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B. Additional Theoretical Results

In Appendix B.1, we provide formal justifications for the predictions in Section I.B. Appendix B.2

shows that Predictions (A)–(D) hold if we model rational inattention as coming from a constraint

on information processing rather than a cost. Appendix B.3 considers these predictions with

alternate cost functions. In Appendix B.4 we provide examples that scaled payoffs need not be

monotone in leverage, which provides more intuition about Prediction (C).

B.1. Proofs

Proof of Prediction (A). Prediction (A) states that if ws > wt for states s and t, then pfs > pft .

This is a direct consequence of (4) with the observation that L(p) ≡ log(p) − log(1 − p) is

increasing in p.

Proof of Prediction (B). Taking differences of (4) for states s and t yields(
log pfs − log

(
1− pfs

))
−
(

log pft − log
(

1− pft
))

=
ws − wt

λ
,

so decreasing λ increases the difference L
(
pfs
)
− L

(
pft

)
.

Proof of Prediction (C). The equilibrium in state t is defined by

pft =
pf0 exp(wt/λ)

pf0 exp(wt/λ) + 1− pf0
(B.1)

wt = qft L[w̃(f, f)− w̃(n, f)] + (1− qft )L[w̃(f, n)− w̃(n, n)] (B.2)
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qft =
qf0 exp(vt/λ)

qf0 exp(vt/λ) + 1− qf0
(B.3)

vt = pft L[−w̃(f, f) + w̃(f, n)] + (1− pft )L[−w̃(n, f) + w̃(n, n)], (B.4)

where pf0 and qf0 are average probabilities of f for the pitcher and the batter, respectively. Define

p∗ and q∗ to be the Nash strategies with payoffs w̃(·, ·). By the payoff-equivalence definition of

Nash equilibrium,

0 = q∗[w̃(f, f)− w̃(n, f)] + (1− q∗)[w̃(f, n)− w̃(n, n)] (B.5)

0 = p∗[−w̃(f, f) + w̃(f, n)] + (1− p∗)[−w̃(n, f) + w̃(n, n)] (B.6)

For notational convenience, define w̃ ≡ w̃(f, f) + w̃(n, n)− w̃(f, n)− w̃(n, f). Then, we can

simplify equations (B.2), (B.4), (B.5), (B.6) to

wt = L(qft − q∗)w̃ (B.7)

vt = −L(pft − p∗)w̃ (B.8)

The equilibrium is described by equations (B.1), (B.3), (B.7), and (B.8). It exists and is unique.

This is easy to see because plugging (B.8) into (B.3) into (B.7) into (B.1) gives one equation to

solve for pft . They must intersect because both are continuous and at pft = 0, the left hand side is

smaller and at pft = 1, the right-hand side is smaller, because the right-hand side is always strictly

between 0 and 1. The left-hand side is increasing in pft , and the right-hand side is decreasing, so

the intersection is unique.

We want to prove that as L approaches∞, pft converges to p∗. That means for any ε, there

exists a L̄ such that L > L̄ implies that |pt − p∗| ≤ ε. We pick a specific L̄,

L̄ = max

{
λ

φw̃
log

(
q∗

1− q∗
1− qf0
qf0

)
,
λ

εw̃
log

(
p∗ + φ

1− p∗ − φ
1− pf0
pf0

)
,

λ

εw̃
log

(
p∗ − φ

1− p∗ + φ

1− pf0
pf0

)}
, (B.9)

where φ is a fixed number that is less than p∗ and 1− p∗. Our assumptions on w̃ guarantee that

p∗ is bounded away from zero, so such a φ does exist.

From here, we proceed by contradiction. First, suppose that qft > q∗ + ε. Then wt > Lεw̃.

From (B.1) and L > λ
εw̃ log

(
p∗+φ

1−p∗−φ
1−pf0
pf0

)
, we have us that pft > p∗ + φ. That implies that

v < −Lφw̃. With that condition, L > λ
φw̃ log

(
q∗

1−q∗
1−qf0
qf0

)
guarantees that qft < q∗. This is a
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contradiction with our supposition that qft > q∗ + ε. So it must be that qft ≤ q∗ + ε. Second,

suppose that qft < q∗ − ε. Then wt < −Lεw̃. Equation (B.1) and L > λ
εw̃ log

(
p∗−φ

1−p∗+φ
1−pf0
pf0

)
imply that pft < p∗t − φ. That implies vt > Lφw̃. That condition and the fact that L >

λ
φw̃ log

(
q∗

1−q∗
1−qf0
qf0

)
means that qft > q∗. This is a contradiction with our supposition that

qft < q∗ − ε. So it must be that qft ≥ q∗ − ε.
Together, this means that |qft − q∗| < ε. Therefore, limL→∞ q

f
t = q∗. The proof for pft is

analogous.

Proof of Prediction (D). If pf0 ∈ (0, 1) then (4) must hold for all states. Rearrange, take expo-

nents, and take the expectation over states to arrive at

E [exp(ws/λ)] = E
[
exp

(
L(pfs )− L(pf0)

)]
= E

[
pfs

1− pfs
· 1− pf0

pf0

]
= E

[
pfs

1− pfs

]
· 1− pf0

pf0

≥ Epfs
1− Epfs

· 1− pf0
pf0

= 1,

where the inequality follows from the convexity of x/(1− x), and the final equality follows from

pf0 ≡ Epfs . As long as it is not the case that pfs = pf0 for all states s, the inequality is strict. To

prove that E exp(−ws/λ) > 1, start from

E [exp(−ws/λ)] = E
[
exp

(
L(pf0)− L(pfs )

)]
and repeat the steps, noting that (1− x)/x is also convex.1

B.2. Rational Inattention with an Information Processing Capacity Constraint

In this paper, we model rationally inattentive agents as having an effectively utility function that

involves a cost of processing information parameterized by λ, following Matějka and McKay

(2015). Another approach would be to model rationally inattentive agents as possessing a

maximum information processing capacity κ. In this model, an agent would solve

max
pfs

Es
[
pfsw

∗
s

]
s.t. Es

[
pfs log pfs +

(
1− pfs

)
· log

(
1− pfs

)]
− pf0 log pf0 −

(
1− pf0

)
log
(

1− pf0
)
≤ κ,

(B.10)

1One can also prove this statement directly starting from (5).
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where, like in the body, pf0 ≡ Espfs and w∗s is the equilibrium relative payoff of a fastball in

state s given the opponent’s payoffs. Of course, if we let λ be the multiplier on the information

constraint, we can write the optimization problem as

max
pfs

Es
[
pfsw

∗
s

]
+ λ

{
κ−

[
Es
[
pfs log pfs +

(
1− pfs

)
· log

(
1− pfs

)]
− pf0 log pf0 −

(
1− pf0

)
log
(

1− pf0
) ]}

, (B.11)

which is the same problem as the one from combining (2) and (3). The first-order condition

of (B.11) is

w∗s = λ∗ ·
[
log pfs − log

(
1− pfs

)
−
(

log pf0 − log
(

1− pf0
))]

, (B.12)

which coincides with (4), with the Lagrange multiplier λ∗ ≥ 0 at the optimum corresponding to

the cost of attention in the baseline formulation. From (B.12), it is immediate that Prediction (A)

holds. The proof of Prediction (C) in Appendix B.1 goes through identically, with λ replaced by

the equilibrium λ∗ for each agent. Averaging (B.12) over all states shows that the same proof for

Prediction (D) applies as well.

The analogue of Prediction (B) is that agents larger information processing capacities κ are

more sensitive to payoff differences. Thus, it suffices to show that λ∗ is decreasing in κ, fixing w∗s .

We assume the constraint is binding (since otherwise λ∗ = 0 and the problem is trivial). We will

show that if λ were the primitive, then the attention paid by the agent κ(λ) would be decreasing

in λ. Since (κ, λ, pf0 , p
f
s ) solve the system of equations given by the constraint and the first-order

conditions, this will show that the equilibrium multiplier λ∗(κ) is decreasing in κ.

Rearranging the first-order condition (4), we have

pf∗s =
pf∗0 exp(w∗s/λ

∗)

1− pf∗0 + pf∗0 exp(w∗s/λ
∗)
. (B.13)

Substituting B.13 into the constraint (B.10) and rearranging, we have

Es

[
pf∗0 exp(w∗s/λ

∗)

1− pf∗0 + pf∗0 exp(w∗s/λ
∗)
· w
∗
s

λ∗
− log

(
1− pf∗0 + pf∗0 exp(w∗s/λ

∗)
)]

= κ∗, (B.14)

where

pf∗0 = arg max
p

Es [log (p exp(w∗s/λ
∗) + 1− p)] . (B.15)

The asterisks represent that the first-order conditions and value of the constraint hold at the

equilibrium (κ∗, λ∗, pf∗s , p
f∗
0 ), but henceforth we simply view then as solutions to the system
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consisting of (B.14), (B.13), and the first-order condition associated with (B.15). Dropping the

asterisks for simplicity, we can write

dκ

d(1/λ)
=

∂κ

∂(1/λ)
+

∂κ

∂pf0

dpf0
d(1/λ)

. (B.16)

Partially differentiating (B.13), we have

∂κ

∂(1/λ)
=

1

λ
Es
[
pfs

(
1− pfs

)
(w∗s)

2
]
≥ 0. (B.17)

We can also partially differentiate (B.13) with respect to pf0 and substitute in the first-order

condition from (B.15), which is part of the system we are solving, to arrive at

∂κ

∂pf0
=

1

λ

1

pf0

(
1− pf0

)Es [pfs (1− pfs
)
w∗s

]
. (B.18)

The cross-partial with respect to pf0 and 1/λ in the maximand of (B.15) is

1

pf0

(
1− pf0

)Es [pfs (1− pfs
)
w∗s

]
,

which means it shares the same sign as (B.18). Given standard results in monotone comparative

statics, dpf0/d(1/λ) has the same sign as the cross partial, meaning it has the same sign as

∂κ/∂pf0 . Thus, (B.17) establishes that the first term of (B.16) is positive. We established that

the two components of the second term share a sign, so the product is positive. This means that

dκ/d(1/λ) ≥ 0. This, if λ increases, κ decreases, and vice versa. This shows that the analogous

prediction to (B) holds in this case as well.2

Overall, the predictions in the body of the paper would hold even if we modeled rational

inattention as players being subject to a capacity constraint on how much information they can

process.

B.3. Alternate Models of Information Acquisition

While this paper is concerned primarily with the common assumption of Shannon entropy as

the cost of information acquisition, it is instructive to ask whether the predictions in this paper

are specific to Shannon entropy. In this appendix, we consider two generalizations of Shannon

2Note that our proof is conditional on w∗s . This is because our empirical test treats w∗s as observable, as we can
estimate it directly from the data. If κ changes for both parties, then in equilibrium w∗s would change as well, but the
first-order conditions conditional on w∗s , which we use for the prediction and for this argument, would still hold.
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entropy—generalized entropies and posterior-separable cost functions—and show that while

many of the predictions carry through for generalized entropies, the predictions are not true for

all posterior-separable cost functions. Our goal in this appendix is not to identify more general

predictions or characterize the set of cost functions consistent with each prediction but rather to

note that these tests should not be viewed as predictions of general models of rational inattention.

In particular, some of these predictions can be viewed as one-sided tests for particular cost

functions.

We first consider a generalization of Shannon entropy: Fosgerau et al. (2020) introduce a

class of cost functions from the Bregman information associated with generalized entropies.3

This cost function takes the form

cS(p(·);λ) = −λ · pf0 · logS(pf0) + λ · Es
[
pfs · logS(pfs )

]
, (B.19)

where pfs ≡
(
pfs , 1− pfs

)
is the probability of the two actions in state s and S(·) is a vector-

valued function on R2 (the number of actions per state) called a scaled inverse demand function.

With this cost function, Proposition 6(ii) of Fosgerau et al. (2020) shows that the probability of

each action is given by

pfs =
T
(

exp
(
ws + λ · logS(pf0)

))
∑2

j=1 Tj

(
exp

(
ws + λ · logS(pf0)

)) , (B.20)

where T = S−1 and ws ≡ (wfs , wns ).4 Rearranging (B.20), applying homogeneity, and subtract-

ing the equation for fastballs in state s from the equation for non-fastballs in the same state s, we

arrive at

ws/λ = logS1

(
pfs , 1− pfs

)
− logS2

(
pfs , 1− pfs

)
−
[
logS1

(
pf0 , 1− p

f
0

)
− logS2

(
pf0 , 1− p

f
0

)]
. (B.21)

Since each component of S is increasing its corresponding argument, logS1

(
pfs , 1− pfs

)
−

logS2

(
pfs , 1− pfs

)
is increasing in pfs . Thus, (B.21) shows that if ws > ws′ for states s and s′,

then pfs > pfs′ , which is Prediction (A). We also have an analogue of Prediction (B), with L(p)

3Fosgerau et al. (2020) show an equivalence relationship between rational inattention with generalized entropies and
discrete choice models: in this sense, this is the natural generalization of the intuition from Matějka and McKay
(2015), which forms the basis of the predictions in the body of the paper.

4In Fosgerau et al. (2020), this results is only stated for λ = 1. However, is it easy to check that scaling the cost
function (B.19) by λ is equivalent to transforming S(·) 7→ S(·)λ.
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replaced by LS(p) ≡ logS1 (p, 1− p) − logS2 (p, 1− p). Note that the general intuition that

probabilities of fastballs are less sensitive to payoff differences as λ increases still holds: as λ

increases, the left-hand side of (B.21) moves to zero. Since LS(p) is monotone is its argument,

it must be that pfs moves to pf0 for all states, so the probability of a fastball in each state moves

closer to the average probability of a fastball.

Prediction (C) also continues to hold. Intuitively, the attention costs still become relatively

small as leverage approaches infinity, leading to Nash strategies. To modify the proof, simply

replace the value for L̄ in (B.9) with

L̄ = max

{
λ

φw̃
log

(
S1(q

∗, 1− q∗)
S2(q∗, 1− q∗)

S2(q
f
0 , 1− q

f
0 )

S1(q
f
0 , 1− q

f
0 )

)
,

λ

εw̃
log

(
S1(p

∗ + φ, 1− p∗ − φ)

S2(p∗ + φ, 1− p∗ − φ)

S2(p
f
0 , 1− p

f
0)

S1(p
f
0 , 1− p

f
0)

)
,

λ

εw̃
log

(
S1(p

∗ − φ, 1− p∗ + φ)

S2(p∗ − φ, 1− p∗ + φ)

S2(p
f
0 , 1− p

f
0)

S1(p
f
0 , 1− p

f
0)

)}
, (B.22)

The one subtlety to note is that we know S1(p, 1 − p)/S2(p, 1 − p) is increasing in p because

S1(p, 1 − p) is increasing in p and S2(p, 1 − p) is increasing in 1 − p. Otherwise, the proof is

identical.

Finally, we can write (B.21) as

exp
(ws
λ

)
=
S1

(
pfs , 1− pfs

)
S2

(
pfs , 1− pfs

) · S2
(
pf0 , 1− p

f
0

)
S1

(
pf0 , 1− p

f
0

) .
A sufficient condition for Prediction (D) to hold as stated is for S1(p, 1− p)/S2(p, 1− p) and its

inverse to be convex in p, in which case the argument from Appendix B.1 applies directly. While

we are not aware of counterexamples, we have not been able to establish that the properties of an

inverse scaled demand function S(·) are sufficient for convexity of this function. Of course, note

that a weaker version of Prediction (D) must hold: it cannot be the case that ws > 0 for all s if

we observe mixing, since then the pitcher would simply play pfs = 1 and not acquire information;

how disperse ws can be across states is a function of the specific cost function.

We then move to the even more general class of posterior-separable cost functions (Caplin

et al., 2019; Denti, 2020a), where we show that fewer predictions must hold. If πs is the prior
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probability of state s, Lemma 4 of Denti (2020a) notes that we can write the objective function as

Es

[
pfsws

]
− λ ·

[
pf0 · ψ

(
pf1π1

pf0
, · · · ,

pfSπS
p0

)
+ (1− p0) · ψ

(
(1− pf1 )π1

1− pf0
, · · · ,

(1− pfS)πS

1− pf0

)]
(B.23)

if there are S states and ψ : ∆S → R is convex. Differentiating (B.23) with respect to ps shows

that in general, the probability of each state enters the first-order condition. As an illustration, in

the simpler case where

ψ (x1, · · · , xS) =
∑

ψ̃ (xs) ,

with ψ̃(·) convex, we would have the first-order condition

ws
λ

= ψ̃′

(
pfsπs

pf0

)
− ψ̃′

(
(1− pfs )πs

1− pf0

)
. (B.24)

Inspecting (B.24), it is easy to see that since πs is still in the expression, it need not be the case for

general ψ̃(·) that if ws > wt then pfs > pft . Thus, Prediction (A) need not hold, as the action in a

particular state depends on the payoff as well as the ex ante probability of that state. Moreover,

no prediction directly analogous to (B) holds either, again because πs enters into the first-order

condition (B.24) directly. However, (B.24) still shows that as λ → ∞, pfs → pf0 : if attention

becomes especially costly, then the probability of a fastball in each state converges to the average

probability. While we conjecture that a result analogous to (C) would exist in this case—players

would have an incentive to play close to pfs ∈ {0, 1} for states with sufficiently large payoff

difference as long as they are not especially uncommon—the statement in the text does not apply

exactly.5 Similarly, there is no exact analogue of Prediction (D); however, as mentioned above in

the context of generalized entropies, it cannot be that ws is uniquely signed for all s, since if so

then pfs would either be 0 or 1.

Finally, note that our estimates of attention costs and the evaluation of the fit of the model in

Sections V.B to V.E of the paper use the specific functional form of Shannon entropy. The fact

that payoffs and strategies have a reasonably linear relationship (Figure 4) provides evidence in

favor of this functional form for the cost function. Overall, the discussion above suggests aside

from the specific exercise of fitting the model, the predictions do generalize at least partially to

cost functions other than Shannon entropy.

Another assumption we maintain is that information acquisition is uncorrelated across players.

In a coordination game, Denti (2020b) notes that agents would prefer information acquisition

to not be independent so that actions will inherit some of the correlation from the information.

5This is in part due to the fact that the formulation we follow for posterior-separable information costs from Denti
(2020a) requires finitely many states, and the statement of (C) references a sequence of states. We have not pursued a
formal treatment of analogues to (C) in this more general case.
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While a formal analysis is beyond the scope of this paper, we conjecture that this is less of

a concern in a game of strategic substitution. In our setting, imagine the batter and pitcher

acquired correlated information, leading to positively correlated actions. This benefits the batter,

who is trying to match the pitcher. Given our Shannon information setup, though, the pitcher

could acquire uncorrelated information that led to uncorrelated actions for the same processing

cost. He would do so, because he can get higher payoffs for the same cost. Similarly, if the

correlated information benefited the pitcher, the batter could choose a different signal for the same

cost that was uncorrelated. Therefore, we conjecture the only information structures that could

survive in equilibrium will lead to uncorrelated actions, which suggests that that the independence

assumption may not have been consequential.6

B.4. Example of Strategies and Payoffs as a Function of Leverage

In this section, we solve a numerical example to show that (scaled) payoffs need not be monoton-

ically decreasing in leverage. Consider the following state-dependent matching pennies game

between a pitcher and a batter, where the first term indexed the payoffs of the pitcher.

Batter

Fastball Other

Pitcher
Fastball −L(1 + ε), L(1 + ε) L(1 + ε),−L(1 + ε)

Other L(1− ε),−L(1− ε) −L(1− ε), L(1− ε)

States are indexed by (ε, L), which includes the relative payoff ε of a fastball for the pitcher

as well as the leverage L, which scales payoffs. The rational inattention equilibrium involves a

probability p(ε, L) and q(ε, L) that each agent plays a fastball as a function of the state. Prediction

(D) notes that fixing ε, as L→∞, strategies should converge to Nash equilibrium. We test this in

the data by noting that payoff differences, scaled down by L, should be decreasing to zero—but

only for sufficiently high L. For low-leverage situations, even the scaled payoff differences could

be increase in L, as we show in this appendix.

Suppose that ε has mean zero and is symmetric about 0, and the distribution ofL is independent

of that of ε. Then, we claim that the average probabilities of a fastball across all states, pf0 and qf0
for the two players, are equal to 1/2. To see this, note that if (pf0 , q

f
0 ) were the average probabilities

for an equilibrium of this game, then (1 − pf0 , 1 − q
f
0 ) would be the average probabilities of a

fastball in the game where ε is replaced by −ε (by independence of ε with L). But, given the

symmetry of ε, this modified game is equivalent to the original one. Thus, pf0 = 1 − pf0 , so

6Of course, in more general setups besides Shannon entropy information costs, we would hesitate to speculate what
might happen. For example, if acquiring the same information saved on information processing costs, then it might
be optimal to pursue such a strategy.
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(a) Normalized Payoff Differences
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Figure B.1: Payoff differences for pitcher as a function of leverage L. (a) does not multiply the payoffs by
L and (b) does. The solid line is for ε = 0.1 and the dashed one is for ε = −0.1.

pf0 = 1/2, and similarly for qf0 .7

Fixing the average probabilities pf0 and q0 of a fastball across all states, we can numerically

compute the probabilities in a particular state using the system (B.1)–(B.4). This then lets us

compute the both the true payoffs as well as the scaled payoffs (ignoring the L in the payoff

matrix) as a function of L. Figure B.1 shows the normalized and unnormalized payoffs differences

for the pitcher as a function of leverage, for ε ∈ {0.1,−0.1} and λ = 1. As Panel (a) does not

multiply the payoffs by L where as Panel (b) does, we can think of the payoffs as representing FIP

and WPA, respectively, thus making this figure the stylized analogue of Figures 5 and C.5. The

scaled payoff differences do converge to zero, which is in line with Prediction (C). However, they

exhibit a non-monotonicity as they move away from the default and towards the Nash equilibrium

ones: for intermediate levels of L, payoffs show a departure from payoff equivalence. Moreover,

note that the true payoff differences in Panel (b) do not converge towards zero even though

the strategies approach Nash equilibrium. In this numerical example, they converge to points

away from zero, as the convergence of the strategies and the increase in L cancel out. This is

again justification for why we do not look for convergence in WPA when testing Prediction (C),

although finding convergence would be consistent with this prediction.

Figure B.2 shows the strategies of the pitcher and the batter. While convergence of strategies to

Nash equilibrium is not directly a test we can run, investigating them in the numerical simulation

7We leverage symmetry for simplicity here, but it is easy to compute pf0 and qf0 numerically for games that do not
exhibit the symmetry property.
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(b) Batter’s Probability of Fastball

Figure B.2: Strategies for the (a) pitcher and (b) batter as a function of leverage L. The solid line is for
ε = 0.1 and the dashed one is for ε = −0.1.

provides some intuition for the elements of the model. For low values of L, the players play the

default strategy of mixing 50/50. In the state-by-state game, the Nash equilibrium is for batters

to mix 50/50 but for pitchers to play fastballs with probability 0.55 when ε = −0.1 and 0.45

when ε = 0.1. The results in the figure show that the strategies do indeed converge to Nash as L

increases, and the batter’s strategy exhibits a non-monotonicity as a function of L (as the default

strategy is the same as Nash for the batter). Moreover, comparing Figures B.1 and B.2 shows

that the relative sign of the payoff differences match the strategies: pitchers throw more fastballs

when the payoff of a fastball is better than average.

We should finally note that nothing in the model forces there to be a non-monotonicity in

payoffs as a function of L. Indeed, the batter’s scaled payoffs (not shown) are monotonically

decreasing in magnitude as a function of L. In this example, this is because at low values of L, the

pitcher is playing a strategy that does not correspond to the Nash equilibrium. The batter’s true

payoffs are non-monotone in L: for low L they are mechanically small and for these parameters

for high L they converge to 0 as well. This example shows that the robust conclusion of the

model—and indeed the one highlighted in Prediction (C)—is that the scaled payoffs should

converge to 0 since the strategies would converge to Nash.
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WPA × 1000 OPS− × 100

(1) (2) (3) (4)

Fastball 0.0273 0.551 1.586 4.093
(0.0849) (0.200) (0.127) (0.104)

N 2,707,048 2,707,048 5,442,316 6,881,063
Controls Full Full Partial None

Table C.1: Comparison of baseline result to Kovash and Levitt (2009), who use on-base plus slugging. Note
that a lower OPS is better for the pitcher (as indicated by the −). Full state controls include the standard list
used in our paper. Partial state controls include inning, outs, number of runners, and pitcher-batter-count
effects, but not interacted.

C. Additional Empirical Results

C.1. Comparison to Kovash and Levitt (2009)

Kovash and Levitt (2009) investigate a similar question to see if baseball players were playing

Nash equilibrium and propose a different answer. In particular, they compute the average payoff

difference across states and find it is different from zero. The two main differences are that (1)

they use a measure of outcomes based on on-base-percentage plus slugging percentage (OPS)

and that (2) they have fewer controls for the state space than we do. OPS is defined to be 0 for an

out, 1 for a walk, 2 for a single, 3 for a double, 4 for a triple, and 5 for a home run. In this section,

we run their regressions on our sample to replicate their result, and we then discuss our choice of

payoffs.

Table C.1 compares our results to theirs by changing one thing at a time. Column (1) repeats

our baseline regression, where fastballs do not have an effect on win probability added. Column

(2) makes one change: it switches the outcome measure to OPS. Using OPS suggests that fastballs

are worse: a higher OPS is bad for the pitcher. In Columns (3) and (4), we attempt to replicate

some of the regressions run in Kovash and Levitt (2009). Our Column (3), labeled “Partial”

is intended to replicate their regression with the most controls, where they control for inning,

outs, number of runners, and pitcher-by-batter-by-count fixed effects, but not interacted. This

regression appears in Column (5) of Table 3 in their paper. They also have indicators for sliders

and curveballs, so their coefficient compares fastballs to pitches besides those, making the results

slightly hard to compare.8 Their estimated coefficient is 0.073, with standard error 0.008. This is

larger than our replication, but still comparable. In Column (4), we run the regression with no

controls, to correspond to Column (1) of their Table 3. Their estimated coefficient is 0.094, with

standard error 0.004. We seem to be in the same ballpark, though slightly smaller. Any remaining

8On the other hand, their results for sliders and curveballs are fairly close to zero, so the magnitude should be not
especially different.
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difference is likely due to the fact that we use data from 2008 to 2017, while they use data from

2002 to 2006.

Thus, the difference in sample period is not causing us to draw a different conclusion

from Kovash and Levitt (2009). However, there is reason to think that OPS may be misleading.

Using OPS, an out is recorded as a 0, a walk is a 1, and a single is 2. However, in most situations,

a walk and a single lead to the same subsequent state, differing only when there are runners on

base that advance a different amount. Indeed, in our data, the average win probability added of a

single is 0.071 worse than an out and the average win probability of a walk is 0.055 worse than

an out, considerably less than the two-to-one ratio. We also find in our data that fastballs lead to

more singles and fewer walks. Because of the difference in how OPS measures payoffs, it likely

overstates the losses of fastballs compared to other pitches. Moreover, since a battery of other

outcomes—win probability, FIP, wins, and runs remaining—broadly suggest similar results, and

we provided further discussion in Section III.B about other payoffs, we do not include OPS as a

main outcome in the paper.

C.2. Responsiveness of the Pitching Team

In this appendix, we provide further results related to the calculations in Section IV.B.

We first provide more details about the regressions underlying Table 3. Figure C.1 shows

scatterplots of the log odds of a fastball in a particular state (relative the log odds of a fastball

on average), with each axis corresponding to a particular group. The horizontal axis plots this

quantity for the “baseline” category, which is omitted from the regressions in Table 2, and the

vertical axis is the category for the interaction. Panels (a) and (b) use the two measures of

analytics, where the vertical axis corresponds to teams with a higher emphasis on analytics (lower

attention cost), and in the remaining panels the vertical axis refer to the group of observations

with higher attention costs. Each datapoint is a count-out, although the graphs restrict to a subset

of the data that has the better-populated states to make the dots more salient. Note that the two

components of each data point are computed on entirely separate datasets. Nevertheless, the

regression line (solid red) is steeper than the 45◦ line (dashed black) in Panels (a) and (b), and it

is shallower in the other panels. This is consistent with Table 3.

However, the scatter shows that it is largely the case that even state-by-state, strategies for

the situations with lower attention costs are more responsive. Figure C.1 shows this by noting

that in each panel, almost all dots are on the correct side of the 45◦ line. Figure C.2 makes this

even clearer by plotting the difference between the points and the 45◦ line. In Panels (a) and (b),

we would expect the majority of the points to lie in the first and third quadrants, and we would

expect the points to lie in the second and fourth in the remaining panels. This seems to be the

case. We should further note that these observations about the scatter plot remain robust if we
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(a) Defensive shifts
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(d) Temperature
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Figure C.1: Strategies in situations with different attention costs. The horizontal axis plots the relative log
odds of a fastball at the count-out level for particular situations: teams with low analytics intensity in (a)
and (b), younger pitchers in (c), cooler temperatures in (d), and night games in (e). The vertical axis plots
relative log odds in the complementary situations. In Panels (a) and (b), the horizontal axis corresponds to
teams with higher attention costs, and in the remaining panels it corresponds to teams with lower attention
costs. The dashed line is 45◦ and the solid (orange) line is the line of best fit.
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move to the even finer categories of count-out-base position, although interacting with inning

further increases sampling error substantially.

We next investigate a richer specification for the responsiveness of strategies to zero- and

two-strike counts in Table 2. In particular, we run the same regression but instead of interacting

strikes with a binary classification of age or temperature, we interact with dummies for age or bins

of 10 degrees for temperature. The coefficients of the interaction terms are plotted in Figure C.3.

Panel (a) shows an almost monotone relationship between responsiveness and age, peaking around

age 20 and then declining beyond that. This is consistent with continuous decline in cognition

related to information processing with age. Panel (b) shows a monotone effect of temperature

on the responsiveness in zero-strike counts; for two-strike counts the effect of temperature on

fastball probability is relatively flat for intermediate temperatures but does change for especially

high ones. Taken together, Figure C.3 suggests that the results in Table 2 were not an artifact of

the binning procedure.

To check the concern that payoff difference across states may differ by groups, we run the

analogue of Section IV.A interacted with proxies for attention. We estimate

Yp =
∑
σ

{
βσ · 1[Fastball]p · 1[σ strikes in the count]p · Attentionp

+ γσ · 1[Fastball]p · 1[σ strikes in the count]p
}

+ State FEs + εp, (C.1)

where Yp is the win probability added of a pitch. Results from this analysis are in Table C.2. They

largely do not seem to indicate differences in payoffs that would change the conclusions from this

section. The point estimates in Column (2) suggest that high analytics teams face lower payoffs

from fastballs in 0-strike counts and higher in 2-strike counts, which would suggest that such

teams are even more responsive than the previous results would imply by themselves. Column

(3) suggests that older pitchers earn higher payoffs in both 0- and 2-strike counts—perhaps due

to increased experience—although the net difference in payoffs between the two counts may

in fact be slightly lower. Column (4) suggests that on hot days, payoffs to a fastball in 0-strike

counts are higher and those to 2-strike counts are lower, which would exacerbate the limited

responsiveness documented above. It is true that the point estimates in Column (5) suggest more

muted payoff differences in afternoon games, and the estimates in Column (1) suggest that teams

with high analytics (as measured through shifts) actually face slightly starker payoff differences.

However, the point estimates in Column (1) are very small, and all point estimates are especially

noisy. Thus, while we cannot definitively rule out differences in payoffs that would counteract the

responsiveness documented above, the general pattern in Table C.2 makes this seem like a less

likely explanation.

An alternate approach would be to estimate λ following the procedure in Section V separately
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Figure C.2: Strategies in situations with different attention costs. The plotted data is the same as Figure C.1
but the vertical axis in this figure is the difference between the vertical axis and the 45◦ line.
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Shifts ESPN Age Temp Afternoon
(1) (2) (3) (4) (5)

Fastball, 0 strikes 0.535 0.591 0.439 0.465 0.574
(0.170) (0.165) (0.168) (0.139) (0.155)

Fastball, 1 strike -0.002 -0.124 0.018 -0.081 -0.003
(0.171) (0.167) (0.170) (0.141) (0.158)

Fastball, 2 strikes -0.766 -0.855 -0.939 -0.905 -0.939
(0.191) (0.185) (0.190) (0.155) (0.177)

Fastball, 0 strikes 0.042 -0.158
× High Analytics (0.297) (0.309)

Fastball, 1 strikes -0.501 -0.310
× High Analytics (0.301) (0.310)

Fastball, 2 strikes -0.024 0.222
× High Analytics (0.337) (0.348)

Fastball, 0 strikes 0.242
× (Age ≥ 30) (0.308)

Fastball, 1 strike -0.265
× (Age ≥ 30) (0.312)

Fastball, 2 strikes 0.429
× (Age ≥ 30) (0.354)

Fastball, 0 strikes 0.353
× (Temperature ≥ 90) (1.02)

Fastball, 1 strike -2.74
× (Temperature ≥ 90) (1.27)

Fastball, 2 strikes -0.460
× (Temperature ≥ 90) (1.30)

Fastball, 0 strikes -0.291
× Afternoon (0.451)

Fastball, 1 strike 0.370
× Afternoon (0.478)

Fastball, 2 strikes 0.449
× Afternoon (0.542)

N 2,479,402 2,492,807 2,443,911 2,536,315 2,266,237

Table C.2: Win probability added of a fastball, relative to a one-strike count. The specification in given
in (C.1). Details of Table 2 apply.
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Figure C.3: Interaction coefficients for a regression of (8) where Attentionp is replaced by (a) dummies for
pitcher age or (b) dummies for bins of temperature. Dotted lines indicate 95% confidence intervals.

by attention cost. This would account for both differences in actions and any potential differences

in payoffs. Results of this exercise are reported in Table C.3. Each element in this table is an

estimate of λ using a particular subset of the data: we drop all datapoints that do not belong in

that bin (e.g., all data points for games played when the temperature is not high) and estimate (13).

In Columns (1) and (2), the baseline category are teams with low analytics emphasis, so we

would expect them to have higher λ. The baseline is young pitcher for Column (3), games in cool

temperatures for Column (4), and night games for Column (5), and in all three would expect λ for

the baseline to be lower than λ for the other category. The point estimates for age and temperature

go in this direction, but the point estimate for λ for afternoon games is not only smaller than the

one for night games but negative. However, note that this estimate is especially noisy. In fact, all

estimates are somewhat noisy and while the evidence usually points in the expected direction,

we cannot reject that the costs of attention between the two groups are equal in any particular

column.

C.3. Scaling Properties of FIP

Section II notes that one benefit of FIP is that it does not scale with leverage. In fact, we use this

property when testing Prediction (C), noting that FIP is approximately proportional to L times

win probability added. Here we provide evidence that this is the case.

Figure C.4 shows a binned scatter of the win probability added as a function of leverage—as

defined by the standard deviation of the win probability added within inning-score difference

combinations—for each of the components of FIP. The salient observation from this figure is that

while win probability added scales with leverage, as expected, the relationship is linear within

18



(1) (2) (3) (4) (5)
Shifts ESPN Age Temp Afternoon

λ for Baseline 1.445 1.431 1.132 1.308 1.330
(0.401) (0.341) (0.367) (0.284) (0.346)

λ for Other 1.195 1.080 1.536 1.927 -0.130
(0.386) (0.434) (0.478) (2.203) (1.113)

Table C.3: Estimates of λ by bins for attention. The “Baseline” category is the excluded category in Table 2
and the “Other” category is the bin used in the interaction. Thus, for Columns (1) and (2) the baseline
involves teams with low analytics, Column (3) is young pitchers, Column (4) is cooler games, and Column
(5) is night games. Thus, we would expect higher λ estimates for the baseline category in Columns (1) and
(2) and higher for the other category in the remaining columns.
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Figure C.4: Win probability added by elements of FIP, against leverage

outcome; e.g., win probability added by a home run is approximately αHome Run · L. Furthermore,

as mentioned in Section II, the coefficients in FIP are chosen so that they roughly mirror the

effects of these outcomes on win probability added. To see this in the graph, we can compare

the slopes of the lines—relative to the line for other—to each other. The ratio of the slope of

home runs (minus other) to walks (minus other) is 4.4, whereas FIP uses 13/3 ≈ 4.33. That of

home runs (minus other) to strikeouts (minus other) is 5.9, while FIP uses 13/2 = 6.5. The ratio

between walks (minus other) to strikeouts (minus other) is about 1.33 while the ratio used by FIP

is 1.5. Putting this together, we can say that win probability added is approximately proportional

to leverage times FIP.
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Figure C.5: (a) wOBA and (b) WPA by leverage for zero-strike and two-strike counts. Note that for wOBA,
lower values are better for the pitcher.

C.4. Convergence of wOBA and Win Probability Added by Leverage

Figure C.5 shows the results of (10) with (a) wOBA and (b) WPA as the left-hand side variable.

Since wOBA does not scale with leverage, we would expect convergence in differences to 0

as leverage increases. We see some (albeit noisy) evidence that this is the case—especially for

2-strike counts. As discussed in Section IV.C, since WPA mechanically scales with leverage,

we may not see payoff convergence in WPA as leverage increases even if strategies do converge

to Nash. Appendix B.4 shows a numerical example of this lack of convergence even though

strategies converge to Nash. Thus, evidence that the payoff differences measured in WPA do

not explode as leverage increases can be suggestive evidence in favor of convergence to Nash.

Indeed, Figure C.5 shows that while payoff differences do increase as a function of leverage for

intermediate values of leverage, there is some evidence that they are not monotone in leverage

despite the mechanical effect of leverage. In particular, the point estimates for WPA by a fastball

in the highest decile of leverage are 0, although the standard errors are especially large.

C.5. Approximate Payoff Equivalence for Dynamics

We conduct the analysis of approximate payoff equivalence in Section V.A but uses the cumulative

win probability added in the next N innings as the left-hand side variable. This analysis is to

check whether payoffs are approximately equivalent on average even if the true payoffs were

the ones that incorporated dynamic considerations. We use the weighting scheme discussed in

Section V.A to weight by inverse variance and then further upweight states to deal with selection

due to dropped observations.

Figure C.6 shows these results. We are unable to reject the the average is 0 for any inning,
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Figure C.6: Coefficient of (11) with cumulative win probability added in the nextN innings as the outcome.
Weighting is as described in Section V.A. Dotted lines indicated 95% confidence intervals.

and point estimates are reasonably small. Of course, standard errors are larger than they are for

other metrics—as can be expected given the variance of the outcome. However, there does not

seem to be any systematic evidence that the difference between these dynamic payoffs across

pitch dynamics are significantly different from zero.

C.6. Interpreting the Model Fit

In this section, we interpret the R2 values in Table 7. The exercise we run is in the spirit of a

bootstrap: we ask whether we would expect an R2 at this level purely due to measurement error

if the true data generating process were from rational inattention. In particular, for each column

we generate 500 bootstrap samples (indexed by n) by drawing

βnσ = α̂+ λ̂ · (L(p̂fσ)− L(p̂f0)) + εnσ,

where εnσ is normal with standard deviation equal to the standard error of β̂σ. We then regress βnσ
on L(p̂fσ)− L(p̂f0) and compute the R2. We finally compute the proportion of such simulations

where such an R2 is less than the one observed in the data. Note that any departure from perfect

linearity would lead to a low R2. Since our focus throughout the paper is on Shannon entropy,

we use this measure of model fit as it directly imposes the parameteric restrictions given by this

choice.

This exercise does suggest that at the baseline standard errors, the R2 that we estimate is low

relative to what one might estimate if the true data generating process were (4): for count-out

with WPA, the p-value is 0.25, but for all other specifications shown in Table 7, it is less than
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0.06. However, further analysis suggests that the R2—at least for win probability added—are in

line with what one might expect with modestly more error. Inflating the standard errors by only

10% leads to a p-value of 0.12 for the count and 0.44 for count-out. The model fit seems slightly

worse with FIP: one has to inflate the standard error by about 40% to achieve a p-value larger

than 0.1 and 50% to achieve one larger than 0.2 for count-out with FIP as the metric.9

In summary, we take these results as reassuring for the model. While measurement error by

itself would cause us to expect larger R2 values than the (already rather large) ones we see, one

does not have to add much further model misspecification to justify the fit.
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