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Appendix A Equilibrium selection: technical appendix

This section collects the equilibrium outcomes from a wide range of selection criteria in
coordination games; see the summary in Table 1. For the purpose of our experiment,
we present the generalization to an n > 2-player game. We refer the reader to Kim
(1996, Sec. 3�4) for the details of the derivation of the �ve criteria below with n
players. For the sake of clarity, we adopt the same notations. Within the context of
our game, the `L' equilibrium is the sub-optimal `run' equilibrium, and the Pareto-
optimal equilibrium `H' corresponds to `wait'. The payo� of waiting when k players
wait and, hence, n− k players withdraw is given by:

πHk = max

(
0, R

n− r(n− k)

k

)
(1)

where the subscript denotes the total number of players adopting the strategy `H'/`wait'.1

Similarly, the payo� of withdrawing when k players withdraw and n− k wait is given
by:

πLk = min
(
r,
n

k

)
(2)
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Payo� structure r = 1.54 r = 1.33
Group size N = 10 N = 100 N = 10 N = 100

Equilibrium Security/minmax `Run' `Run' `Run' `Run'
re�nement Payo�-dominance `Wait' `Wait' `Wait' `Wait'
criteria (∀N) (∀N)

Risk-dominance `Run' `Run' `Run' `Run'
(for N > 2) (for N > 3)

Maximization of potential `Run' `Run' `Run' `Run'
Global payo� uncertainty `Run' `Run' `Run' `Run'

Dynamic random matching `Run' `Run' `Run' `Run'
(for N > 2) (for N > 6)

Evolutionary dynamics `Run' `Run' `Wait' `Wait'
(for N > 2) (∀N)

Notes: Computations based on Kim (1996) and Monderer & Shapley (1996), see hereafter. This table
does not distinguish between the di�erent persistence parameters, as they do not a�ect the selected
equilibria. For simplicity we work with large groups of 100 in theory. However, the results do not
di�er if we work with N =75�90.

Table 1: Equilibrium re�nements in the experimental treatments with respect to N
and r

In particular, we have the payo� from waiting when all other players withdraw: πH1 = 0
if r ≥ n

n−1 , and R[n − r(n − 1)] otherwise (i.e., πH1 = max (0, R[n− r(n− 1)]). The

payo� of withdrawing when all other players wait is πL1 = r. The payo� of withdrawing
when all players do so as well is given by πLn = 1, and the payo� of waiting when all
players do so is given by πHn = R, with R = 2 in our experiment.

We present seven criteria and their respective predictions. The �rst �ve involve a
static selection process, while the �nal two correspond to a dynamic form of selection.
In the generalization to n-player games, it is assumed that every player is repeatedly
and randomly matched to play the game with n − 1 other players, out of a �nite or
in�nite population of N >> n players. To stay close to the design of the experiment,
we can think of the limit case in which N →∞ or is arbitrarily large. We are interested
in the e�ects of n, the size of the game, on the equilibrium selection outcome.

A.1 Security and payo� dominance

The minmax criterion of von Neumann and the payo�-dominance criterion (Harsanyi
& Selten 1988) do not depend on the parameters r or N . It is easy to see that `run'
is always the secure strategy, i.e., the strategy that maximizes the minimum possible
payo�. By `running', a player can ensure a minimum payo� of 1 irrespective of the
behavior of the others, while the strategy `wait' exposes players to the risk of a zero
payo�. The `wait' equilibrium is clearly payo�-dominant, as it can deliver the maximum
return R = 2 > r.
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A.2 Risk-dominance (Harsanyi & Selten 1988)

The `wait' equilibrium is also more risky since it requires that a large enough fraction
of the other players coordinate on `wait'. This intuition is translated into the notion
of risk-dominance that selects an equilibrium based on the relative pro�ts from each
action (Harsanyi & Selten 1988). This notion can be generalized to N -player games,
see, e.g., Kim (1996) and Monderer & Shapley (1996).

Here we use the in�nite N -case in Kim (1996, Eq. 2) to derive the function Φ
that maps the share y ∈ (0, 1) of players choosing the strategy `wait' onto the payo�
di�erence function Φ(y):

Φ(y) =
n∑
k=1

(
n− 1

k − 1

)
yk−1(1− y)n−kφk (3)

with φk ≡ πHk −πLn−k+1, as given in Eq. (1) and (2). In particular, we have Φ(0) < 0 <
Φ(1). Figure 1a represents the function Φ for each of our four treatments. Note that
the function is not monotone, due to the non-linear payo� functions.

Kim (1996, Eq. 14) states that if the following relation is true:

Φ (1− µn) > 0, with (1− µn) ≡ φn
φn − φ1

, (4)

(where 1− µn measures the net gain from coordinating on H rather than on L), then
the `wait' equilibrium risk-dominates the `run' equilibrium.

Within the bank-run game, we have:

1− µn,r =
πHn − πL1

(πHn − πL1 ) + (πLn − πH1 )
= 1− 1−max(0, R[n− (n− 1)r])

R + 1− r −max(0, R[n− (n− 1)r
(5)

As is clear from Eq. 5, 1 − µn,r = R−r
R+1−r |= n as soon as r ≥ n

n−1 , which is the
case in all our experimental treatments. Yet the group size n still in�uences the shape
of the function Φ. Furthermore, 1 − µn,r is decreasing in r ∈ (1, R) (we use R = 2
in our experiment). As r → R = 2, 1 − µn,r → 0 and Φ(0) < 0. Therefore, when r
increases, Condition (4) is less likely to hold, and `withdraw' becomes the risk-dominant
equilibrium.

In the experimental treatments, 1 − µn=10,r=1.54 = 1 − µn=100,r=1.54 = 1 − µ1.54 =
0.315, and 1−µn=10,r=1.33 = 1−µn=100,r=1.33 = 1−µ1.33 = 0.4012. Those thresholds are
reported in Figure 1a. We have Φ(0.315) < 0 and Φ(0.4012) < 0, hence Condition (4)
does not hold in any of our experimental treatments and the criterion of risk-dominance
always selects the `run' equilibrium.

For the purpose of illustration, Figure 1b plots the values of Φ with r = 1.33 and
r = 1.54 as a function of the group size n. Black dots represent the experimental
treatments that we consider. The values of Φ, and hence the likelihood of `wait' to
risk-dominate, are decreasing in n. For fairly small groups (n < 3 with r = 1.54 and
n < 4 with r = 1.33), the `wait' equilibrium is risk-dominant. However, the `run'
equilibrium becomes risk-dominant for any higher group sizes.
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Figure 1: Criteria of equilibrium selection

A.3 Maximization of the potential (Monderer & Shapley 1996)

Another existing equilibrium re�nement concept is the maximization of the potential
of a game. Monderer & Shapley (1996) show that any congestion game has a potential
function, and provide a way of constructing this potential. It is easy to see that our
bank-run game is a congestion game, in which players' payo�s only depend on the
number of players choosing a given action from a �nite set of actions. For our game,
the potential function is de�ned by the following function (isomorph up to a constant):

P (A) =

e1∑
l=1

min
{
r,
n

l

}
+

e2∑
l=1

max

{
0,
n− (n− l)r

l
R

}
, (6)

where A denotes an action pro�le of the players with ai ∈ {withdraw,wait}, and e1
(e2) is the number of agents withdrawing (waiting) according to A with e1 + e2 = n.
This function is indeed a potential function: if we �x all but 1 player's action and look
at how the value of the potential changes by changing the last player's action, we �nd
that this change is exactly the change in the utility of this last player. Thus, P (A) is a
potential function of the game. Note that this function is not di�erentiable everywhere,
thus maximization is not straightforward. However, what is most interesting to us is
to look at the two pure-strategy equilibria and calculate the potential value in these
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equilibria. The equilibrium with the highest potential is the selected one. The potential
of the `run' equilibrium is:

P (e1 = n) =

bn/rc∑
l=1

r +
n∑

l=dn/re

n

l
=

n∑
k=1

πLk , (7)

and the potential of the `wait' equilibrium is:

P (e2 = n) =

bn−n/rc∑
l=1

0 +
n∑

l=dn−n/re

n− (n− l)r
l

R =
n∑
k=1

πHk (8)

Therefore, if
P (e2 = n)− P (e1 = n) > 0 (9)

the `wait' equilibrium is selected.
Some algebra shows that (7) is increasing in r, while (8) is decreasing in r (�xing R

and n). For (8) this is straightforward: as r increases, we have fewer nonzero elements
in the sum, and each element becomes smaller. As for (7), we �x r′ > r. Then we have

P (e1 = n) =
∑bn/r′c

l=1 r′+
∑n/r

l=dn/r′e
n
l

+
∑n

l=dn/re
n
l
. Since r′ > r, the number of elements

in the �rst two expressions is exactly the same as in (7), but all of these elements are
larger for r′ than in (7) with r. Hence, (7) is increasing in r.

Thus, for all group sizes, there is a threshold r∗ for which (7) and (8) are equal. For
higher short-term rates, Condition (9) is less likely to hold and the `run' equilibrium is
more likely to be selected. For smaller values of r, Condition (9) is more likely to hold
and the `wait' equilibrium to be selected.

The threshold r∗ is also dependent on group size: the higher N , the smaller the
region where the `wait' equilibrium is chosen. To see that, Figure 1c displays the LHS
of (9) for n = 2, ..., 100 for r = 1.54 and r = 1.33. The black dots correspond to the
experimental treatments. Small population sizes can be relevant here: with r = 1.54,
`wait' is only selected if n = 2, and for r = 1.33, `wait' is selected for n < 7. However,
the threshold values r∗ become essentially independent of n as the group size becomes
large enough.

From Figure 1c, it is clear that in neither of our treatments does the Condition (9)
hold, as the values of the function are all negative. Hence, in our game, the maximum-
potential criterion selects the `run' equilibrium in all our experimental treatments.

A.4 Global payo� uncertainty (Carlsson & van Damme 1993)

In the global payo� uncertainty approach developed by Carlsson & van Damme (1993),
each player observes the payo� matrix with some (small) noise before selecting a strat-
egy. This re�nement approach (denoted henceforth by CvD) states that an equilibrium
is selected if it is robust with respect to global perturbation. In a two-player game,
Carlsson & van Damme (1993) show that the iterated dominance principle selects the
risk-dominant equilibrium.2

2Note that the equivalence between the selected equilibrium under the global payo� uncertainty
approach and the dynamic random matching framework on the one hand, and the risk-dominant
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Following Kim (1996), in our n-player game, the `wait' equilibrium is selected by
the CvD criterion if:

1

n

n∑
k=1

[πHk − πLk ] > 0⇔
n∑
k=1

πHk >

n∑
k=1

πLk (10)

By noticing that
n∑
k=1

πLk =

bn/rc∑
l=1

r +
n∑

l=dn/re

n

l
(11)

and
n∑
k=1

πHk =

bn−n/rc∑
l=1

0 +
n∑

l=dn−n/re

n− (n− l)r
l

R (12)

it is easy to see that Condition (10) is the same as Condition (9) discussed above. Hence,
in our n-player game, the CvD criterion still selects the risk-dominant equilibrium, and
the `run' equilibrium is always selected.

A.5 Dynamic random matching (Matsui & Matsuyama 1995)

Matsui & Matsuyama (1995) consider a dynamic randommatching framework, in which
players are rational and maximize their expected future discounted payo�s, but can-
not switch strategies at will due to friction. A selected equilibrium is called uniquely
absorbing. As shown in Kim (1996), in an n-player game, the `wait' equilibrium is
selected if Condition (10) holds. Therefore, in our n-players framework, the equiva-
lence between risk-dominance and equilibrium selection in Matsui & Matsuyama (1995)
survives, and this criterion selects the `run'-equilibrium in all our treatments.

A.6 The evolutionary criterion of Kandori et al. (1993) (KMR
hereafter)

The literature on evolutionary game theory provides predictions about the long-run
outcome of the repeated version of the game. Kandori et al. (1993) consider an evolu-
tionary criterion in discrete time with a �nite population size, guided by the Darwinian
principle that the strategy with the highest payo� propagates in the population of
strategies at the expense of the worst-performing one. This environment corresponds
to the limiting case of Matsui & Matsuyama (1995) where there is no friction and
players are myopic � i.e., the best-response myopic dynamics. In this case, each player
adopts a best response against the current con�guration of the society as a whole: given
a proportion yt of players committed to `wait', a player chooses the `wait' strategy if

equilibrium on the other, is established in a two-player game but does not necessarily hold with
N > 2 players. The evolutionary criterion of Foster & Young (1990) also always selects `run' but
applies only to the limiting case of an in�nite population and continuous time and is therefore not
directly applicable to our experimental setting, especially in small groups. We report its outcomes
here for the sake of completeness.
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Φ(yt) > 0 and the `run' strategy if Φ(yt) < 0 (and is indi�erent between the two in
case of strict equality).

Under this evolutionary process, a selected equilibrium is the long-run equilibrium
of the game. Following Kim (1996), the `wait' equilibrium is selected if:

Φ

(
1

2

)
=

n∑
k=1

(
n− 1

k − 1

)(
1

2

)n−1
φk > 0 (13)

Along the same line of reasoning as in Section A.3, as r increases, `withdraw' is
more likely to be selected, and the e�ect of n is milder as soon as the population size
is large enough.

Looking at Figure 1a for 0.5 on the x-axis, Condition (13) holds when r = 1.33 and
N = 10 or 100 (Φ(0.5) > 0), but does not for r = 1.54 and n = 10 or 100 (Φ(0.5) < 0).
Figure 1d displays the values of (13) for the two chosen levels of r and n varying from
2 to 100, with the dots corresponding to our treatments. For r = 1.54, (13) is positive
and the `wait' equilibrium prevails only for n = 2. For r = 1.33, the values of (13) are
all positive. Independently of r, these values become essentially �at once n > 20.

Hence, `wait' is the long-run equilibrium if r = 1.33, irrespective of the group size
n, and `run' is the long-run equilibrium if r = 1.54 as soon as n > 2.

A.7 Evolutionary dynamics à la Foster & Young (1990)

The selected equilibrium is the stochastically stable equilibrium. The share of players
committed to the `wait' strategy in time t, yt, evolves according to a deterministic repli-
cator dynamic as: dyt = yt(1 − yt)Φ(yt)dt. The equilibrium is selected by minimizing
the corresponding potential function U de�ned by:

U(y) = −
∫ y

0

x(1− x)Φ(x)dx (14)

with y ∈ (0, 1) indicating as above the share of players choosing to wait. Kim (1996, p.
223) shows that, if U(1) > 0, then the `run' equilibrium is stochastically stable. The
same holds true for the 'wait' equilibrium when U(1) < 0. With our payo� functions,
with r = 1.54, we have U(1) = 0.076 > 0 for n = 10 and U(1) = 0.102 > 0 for n = 100,
and with r = 1.33, we have U(1) = 0.008 > 0 with n = 10 and U(1) = 0.028 > 0 with
n = 100. Hence, the `run' equilibrium is always selected.
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Appendix B Participants' characteristics across treat-

ments

As the sample of participants did not only include students and participants were from
di�erent countries, this section reports on the distribution of participants' characteris-
tics across treatments.

Most subjects took part in the experiment in the Valencia lab (about 75%). In com-
pliance with the lab rules at the CREED laboratory (in Amsterdam) and in Valencia,
we could collect information about age, gender, �eld of study (if any) and citizenship.
Figure 2 below summarizes the distribution of these four individual characteristics
across treatments. We collect nationalities per geographic zone (Latin America, West-
ern Europe including the two US citizens who participated, Eastern Europe, Africa
and Asia) and consider the following �elds of study: Law and Humanities, Science,
Economics and Business, Other or No student.

Regarding the age, paired two-sided K-S tests do not reveal any signi�cant di�er-
ences of age across the 6 treatments (the lowest p-value is 0.19). The minimum age
requirement for participation was 18 (the age of majority in Europe) and the vast ma-
jority of them were below 25-year-old as the majority of subjects was students. There
is no signi�cant di�erence in the proportion of males and females (the p-value of the
Chi-squared 6-sample test for equality of proportions is 0.79). The geographic origin of
participants was not signi�cantly di�erent across Amsterdam and Valencia (the p-value
of the Chi-squared 6-sample test for equality of proportions is 0.21 for participants of
African origin, 0.14 for participants of Asian origin, 0.61 for participants of Eastern
European origin and 0.88 for participants of Latin American origin). The majority of
the subjects were of Western European origin.

As for the �eld of study, if any, there is no signi�cant di�erences in the distribution
of subjects across our two locations. The p-value of the Chi-squared test for the
proportion of non-students across the two locations is 0.19, 0.34 for the proportion of
Economics and Business students, 0.22 for the proportions of Sciences and Medical
Sciences students and 0.74 for other �elds. The only statistically signi�cant di�erence
concerns the proportion of students in Law, Humanities and Social Sciences where the
p-value of the chi-squared test is 0.03. Breaking down further the background of the
students, the di�erence concerns the proportion of Law students. An explanation may
be that in Valencia, the Law faculty is on the same campus as the experimental lab,
while in Amsterdam the Law faculty is located downtown, which is relatively far from
the lab.
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Appendix C Additional results

(I) (II) (III) (IV)
Dependent variable: withdrawal decision in:

period 10 period 10 period 11 period 12

ownWithdrawalt−1 1.43*** 1.43*** 0.82*** 0.98***
(0.15) (0.15) (0.21) (0.16)

withdrawalRatet−1 3.80*** 4.16*** 5.24*** 6.43***
(1.30) (1.23) (1.07) (1.47)

large 0.55* 0.69 0.29 0.21
(0.32) (1.10) (0.81) (0.96)

ρ = 0.8 -0.68* -0.67 0.06 -0.02
(0.35) (0.41) (0.16) (0.21)

r = 1.33 -0.59 -0.61 -0.60 -0.18
(0.62) (0.93) (0.58) (0.91)

large × -0.42 -0.28 -1.42
withdrawalRatet−1 (2.34) (1.38) (1.70)

constant -1.83 -1.94 -2.14 -2.60
(3.63) (3.05) (2.37) (4.73)

# of observations 1182 1182 1183 1183
-LogLikelihood 537.27 537.22 465.35 420.80
Control YES YES YES YES

Notes: ***: signi�cant at the 1% level, **: signi�cant at the 5% level and *: signi�cant at the 10% level. Standard errors,
reported below the coe�cients in parentheses, are clustered by groups and obtained using bootstrapping to account for
the small numbers of clusters (Cameron et al. 2008). The dependent variable is the withdrawal dummy (1 for `withdraw',
0 for `wait') in period 10 (�rst 2 columns), in period 11 (column III) and in period 12 (last column). Timed-out decisions
are excluded. Independent variables are the subject's own decision in the previous period, the fraction of withdrawals
in the previous period, a group size dummy (1 for large), a dummy for the sequence of announcements (1 for ρ = 0.8),
and a payo� dummy (1 for r = 1.33). Data include all six treatments. The control variables are the age, gender, �eld
of study (if any), and citizenship per geographical area of each participant, as well as the location of the lab they were
present at (Amsterdam or Valencia).

Table 2: Logit model on withdrawal decision in periods 10, 11 and 12
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Notes: the entries are normalized by the number of other players (N − 1).

Figure 3: Distribution of calculator entries normalized by N − 1 with r = 1.54
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Appendix D Individual Evolutionary Learning

The Individual Evolutionary Learning algorithm

Initialization (t = 1)

1. Set the parameter values: number of agents N = {10, 100}, length of the simulation T = 50,
short- and long-run interest rate r = {1.33, 1.54} and R = 2, number of strategies per agent
J = 40, probability of experimentation pex = 10%, intensity of choice β = 5, memory m = 15,
initial probability of choosing `run' prun1 = 0.3.

2. Create a population ofN agents, each endowed with a pool of J strategies {sj,i,1}{i=1,...,N ; j=1,...,J}
as follow: each component sj,i,1 takes the value `0' (i.e., `wait') with probability 1 − prun1 , and `1'
(i.e., `run') otherwise.

3. For each agent i, select randomly with uniform probability over J a strategy j? and select `wait' if
sj?,i,1 = 0 and `run' if sj?,i,1 = 1.

4. Compute the total number of withdrawals e1.

5. For each agent i, compute the number e−i,1 of other agents that chose to withdraw as: if agent i
withdraws in 1 (sj?,i,1 = 1), e−i,1 = e1 − 1 and e−i,1 = e1 otherwise.

Execution (for each period t = 2, ..., T ):

6. Experimentation: For each agent i and each strategy j, �ip each component sj,i,t from 0 to 1 or 1
to 0 with probability pex; leave unchanged otherwise.

7. Computation of the foregone payo� for each agent i:

(a) for the strategy `wait': UWaiti,t =
∑t−m
τ=t−1 max

(
0,

N−re−i,t

N−e−i,t
R
)
,

(b) for the strategy `run': URuni,t =
∑t−m
τ=t−1 min

(
r, N
e−i,t+1

)
.

8. For each agent i, compute the relative �tness of each strategy as:

� pwaiti,t ≡
exp(βUWaiti,t)

exp(βUWaiti,t)+exp(βURuni,t)
for strategy `wait',

� prunt ≡ exp(βURuni,t)
exp(βUWaiti,t)+exp(βURuni,t)

for strategy `run', where pwaitt + prunt = 1.

9. Reproduction for each agent i and each strategy j ∈ J : with probability pwaiti,t , set sj,i,t = 0 (i.e.,
wait ), otherwise set sj,i,t = 1 and `run'.

10. Selection for each agent i, randomly with uniform probability over J , draw a strategy j? and select
`wait' if sj?,i,t = 0 and `run' if sj?,i,t = 1.

11. Compute the total number of withdrawals et.

12. For each agent i, compute the number e−i,t of other agents that chose to withdraw: if agent i
withdraws in t (sj?,i,t = 1), e−i,t = et − 1 and e−i,t = et otherwise.
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Appendix E Experimental instructions

Below are the experimental instructions presented to participants. The treatment-
speci�c information is denoted by italics and put in brackets. The numbers are calcu-
lated for the speci�c group sizes by the program, denoted by XX. All the instructions
and screens were translated to Spanish as well, and participants had the opportunity
to choose their language at the beginning of the experiment.

INSTRUCTIONS

Today you will participate in an experiment in economic decision making. You will
be paid for your participation. There is a participation fee of 5 euros. The additional
amount of cash that you earn will depend upon your decisions and the decisions of other
participants. You will be earning experimental currency. At the end of the experiment,
you will be paid in euros at the exchange rate of 4 experimental currency units = 1 euro.

Since your earnings depend on the decisions that you will make during the experi-
ment, it is important to understand the instructions. Read them carefully. If you have
any questions, raise your hand and an experimenter will come to your desk and provide
answers.

Your Task

(You and the other XX participants in the session, play together in a group of XX.
/ During the experiment, you will be matched with 9 other participants, and you will
play together in a group of 10. The group composition will not change during the ex-
periment.) Each of you starts each period with 1 experimental euro (EE) deposited
in the experimental bank. You must decide whether to withdraw your 1 EE or

wait and leave it deposited in the bank. The bank promises to pay 1.54 / 1.33 EEs
to each withdrawer. After the bank pays the withdrawers, the money that remains in
the bank will be doubled, and the proceeds will be divided evenly among people who
choose to wait. Note that if too many people desire to withdraw, the bank may not be
able to ful�ll the promise to pay 1.54 / 1.33 to each withdrawer. In that case, the
bank will divide the XX EEs evenly among all withdrawers and those who choose to
wait will get nothing.

Your payo� depends on your own decision and the decisions of the other

XX people in the group. Speci�cally, how much you receive if you make a withdrawal
request or how much you earn by waiting depends on how many people in the group
place withdrawal requests.
Note that you are not allowed to ask other participants what they will choose. You
must guess what other people will do - how many of the other XX people will with-
draw - and act accordingly. The graph below shows your payo� for withdrawing or
waiting depending on the number of other withdrawers in your group. During the
experiment you will see the same graph, and a calculator on your screen. The calcula-
tor returns your payo� for each action when you enter how many other participants
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hypothetically withdraw. Note that everybody earns about the same amount if exactly
XX people decide to withdraw their money. Let's look at two examples:

Example 1.
Suppose 2 subjects choose to withdraw. If you choose to withdraw, your payo� is XX,
and if you choose to wait, your payo� is XX.

Example 2.
Suppose XX subjects choose to withdraw. If you choose to withdraw, your payo� is
XX, and if you choose to wait, your payo� is 0.

In each period you have one minute to make your decision. If you do not submit
a decision on time, you do not earn any money for that period. Your last decision will
be duplicated for the given period, and that will be taken into account for the others'
earnings. (If you do not make a decision on time in the �rst period, your action will
be randomly determined with equal probabilities.) A timer on the top left part of the
screen will show you the remaining time for each period.

Announcement

In each period, an announcement will show up on the screen to forecast the number of
withdrawers for this period.

The announcement will be either

� �The forecast is that XX or more people will choose to withdraw�, or

� �The forecast is that XX or fewer people will choose to withdraw�.

Everybody receives the same message. The announcements are randomly generated.
(There is a possibility of seeing either announcement, but the chance of seeing the same
message that you saw in the previous period is higher than the chance of seeing a dif-
ferent announcement. / There is an equal chance of seeing either announcement in
each period.) These announcements are forecasts, which can be right or wrong. The
experimenter does not know better than you how many people will choose to withdraw
(or wait) in each period. The actual number of withdrawals is determined by the deci-
sions of all participants. Your actual payo� depends only on your own choice and the
choices of other participants.

Training Periods

This experimental session consists of 56 periods. The �rst 6 periods are training
periods, and do not count towards your earnings. This is an opportunity for you
to become familiar with the task you will perform during the experiment. During the
training period, you are not playing with your peers from this experiment. Instead,
you are playing with XX robot players, whose decisions were generated before the
experiment. All of your peers are also playing with the same XX robot players. None
of your decisions have an in�uence on the behavior of the robot players. After the 6
training periods, the formal experiment starts. There are no robots any more, and you
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will only play with other participants from this experimental session.

Earnings

We will pay you in cash at the end of the experiment based on the points you earned
in the 50 periods. You earn 1 euro for each XX points you make plus an additional 5
euros of participation fee.

On the next screen you are asked to answer some understanding questions.

Control questions:

Before the experiment starts, please answer some questions. You can return to the
instructions by clicking on the menu at the top of this page. If you need help, please
raise your hand.

1. How many other participants are you playing with in the formal experimental
periods?

2. In which period do you start playing with your fellow participants?

3. Do you know how your partners decide when you are making your decision?

4. Do the announcements have a direct e�ect on your payo�s?

a. Yes, always.

b. No, it might only in�uence the decision of others that determines my payo�.

5. Suppose that all of your group-members decide to wait. What is your payo� if
you wait as well?

6. Suppose that you do not make a decision on time, and your last decision was
to withdraw. In this period, 8 other players decided to withdraw. What is your
payo� for this period?

Post-Experimental Questionnaire:

Please answer the following questions seriously. Your answers will help us un-

derstanding the �ndings of this study. The questionnaire is anonymous. Unless
otherwise speci�ed, please answer the following questions on a �ve-point scale where
�1� indicates that you strongly disagree with the statement, �3� means neutral,
and �5� means strongly agree.

1. When I made my decision, I thought carefully about what the others were doing.

2. When I saw an announcement I tried to follow it.

3. When I saw that the announcement changed, I did not follow immediately, but
waited to see what others were doing.

4. I found safer not to follow the announcement.
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5. I found it di�cult to think about what others would do in a group with XX other
people.

6. If you followed a speci�c decision rule, please explain it here.
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Appendix F Additional �gures
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Notes: See the legend on Figure 3 in the main text.

Figure 4: Withdrawals in large groups with r = 1.54 and ρ = 0.8
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Figure 5: Withdrawals in small groups (n = 10) with r = 1.54 and ρ = 0.8
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Figure 6: Withdrawals in large groups with r = 1.54 and ρ = 0.5 (no persistence)
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Figure 7: Withdrawals in small groups (n = 10) with r = 1.54 and ρ = 0.5 (no
persistence)
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Figure 8: Withdrawals in large groups with r = 1.33
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Figure 9: Withdrawals in small groups (n = 10) with r = 1.33
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