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I. Supplemental Detail for Main Proofs

We will need the following standard result. For any two densities g and h for a
random variable z that ranges over (−∞,∞), we say g stochastically dominates
h (g � h) if G (z) =

∫ z
−∞ g (s) ds ≤

∫ z
−∞ h (s) ds = H (z) ∀z. If g stochastically

dominates h, then for any weakly increasing function u, the expected value of u
under the former weakly exceeds that of the latter.

LEMMA OA.1: If g � h and u (z) is a weakly increasing differentiable function
of z, then: ∫ ∞

−∞
u (z) g (z) dz ≥

∫ ∞
−∞

u (z) h (z) dz.

If u (z) is a weakly decreasing function of z, then the inequality is reversed.

PROOF OF LEMMA 2:

We know π (r, x) satisfies Properties P1-P5 in Lemma 1.

[1] Stochastic dominance arguments and Property P2 implies π∗ (x, k) is strictly
increasing in x. To see this, implement a change of variables with z = −θ. Note
that fz (z) = 1

σf
(
x+z
σ

)
, and Fz (z;x1) =

∫ z
−∞

1
σf
(
x1+z
σ

)
dz <

∫ z
−∞

1
σf
(
x2+z
σ

)
dz =

Fz (z;x2) for any z and x1 < x2. That is, z under x1 stochastically dominates z
under x2, because the former has more probability mass “shifted to the right.”
Observe that:

π∗ (x, k) =

∫ ∞
θ=−∞

1

σ
f

(
x− θ
σ

)
π

(
1− F

(
k − θ
σ

)
, x

)
dθ

=

∫ ∞
z=−∞

1

σ
f

(
x+ z

σ

)
π

(
1− F

(
k + z

σ

)
, x

)
dz

Note that π
(
1− F

(
k+z
σ

)
, x1

)
is a differentiable weakly decreasing function of z,

1
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and increasing function of x. Therefore, under Lemma OA.1, for x1 < x2,

π∗ (x1, k) =

∫ ∞
−∞

1

σ
f

(
x1 + z

σ

)[
π

(
1− F

(
k + z

σ

)
, x1

)]
dz

≤
∫ ∞
−∞

1

σ
f

(
x2 + z

σ

)[
π

(
1− F

(
k + z

σ

)
, x1

)]
dz

<

∫ ∞
−∞

1

σ
f

(
x2 + z

σ

)[
π

(
1− F

(
k + z

σ

)
, x2

)]
dz

= π∗ (x2, k) .

Property P1 implies π∗ (x, k) is weakly decreasing in k, and Property P5 implies
π∗ (x, k) is continuous in x and k. Note that for x > 0, π∗ (x, k) is strictly
decreasing in k for k > 0.

[2] We show that {ξn} and
{
ξ̄n
}

are well-defined increasing and decreasing
sequences, respectively, through induction. From Property P4, we know that not
reporting is dominant for x < x, so π∗ (x, 0) < 0 for all x < x. But we also know
that π∗ (x, 0) > 0 for all x > x̄. Define ξ0 ≡ 0 and ξ̄0 ≡ ∞. By continuity in x,
there exists at least one solution x with π∗

(
x, ξ0

)
= 0, where x ∈ [x, x̄]. Call ξ1

the smallest such solution. Define ξ̄1 ∈ [x, x̄] analogously to be the largest such
solution with π∗

(
x, ξ̄0

)
= 0. Note that ξ0 < ξ1 < ξ̄1 < ξ̄0; if the inside inequality

did not hold, then 0 = π∗
(
ξ1, ξ0

)
≥ π∗

(
ξ̄1, ξ0

)
> π∗

(
ξ̄1, ξ̄0

)
= 0, a contradiction.

Our starting point for the induction is as follows. Given ξ1 and ξ̄1 with ξ0 <
ξ1 < ξ̄1 < ξ̄0, π∗

(
ξ1, ξ0

)
= 0, and π∗

(
ξ̄1, ξ̄0

)
= 0, we claim there exists a smallest

solution ξ2 of π
(
ξ2, ξ1

)
= 0 and a largest solution ξ̄2 of π

(
ξ̄2, ξ̄1

)
= 0, and that

ξ1 < ξ2 < ξ̄2 < ξ̄1. We know π∗
(
ξ1, ξ0

)
= 0 > π∗

(
ξ1, ξ1

)
, and π∗

(
ξ̄1, ξ̄0

)
=

0 < π∗
(
ξ̄1, ξ1

)
. Note for the latter inequality that ξ̄0 > ξ̄1 > ξ1. By continuity,

there exists a smallest solution ξ2 ∈
(
ξ1, ξ̄1

)
with π∗

(
ξ2, ξ1

)
= 0. Analogously,

we know π∗
(
ξ1, ξ0

)
= 0 > π∗

(
ξ1, ξ̄1

)
, and π∗

(
ξ̄1, ξ̄0

)
= 0 < π∗

(
ξ̄1, ξ̄1

)
; by

continuity there exists a largest solution ξ̄2 ∈
(
ξ1, ξ̄1

)
with π∗

(
ξ̄2, ξ̄1

)
= 0. Note

that ξ1 < ξ2 < ξ̄2 < ξ̄1; if the inside inequality did not hold, then 0 = π∗
(
ξ2, ξ1

)
≥

π∗
(
ξ̄2, ξ1

)
> π∗

(
ξ̄2, ξ̄1

)
= 0, a contradiction.

The inductive hypothesis is that, given ξn and ξ̄n with ξn−1 < ξn < ξ̄n < ξ̄n−1,
π∗
(
ξn, ξn−1

)
= 0, and π∗

(
ξ̄n, ξ̄n−1

)
= 0, there exists a smallest solution ξn+1 of

π
(
ξn+1, ξn

)
= 0 and a largest solution ξ̄n+1 of π

(
ξ̄n+1, ξ̄n

)
= 0, and that ξn <

ξn+1 < ξ̄n+1 < ξ̄n. We know π∗
(
ξn, ξn−1

)
= 0 > π∗ (ξn, ξn), and π∗

(
ξ̄n, ξ̄n−1

)
=

0 < π∗
(
ξ̄n, ξn

)
. Note for the latter inequality that ξ̄n−1 > ξ̄n > ξn. By continuity,

there exists a smallest solution ξn+1 ∈
(
ξn, ξ̄n

)
with π∗

(
ξn+1, ξn

)
= 0. Similarly,

we know π∗
(
ξn, ξn−1

)
= 0 > π∗

(
ξn, ξ̄n

)
, and π∗

(
ξ̄n, ξ̄n−1

)
= 0 < π∗

(
ξ̄n, ξ̄n

)
; by

continuity there exists a largest solution ξ̄n+1 ∈
(
ξn, ξ̄n

)
with π∗

(
ξ̄n+1, ξ̄n

)
= 0.

Note that ξn < ξn+1 < ξ̄n+1 < ξ̄n; if the inside inequality did not hold, then
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0 = π∗
(
ξn+1, ξn

)
≥ π∗

(
ξ̄n+1, ξn

)
> π∗

(
ξ̄n+1, ξ̄n

)
= 0, a contradiction.

Note that {ξn} is bounded from above by construction. Because it is also an in-
creasing sequence, there exists a ξ with limn→∞ ξ

n = ξ. Note that limn→∞ π
∗ (ξn+1, ξn

)
=

0 so by construction and continuity of π∗, we must have π∗ (ξ, ξ) = 0 and that
ξ is the smallest such solution to π∗ (ξ, ξ) = 0. Analogously, there exists a ξ̄
with limn→∞ ξ

n = ξ and π∗
(
ξ̄, ξ̄
)

= 0 and that ξ̄ is the smallest such solution
to π∗ (ξ, ξ) = 0. This shows, among other things, that there exists at least one
threshold equilibrium ξ. One can see that any such solution ξ is an equilibrium
because x1 < ξ < x2 implies π∗ (x1, ξ) < π∗ (ξ, ξ) = 0 < π∗ (x2, ξ).

[3] Note that we can write:

π∗ (x, k) =

∫ ∞
−∞

ψ (r;x, k)π (r, x) dr

Given the agent’s signal x, what is her assessment of the cumulative distribution
function of r, Ψ (r̃;x, k)? For any r̃, the probability that r < r̃ equals the probabil-
ity that θ < k−σF−1 (1− r̃). In words, the probability Ψ (r̃;x, k) ≡ Pr (r < r̃ | x)
that the true proportion of players reporting is less than r̃ equals the probability
that the true θ satisfies r (θ; k) = 1− F

(
k−θ
σ

)
< r̃, or equivalently that θ is such

that fewer than r̃ players observe a signal greater than k; in turn, this equals the
probability that the true θ is less than k − σF−1 (1− r̃), integrated against the
conditional density f (θ | x). With some slight abuse of notation, we thus have:

Ψ (r;x, k) =

∫ k−σF−1(1−r)

−∞
f (θ | x) dθ

=

∫ k−σF−1(1−r)

−∞

1

σ
f

(
x− θ
σ

)
dθ

=

∫ ∞
z=x−k

σ
+F−1(1−r)

f (z) dz for z =
x− θ
σ

, dz = − 1

σ
dθ

= 1− F
(
x− k
σ

+ F−1 (1− r)
)
.

For the marginal agent, x = k, so Ψ (r;x, x) = r. The density function of r is
then ψ (r;x, x) = 1 over [0, 1].

But then π∗ (x, x) =
∫ 1

0 π (r, x) dr. By Property P3, there is exactly one such
solution ξ. From [2], it must be that ξ = ξ = ξ̄ and that this is the unique
threshold equilibrium. �
PROOF OF LEMMA 3:

Let Σ be the strategy profile used by all players other than i, and denote by
π̃i (ξ,Σ) the payoff gain of reporting for player i, conditional on ξ when other
players play Σ. We proceed by induction.

If everyone with x > 0 reports, player i’s payoff is the highest, and if no one
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reports, player i’s payoff is the lowest. Therefore:

π∗ (ξ,∞) ≤ π̃i (ξ,Σ) ≤ π∗ (ξ, 0) .

From the definition of ξ1 and monotonicity of π∗ (x, k) in x,

ξ < ξ1 ⇒ for any Σ, π̃iσ (ξ,Σ) ≤ π∗ (ξ, 0) < π∗
(
ξ1, 0

)
= 0.

In words, not-reporting strictly dominates reporting (π̃iσ (ξ,Σ) < 0) whenever
ξ < ξ1, irrespective of other players’ strategies. Similarly, from the definition of
ξ̄1 and monotonicity,

ξ > ξ̄1 ⇒ for any Σ, π̃iσ (ξ,Σ) ≥ π∗ (ξ,∞) > π∗
(
ξ̄1,∞

)
= 0.

In words, reporting strictly dominates not reporting (π̃iσ (ξ,Σ) > 0) whenever
ξ > ξ̄1, irrespective of other players’ strategies. Thus, if s (ξ) survives the first
round of deletion of dominated strategies, we must have:

s (ξ) =

{
0 [do not report] if ξ < ξ1

1 [report] if ξ > ξ̄1
.

The inductive hypothesis is that if s (ξ) survives the n-th round of deletion of
dominated strategies, we must have:

s (ξ) =

{
0 [do not report] if ξ < ξn

1 [report] if ξ > ξ̄n

Let Sn denote the set of strategies that survives this n-rounds of deletion. Our
claim is that if player i faces a strategy profile Σn consisting of those drawn from
Sn, then the set of strategies that survives the next round of deletion of dominated
strategies Sn+1 satisfies:

s (ξ) =

{
0 [do not report] if ξ < ξn+1

1 [report] if ξ > ξ̄n+1
.

If everyone else is playing a ξn-threshold strategy (reporting for ξ > ξn), player
i’s payoff is maximized. Therefore:

ξ < ξn+1 ⇒ for any Σ, π̃iσ (ξ,Σn) ≤ π∗ (ξ, ξn) < π∗
(
ξn+1, ξn

)
= 0,

so that not-reporting strictly dominates reporting (π̃iσ (ξ,Σn) < 0) whenever
ξ < ξn+1, irrespective of other players’ strategies. Conversely, if everyone else



VOL. 0 NO. 0 REPORTING SEXUAL MISCONDUCT IN THE #METOO ERA 5

is playing a ξ̄n-threshold strategy (reporting for ξ > ξ̄n), player i’s payoff is
minimized. Therefore:

ξ > ξ̄n+1 ⇒ for any Σ, π̃iσ (ξ,Σn) ≥ π∗ (ξ, ξn) > π∗
(
ξn+1, ξn

)
= 0,

so that reporting strictly dominates not-reporting (π̃iσ (ξ,Σn) > 0) whenever ξ >
ξn+1, irrespective of other players’ strategies, from which the claim follows. �

II. Distributions with Bounded Support

The key result that needs revisiting with bounded support is Lemma 2. We
consider the case where ε has bounded support and is possibly asymmetric.

Suppose ε has bounded support with cumulative distribution function (CDF)
F and probability density function (PDF) f . In particular, suppose ε has CDF
representation:

Fε (ε) =


0 ε < −l
F̃ε (ε) ε ∈

[
−l, l̄

]
1 ε > l̄

,

where F̃ε (ε) is weakly increasing and has F̃ε (−l) = 0 and F̃ε (l) = 1, and l, l̄ > 0.
The PDF representation is:

fε (ε) =


0 ε < −l
f̃ε (ε) ε ∈

[
−l, l̄

]
1 ε > l̄

,

for a density function f̃ε that is continuous, positive and integrates to 1 over[
−l, l̄

]
. Other than requiring ε to have zero mean, we place no other restrictions

on f̃ .

The PDF for xi = θ + σεi given θ is then:

fx (x | θ) =


0 x < θ − σl
f̃x (x | θ) x ∈

[
θ − σl, θ + σl̄

]
0 x > θ + σl̄

,

for:

f̃x (x | θ) =
1

σ
f̃ε

(
x− θ
σ

)
.
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The CDF for xi is:

Fx (x | θ) =


0 x < θ − σl
F̃x (x | θ) x ∈

[
θ − σl, θ + σl̄

]
1 x > θ + σl̄

=


0 x < θ − σl
F̃ε
(
x−θ
σ

)
x ∈

[
θ − σl, θ + σl̄

]
1 x > θ + σl̄

,

for:

F̃x (x | θ) =

∫ x

θ−σl

1

σ
f̃ε

(
s− θ
σ

)
ds = F̃ε

(
x− θ
σ

)
.

The posterior in θ conditional on x equals:

fθ (θ | x) =
fx (x | θ) fθ (θ)∫

x fx (x | θ) fθ (θ) dθ

= fx (x | θ)

=


0 θ < x− σl̄
f̃x (x | θ) θ ∈

[
x− σl̄, x+ σl

]
0 θ > x+ σl

=


0 θ < x− σl̄
1
σ f̃ε

(
x−θ
σ

)
θ ∈

[
x− σl̄, x+ σl

]
0 θ > x+ σl

,

under the improper prior assumption. Thus:

Fθ (θ | x) =


0 θ < x− σl̄∫ θ
x−σl̄ f̃x (x | θ) dθ θ ∈

[
x− σl̄, x+ σl

]
1 θ > x+ σl

=


0 θ < x− σl̄
1− F̃ε

(
x−θ
σ

)
θ ∈

[
x− σl̄, x+ σl

]
1 θ > x+ σl

.

The mapping between r and θ is then as follows. Let k be the cutoff that agents
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play. Given k, r (θ; k) =
∫∞
k fx (x | θ) dx = 1− Fx (k | θ). Then:

r (θ; k) =


0 θ < k − σl̄
1− F̃ε

(
k−θ
σ

)
θ ∈

[
k − σl, k + σl̄

]
1 θ > k + σl

.

It follows that:

r (θ; k) = 1− F̃ε
(
k − θ
σ

)
⇔ θ (r; k) = k − σF̃−1

ε (1− r)

is a bijection for any r ∈ (0, 1) to θ ∈
(
k − σl, k + σl̄

)
, where the open intervals

are important. The 1-1 map fails if r = 1, since then θ ≥ k + σl and if r = 0,
since then θ ≤ k − σl̄.

We are now prepared to revisit Lemma 2. The statement of the Lemma is un-
changed with the exception of Part 1, which should now state that “π∗ weakly de-
creases in k (strictly decreases for x > 0 and k > 0 for k ∈

(
x− σ(l + l̄), x+ σ(l + l̄)

)
.”

PROOF OF LEMMA 2 WITH BOUNDED SUPPORT:

The payoff gain π(r, x) continues to satisfy Properties P1-P5 in Lemma 1.

[1]: π∗ (x, k) increases in x: As before, implement a change in variables z = −θ.
Then:

π∗ (x, k) =

∫ θ=x+σl

θ=x−σl̄,

1

σ
fε

(
x− θ
σ

)
π

(
1− Fε

(
k − θ
σ

)
, x

)
dθ

=

∫ z=−x+σl̄

z=−x−σl,

1

σ
fε

(
x+ z

σ

)
π

(
1− Fε

(
k + z

σ

)
, x

)
dz

It is trivial to show that, for x1 < x2, Fε (x1 + ε) ≤ Fε (x2 + ε) ∀ε. Therefore z
under x1 stochastically dominates z under x2, and the original proof flows.

π∗ (x, k) weakly decreases in k follows from Property P1 and that r weakly
decreases in k. To obtain strictly decreasing over x > 0 and k > 0, we also need
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k ∈
(
x− σ

(
l + l̄

)
, x+ σ

(
l + l̄

))
. Observe:

π∗ (x, k) =

∫ θ=x+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k − θ
σ

)
, x

)
dθ

=



∫ θ=x+σl

θ=x−σl̄ fθ (θ | x)π (0, x) dθ = π (0, x) x < k − σ
(
l + l̄

)∫ θ=k−σl̄
θ=x−σl̄ fθ (θ | x)π (0, x) dθ

+
∫ θ=x+σl

θ=k−σl̄ fθ (θ | x)π
(
1− Fε

(
k−θ
σ

)
, x
)
dθ x ∈

(
k − σ

(
l + l̄

)
, k
)∫ θ=k+σl

θ=x−σl̄ fθ (θ | x)π
(
1− Fε

(
k−θ
σ

)
, x
)
dθ

+
∫ θ=x+σl
θ=k+σl, fθ (θ | x)π (1, x) dθ x ∈

(
k, k + σ

(
l + l̄

))∫ θ=x+σl

θ=x−σl̄ fθ (θ | x)π (1, x) dθ = π (1, x) x > k + σ
(
l + l̄

)
Let k1 < k2 be given. Re-write as:

π∗ (x, k) =

∫ θ=x+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k − θ
σ

)
, x

)
dθ

=



F1 (x, k) ≡
∫ θ=x+σl

θ=x−σl̄ fθ (θ | x)π (0, x) dθ = π (0, x) k > x+ σ
(
l + l̄

)
F2 (x, k) ≡

∫ θ=k−σl̄
θ=x−σl̄ fθ (θ | x)π (0, x) dθ

+
∫ θ=x+σl

θ=k−σl̄ fθ (θ | x)π
(
1− Fε

(
k−θ
σ

)
, x
)
dθ k ∈

(
x, x+ σ

(
l + l̄

))
F3 (x, k) ≡

∫ θ=k+σl

θ=x−σl̄ fθ (θ | x)π
(
1− Fε

(
k−θ
σ

)
, x
)
dθ

+
∫ θ=x+σl
θ=k+σl, fθ (θ | x)π (1, x) dθ k ∈

(
x− σ

(
l + l̄

)
, x
)

F4 (x, k) ≡
∫ θ=x+σl

θ=x−σl̄ fθ (θ | x)π (1, x) dθ = π (1, x) k < x− σ
(
l + l̄

)
Notice that F1

(
x, k1

)
< F2

(
x, k2

)
< F3

(
x, k3

)
< F4

(
x, k4

)
for every x for any

k1 > k2 > k3 > k4 satisfying the conditions of k for each function. So if k2 > k1

in any way that crosses these regions, π∗ (x, k2) < π∗ (x, k1). If k2 > k1 but each
both lie within a single region, evidently π∗ (x, k2) = π∗ (x, k1) in regions 1 and
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4. In Region 2:

F2 (x, k2)− F2 (x, k1) =

∫ θ=k2−σl̄

θ=x−σl̄
fθ (θ | x)π (0, x) dθ

+

∫ θ=x+σl

θ=k2−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

−
∫ θ=k1−σl̄

θ=x−σl̄
fθ (θ | x)π (0, x) dθ

−
∫ θ=x+σl

θ=k1−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

=

∫ θ=k2−σl̄

θ=k1−σl̄
fθ (θ | x)π (0, x) dθ

+

∫ θ=x+σl

θ=k2−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

−
∫ θ=x+σl

θ=k1−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

≤
∫ θ=k2−σl̄

θ=k1−σl̄
fθ (θ | x)π (0, x) dθ

+

∫ θ=x+σl

θ=k2−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

−
∫ θ=x+σl

θ=k1−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

=

∫ θ=k2−σl̄

θ=k1−σl̄
fθ (θ | x)π (0, x) dθ

−
∫ θ=k2+σl

θ=k1−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

< 0,

since π is an increasing function of r and 1 − Fε
(
k1−θ
σ

)
> 0 for θ > k1 − σl̄. In
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Region 3:

F3 (x, k2)− F3 (x, k1) =

∫ θ=k2+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

+

∫ θ=x+σl

θ=k2+σl,
fθ (θ | x)π (1, x) dθ

−
∫ θ=k1+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

−
∫ θ=x+σl

θ=k1+σl,
fθ (θ | x)π (1, x) dθ

= −
∫ θ=k2+σl

θ=k1+σl,
fθ (θ | x)π (1, x) dθ

+

∫ θ=k2+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

−
∫ θ=k1+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k1 − θ
σ

)
, x

)
dθ

≤ −
∫ θ=k2+σl

θ=k1+σl,
fθ (θ | x)π (1, x) dθ

+

∫ θ=k2+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

−
∫ θ=k1+σl

θ=x−σl̄
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

=

∫ θ=k2+σl

θ=k1+σl
fθ (θ | x)π

(
1− Fε

(
k2 − θ
σ

)
, x

)
dθ

−
∫ θ=k2+σl

θ=k1+σl,
fθ (θ | x)π (1, x) dθ

< 0,

since π is an increasing function of r and 1− Fε
(
k2−θ
σ

)
< 1 for θ < k2 + σl.

Continuity in x and k should follow from Property P5, which is unchanged.

[2] This portion of the proof follows very similarly from before, with a few
additional arguments to account for the fact that π∗(x, k) strictly decreases in k
only locally when k is close to x.

We show that {ξn} and
{
ξ̄n
}

are well-defined increasing and decreasing se-
quences, respectively, through induction. From Property P4, we know that not
reporting is dominant for x < x, so π∗ (x, 0) < 0 for all x < x. But we also know
that π∗ (x, 0) > 0 for all x > x̄. Define ξ0 ≡ 0 and ξ̄0 ≡ ∞. By continuity in x,
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there exists at least one solution x with π∗
(
x, ξ0

)
= 0, where x ∈ [x, x̄]. Call ξ1 the

smallest such solution. Define ξ̄1 analogously to be the largest such solution with
π∗
(
x, ξ̄0

)
= 0. Note that ξ0 < ξ1 < ξ̄1 < ξ̄0; if the inside inequality did not hold

and ξ1 ≥ ξ̄1, then 0 = π∗
(
ξ1, ξ0

)
> π∗

(
ξ1, ξ1

)
≥ π∗

(
ξ̄1, ξ1

)
≥ π∗

(
ξ̄1, ξ̄0

)
= 0,

a contradiction. The inequalities are because π∗
(
ξ1, ξ1

)
strictly decreases in k

locally, the contradiction assumption with π∗ strictly increasing in x, and that π∗

is globally weakly decreasing with ξ1 < ξ̄0 =∞, respectively.

Our starting point for the induction is as follows. Given ξ1 and ξ̄1 with ξ0 <
ξ1 < ξ̄1 < ξ̄0, π∗

(
ξ1, ξ0

)
= 0, and π∗

(
ξ̄1, ξ̄0

)
= 0, we claim there exists a

smallest solution ξ2 of π
(
ξ2, ξ1

)
= 0 and a largest solution ξ̄2 of π

(
ξ̄2, ξ̄1

)
=

0, and that ξ1 < ξ2 < ξ̄2 < ξ̄1. We know π∗
(
ξ1, ξ0

)
= 0 > π∗

(
ξ1, ξ1

)
, and

π∗
(
ξ̄1, ξ̄0

)
= 0 < π∗

(
ξ̄1, ξ̄1

)
≤ π∗

(
ξ̄1, ξ1

)
, where the first inequality is strict

because π∗
(
ξ̄1, ξ̄1

)
is strictly decreasing in k. By continuity, there exists a smallest

solution ξ2 ∈
(
ξ1, ξ̄1

)
with π∗

(
ξ2, ξ1

)
= 0. Analogously, we know π∗

(
ξ1, ξ0

)
=

0 > π∗
(
ξ1, ξ1

)
≥ π∗

(
ξ1, ξ̄1

)
, and π∗

(
ξ̄1, ξ̄0

)
= 0 < π∗

(
ξ̄1, ξ̄1

)
; by continuity there

exists a largest solution ξ̄2 ∈
(
ξ1, ξ̄1

)
with π∗

(
ξ̄2, ξ̄1

)
= 0. Note that ξ1 < ξ2 <

ξ̄2 < ξ̄1; if the inside inequality did not hold and ξ2 ≥ ξ̄2, then 0 = π∗
(
ξ2, ξ1

)
>

π∗
(
ξ2, ξ2

)
≥ π∗

(
ξ̄2, ξ2

)
≥ π∗

(
ξ̄2, ξ̄1

)
= 0, a contradiction. The inequalities are

because π∗
(
ξ2, ξ2

)
strictly decreases in k locally, the contradiction assumption

with π∗strictly increasing in x, and that π∗ is globally weakly decreasing with
ξ2 ∈

(
ξ1, ξ̄1

)
, respectively.

The inductive hypothesis is that, given ξn and ξ̄n with ξn−1 < ξn < ξ̄n < ξ̄n−1,
π∗
(
ξn, ξn−1

)
= 0, and π∗

(
ξ̄n, ξ̄n−1

)
= 0, there exists a smallest solution ξn+1 of

π
(
ξn+1, ξn

)
= 0 and a largest solution ξ̄n+1 of π

(
ξ̄n+1, ξ̄n

)
= 0, and that ξn <

ξn+1 < ξ̄n+1 < ξ̄n. We know π∗
(
ξn, ξn−1

)
= 0 > π∗ (ξn, ξn), and π∗

(
ξ̄n, ξ̄n−1

)
=

0 < π∗
(
ξ̄n, ξ̄n

)
≤ π∗

(
ξ̄n, ξn

)
. By continuity, there exists a smallest solution

ξn+1 ∈
(
ξn, ξ̄n

)
with π∗

(
ξn+1, ξn

)
= 0. Similarly, we know π∗

(
ξn, ξn−1

)
=

0 > π∗ (ξn, ξn) ≥ π∗
(
ξn, ξ̄n

)
, and π∗

(
ξ̄n, ξ̄n−1

)
= 0 < π∗

(
ξ̄n, ξ̄n

)
; by continuity

there exists a largest solution ξ̄n+1 ∈
(
ξn, ξ̄n

)
with π∗

(
ξ̄n+1, ξ̄n

)
= 0. Note that

ξn < ξn+1 < ξ̄n+1 < ξ̄n; if the inside inequality did not hold and ξn+1 ≥ ξ̄n+1,
then 0 = π∗

(
ξn+1, ξn

)
> π∗

(
ξn+1, ξn+1

)
≥ π∗

(
ξ̄n+1, ξn+1

)
≥ π∗

(
ξ̄n+1, ξ̄n

)
= 0,

a contradiction. The inequalities are because π∗
(
ξn+1, ξn+1

)
strictly decreases in

k locally, the contradiction assumption with π∗strictly increasing in x, and that
π∗ is globally weakly decreasing with ξn+1 ∈

(
ξn, ξ̄n

)
, respectively.

Note that {ξn} is bounded from above by construction. Because it is also an in-
creasing sequence, there exists a ξ with limn→∞ ξ

n = ξ. Note that limn→∞ π
∗ (ξn+1, ξn

)
=

0 so by construction and continuity of π∗, we must have π∗ (ξ, ξ) = 0 and that
ξ is the smallest such solution to π∗ (ξ, ξ) = 0. Analogously, there exists a ξ̄
with limn→∞ ξ

n = ξ and π∗
(
ξ̄, ξ̄
)

= 0 and that ξ̄ is the smallest such solution
to π∗ (ξ, ξ) = 0. This shows, among other things, that there exists at least one
threshold equilibrium ξ. One can see that any such solution ξ is an equilibrium
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because x1 < ξ < x2 implies π∗ (x1, ξ) < π∗ (ξ, ξ) = 0 < π∗ (x2, ξ).

[3] Given the agent’s signal x, what is her assessment of the cumulative distri-
bution function of r, Ψ (r̃;x, k)? For r̃ ∈ (0, 1), the argument follows from before,
which we restate here. The probability that r < r̃ equals the probability that
θ < k − σF−1

ε (1− r̃). In words, the probability Ψ (r̃;x, k) ≡ Pr (r < r̃ | x) that
the true proportion of players reporting is less than r̃ equals the probability that
the true θ satisfies r (θ; k) = 1 − Fε

(
k−θ
σ

)
< r̃, or equivalently that θ is such

that fewer than r̃ players observe a signal greater than k; in turn, this equals the
probability that the true θ is less than k − σF−1

ε (1− r̃), integrated against the
conditional density fθ (θ | x).

Importantly, conditional on x, we must have θ ∈
[
x− σl̄, x+ σl

]
.

Given x, what is the agent’s probability assessment that r = 0? This must equal
the posterior probability that θ < k − σl̄ given x. If k − σl̄ ∈

[
x− σl̄, x+ σl

]
,

then x ∈
[
k − σ

(
l̄ + l

)
, k
]

then:

Ψ (r;x, k) =

∫ k−σl̄

x−σl̄
fθ (θ | x) dθ

=

∫ k−σl̄

x−σl̄

1

σ
fε

(
x− θ
σ

)
dθ

=

∫ z=l̄

z=x−k
σ

+l̄
fz (z) dz for z =

x− θ
σ

, dz = − 1

σ
dθ

= 1− Fε
(
x− k
σ

+ l̄

)
.

If k−σl̄ < x−σl̄ then x > k and the probability is zero by the definition of fθ (θ).
If k − σl̄ > x+ σl or equivalently if k−x

σ > l̄ + l then the probability is 1. So:

Ψ (0;x, k) =


0 x ≥ k
1− Fε

(
x−k
σ + l̄

)
x ∈

(
k − σ

(
l̄ + l

)
, k
)

1 x ≤ k − σ
(
l̄ + l

) .

Given x, what is the agent’s probability assessment that r ≤ 1? Trivially, this
must be 1, since this equals the probability that r < 1, which is the probability
that θ < k + σl, plus the probability that r = 1, which is the probability that
θ ≥ k + σl. Thus, Ψ (1) = 1.

Given r̃ ∈ (0, 1), what is the agent’s probability assessment that r < r̃? Given
k, we know θ (r; k) = k−σF̃−1

ε (1− r) ∈
(
k − σl, k + σl̄

)
. We also must have θ ∈
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x− σl̄, x+ σl

]
in the posterior distribution of θ. Some useful facts to reference:

k − σF̃−1
ε (1− r) > x− σl̄ ⇔ r > 1− F̃ε

(
k − x
σ

+ l̄

)
x ≥ k + σ

(
l̄ + l

)
⇒ 1− F̃ε

(
k − x
σ

+ l̄

)
= 1

x < k + σ
(
l̄ + l

)
⇒ 1− F̃ε

(
k − x
σ

+ l̄

)
< 1

x < k ⇒ 1− F̃ε
(
k − x
σ

+ l̄

)
= 0,

k − σF̃−1
ε (1− r) < x+ σl ⇔ r < 1− F̃−1

ε

(
k − x
σ
− l
)

x ≤ k − σ
(
l̄ + l

)
⇒ 1− F̃ε

(
k − x
σ
− l
)

= 0

x > k − σ
(
l̄ + l

)
⇒ 1− F̃ε

(
k − x
σ
− l
)
> 0

x > k ⇒ 1− F̃ε
(
k − x
σ
− l
)

= 1.

Suppose first x ∈
(
k − σ

(
l̄ + l

)
, k + σ

(
l̄ + l

))
. Then 1 − F̃ε

(
k−x
σ − l

)
> 0 and

1− F̃ε
(
k−x
σ + l̄

)
< 1. Several cases can occur:

k − σF̃−1
ε (1− r) > x+ σl ⇒ r ∈

(
1− F̃−1

ε

(
k − x
σ
− l
)
, 1

)
k − σF̃−1

ε (1− r) ∈
(
x− σl̄, x+ σl

)
⇒ r ∈

(
1− F̃ε

(
k − x
σ

+ l̄

)
, 1− F̃−1

ε

(
k − x
σ
− l
))

k − σF̃−1
ε (1− r) < x− σl̄ ⇒ r ∈

(
0, 1− F̃ε

(
k − x
σ

+ l̄

))

If k − σF̃−1
ε (1− r) > x− σl̄, then r ∈

(
1− F̃ε

(
k−x
σ + l̄

)
, 1
)

, and furthermore:

Ψ (r;x, k) =

∫ k−σF̃−1
ε (1−r)

x−σl̄
fθ (θ | x) dθ

=

∫ k−σF̃−1
ε (1−r)

x−σl̄

1

σ
f̃ε

(
x− θ
σ

)
dθ

= 1− F̃ε
(
x− k
σ

+ F̃−1
ε (1− r)

)
.
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If k − σF̃−1
ε (1− r) < x− σl̄, then r ∈

(
0, 1− F̃ε

(
k−x
σ + l̄

))
and furthermore by

the definition of fθ:

Ψ (r;x, k) = −
∫ x−σl̄

k−σF−1
ε (1−r)

fθ (θ | x) dθ = 0.

Suppose next x ≥ k+σ
(
l̄ + l

)
. Then 1−F̃ε

(
k−x
σ + l̄

)
= 1 and 1−F̃ε

(
k−x
σ − l

)
>

0. From before, 1−F̃ε
(
k−x
σ + l̄

)
= 1 implies k−σF̃−1

ε (1− r) < x−σl̄ since r < 1.
But then, following a similar argument,

Ψ (r;x, k) = −
∫ x−σl̄

k−σF−1
ε (1−r)

fθ (θ | x) dθ = 0.

Suppose finally x ≤ k−σ
(
l̄ + l

)
. Then 1−F̃ε

(
k−x
σ − l

)
= 0 and 1−F̃ε

(
k−x
σ + l̄

)
<

1. From before, 1−F̃ε
(
k−x
σ − l

)
= 0 implies k−σF̃−1

ε (1− r) > x+σl since r > 0.
But then:

Ψ (r;x, k) =

∫ x+σl

x−σl̄
fθ (θ | x) dθ = 1.

To summarize:

Ψ
(
r;x ≥ k + σ

(
l̄ + l

))
=


0 r = 0

0 r ∈ (0, 1)

1 r = 1,

Ψ
(
r;x ∈

(
k, k + σ

(
l̄ + l

)))
=


0 r = 0

0 r ∈
(

0, 1− F̃ε
(
k−x
σ + l̄

))
1− F̃ε

(
x−k
σ + F̃−1

ε (1− r)
)

r ∈
(

1− F̃ε
(
k−x
σ + l̄

)
, 1
)

1 r = 1,

Ψ
(
r;x ∈

(
k − σ

(
l̄ + l

)
, k
))

=


1− Fε

(
x−k
σ + l̄

)
r = 0

1− F̃ε
(
x−k
σ + F̃−1

ε (1− r)
)

r ∈ (0, 1)

1 r = 1,

Ψ
(
r;x ≤ k − σ

(
l̄ + l

))
=


1 r = 0

1 r ∈ (0, 1)

1 r = 1,

Ψ (r;x = k) =


0 r = 0

r r ∈ (0, 1)

1 r = 1.

.
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Therefore, the marginal agent has a uniform belief over r.
Given this belief, we can solve for the threshold x∗. Recall the expected payoff

gain equals:

π∗ (x, k) =

∫ θ=x+σl

θ=x−σl̄,

1

σ
f

(
x− θ
σ

)
π

(
1− F

(
k − θ
σ

)
, x

)
dθ.

For the marginal agent with x = k, this payoff equals:

π∗ (x, x) =

∫ x+σl

x−σl̄,

1

σ
f

(
x− θ
σ

)
π

(
1− F

(
x− θ
σ

)
, x

)
dθ.

Given the marginal agent’s posterior belief over θ translates into a uniform belief
over r, we can write:

π∗ (x, x) =

∫ 1

0
π (r, x) dr.

�

III. Finite Number of Agents

We show that the equilibrium solution and overall conclusions are virtually
identical to that of a finite N -agent version of the game.

The manager employs N agents. This is common knowledge. Each agent who
reports increments the probability of sanction by 1

N γ for γ ≤ 1. If n agents report,
probability of sanction is n

N γ.
If n other agents report, the payoff gain for any individual agent from reporting

equals:

E (Report−NoReport | xi, n other agents report)

=

{
x
(
ω −

(
1− n+1

N γ
)
β
)
− c if x ≥ 0

xω − c if x < 0.

This payoff function implies that there are dominance regions in xi. Agent i
reports as a dominant strategy if xi > x = c

ω−(1− 1
N
γ)β

. Similarly, agent i does

not report as a dominant strategy if xi < x = c
ω−(1−γ)β .

The payoff function is also monotonic in x and n, since β < ω and γ > 0.
Conditional on experience xi, agent i’s posterior beliefs about other agents’

experiences are determined by Bayes’ Rule. Specifically, her posterior belief about
any agent j’s experience xj = θ + εj is normal with:

1) E [xj | xi] = E [θ | xi] = xi.
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2) V ar [xj | xi] = V ar [θ | xi] + σ2 = 2σ2 ⇒ SD [xj | xi] =
√

2σ.

This derivation uses the fact that xj and xi are i.i.d. jointly normal. Given joint
normality, 1/V ar[θ | xi] = 1/V ar0[θ] + 1/σ2; given the agent’s improper prior
over θ, V ar[θ | xi] = σ2.

Conjecture a symmetric strategy equilibrium where agents report if and only if
x > k. In agent i’s beliefs,

1) The probability agent j does not report equals: Pr (xj < k | xi) = Φ
(
k−xi√

2σ

)
.

2) The probability agent j reports equals: Pr (xj > k | xi) = 1 − Φ
(
k−xi√

2σ

)
.

Let p (x, k) ≡ 1− Φ
(
k−x√

2σ

)
.

3) The probability of m other agents reporting equals:

Pr (n = m | xi; k) =

(
N − 1
m

)
p(x, k)m (1− p(x, k))N−1−m .

The expected payoff gain for any agent conditional on experience x equals:

π∗ (x, k) =
N−1∑
m=0

(
N − 1
m

)
p (x, k)m (1− p (x, k))N−1−m

[
x

(
ω −

(
1− m+ 1

N
γ

)
β

)
− c
]

The indifference condition and cutoff threshold x∗ satisfies π∗ (x∗, x∗) = 0.
Note that p (x∗, x∗) = 1/2. An agent who draws x = x∗ assigns 1/2 probability
to each other agent when agents play threshold strategies around x∗. Thus, the
indifference condition satisfies:

0 =
N−1∑
m=0

(
N − 1
m

)(
1

2

)N−1 [
x

(
ω −

(
1− m+ 1

N
γ

)
β

)
− c
]

=

(
1

2

)N−1

x

(
2N−1 (ω − β) +

1

N

N−1∑
m=0

(
N − 1
m

)
(m+ 1) γβ

)
−
(

1

2

)N−1

2N−1c

=x

(
(ω − β) +

(
1

2

)N−1 1

N

(
(N − 1) 2N−2 + 2N−1

)
γβ

)
− c

=x

(
(ω − β) +

N + 1

N

1

2
γβ

)
− c,

where we use the fact that
∑n

m=0

(
n
m

)
= 2n and

∑n
m=0m

(
n
m

)
= n2n−1.



VOL. 0 NO. 0 REPORTING SEXUAL MISCONDUCT IN THE #METOO ERA 17

The above analysis implies that a candidate equilibrium cutoff is given by:

x∗ =
c

(ω − β) + N+1
N

1
2γβ

.

Existence and uniqueness of the equilibrium follow from the fact that π∗ in-
creases in x and decreases in k. Since π∗ increases in x, π∗ (x, x∗) > 0 for x > x∗

and π∗ (x, x∗) < 0 for x < x∗. Thus, x∗ is an equilibrium. Observing that π∗ (x, k)
also decreases in k, the usual global games argument shows that this is the unique
equilibrium due to the iterated deletion of strictly dominated strategies (Morris
and Shin, 2003).

The claim that π∗ (x, k) increases in x follows because p (x, k) increases in x.
Stochastic dominance arguments then show that π∗ (x, k) increases in x, just as
in the proof of Lemma A2. To see this, note that p (x, k) increases in x. This
implies that, for any x1 < x2, the binomial distribution of the number of reports
out of N−1 agents under p(x2, k) stochastically dominates the distribution under
p(x1, k). Since x

(
ω −

(
1− i+1

N γ
)
β
)
− c is itself an increasing function of x, then

stochastic dominance also implies that π∗ (x, k) increases under x.
The claim that π∗ (x, k) decreases in k follows because x

(
ω −

(
1− m+1

N γ
)
β
)
−c

is invariant to k. By the same stochastic dominance argument, we have π∗ (x, k)
decreases in k.

We summarize with:

PROPOSITION OA.1 (Baseline Equilibrium with N agents): Suppose agents have
improper uniform priors over θ. There exists a globally unique symmetric thresh-
old strategy equilibrium where all agents play a threshold strategy and report
(s(xi) = 1) if and only if xi ≥ x∗, where

x∗N =
c

(ω − β) + N+1
N

1
2γβ

.

and x∗ > x > 0. The threshold strategy is the unique strategy that survives
the iterated deletion of strictly dominated strategies. In equilibrium, the belief of
the marginal agent who draws xi = x∗ over the number of agents reporting r is
uniformly distributed over [0, 1].

Proposition OA.1 is a close analog of Proposition 1 in the text. Notice that forN
large, x∗N from Proposition OA.1 converges to x∗ = c

(ω−β)+ 1
2
γβ

from Proposition 1.

The slight difference in the equilibrium cutoff occurs because agents are atomistic
in the continuum agent game but not in the finite agent game. In the finite agent
game, each agent’s report increments the probability of sanction by a discrete
amount, 1/N . All else equal, greater N results in a greater equilibrium reporting
threshold because the effect of each agent’s own report on the probability of
sanction diminishes. As the number of agents approaches infinity, the effect of
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each agent’s own report on the probability of sanction becomes vanishingly small,
and the cutoff converges to the solution with a continuum of agents.

IV. Endogenous Sanction Functions

We provide a few stylized models that describe channels through which the
outside party’s objective function can generate a coordination problem among
agents and show that the results still hold qualitatively when Γ(r) is endogenous.

In each of these models, the agents receive their xi’s and decide whether or
not to report. Then the outside party (the firm) observes r and decides whether
or not to sanction the manager. For simplicity, there is no uncertainty in the
sanction process.

1) Model 1: Suppose the firm values the manager’s productivity but that its
payoff decreases in r.

Here, the firm doesn’t mind how the manager treats his subordinates, but
does find it costly to deal with reports of misconduct. This payoff function
generates an endogenous Γ(r) where the firm sanctions the manager if re-
ports r exceed an equilibrium sanction threshold r′ that depends only on
the manager’s productivity parameters. Because the endogenous Γ(r) does
not depend on agents’ payoff parameters, all results from the exogenous
Γ(r) model described in the paper apply.

The manager’s value (productivity) to the firm is v > 0. If the firm does not
sanction the manager, then it keeps the manager but there is a cI(r) (due to
the possibility of employee turnover, violation of federal law, reputational
risks, etc). Let cI(r) strictly increase in r with cI(0) = 0. If the firm
sanctions the manager, he is replaced by another manager with productivity
v′.

Given r, the firm’s payoff is v − cI(r) if it does not sanction, and v′ if it
sanctions. Note that if v − cI(1) > v′, then the firm would never sanction.
If v < v′, then the firm would always want to sanction/fire the manager
regardless. Thus we focus on the case of interest, v − cI(1) < v′ < v.

Thus, the firm would sanction for any r ≥ r′ where v − cI(r′) = v′ and not
sanction for any r < r′. Since cI(r) is strictly increasing in r and v−cI(1) <
v′ < v, then there exists a unique r′ ∈ (0, 1) such that v− cI(r′) = v′. Note
that r′ decreases in v′ and increases in v.

This implies that when deciding whether or not to report, agents take the
sanction function Γ(r) as

Γ(r) =

{
0 if r < r′

1 if r ≥ r′.
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Since we have shown in the manuscript that x∗ = c

ω−β+β(
∫ 1
0 Γ(r)dr)

, then the

solution to the equilibrium is

x∗ =
c

ω − βr′
v − cI(r′) = v′.

Because the threshold r′ does not depend on agents’ payoff parameters, all
results from the exogenous Γ(r) model described in the manuscript follow.

2) Model 2: Suppose the firm values the manager’s productivity but that its
payoff decreases in θ.

Here, the firm does not want to employ a manager that treats his subor-
dinates poorly, irrespective of the number of reports. This generates an
endogenous Γ(r) with an equilibrium sanction threshold r′ that depends on
agents’ payoff parameters through their equilibrium reporting threshold x∗.
As such, changing agents’ payoff parameters affects x∗ both directly and
indirectly through its effect on r′. Nevertheless, we show that the compara-
tive statics of this game for x∗ qualitatively match the comparative statics
of the paper where Γ(r) is exogenous.

The manager’s value to the firm (productivity) is v > 0. The firm dislikes
bad apples (i.e., high-θ type). If the firm sanctions the manager, he is
replaced by another manager with productivity v′. The firm’s payoff is
v−f(θ) if it does not sanction the manager, where f(θ) is non-negative and
weakly increasing in θ. The firm’s payoff is v′ if it sanctions the manager.
Assume that v > v′ so the firm does not want to fire the manager ex ante.

Conjecture an equilibrium in which agents use threshold strategies. Given
a realized r, in equilibrium the firm learns θ. Since f(θ) is non-negative
and weakly increasing in θ, then the firm will sanction for any θ ≥ θ where
v − v′ − f(θ) = 0 and not sanction for any θ < θ.

Since the use of threshold strategies generates a one-to-one mapping between
r and θ where r = 1 − Φ

(
x∗−θ
σ

)
= Φ

(
θ−x∗
σ

)
, then in equilibrium the firm

sanctions for any r ≥ r′ where r′ = Φ
(
θ−x∗
σ

)
and does not sanction if

r < r′.

This implies that when deciding whether or not to report, agents take the
sanction function Γ(r) as

Γ(r) =

{
0 if r < r′

1 if r ≥ r′.
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Thus the solution to the equilibrium is (θ, r′, x∗) such that

x∗ =
c

ω − βr′
(1)

r′ = Φ

(
θ − x∗

σ

)
(2)

v − v′ − f(θ) = 0.(3)

Note that r′ is the solution to

r′ − Φ

(
f−1(v − v′)− c

ω−βr′

σ

)
= 0,(4)

and

θ = f−1(v − v′).(5)

Let G(r) = r − Φ

(
f−1(v−v′)− c

ω−βr
σ

)
. Since G(r = 1) > 0 and G(r = 0),

then there exists an r′ ∈ (0, 1) that satisfies Equation 4. Moreover,

∂G

∂r
= 1− Φ′

(
f−1(v − v′)− c

ω−βr
σ

)
(−βc

σ
)(ω − βr)−2

= 1 + φ

(
f−1(v − v′)− c

ω−βr
σ

)
(
βc

σ
)(ω − βr)−2 > 0.

Thus this r′ is unique.

Here, note that the threshold r′ depends on agents’ payoff parameters. In-
tuitively, as agents become more reluctant to report (x∗ increases), then a
lower r reveals θ in equilibrium so a lower threshold r′ is required to generate
sanction for a given θ.

Consider the total effect on x∗ when β increases (∂x
∗

∂β ).

Applying the implicit function theorem, we have

∂r′

∂β
= −

∂G
∂β

∂G
∂r′
.(6)
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We have already shown that ∂G
∂r′ > 0.

∂G

∂β
= −Φ′

(
f−1(v − v′)− c

ω−βr
σ

)
(−rc

σ
)(ω − βr)−2

= φ

(
f−1(v − v′)− c

ω−βr
σ

)
(
rc

σ
)(ω − βr)−2 > 0.

Thus, consistent with the above intuition ∂r′

∂β < 0.

Since x∗ = c
ω−βr′ , then the effect of ∂x∗

∂β is determined by ∂
∂β (βr′):

∂

∂β
(βr′) = r′ + β(

∂r′

∂β
)

= r′ − β

 φ

(
f−1(v−v′)− c

ω−βr
σ

)
( rcσ )(ω − βr)−2

1 + φ

(
f−1(v−v′)− c

ω−βr
σ

)
(βcσ )(ω − βr)−2

 .

Note that

φ

(
f−1(v−v′)− c

ω−βr
σ

)
( rcσ )(ω − βr)−2

1 + φ

(
f−1(v−v′)− c

ω−βr
σ

)
(βcσ )(ω − βr)−2

<

φ

(
f−1(v−v′)− c

ω−βr
σ

)
( rcσ )(ω − βr)−2

φ

(
f−1(v−v′)− c

ω−βr
σ

)
(βcσ )(ω − βr)−2

=
r

β
.

Thus,

∂

∂β
(βr′) = r′ + β(

∂r′

∂β
)

= r′ − β

 φ

(
f−1(v−v′)− c

ω−βr
σ

)
( rcσ )(ω − βr)−2

1 + φ

(
f−1(v−v′)− c

ω−βr
σ

)
(βcσ )(ω − βr)−2


> r′ − β(

r′

β
) = 0.

Thus, ∂
∂β (βr′) > 0, so ∂x∗

∂β > 0. That is, the indirect effect of increasing β

through lowering r′ is weaker than the direct effect of increasing β.
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A similar exercise shows that ∂x∗

∂c > 0.

Finally, note that, for example, if v increases (the manager becomes more
valuable to the firm), this clearly increases r′ and therefore increases x∗.
Increasing v is akin to increasing γ in the model described in the manuscript.

3) Model 3: Suppose the firm values the manager’s productivity, that its payoff
decreases θ, and faces a constraint whereby it must have r ≥ r reports to
sanction the manager.

Here, the firm may not want to employ a manager that treats his subordi-
nates poorly but is required to provide “just cause” in the form of a sufficient
number of reports to sanction the manager. Depending on the parameters,
this case generates endogenous Γ(r) that is akin to either Model 1 or Model
2. Thus, the results still hold qualitatively.

The manager’s value to the firm (productivity) is v > 0. The firm dis-
likes high-θ types. However, it is constrained to provide “just cause” for
sanctioning the manager, which means that it must also provide r ≥ r to
sanction (take r as an exogenous constraint, like a legal requirement). If
the firm sanctions the manager, he is replaced by another manager with
productivity v′. The firm’s payoff is v − f(θ) if it does not sanction the
manager, where f(θ) is non-negative and weakly increasing in θ. The firm’s
payoff is v′ if it sanctions the manager. Assume that v > v′ so the firm does
not want to fire the manager ex ante.

To derive the solution, there are two relevant cases based on whether the
“just cause” constraint binds in equilibrium:

a) The “just cause” constraint does not bind in equilibrium. In this case,
the solution must satisfy Equations 1, 4, and 5. Thus, the solution is
the same as in Model 2.

When does this case occur? The requirement that r ≥ r does not bind
if the solution r′ to Equations 1, 4, and 5 satisfies r′ ≥ r. Intuitively,
this must be where θ is sufficiently high (we solve for it explicitly after
analyzing the second case).

b) The “just cause” constraint binds in equilibrium. That is, the solution
r′ to Equations 1, 4, and 5 fails r′ ≥ r.
In this case, agents know that r binds as the minimal reporting at
which the firm sanctions. Thus, agents take Γ(r) as

Γ(r) =

{
0 if r < r

1 if r ≥ r.

Thus, the solution is analogous to that of Model 1 and the equilibrium
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Table OA.1—Agent payoffs when she earns a payoff in (No Report, Sanction)

Sanction No Sanction

Report xiω − c xi(ω − 1[xi>0β])− c
No Report axi 0

reporting threshold is

x∗ =
c

ω − βr
.(7)

Let θ be the minimal manager type such that the firm sanctions man-
agers if and only if θ ≥ θ. Then we must have:

r = Φ

(
θ − x∗

σ

)
θ = x∗ + σΦ−1 (r)

θ =
c

ω − βr
+ σΦ−1(r).(8)

Thus, the solution must satisfy Equations 7 and 8. Note that it must be
that v−v′−f(θ) < 0, i.e., θ > θ. That is, if the “just cause” constraint
binds, then the firm would prefer to sanction managers with θ ∈ [θ, θ),
but cannot do so because there is not enough reporting for the firm to
legally do so.

Thus θ is pinned down by Equation 5 and θ is pinned down by Equation
8. When θ ≥ θ, the solution satisfies Equations 1, 4, and 5 (akin to Model
2) because the “just cause” constraint does not bind in equilibrium. When
θ < θ, the solution satisfies Equations 7 and 8 (akin to Model 1) because
the “just cause” constraint binds in equilibrium.

V. Alternative Payoffs From Not Reporting

We derive a variation of the model that is identical to that of Section 1 in the
manuscript except that the agent’s payoff from not reporting equals axi, where
a ≥ 0, instead of zero when the manager is sanctioned. The baseline model in
Section 1 corresponds to a = 0. We show that all qualitative insights remain as
long as a < β (i.e., the payoff function is monotone in r).

Table OA.1 describes agent payoffs.
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The payoff gain π(r, xi) is monotone in r and xi if a < β:

π (r, xi) =

{
xi(ω − β + γr(β − a))− c if xi > 0,

xi(ω − γra)− c if xi ≤ 0.

The new dominance regions are delimited by x and x:

x =
c

ω − β + γ(β − a)
(9)

x =
c

ω − β
.(10)

As expected, ∂x
∂a > 0 and ∂x

∂a = 0.

Finally, x∗ = c
ω−β(1− 1

2
γ)− 1

γ
a

where ∂x∗

∂a > 0:

∫ 1

0
π(r, x∗)dr = 0(11)

x∗(ω − 1

2
γa− (1− 1

2
γ)β)− c = 0(12)

x∗ =
c

ω − β(1− 1
2γ)− 1

2γa
.(13)

Thus, the main differences are that x and x∗ are higher when a > 0 than when
a = 0. That is, the reporting threshold is higher when agents can free-ride off
other agents’ reports. Proposition 2 (and Corollary 1.1) still applies, using in the
proof the new x, x∗, and H(x) ≡ x

(
ω − β + γΦ( θ−xσ )(β − a)

)
− c, which is the

new expected payoff of the marginal agent given that all agents use reporting
threshold x and given the true θ.

Note that if instead the agent receives axi only if xi > 0 and zero otherwise,
then we would have the same results above because a < β implies that reporting
negative xi is a dominated strategy.

VI. General Sanction Function

The outside party observes X ≡ {(n(x), x)|∀x ∈ R}, the frequency and value of
each reported x. Let Ξ(X|X) : Rc ×Rc → [0, 1] represent the sanction probability
given the set of all reports and the value of those reports. Consider a class
of sanction functions Ξ(X) = B(

∫
x ϕ(x)n(x)dx), where ϕ(x) is a weight for each

reported x and n(x) ≥ 0 is the frequency of reports for each x. Let ϕ(x) be weakly
monotone increasing and differentiable, where ϕ(x) = 0 if x < 0 and ϕ(x) > 0
for some x > 0. Let B(s) : [0,∞) → [0, 1] be weakly monotone increasing, and
strictly increasing at some s. Note that B(s) does not have to be continuous. This
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describes a natural class of sanction functions in which the sanction probability
weakly increases in the number of reports and in the severity of misconduct.

[1] We can show that when ϕ(x) = 1 for all x > 0, then Ξ(X) = B(r) = Γ(r).
Thus, the sanction probability is a weakly increasing function of r alone. PROOF:

By Lemma 4, all agents use the same strategy in equilibrium. Suppose agents
use threshold strategy x∗. Then n(x) = 1[x>x∗]

1
σφ(x−θσ ), giving

Ξ(X) = B(

∫
x
ϕ(x)n(x)dx)

= B

(∫ ∞
x∗

1

σ
ϕ(x)φ

(
x− θ
σ

)
dx

)
.

The outside party observes r̂ (θ) =
∫∞
x∗

1
σφ (x | θ) dx = Φ

(
θ−x∗
σ

)
, so θ = x∗ +

σΦ−1(r). Suppose ϕ(x) = 1. Then

Ξ(X) = B

(∫ ∞
x∗

1

σ
φ

(
x− θ
σ

)
dx

)
= B

(
1− Φ

(
x∗ − θ
σ

))
= B

(
1− Φ

(
x∗ −

[
x∗ + σΦ−1 (r)

]
σ

))
= B

(
1− Φ

(
−Φ−1 (r)

))
= B

(
1− Φ

(
Φ−1 (1− r)

))
= B (r) .

Thus, Ξ(X) = B (r) = Γ(r). Thus, the sanction probability is a weakly increasing
function of r alone. �

Notable special cases: IfB(s) = γs, then Ξ(X) = γr. IfB(s) =

{
0 if s ∈ [0, r)

1 if s ∈ [r, 1]
,

then Ξ(X) =

{
0 if s ∈ [0, r)

1 if s ∈ [r, 1]
where r ∈ [0, 1] is a constant.

[2] For more general ϕ(x), the sanction function can be reformulated as Ξ(X) =
Γ(x∗, r) (though there may be multiple equilibria in which agents use threshold
strategies).

By Lemma 4, all agents use the same strategy in equilibrium. Suppose agents



26 AMERICAN ECONOMIC JOURNAL NOVEMBER 2020

use threshold strategy x∗. Then

Ξ(X) = B

(∫ ∞
x∗

ϕ(x)

σ
φ

(
x− θ
σ

)
dx

)
= B

(∫ ∞
x∗

ϕ(x)

σ
φ

(
x− x∗

σ
− Φ−1(r)

)
dx

)
= Γ(x∗, r),

since θ = x∗+σΦ−1(r) when agents use threshold x∗. Since each agent, including
the marginal agent, takes x∗ as given, then the marginal agent solves:∫ 1

0
π(r, x∗)dr = 0,

which has the implicit solution

(14) x∗ =
c

ω − β +
(∫ 1

0 Γ(x∗, r)dr
)

(α+ β)
.

To show the existence of such an x∗, note that we can still define the dominance
regions in which the agent never reports if x ≤ x (i.e., even if everyone reports
and the manager is definitely sanctioned) and always reports if x ≥ x (i.e., even
if no one reports so the manager is definitely not sanctioned), where

x =
c

ω + α

x =
c

ω − β
.

Let G(x) = x
(
ω − β +

(∫ 1
0 Γ(x, r)dr

)
(α+ β)

)
− c, so x∗ satisfies G(x∗) = 0.

Note that G(x) > 0 if and only if
∫ 1

0 Γ(x∗, r)dr > 0. Given that f(x) is weakly
monotone increasing where f(x) = 0 if x < 0 and f(x) > 0 for some x > 0, and
B(s) : [0,∞) → [0, 1] is weakly monotone increasing (and strictly increasing at

some s), then
∫ 1

0 Γ(x∗, r)dr > 0. Note that G(x) < 0 if and only if
∫ 1

0 Γ(x∗, r)dr <

1. Since
∫ 1

0 Γ(x∗, r)dr = 1 if and only if B(s) = 1 for all s, then
∫ 1

0 Γ(x∗, r)dr <
1 because B(s) : [0,∞) → [0, 1] is weakly monotone increasing, and strictly
increasing at some s. Thus, such an x∗ exists, and x∗ ∈ (x, x). Given such an x∗,
it is straightforward to verify that agents with xi < x∗ do not report and agents

with xi > x∗, since xi

(
ω − β +

(∫ 1
0 Γ(x∗, r)dr

)
(α+ β)

)
monotonically increases

in xi when agents use threshold x∗. Thus, all agents using threshold x∗ is an
equilibrium.
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Although we have established the existence of an equilibrium in which agents
use threshold x∗, which must satisfy Equation 14, multiplicity of equilibria is
entirely possible. Nonetheless, in any such equilibrium, the existence of an “open
secret” in which there is under-reporting, as described by Corollary 1.1, still
holds. This is because when, σ → 0, for any θ ∈ (x, x∗) we still have π(1, x) >
0 > π(0, x). Since x∗ ∈ (x, x), this implies there will be under-reporting for any
θ ∈ (x, x∗).
[3] Even when the sanction function includes a general ϕ(x), we show that under-
reporting occurs in any equilibrium that involves threshold strategies, under qual-
itatively similar conditions as Proposition 2. When θ is sufficiently high, there
always exists some x̂ < x∗ such that there is a Pareto improvement in agent pay-
offs. When θ is intermediate, there exists some x̂ < x∗ such that there is a Pareto
improvement in agent payoffs if σ is sufficiently small.

LEMMA OA.2: Let g and h be density functions, where g � h if
∫ z
−∞ g(s)ds ≤∫ z

−∞ h(s)ds. If g � h and u(z) is a weakly increasing and weakly positive, differ-

entiable function of z, then
∫∞
a u(z)g(z)dz ≥

∫∞
a u(z)h(z)dz.

PROOF:
Define G(z) =

∫ z
−∞ g(s)ds and H(z) =

∫ z
−∞ h(s)ds. Note that if g � h, then

G(z) ≤ H(z).
Using integration by parts,∫ ∞

a
u(z)g(z)dz =

∫ ∞
a

u(z)G′(z)dz

= u(z)G(z)|∞a −
∫ ∞
a

G(z)u′(z)dz∫ ∞
a

u(z)h(z)dz =

∫ ∞
a

u(z)H ′(z)dz

= u(z)H(z)|∞a −
∫ ∞
a

H(z)u′(z)dz.

Since G(∞) = H(∞) = 1, then∫ ∞
a

u(z)g(z)dz −
∫ ∞
a

u(z)h(z)dz = u(a)[H(a)−G(z)] +

∫ ∞
a

u′(z)[H(z)−G(z)]dz ≥ 0.

�
Let θ′ be the minimum value of θ such that the marginal agent’s expected

probability of sanction is less than or equal to the realized probability of sanction:

θ′ = min{θ :

∫ 1

0
B

(∫ ∞
x∗

ϕ(x)

σ
φ

(
x− x∗

σ
− Φ−1(r)

)
dx

)
dr ≤ B

(∫ ∞
x∗

ϕ(x)

σ
φ

(
x− θ′

σ

))
}
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Recall that Ξ(X|θ, x∗) = B
(∫∞
x∗

1
σϕ(x)φ

(
x−θ
σ

)
dx
)
. By Lemma OA.2, we know

that Ξ(X|θ, x̂) is weakly increasing in θ, so clearly such a θ′ exists.

[a] Suppose θ > θ′. There exists some x̂ < x∗ such that total welfare is higher
due to a Pareto improvement.

Recall that Ξ(X|θ, x∗) = B
(∫∞
x∗

1
σϕ(x)φ

(
x−θ
σ

)
dx
)
. For any x̂ < x∗, total agent

payoffs equal:

W (θ | x̂) =

∫ ∞
x∗

[x (ω − β + Ξ(X|θ, x̂) (α+ β))− c] f (x | θ) dx

+

∫ x∗

x̂
[x (ω − β + Ξ(X|θ, x̂) (α+ β))− c] f (x | θ) dx.

We know that equilibrium total payoffs are such that:

W (θ | x∗) =

∫ ∞
x∗

[x (ω − β + Ξ(X|θ, x∗) (α+ β))− c] f (x | θ) dx

<

∫ ∞
x∗

[x (ω − β + Ξ(X|θ, x̂) (α+ β))− c] f (x | θ) dx,

for any x̂ < x∗.

The remaining claim is that there exists a x̂ < x∗ such that:

K ≡
∫ x∗

x̂
[x (ω − β + Ξ(X|θ) (α+ β))− c] f (x | θ) dx > 0.

By Lemma OA.2, we know that Ξ(X|θ, x̂) is weakly increasing in θ, which implies
that when θ > θ′:

0 = x∗
(
ω − β + (

∫ 1

0
Γ(x∗, r)dr) (α+ β)

)
− c

< x∗ (ω − β + Ξ(X|θ, x∗) (α+ β))− c.(15)

Let H (x) ≡ x (ω − β + Ξ(X|θ, x) (α+ β)) − c. Note that H (x∗) > 0 from
Equation 15.

Suppose H is continuous at x∗. If H ′ (x∗) < 0, then there exists a x̂ < x∗ such
that:

0 < x∗ (ω − β + Ξ(X|θ, x∗) (α+ β))− c
< x̂ (ω − β + Ξ(X|θ, x̂) (α+ β))− c.
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If H ′ (x∗) > 0, there exists some ε > 0 such that, for x̂ = x∗ − ε,

0 < x̂ (ω − β + Ξ(X|θ, x̂) (α+ β))− c
< x∗ (ω − β + Ξ(X|θ, x∗) (α+ β))− c.

If H ′ (x∗) = 0, observe that because H(n) (x∗) 6= 0 for some n > 0, we can apply a
similar argument to find an x̂ < x∗ such that H (x̂) > 0. Either way, there exists
some x̂ < x∗ such that H (x̂) > 0.

Suppose H is not continuous at x∗ (if B(·) is not continuous at x∗). By direct
computation, ∂

∂x̂

∫∞
x̂

1
σϕ(x)φ

(
x−θ
σ

)
dx < 0. Since B(s) increases in s, then H is

either left-continuous at x∗ or strictly decreasing in x. Either way, there exists
some x̂ < x∗ such that H (x̂) > 0.

But then:

K =

∫ x∗

x̂
[x (ω − β + Ξ(X|θ, x̂) (α+ β))− c] f (x | θ) dx

>

∫ x∗

x̂
[x̂ (ω − β + Ξ(X|θ, x̂) (α+ β))− c] f (x | θ) dx

= [x̂ (ω − β + Ξ(X|θ, x̂) (α+ β))− c]×
[
Φ

(
x∗ − θ
σ

)
− Φ

(
x̂− θ
σ

)]
> 0.

Note that this is a Pareto improvement because for any x ∈ (x̂, x∗),

x (ω − β + Ξ(X|θ, x̂) (α+ β))− c > H (x̂) > 0,

whereas these agents all receive 0 when playing a threshold strategy around x∗.

[b] Suppose x < θ ≤ θ′, where x is defined below. If σ is sufficiently low, there
exists some x̂ ∈ (x, θ) such that total welfare is higher due to a Pareto improve-
ment.

If θ ≤ θ′, then H(x∗) ≤ 0. Note that by Lemma OA.2, for all x̂ < θ,

B
(∫∞

x̂
ϕ(x)
σ φ

(
x−θ′
σ

))
increases as σ decreases. By direct computation, ∂

∂x̂

∫∞
x̂

1
σϕ(x)φ

(
x−θ
σ

)
dx <

0. Define x as the threshold such that

x

(
ω − β + lim

σ→0
B

(∫ ∞
x

ϕ(x)

σ
φ

(
x− θ′

σ

))
(α+ β)

)
− c = 0.

By construction, lim
σ→0

H(x) = 0 and x∗ > x ≥ x.

Suppose H(·) is continuous on the interval [x, θ) for all σ. By direct differen-

tiation, lim
σ→0

∂H
∂x̂ > 0 for all x̂ < θ. Thus, lim

σ→0
H(x̂) > 0 for all x̂ ∈ (x, θ). By

Lemma OA.2, H(x̂) is decreasing as σ increases. But by continuity of H, for any
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x̂ ∈ (x, θ), there exists some σ > 0 sufficiently small that H(x̂) > 0.

Suppose H(x) is not continuous on the interval [x, θ) for all σ. Since x is deter-
mined by the case of all agents reporting, then it is sufficient to consider the follow-
ing to find a Pareto-improving x̂ < x∗. Let Z = {z : limx↑z B (x) 6= limx↓z B (x)}.
If f is discontinuous and has a finite number of discontinuities, then Z is a finite
non-empty set consisting of real numbers and z0 = min (z ∈ Z) is well-defined.
Furthermore, y0 = B (z0) is also well-defined. Let σ satisfy:

B

(∫ ∞
x

ϕ(x)

σ
φ

(
x− θ
σ

)
dx

)
= y0.

Since for all x̂ < θ, B
(∫∞

x̂
ϕ(x)
σ φ

(
x−θ′
σ

))
increases as σ decreases, and B(s) is

increasing in s, then there exists some ε > 0 such that H(x) is continuous on the
interval [x, x+ ε) for all σ < σ and we can apply the preceding argument. Thus
for any x̂ ∈ (x, x+ ε), there exists some σ > 0 sufficiently small that H(x̂) > 0.

VII. The Publicity Effect of #MeToo

The #MeToo movement was popularized by actress Alyssa Milano on Twitter,
who wrote: “If all the women who have been sexually harassed or assaulted
wrote ‘Me too’ as a status, we might give people a sense of the magnitude of the
problem” (Khomami, 2017). Surveys confirm that women believe that there is
value to heightened awareness of widespread problems (e.g., within the economics
profession; see American Economic Association, 2019; Casselman and Tankersley,
2019).

We show that heightened public awareness of misconduct increases reporting of
otherwise-hidden misconduct by coordinating beliefs over strategic uncertainty.
We associate changes in public information with changes in agents’ common priors
(Angeletos and Lian, 2016). In Section I.D, we assumed that agents had common
improper uniform priors over θ. Now suppose that agents share proper priors p(θ)
that is normally distributed with mean y and standard deviation τ . Such priors
could be shaped by public information about a specific manager or information
about misconduct in the broader population of managers. Proposition OA.2
characterizes behavior in this environment. The proof strategy follows Morris
and Shin (2004). We defer the proof of the Proposition to the end of this section.

PROPOSITION OA.2 (Equilibrium with proper priors): Suppose agents have com-
mon proper priors that θ is distributed normally with mean y and standard devi-
ation τ .

1) Existence: There exists at least one symmetric threshold strategy equilibrium
x∗I ∈ (x, x) where agents report if and only if xi ≥ x∗I , where x∗I is implicitly
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defined by:

x∗I =
c

ω − β
(

1− γΦ
(
y−x∗I
κ

)) ,
for κ ≡ σ2+τ2

σ

√
σ2+2τ2

σ2+τ2
and where x∗I > x > 0.

2) Uniqueness (up to either reporting or not reporting when xi = x∗I):

a) The equilibrium x∗I is a unique threshold equilibrium if κ > 1√
2π

cγβ

(ω−β)2
.

b) Whenever y = c
ω−β(1− γ

2 )
, a sufficient condition for non-unique equi-

libria is κ < 1√
2π

γβc

(ω−β(1− γ
2 ))

2 .

c) For y → ∞, there is a unique threshold equilibrium x∗I with x∗I → x.
For y → −∞, there is a unique threshold equilibrium x∗I with x∗I → x.

d) If there is a unique equilibrium in threshold strategies, then the equi-
librium strategy is the only strategy that satisfies the iterated deletion
of strictly dominated strategies. In particular, the unique threshold
strategy equilibrium is the globally unique equilibrium.

3) Beliefs over r: The marginal agent, who has experience xi = x∗I , has a belief
over the incidence of reporting r characterized by the cumulative distribution
function ΨI(.):

ΨI(r) ≡ Φ

(
σ

τ

1√
σ2 + τ2

(x∗I − y) +
1

τ

√
σ2 + τ2 Φ−1(r)

)
,

and has expectation E∗I [r] = Φ
(
y−x∗I
κ

)
.

There is a unique equilibrium when priors are sufficiently diffuse or when private
experiences are informative for θ relative to priors. Specifically, Part 2(a) of
Proposition OA.2 is satisfied for high τ or when σ is low relative to τ . The reason
is that κ increases in τ ; furthermore, κ decreases in σ when σ2/τ2 <

√
2. Indeed,

as τ → ∞ or σ → 0, we converge to the unique equilibrium in Proposition 1,
because κ→∞ and ΨI(r)→ r.

This observation comports with well-known results in the literature about global
games: precise public information induces coordination and multiple equilibria,
while private information hinders coordination because signals are not common
knowledge (Angeletos and Lian, 2016; Morris and Shin, 2003, 2004). Part 2(b)
illustrates equilibrium multiplicity. Suppose y = c

ω−β(1− γ
2 )

, so that y = x∗I and
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Table OA.2—Comparative statics with proper priors.

Parameter

(1)
Reporting
Threshold

x∗

(2)
Aggregate
Reporting

r̂(θ)

y: Public belief of average type - +

τ : Public belief of type dispersion

(for y > x∗I ; flip signs if >; 0 if “=”) + -

Note: Comparative statics for ω, c, γ, and β are identical to those in the main text. Note that y > x∗I if
and only if y > c

ω−β(1− γ
2 )

.

E∗I [r] = 1/2. Multiplicity occurs if τ ≈ 0 and σ is not too large.1 We discuss the
relevance of Part 2(c) below.

With proper priors, under-reporting still occurs if and only if misconduct is
widespread. The “open-secret” equilibrium of Corollary 1.1 is unchanged even
when priors are proper. Proposition 2 holds in the unique equilibrium or in any
threshold strategy equilibrium of Proposition OA.2 (as discussed in the main
Appendix). Condition (1) holds so long as θ > x∗I + σ

κ (y − x∗I). Condition (2)

holds for θ ∈
(
x+ σ

κ (y − x∗I) , x∗I + σ
κ (y − x∗I)

]
and σ sufficiently small.

From here on, we assume the environment satisfies the condition for a unique
threshold equilibrium in Part 2(a); the equilibrium is then globally unique by
Part 2(d). This assumption seems plausible because public information about
any prior misconduct by a specific individual is often diffuse. Such information
does not accumulate smoothly in public through time, often because the accused
and accusers settle claims using non-disclosure agreements (NDAs). Information
about whether such NDAs exist is disperse, and the threat of enforcement is ef-
fective at keeping information about prior allegations hidden (Lobel, 2018). For
example, NDAs kept information about Harvey Weinstein’s misconduct hidden
for many years (for other anecdotes, see Benner, 2017, or the story of “LaDonna”
in Episode #647 of “This American Life”). Moreover, information about mis-
conduct in the broader population of managers is likely less informative about
a specific manager’s type than experiences from that manager, suggesting Part
2(a) is satisfied.

Table OA.2 summarizes how changes in the mean and standard deviation of the
prior belief, y and τ , affect equilibrium reporting. Corollary OA.2.1 highlights
the key implication relevant for the #MeToo movement.2

1Small τ is insufficient to guarantee small κ and equilibrium multiplicity because limτ→0 κ = σ. If σ
is large, κ can be large, potentially satisfying the sufficient condition for uniqueness in Part 2(a). Part
2(b) guarantees this does not happen.

2The comparative statics for ω, c, γ, and β are identical to those in the main text. For σ, an increase
in σ can either increase or decrease the reporting threshold x∗I , because the change in σ has two effects on
beliefs over r. First, it affects the marginal agent’s assessment of how likely her experience was relative
to what other agents might be experiencing based on her priors, but it also affects how much she revises
her belief about what experience she expects others to have when forming her posteriors. Which effect
dominates depends on σ2/τ2 and whether y is low or high. For brevity, we omit details about σ as it
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Figure OA.1. Probability density function ψI(r)
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Note: This figure plots the probability density function of the marginal agent’s belief over the number
of agents reporting for three different cases denoted in the figure. The cumulative distribution function
for this belief is ΨI(r) given in Proposition OA.2.

COROLLARY OA.2.1 (Publicity effect of #MeToo): Agents become more will-
ing to report (x∗I falls) when y increases. When y is high, agents also become
more willing to report when τ falls.

If y increases so that the public believes that managers as a whole are engaging
in worse misconduct on average than previously believed, the reporting threshold
x∗I falls and aggregate reporting r̂(θ) rises for every θ. The reason is that an
increase in y makes agents believe the average experience is worse and hence
more agents are likely to report.

The intuition is easiest to see when we are starting from an equilibrium where
y = c

ω−β(1− γ
2 )

so that x∗I = y. The marginal agent believes E∗I [r] = 1
2 , and Figure

OA.1 plots the density of her belief over r. Note that, from Equation 3, the CDF
of her belief shifts “to the right” when y increases, as ΨI(r) decreases in y for all
r ∈ (0, 1) and any fixed value of xi. This implies that, in response to an increase
in y, the marginal agent will think that more agents will report because they are
having worse experiences, making her willing to report and no longer indifferent.

At the higher value of y, the marginal agent in the new equilibrium must be
indifferent at a less-bad experience; at the new indifference point, x∗I < y. Figure
OA.1 plots the marginal agent’s belief over r in this new equilibrium. When
x∗I < y, the marginal agent believes many other agents are reporting, giving her
the confidence to come forward despite a less-bad experience than the marginal
agent in the previous equilibrium. Analogous logic applies if y falls: at the new
indifference point where x∗I > y, the marginal agent believes fewer other agents
are reporting, so she must have a worse experience to come forward.

seems less directly relevant to the #MeToo movement.
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How reporting responds to the reliability of the public signal τ depends on
whether x∗I is greater or less than y. Suppose x∗I < y and the marginal agent
believes many other agents are reporting. In response to a lower τ , the marginal
agent believes that she had an even lower-than-expected draw of x, and therefore
that even more agents are reporting. She thus becomes more willing to report
and is no longer indifferent, lowering the new equilibrium threshold. Analogous
logic applies if x∗I > y: when τ decreases, the marginal agent believes she had an
even higher-than-expected x and that even fewer agents are reporting, making
her less willing to report and raising the equilibrium threshold.

Corollary OA.2.1 is a robust first-order prediction irrespective of underlying
parameters: Part 2(c) from Proposition OA.2 guarantees that the equilibrium is
unique when y →∞ and that x∗I → x, irrespective of other parameters. Part 2(c)
also shows that Corollary OA.2.1 has first-order effects on the magnitudes of x∗I ,
as changes in y can move the equilibrium threshold x∗I across the entire range of
(x, x).

Overall, Corollary OA.2.1 is consistent with more agents coming forward with
accusations in the wake of #MeToo, which publicized several major incidents of
misconduct and arguably raised y (and perhaps decreased τ) by raising public
awareness of sexual misconduct. Our model suggests that heightened awareness
led directly to more reporting even though: 1) experiences may have remained un-
changed, and 2) there was no direct impact on agent payoffs π(r, x). In particular,
agents with “hidden xi” who were previously not reporting due to a low-y envi-
ronment may come forward in a higher-y (possibly lower-τ) environment purely
from a change in beliefs about whether other agents are reporting.

To formally prove Proposition OA.2, proceed as follows. Suppose the prior
belief of θ with density p (θ) is normally distributed with mean y and standard
deviation τ , and experiences are x = θ+ σε where ε ∼ N (0, 1). Let t = 1/τ2 and
u = 1/σ2 denote the precisions of the prior and x. The posterior density f (θ | x)
is a normal density with:

mean λ =
σ2y + τ2x

σ2 + τ2
=
ty + ux

t+ u
,

standard deviation v =

√
σ2τ2

σ2 + τ2
=

1√
t+ u

,

precision h = t+ u =
σ2 + τ2

σ2τ2
.

Define r (θ, k) as in the proof of Proposition 1. Recall that we can consider k ≥ 0
and that for such k there is a one-to-one map of r into θ: r (θ; k) = 1−Φ

(
k−θ
σ

)
so

θ (r; k) = k − σΦ−1 (1− r), where Φ(.) denotes the normal CDF; let φ(.) denote
the normal PDF. The expected payoff gain of reporting for agent drawing x when
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other agents are playing threshold strategies around k ≥ 0 when x > 0 equals:

π∗ (x, k) =

∫ ∞
−∞

f (θ | x)π (r (θ; k) , x) dθ

= x

(
ω − β + γ (α+ β)

∫ ∞
−∞

f (θ | x)

(
1− Φ

(
k − θ
σ

))
dθ

)
− c.(16)

For x ≤ 0, the payoff gain equals π∗ (x, k) = xω − c < 0.

LEMMA OA.3: Any solution x∗ to π∗ (x, x) = 0 satisfies the implicit equation:

x∗ =
c

ω − β + γ (α+ β) Φ
(y−x∗

κ

) ,
where we drop the I subscript on x∗I for notational brevity.

PROOF:
We have f (θ | x) = 1

vφ
(
θ−λ
v

)
. Then Equation 16 becomes:

π∗ (x, k) = x

(
ω − β + γ (α+ β)

∫ ∞
−∞

1

v
φ

(
θ − λ
v

)(
1− Φ

(
k − θ
σ

))
dθ

)
− c.

We know the following general relationship (Patel and Read, 1996, p.36):∫ ∞
−∞

Φ (a+ bz)φ (z) dx = Φ

(
a√

1 + b2

)
.

Letting z = θ−λ
v and a+ bz = k−λ

σ −
v
σz, we have:∫ ∞

−∞

1

v
φ

(
θ − λ
v

)(
1− Φ

(
k − θ
σ

))
dθ = 1−

∫ ∞
−∞

φ (z) Φ

(
k − λ
σ
− v

σ
z

)
dz

= 1− Φ

 k−λ
σ√

1 + v2

σ2


= Φ

(
λ− k√
σ2 + v2

)
.

For any agent who draws x, the payoff gain is then:

π∗ (x, k) = x

(
ω − β + γ (α+ β) Φ

(
λ− k√
σ2 + v2

))
− c if x > 0,(17)

= xω − c if x ≤ 0.
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For the marginal agent with x = k, we have λ− k = λ− x = v2

τ2
(y − x). Then:

Φ

(
λ− x√
σ2 + v2

)
= Φ

(
v2

τ2

y − x√
σ2 + v2

)
= Φ

(
y − x
κ

)
for κ ≡ τ2

v2

√
σ2 + v2.

The payoff gain for the marginal agent (assuming x > 0, which we verify) then
equals:

π∗ (x, x) = 0 = x

(
ω − β + γ (α+ β) Φ

(
y − x
κ

))
− c,

which gives us the implicit equation for x∗. Note that any solution must be
positive, as required. �

LEMMA OA.4: There exists at least one symmetric threshold strategy equilib-
rium x∗I ∈ (x, x) where agents report for x ≥ x∗I and do not report for x < x∗I .

PROOF:
From Lemma OA.3, any potential equilibria must solve G (x∗) = 0, where:

G (x) = π∗ (x, x) = x (ω − β + γE (x) (α+ β))− c,

E (x) = Φ

(
y − x
κ

)
.

For notational brevity, we drop the I subscript in x∗I .
First, we claim there exists a x∗ ∈ (x, x) that is a solution to G (x∗) = 0 where

G (x∗) is increasing. Observe that E (x) is continuous, which implies G (x) is

continuous. Notice that G
(

c
ω−β

)
> 0, and G

(
c

ω+γα−(1−γ)β

)
< 0, and c

ω−β >
c

ω+γα−(1−γ)β . By the intermediate value theorem, there exists at least one solution

G (x∗) = 0, where G (x∗) is increasing.
Second, we show that any such solution x∗ constitutes a symmetric threshold

equilibrium. Recall from Equation 17 in Lemma OA.3 that the payoff from re-
porting when an agent’s signal is x > 0, conditional on other players playing
threshold strategies around k, equals:

π∗ (x, k) = x

(
ω − β + γ (α+ β) Φ

(
σ2y+τ2x
σ2+τ2

− k
√
σ2 + v2

))
− c.

This is a strictly increasing function in x. Since G (x∗) = π∗ (x∗, x∗) = 0, we
have π∗ (x, x∗) > 0 for x > x∗ and π∗ (x, x∗) < 0 for x < x∗, so that a threshold
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strategy around x∗ is a best response to other players playing the same threshold
strategy. If x < 0 < x∗, π∗ (x, x∗) < 0. �

Lemmas OA.5 and OA.6 substitute for Lemma 2 in the informed prior case.

LEMMA OA.5: The following properties hold:
[1] π∗ (x, k) is strictly increasing in x, weakly decreasing in k (strictly decreasing

for x > 0), and continuous in both x and k. Furthermore, for any k ≥ 0, π∗ (x, k)
maps onto R.

[2] Let ξ solve π∗ (ξ, ξ) = 0. The sequence
{
ξ1, ξ2...ξn...

}
defined as the solutions

to the equations:

π∗
(
ξ1, 0

)
= 0

π∗
(
ξ2, ξ1

)
= 0 . . .

. . . π∗
(
ξn+1, ξn

)
= 0 . . .

is a well-defined increasing sequence, bounded from above by ξ and below by 0,
with limn→∞ ξ

n = ξ, where ξ is the smallest solution to π∗ (ξ, ξ). Analogously,
the sequence

{
ξ̄1, ξ̄2...ξ̄n...

}
defined as the solutions to:

π∗
(
ξ̄1,∞

)
= 0

π∗
(
ξ̄2, ξ̄1

)
= 0 . . .

. . . π∗
(
ξ̄n+1, ξ̄n

)
= 0 . . .

is a well-defined decreasing sequence, bounded from below by ξ > 0, with limn→∞ ξ̄
n =

ξ̄, where ξ̄ is the largest solution to π∗ (ξ, ξ).

PROOF:
[1] These properties are evident from Equation 17 in Lemma OA.3.
[2] Property [1] implies that all ξn and ξ̄n are well-defined. We know that not

reporting is dominant for x < x, so π∗ (x, 0) < 0 for all x < x. But we also know
that π∗ (x, 0) > 0 for all x > x̄. Define ξ0 ≡ 0. By continuity in x, there exists
at least one solution x with π∗

(
x, ξ0

)
= 0, where x ∈ [x, x̄]. Call ξ1 the smallest

such solution. Note that ξ̄1 > 0. Furthermore, note that ξ1 < ξ ∈ (x, x̄): if not,
then 0 = π∗

(
ξ1, 0

)
≥ π∗ (ξ, 0) > π∗ (ξ, ξ) = 0, a contradiction.

To show that ξn is an increasing sequence, proceed by induction. Our starting
point is to show that, because π∗

(
ξ1, 0

)
= π∗

(
ξ2, ξ1

)
= 0, we have ξ1 < ξ2. To

see why, proceed by contradiction. Suppose ξ1 ≥ ξ2. Then π∗
(
ξ1, 0

)
≥ π∗

(
ξ2, 0

)
because π∗ is increasing in x, but π∗

(
ξ2, 0

)
> π∗

(
ξ2, ξ1

)
because π∗ is decreasing

in k. Thus, π∗
(
ξ1, 0

)
> π∗

(
ξ2, ξ1

)
, a contradiction. Note that ξ2 < ξ: if not,

then 0 = π∗
(
ξ2, ξ1

)
≥ π∗

(
ξ, ξ1

)
> π∗ (ξ, ξ) = 0, a contradiction.

The inductive hypothesis is that ξn−1 < ξn with ξn < ξ; we claim ξn < ξn+1

with ξn+1 < ξ. Proceed again by contradiction. By definition, π∗
(
ξn, ξn−1

)
=
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π∗
(
ξn+1, ξn

)
. Suppose that ξn ≥ ξn+1. Then π∗

(
ξn, ξn−1

)
> π∗

(
ξn+1, ξn−1

)
because π∗ is increasing in x, but π∗

(
ξn+1, ξn−1

)
> π∗

(
ξn+1, ξn

)
because π∗

is decreasing in k. Thus, π∗
(
ξn, ξn−1

)
> π∗

(
ξn+1, ξn

)
, a contradiction. Note

that ξn+1 < ξ: if not, then 0 = π∗
(
ξn+1, ξn

)
≥ π∗ (ξ, ξn) > π∗ (ξ, ξ) = 0, a

contradiction.
Because {ξn} is a bounded increasing sequence, there exists a ξ with limn→∞ ξ

n =
ξ. Note that limn→∞ π

∗ (ξn+1, ξn
)

= 0 so by construction and continuity of π∗,
we must have π∗ (ξ, ξ) = 0 and that ξ is the smallest such solution to π∗ (ξ, ξ) = 0.

An analogous argument works identically to show that
{
ξ̄n
}

is a bounded de-
creasing sequence, that there exists a ξ̄ with limn→∞ ξ̄

n = ξ̄, and that ξ̄ is the
largest such solution to π∗ (ξ, ξ) = 0. �

LEMMA OA.6: Uniqueness of equilibrium (allowing for either strategy to be
played at x∗):

[a] The equilibrium x∗ is a unique threshold equilibrium if:

κ >
1√
2π

cγ (α+ β)

(ω − β)2 .

[b] Whenever y = c
ω−β+ 1

2
γ(α+β)

, a sufficient condition for non-unique equilibria

is:

κ <
1√
2π

γ (α+ β) c(
ω − β + 1

2γ (α+ β)
)2 .

[c] For y → ∞, there is a unique threshold equilibrium x∗ with x∗ → x. For
y → −∞, there is a unique threshold equilibrium x∗ with x∗ → x̄.

[d] If there is a unique equilibrium in threshold strategies, then the equilibrium
strategy is the only strategy that satisfies the iterated deletion of strictly domi-
nated strategies, and in particular, the unique threshold strategy equilibrium is the
globally unique equilibrium.

PROOF:
Because G (x) < G (x̄) with at least one solution in between where G is increas-

ing from Lemma OA.4, and because G is differentiable for all x, a necessary and
sufficient condition for uniqueness is that G′ (x∗) > 0 for all x∗ ∈ (x, x̄) such that
G (x∗) = 0. We have

G′ (x) = γ (α+ β)xE′ (x) + (ω − β + γ (α+ β)E (x))

= ω − β + γ (α+ β)
(
xE′ (x) + E (x)

)
,

and also:

G′ (x) = γ (α+ β)xE′ (x) +
c

x
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Substituting in E′ (x) = − 1
κφ
(y−x

κ

)
into Equation 18, a necessary and sufficient

condition for uniqueness is, for all solutions x∗:

γ (α+ β) (x∗)2 φ

(
y − x∗

κ

)
1

κ
< c.

Recall from Lemmas OA.3 and OA.4 that any solution to G(x) constitutes a sym-
metric threshold equilibrium and that there exists at least one such equilibrium.
We now provide conditions under which such an equilibrium is unique or not
unique.

[a] Using the fact that φ (z) < 1√
2π

and x∗ < x̄ = c
ω−β , a sufficient condition

for uniqueness from Equation 18 is:

γ (α+ β)
1√
2π

c

(ω − β)2

1

κ
< 1 ⇔ 1√

2π

cγ (α+ β)

(ω − β)2 < κ.

[b] For y = c
ω−β+ 1

2
γ(α+β)

, note that x∗ = y, E (y) = 1/2, E′ (y) = − 1
κ

1√
2π

, and

we have the following expression for G′ (y) from Equation 18:

G′ (y) = γ (α+ β) yE′ (y) + (ω − β + γ (α+ β)E (y))

But y = c
ω−β+ 1

2
γ(α+β)

, so G′ (y) < 0 if and only if 1√
2π

γ(α+β)c

(ω−β+ 1
2
γ(α+β))

2 > κ.

[c] For y →∞, limy→∞E (x) = 1, so limy→∞G (x) = x (ω − β + γ (α+ β))−c.
By continuity, any solutions x∗ are arbitrarily close to x.

For y → −∞, limy→−∞E (x) = 0, so limy→−∞G (x) = x (ω − β) − c. By
continuity, any solutions x∗ are arbitrarily close to x.

To show uniqueness in both cases, observe from Equation 18 that:

lim
y→∞

G′ (x) = ω − β + γ (α+ β) > 0,

lim
y→−∞

G′ (x) = ω − β > 0.

Continuity of G′ (x) in y and x implies G′ (x) > 0 for arbitrarily large (positive
or negative) y, in particular G′ (x∗) > 0 for any solution x∗.

[d] If G (x) has a unique solution x∗, then from Lemma OA.5 we have x∗ =
ξ = ξ = ξ. By Lemma 3, the only strategy which survives the iterated deletion
of dominated strategies is the x∗-threshold strategy. This implies that the x∗-
threshold equilibrium is the globally unique equilibrium. �

LEMMA OA.7: The marginal agent has beliefs over r summarized by the cu-

mulative distribution function Φ
(

t√
t+u

(x− y) +
√
t+u√
u

Φ−1 (r)
)

, with expectation

E∗I [r] = Φ
(
y−x∗
κ

)
.
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PROOF:

Given an agent’s signal x, what is her assessment of the cumulative distribution
function of r when others are playing cutoff strategies around k, Ψ (r̃;x, k)? We
can follow the same logic as in Lemma 2. For any r̃, the probability that r < r̃
equals the probability that θ < k − σF−1 (1− r̃). In words, the probability
Ψ (r̃;x, k) ≡ Pr (r < r̃ | x) that the true proportion of players reporting is less
than r̃ equals the probability that the true θ satisfies r (θ; k) = 1−F

(
k−θ
σ

)
< r̃, or

equivalently that θ is such that fewer than r̃ players observe a signal greater than
k; in turn, this equals the probability that the true θ is less than k−σF−1 (1− r̃),
integrated against the conditional density f (θ | x). With some abuse of notation,

Ψ (r;x, k) =

∫ k−σΦ−1(1−r)

−∞
f (θ | x) dθ

=

∫ k−σΦ−1(1−r)

−∞

1

v
φ

(
θ − λ,
v

)
dθ

=

∫ z= k−λ
v
−σ
v

Φ−1(1−r)

−∞
φ (z) dz for z =

θ − λ
v

, dz =
1

v
dθ

= Φ

(
k − λ
v
− σ

v
Φ−1 (1− r)

)
.

For the marginal agent with x = k,

k − λ
v

=
(t+ u)x− ty − ux√

t+ u
=

t√
t+ u

(x− y) .

Combining this insight with σ/v =
√
t+ u/

√
u yields:

Ψ (r;x, x) = Φ

(
t√
t+ u

(x− y) +

√
t+ u√
u

Φ−1 (r)

)
,

where we use Φ−1 (r) = −Φ−1 (1− r) in the derivation.

Let ψ (r;x, x) denote the probability density function associated with Ψ (r;x, x).
Because there is a one-to-one mapping of r and θ, we can re-write π∗ (x, k) as

π∗ (x, k) =
∫ 1

0 ψ (r;x, k)π (r, x) dr, so for the marginal agent (assuming x > 0,
which we verify):

π∗ (x, x) =

∫ 1

0
ψ (r;x, x) [x (ω − β + γr (α+ β))− c] dr.

Because the marginal agent must be indifferent between reporting and not re-
porting, the equilibrium condition is then π∗ (x, x) = 0. This gives the implicit
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function:

x∗ =
c

ω − β + γE∗I [r] (α+ β)
,

where E∗I [r] =
∫ 1

0 r ψ (r;x, x) dr. But then by Lemma OA.3, E∗I [r] = Φ
(
y−x∗
κ

)
.

�
PROOF OF PROPOSITION OA.2:

Part 1 follows from Lemma OA.4. Part 2 follows from Lemma OA.6. Part 3
follows from Lemma OA.7. �
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