, which makes sense, since Italy
references Eastern Europe directly. Spain also sees a negative impact, though somewhat less pro-
nounced. This also makes sense, as Spain does not reference Eastern European countries directly.
However, Spain references Greece, and Italy, both of whom include Eastern Europe in their ref-
erence function. We do not find any evidence of a negative impact on price in Germany (in fact,
almost all coefficients are positive, which may even suggest a compensating effect).

In unreported results, we also tested the movement of prices following entry in Western Eu-
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ropean countries, and tried to use referencing functions to isolate the impact of ERP. We did not
find strong results, which we attribute to two things. First, entry in Western European countries is
usually quick, and only minimally staggered. Most drugs will enter all of Western Europe within
3-4 years, meaning that it is very common to see several launches in Western Europe in the same
year. This makes it hard to isolate the impact of entry in a single country. Second, according to our
structural estimation, many Western European countries do not actually appear to follow their
reference function very closely, so this result is in line with what our structural model suggests.

C.6.2 Evidence of kinks in the pricing function

In the next subsection, we show examples of price paths of specific drugs, some of which show
concretely how prices in different countries react differently to changes in the reference price. We
provide this evidence in partial support of the choice to use a kink in the price function, and to
illustrate the type of variation that helps pin down the µ parameter in the structural estimation.

Omalizumab (Xolair) was approved by the EMA on October 25, 2005. Figure 12 plots the price
and reference price paths of this product in four countries, which help us highlight a few features
of the relationship between price and reference price across countries.

We note three things. First, the launch sequence of this product provides a relatively clean
natural experiment. Even though the EEA-wide approval was given in 2005, the product had been
available in Norway since late 2004 (this is not a very common occurrence, but it does happen
from time to time). Omalizumab was launched in six countries in 2005: Denmark, Germany,
Netherlands, Poland, Sweden, and the UK. Hence, the first year in which a reference price was
available to Norway was 2006. In that year, we observe the price falling from about e450 per unit,
to e370 per unit, a drop of approximately 25% that leaves the price at very similar level to the
reference price. The Norwegian price then remains at a similar level to the reference price, despite
diverging slightly in the last few years. This is the kind of pattern in the data that the structural
model would interpret as a sign that a country is adhering closely to its reference pricing policy
(Norway has a µ coefficient of 1 in our estimation, suggesting close adherence).

Second, we can see fairly well in the price patterns of Italy and Austria that prices do not seem
to react to changes in the reference price when the reference price lies above the price itself. In
the case of Italy, the reference price is almost always above the price, and the price is basically
constant: it grows slightly in 2007 and 2008—but then falls back to the exact level of the initial
price—and it dips in 2012, which is when the reference price dips below the launch price for the
first time. In Austria, the pattern is even clearer. The price is constant until 2010, which is the first
year in which the reference price dips below the launch price. The price does not fully adjust to
the reference price, suggesting that Austria may only use reference price as one of many inputs
in price setting (accordingly, our model estimates a coefficient µ of about one third for Austria).
These types of patterns, which repeat more or less consistently across many of the drugs we see,
suggest that a kinked price function is more appropriate.

Third and final, we can compare the behavior of price in Austria (and, to some extent, Italy) to
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Figure 12: Price paths for Omalizumab (Xolair)

the behavior of price in Switzerland. Here, even though the reference price is below the observed
price for virtually the entire sample period, the two lines are diverging. This type of behavior
suggests that Switzerland does not rely on ERP, despite its stated policy. This is picked up by our
model, which estimates the Swiss coefficient for µ as very close to zero.

C.6.3 Test of Bertrand Nash predictions

Generally speaking, The use of bargaining models is widespread in the literature on prescription
drugs, and the use of more traditional pricing models, such as Bertrand Nash, is rare (see for
example Dubois et al. (2018) use Bertrand Nash in the US, but a bargaining model for Canada,
whose regulation is much closer to that of European countries). Even in the US, where firms are
subject to fewer pricing constraints and government regulation, drug pricing is often modeled
as bilateral bargaining between manufacturers and PBMs, as in e.g. Feng (2020) and Berndt and
Newhouse (2010).

As additional support for our modeling choice, we present here a simple test of a basic pre-
diction of the Bertrand Nash model: prices should fall when a new competitor enters. We run a
simple regression of the form:

ln
(

pjkt
)
= αj + γk + θt + βNjkt + ε jkt (4)
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Figure 13: Distribution of the coefficient on Njkt from equation 4

where Nijt is the number of competitors in the same therapeutic class as product j. In the cross-
section of all products in our main sample we find that Njkt is associate with a small but significant
increase in price (β = 0.0086, SE = 0.0008). However, this effect may be in part due to a selection
effect in the data: therapeutic classes with higher demand will have more products, and these
products will also have higher prices. To partially correct for this effect, we separately run re-
gression 4 on each therapeutic class. Figure 13 plots a histogram of the coefficients obtained on
Njkt. The distribution is centered around 0 and has a mean of approximately 0.02, which broadly
confirms the results of the main regression, and suggests Bertrand is not the right pricing model
for our data.

C.7 Additional Simulation-Based Evidence of Optimality of Delays

In this section, we present additional evidence from simulation strategies. First, we examine de-
lays in head-to-head launch strategies. In this set of simulations, we consider drugs approved
between 2003 and 2008, and test strategies that limit firms to launching in two countries at most.
Doing so allows us to display graphically where the impact of reference pricing is coming from.
The heatmap in Figure 14 shows the fraction of drugs for which delaying in the country on the
x-axis is optimal when the country in the y-axis is the only other country in the choice set. The
main thing we notice is that delays are only optimal when a small number of Western European
countries are in the choice set. These Western European countries reference Eastern Europe. Most
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Figure 14: Likelihood of delays in head-to-head launch sequences

Western European countries either (i) do not use reference pricing, or (ii) do not reference the East-
ern European country in question, meaning that they are not actually contributing to delays, at
least directly.14

Next, we simulate delays in Eastern Europe as a block. We do this for all drugs and plot the
distribution of the optimal launch date in Eastern Europe (we assume simultaneous and imme-
diate entry in Western Europe). We find that delaying in the entire Eastern European block is
optimal for almost 30 percent of drugs. The fact that this number is lower than the likelihood of
delays in some smaller Eastern European countries suggest that firms can earn more by picking
where to introduce the product first. This matches the launch sequences we observe in the data,
where it is common for one or two Eastern European countries to be included in the first round of
launches.

D Additional theoretical derivations and extensions

In this section, we include some additional theoretical background and details for the structural
estimation. We provide

1. a derivation of the nested logit demand equation

14They still contribute indirectly, by referencing the price of the Western European countries that directly reference
Eastern Europe.
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2. a potential micro-foundation for the reduced-form pricing equation using a Nash bargaining
model

3. a full description of the simulation procedure used to estimate the expected revenue of a
pre-specified launch strategy for a given value of the parameter ψk (i.e. Rt

(
Sj, S−j, Xj

)
from

equation 12 in the main paper).

4. a derivation of an additional set of moment inequalities that can yield an upper bound on
the identified set

5. a derivation of a more stringent upper bound for the entry parameter in the moment in-
equality

6. a full description of the procedure used to calculate the total expected revenue of a product

D.1 Logit Model

The utility of consumer i, in country k, from consuming drug j (molecule m) in year t is given by

uijt = δjkt + ζm(i) + (1− σ) ε ijt (5)
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where
δjkt = αjk + β jagejt + ηjNFjkt + ξ jkt. (6)

and ζm(i), is common for all j ∈ m, and distributed according to the unique distribution such
that if ε ijt is an extreme value random variable, then so is ζm(i) + (1− σ) ε ijt (Cardell, 1997). δjkt is
parameterized as in Equation 2 in the main paper.

With this setup, one can show that the country k market share of j within subset set m is given
by

MSm
jkt =

exp
(

δjkt
1−σ

)
Dm (Xmt)

(7)

where

Dm (Xmt) = ∑
`∈m

exp
(

δ`jt

1− σ

)
and the market share of set m within the overall market is given by

MSm/kt =
Dm (Xmt)

1−σ

1 + ∑
h∈G

Dh (Xht)
(1−σ)

(8)

where G is the set of all molecules. Hence, the overall market share of drug j is

MSjkt =
exp

(
δjkt

1−σ

)
Dm (Xmt)

−σ

1 + ∑
h∈G

Dh (Xht)
(1−σ)

(9)

Derivation of the estimating equation Notice that the share of the outside option can be ex-
pressed as

MS0kt =
1

1 + ∑
h∈G

Dh (Xht)
(1−σ)

(10)

Consider the log ratio of the market share of drug j in group m to the outside good. According to
the model, this can be expressed as

ln
(

MSjkt
)
− ln (MS0kt) =

(
δjkt

1− σ

)
− σ ln (Dm (Xmt))

Combining equations 8 and 10 we also obtain

ln (Dm (Xmt)) =
ln (MSm/kt)− ln (MS0kt)

1− σ

Hence we can write

ln
(

MSjkt
)
− ln (MS0kt) =

δjkt

1− σ
− σ

1− σ
(ln (MSm/kt)− ln (MS0kt))
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which implies

(1− σ)
(
ln
(

MSjkt
)
− ln (MS0kt)

)
= δjkt − σ (ln (MSm/kt)− ln (MS0kt))

=⇒ ln
(

MSjkt
)
− ln (MS0kt) = δjkt + σ ln

(
MSjkt

MSm/kt

)
(11)

D.2 Foundations for the price-setting equation

In the main body of the paper, we do not provide a microfoundation for the price-setting equation
from a utility- or revenue-based optimization model. These foundations do not fundamentally
affect our results or counterfactual. For completeness however, we provide a possible set of as-
sumptions that could justify an estimation equation identical to the one we use.

Assume that firms and governments play a Nash Bargaining game to set drug prices. The
game is repeated every period, but the two parties only split the static welfare gains from the
current period. In reality, prices impose dynamic constraints through reference pricing that both
agents should take into account. To eliminate these dynamic considerations one must assume that
the government is a myopic agent and that the firm’s bargaining unit is only tasked with carrying
out the negotiation, without concerns for the ramifications of the agreed-upon price.15

The equilibrium price in a standard Nash Bargaining model is given by

p? = arg max
p

[
∆Wjkt

]bk ×
[
∆Πjkt

]1−bk

where ∆Wjkt represents the change in the welfare of the government from having drug i available,
∆Πjkt represents the incremental change in revenue, and bk is the bargaining power of country k.
Notice that the interpretation of ∆Wjkt is not necessarily welfare, but could more generally be de-
scribed as the objective function of the government agent tasked with completing the negotiation.

Under our assumptions of static bargaining, ∆Πjkt is simply the potential revenue in country
k, and since demand is price inelastic, we can divide through by demand to recast the problem as
a negotiation over the unit price of the product (instead of total revenue). We abstract away from
marginal costs of production since for brand drugs they are a negligible fraction of prices. The
simplified problem can be written as

p? = arg max
p

[
∆Wjkt − p

]bk × [p]1−bk

where the interpretation of ∆Wjkt is the average change in the welfare function from obtaining an

15These assumptions are clearly unrealistic. However, there are several reasons why short-term considerations could
in fact play a major role for most government agencies. First, the main goal of pharmaceutical agencies is to keep
spending within the limits of their budget, which is often specifically carved out for prescription drugs thus limiting
the ability to generate trade-offs such as paying more for cost-effective drugs that would save money in other areas of
health care, such as inpatient care. Turnover of government officials might also contribute to the failure of adopting
long-term strategies. On the pharmaceutical company side, most firms have a separate bargaining unit for each country.
Informal conversations with industry insiders seem to suggest that these units operate in relative independence from
one another.
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additional unit of drug i. The standard Nash bargaining solution, can then be written as

p? = ∆Wjkt (1− bk)

This price denotes the equilibrium in the absence of reference pricing, and represents the govern-
ment price p

gov
jkt .

To account for the impact of reference pricing we propose that the government can negotiate
more effectively by eliciting a signal about what prices are charged abroad. We incorporate this
possibility in the model by assuming that the signal (i.e. the reference price) affects the bargaining
weight assigned to the government. The reference price pref

jkt is calculated as described in the main

body of the paper.16 Given pref
jkt , we write the bargaining weight of the government as

Bjk

(
pref

jkt

)
= bk + (1− bk) µk

1−
pref

jkt

p
gov
jkt

 · I{
pref

jkt <p
gov
jkt

}

where p
gov
jkt = ∆Wjkt (1− bk) is a function of model parameters that reflects the price that the gov-

ernment would have obtained without using reference pricing. We define the bargaining weight
of the firm as 1− Bjk

(
pref

jkt

)
.

The function Bjk (·) has several attractive properties. First, it reduces to the base case whenever
pref

jkt < p
gov
jkt . This has the intuitive implication that observing a reference price that is higher

than the country’s own internal benchmark does not affect negotiations. Second, the bargaining
weight is inversely proportional to the reference price, meaning that a lower reference price lets
the government extract a greater discount. Third, as long as µk ∈ (0, 1) the bargaining weight is
also lying on the unit interval, which insures an interior solution for the first-order condition.

The first-order condition of the Nash Bargaining problem with the specified bargaining weights
is

[p] :
(
∆Wjkt − p

)−1+b+µk−bkµk−
µk pref

jkt
∆Wjkt ·

(
(1− bk) (1− µk)∆Wjkt + µk pref

jkt − ∆Wjkt

)
p
−bk(1−µk)+µk

1−
pref

jkt
∆Wjkt


= 0

and has three roots:

p?1 = 0

p?2 = ∆Wjkt

p?3 = (1− µk) (1− bk)∆Wjkt + µk pref
jkt

16As a side note, the reference price does not necessarily need to be linked to other prices but can be anything else
that might affect negotiations.
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Notice that pref
jkt ≤ (1− bk)∆Wjkt whenever the reference price binds. Hence, p?1 < p?3 < p?2 .

The second-order condition is given by

SOC : p
−1−b(1−µk)−µk

1−
pref

jkt
∆Wjkt


·
(
∆Wjkt − p

)−2+bk+µk−bkµk−
µk pref

jkt
∆Wjkt ·(

∆Wjkt (1− bk) (1− µk) + µk pref
jkt

) (
−bk∆Wjkt (1− µk) + µk

(
pref

jkt − ∆Wjkt

))
and, for p ∈

(
0, ∆Wjkt

)
, is proportional to

SOC ∝
(

∆Wjkt (1− bk) (1− µk) + µk pref
jkt

) (
−bk∆Wjkt (1− µk) + µk

(
pref

jkt − ∆Wjkt

))
∝

(
−bk∆Wjkt (1− µk) + µk

(
pref

jkt − ∆Wjkt

))
< 0

Hence the objective function is maximized for p = p?3 . The two other roots of the first-order
condition are also roots for the second-order condition; therefore, they represent points of inflec-
tion.

The final solution to this bargaining problem is therefore made up of two equations:

pjkt =

(1− bk)∆Wjkt if pref
jkt ≥ (1− bk)∆Wjkt

(1− µk) (1− bk)∆Wjkt + µk pref
jkt if pref

jkt < (1− bk)∆Wjkt

This solution will have the same form of our estimating equation as long as (1− bk)∆Wjkt can
be written as a function of the observables we have included in our parametric function for the
government price.

�

D.3 Construction of predicted reference prices in the price estimation

We briefly discuss how we construct predicted reference prices in the price estimation.
Our model states that

pjkt
(
St, Djkt (·)

)
=p

gov
jkt

(
St, Djkt (·)

)
if pref

jkt (·) ≥ p
gov
jkt (·)

(1− µk) p
gov
jkt

(
St, Djkt (·)

)
+ µk pref

jkt

(
St, Djkt (·)

)
if pref

jkt (·) < p
gov
jkt (·)

. (12)

where
p

gov
jkt

(
Djkt (St, ξkt)

)
= θj · γk · exp

(
βZZjkt + βD ln

(
Djkt (St, ξkt)

))
and pref

jkt

(
St, Djkt (·)

)
comes from the reference pricing rules.

For drugs launched in 2002 or later, we have all the data we need to calculate predicted prices.
We start from the year of launch t0, and calculate p

gov
jkt0

using data on data on our controls Zjkt0 and
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Djkt0 , and our guess for the parameters γk, µk, βZ, and βD. We can then derive pjkt0 because in the
first period, pjkt0 = p

gov
jkt0

: no references are available yet. Then, we use pjkt0 to build the reference

prices for the following period: pref
jkt0+1. We can also build p

gov
jkt0+1, again, relying only on data. With

reference prices and data, we then build pjkt0+1, and repeat the process as long as needed.
For drugs launched before 2002, the process is only slightly different. We still observe all

components of Zjkt for pre-2002 years in our data, i.e. home-country indicator, and number of
competing molecules in class.17 The only information we are missing is Djkt. However, our model
assumes that volume adjustments to price are excluded from the reference price.18 This allows
us to build reference prices for period t0 + 1 even without an exact estimate for p

gov
jkt0

. Hence, for
these products, our algorithm runs an initial “adjustment” loop for years 1995-2001 using only
Zjkt and our parameter guesses.

D.4 Simulation procedure

To simulate the function R̃t
(
Sj, S−j, Xj

)
we use the following procedure:

1. Define the inputs of the functions as:

• A′jt = {akτ} → an array with dimension NC × (T − t) + 1 which specifies a conditional
binary action for each country k and period τ ∈ {t, t + 1, . . . , T}: 0 means not sending
an application, and 1 means sending an application (the action is conditional because it
can only be taken if the application has not been sent yet). This strategy is specified by
the econometrician as a guess.

• St−1 =
{

Sjt−1, S−jt−1
}
→ an array of dimension NC ×Nl , where NC = 25 is the number

of EEA countries in the simulation, and Nl is the number of firms in the market. This
array indicates the countries where each product has launched at the beginning of the
simulation, and comes from the data.

• ψ′ =
{

ψ′k
}
→ an NC × 1 vector whose elements all lay on the unit interval. This is the

parameter vector that determines idiosyncratic delays and is specified as a guess by the
econometrician.

2. Simulate an array {ωkτn} of uniform random draws from the unit interval. The array has
dimension NC × T × nsim where T = 11 is the maximum number of years, and nsim = 500 is
the number of simulations.19

3. For each simulation n, calculate the simulated entry sequence by combining A′jt with the
array of uniform random draws: entry in country k occurs in period τ if τ is the earliest

17We may miss molecules that exit before 2002. However, this should be a rare occurrence.
18As discussed in the main body of the paper, we believe this adjustment better reflect the timing of ERP application

(which should occur at the beginning of the period) vs. the timing of volume adjustments (which can only occur once
volume is observed, at the end of the period).

19In various runs we set nsim as high as 5,000. The associated efficiency gain was small relative to the computational
gain of using only 500 simulations, so we opted to set nsim = 500 in the main and final run.
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period that satisfies akt = 1 and ωkτn ≤ ψ′k.

4. For each simulation n, calculate predicted demand and prices using the estimates of demand
and price and the simulated entry sequence. In these calculations, the entry sequences of all
other products are held constant.

5. Calculate total revenue by summing up revenue in each period and country where the prod-
uct was available, according to the simulation. R̃t

(
Sj, S−j, Xj

)
is the average of total revenue

across all simulations.

D.5 Proof that the moment inequality estimator yields a one-directional bound

Proposition 1. Assume that the expected revenue conditional on playing the optimal strategy is monoton-

ically decreasing (increasing) in ψ (i.e
∂E
[

Ṽt(A?
jt(Ijt),Yj,ψ0)

∣∣∣Ijt

]
∂ψ ≤ (≥) 0). Then, it is impossible to find an

alternative strategy A′jt such that

E
[

Ṽt

(
A′jt, Yj, ψ′

)∣∣∣ Ijt

]
> E

[
Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ0

)∣∣∣ Ijt

]
for ψ′ ≥ (≤)ψ0.

Proof. The proof of this proposition is fairly straightforward. By assumption, we know that

E
[

Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ0

)∣∣∣ Ijt

]
≥ E

[
Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ′
)∣∣∣ Ijt

]
for all ψ′ ≥ ψ0. Moreover,

E
[

Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ′
)∣∣∣ Ijt

]
≥ E

[
Ṽt

(
A′jt, Yj, ψ′

)∣∣∣ Ijt

]
for all ψ′, by definition. Combining the two inequalities gives the result of the proposition.

Intuitively, the premise of the proposition holds true in our data: firms should be better off
when the probability of a delay is lower, as they have better control over which entry sequence
will be realized. For example, if the probability of delay were 0, the firm would be able to choose
the profit-maximizing entry strategy. An increase in the probability of delay would reduce the
likelihood of achieving the profit-maximizing entry sequence, therefore expected revenue would
fall.

D.6 Additional moment inequalities with revenue data

In the empirical implementation of the revenue-based moment inequalities we were able to gen-
erate a lower bound on the probability of an idiosyncratic delay, but not an upper bound. In this
section we discuss an extension of the moment inequalities which can be helpful in generating an
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upper bound in these situations.20 The idea of this extension is to prove that for a given value of
the idiosyncratic delay a the properties of the moment inequality estimator parameter no strategy
will ever yield expected profits as high as what the firm obtained in the data.

Suppose that in the data we can recover a consistent estimate for E
[

Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ0

)∣∣∣ Ijt

]
(i.e. the expected profits of the firm when playing the optimal strategy A?

jt
(
Ijt
)

and for the true
value of the parameter ψ0). Recall that in the main body of the paper we defined the identified set
of ψ as

ΨI =

ψ′ : ∑
A′t

IR
(
Ajt, ψ′

)
= 0


Let Fub (ψ, ·) be a function of ψ such that

Fub (ψ, ·) ≥ E
[

Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ
)∣∣∣ Ijt

]
for all ψ. Then, if ψ′ is such that

Fub (ψ′, ·) < E
[

Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ0

)∣∣∣ Ijt

]
ψ′ /∈ ΨI .

To see why, suppose ψ′ is the true value of ψ, i.e. ψ′ = ψ0. Then

E
[

Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ0

)∣∣∣ Ijt

]
> Fub (ψ0, ·

)
≥ E

[
Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ0

)∣∣∣ Ijt

]
Hence, E

[
Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ0

)∣∣∣ Ijt

]
> E

[
Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ0

)∣∣∣ Ijt

]
, which is a contradiction.

As long as E
[

Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ0

)∣∣∣ Ijt

]
is bounded, finding candidates for Fub (·) will not

be hard. However, it may be challenging to find a function whose value is low enough to obtain
meaningful inference from the data. Here we propose a possible strategy to come up with a family
of such functions that could prove useful in this regard.

The basic idea is to use the expected profit of the firm when facing a simplified environment
that is tweaked to be more favorable to the firm (relative to the true environment). For example,
one obvious candidate for Fub (·) in the empirical application we consider is the expected profits
of the firm when ERP is eliminated. In this scenario, the firm always earns more money. Moreover,
with this structure, the model has a clear, unique solution: applying for entry everywhere right
away.

This function satisfies two main criteria: it is easy to compute, and it is always an upper bound
for E

[
Ṽt

(
A?

jt
(
Ijt
)

, Yj, ψ0

)∣∣∣ Ijt

]
. Unfortunately, this function also does not deliver a meaningful

bound when tested empirically. When we tested this approach empirically we were unable to
reject any value of the parameters that had not already been rejected using our original approval

20The same methodology can be used to obtain a lower bound in situations where the one-directional bound is the
upper bound.
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and entry moment inequalities. Nonetheless, this approach could provide a promising avenue for
future research.

D.7 Additional moment inequalities with entry and approval data

To derive a lower bound using entry data we calculate the overall probability of a delay across
all drugs in the sample. The assumption we use in the estimation is that the probability of a
delay is country-specific, but homogeneous across all drugs. Under this assumption, the overall
probability of a delay in any given subsample of drugs should be higher than the probability of an
idiosyncratic delay (as long as the subsample was not selected based on entry data). This suggests
that we could obtain a tighter upper bound by simply looking at moment inequalities based on
subsamples of the data instead of only looking at the full sample.

Formally, let G be a partition of our set of drugs. For each set g ∈ G, let
(
1− ψ̄gk

)
be the

probability that product j ∈ g will enter in country j in a given year. Since by assumption ψk is
constant across drugs, it follows that ψ̄gk ≥ ψk for all g, and therefore

ψk ≤ ψmin
Gj = min

g∈G

{
ψ̄gk
}

To illustrate how this method could yield a lower upper bound, we calculate the class-specific
probability of delay in Eastern European countries (we aggregate across Eastern European coun-
tries to increase the sample size in each class, which would otherwise be very small in many
classes). Figure 16 plots the values and confidence intervals for ψg,EE for the partition of the sam-
ple generated by the therapeutic class variable. Since we may be concerned about false positives
(the partition includes around 100 sets), we use 99% confidence intervals around the point esti-
mates. We find that in three instances the parameter estimate for ψ̄g,EE is lower and significantly
different from the estimate obtained from the full sample (which is ψEE = 0.34). The three classes
are erectile dysfunction, cytotoxics (i.e. drugs for chemotherapy), and nasal corticosteroids with-
out anti-infectives. Using either one of these three estimates would yield a lower upper bound.

D.8 Calculation of expected revenue loss

To calculate the expected revenue loss of a firm that chooses to disregard the impact of ERP, we
simulate the expected revenue of the naive strategy (i.e. apply in all countries right after receiving
marketing authorization) for each drug and compare it to the realized revenue in the data. In order
to eliminate the expectational error in the realized revenue we have to aggregate across drugs, just
like we did in constructing the moment inequalities.

The procedure is almost identical to the procedure we follow in computing the moment in-
equalities, but with one caveat, which is that in the data we do not observe the full life cycle of
each drug. To address this limitation we calculate age-specific average expected revenues and
then sum them up.
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Figure 16: Probability of Delay in Eastern Europe by Therapeutic Class
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This graph plots the overall probability of delay in Eastern European countries for drugs separated according to their
therapeutic class. Vertical bars represent the 99% confidence interval, while the black horizontal line is the estimate for
ψEU10 obtained from the overall sample.

Calculation of expected revenue of “naive” strategy: These are the steps we follow to calculate
the expected revenue of the “naive” strategy:

1. Fix ψ′k = 0.69: this is the lower bound for ψEE that we estimated using the revenue inequali-
ties.

2. For each drug i in the main sample (i.e. the full sample of 481 drugs) repeat these steps:

(a) Take the simulated array {ωkτn} from the moment inequality estimation.

i. For each simulation n, calculate the simulated entry sequence by assuming that
firms apply right away in all countries: entry in country k occurs in the earliest
period τ if τ such that and ωkτn ≤ ψ′k = 0.69.

(b) For each simulation n, calculate predicted demand and prices using the estimates of
demand and price and the simulated entry sequence. In these calculations, the entry
sequences of all other products are held constant.

(c) Calculate age a revenue Rsim
j,a by summing up revenue in each country where the prod-

uct was available in year a after the authorization date. For years after a product’s loss
of exclusivity, we impute Rsim

j,a = 0.
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3. We then calculate the age a expected revenue of the average drug as

Rsim
a =

1
Nj

Ni

∑
j=1

Rsim
j,a

4. Finally, the total expected revenue of the average drug is simply Rsim = ∑a Rsim
a .

Calculation of expected revenue of optimal strategy: These are the steps we follow to calculate
the expected revenue of the optimal strategy:

1. For each drug j in the main sample (i.e. the full sample of 481 drugs) calculate realized age
a revenue Rreal

j,a by summing up revenue in each country where the product was available in
year a after the authorization date. For years after a product’s loss of exclusivity, we impute
Rsim

j,a = 0.

2. We then calculate the age a expected revenue of the average drug as

Rreal
a =

1
Nj

Ni

∑
j=1

Rreal
j,a

3. Finally, the total expected revenue of the average drug is simply Rreal = ∑a Rreal
a .

We obtain the figure from the main paper (e18 million) by computing Rreal − Rsim.
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