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ONLINE APPENDIX

A Model

First-order condition The original version of the necessary first-order condition shown in equa-
tion (2) is as follows:
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As implied by the market clearing condition, the quantity supplied by firm i equals the residual
demand of the firm, i.e., Qiht = RDiht. Therefore, we can replace Qiht in equation (A.1) with
RDiht. Also, Pht is interchangeable with bijkht because the first-order condition holds for the ex-
ante marginal unit, the price bid of which is the market clearing price, i.e., Pht = bijkht. The final
expression of the first-order condition after replacing these variables is shown in equation (2).

Constant marginal cost specification Using a constant marginal cost specification is justified
when the number of steps of a unit accepted in the auction are small, which is the case of the New
England electricity market. That is, more than half of the units participating in the auction submit
a single step supply bid, and about 90 percent of units submit bids less than five steps (see Table
H.2 for details). Ryan (2014) also justifies his use of a constant marginal cost specification with
the fact that most of the units cleared two to maximum four steps in the Indian electricity market.

Dynamic component of the cost Wolak (2003) and Reguant (2014) discuss the importance
of dynamic cost components such as start-up costs and ramping costs. However, because my study
focuses on the cost differences across two different sample periods – days with and without the
shock – any change in firm’s decision that comes from the dynamic component will be consistent
across these samples, and will not critically affect my analysis.

Despite this, I also estimated the cost with quadratic and ramping cost terms included in it as
a robustness check and found minimal changes in the analysis result. Quadratic and ramping cost
parameter estimates were not significant for most of the generating units, especially for the gas-fired
units. As was discussed in Reguant (2014), dynamic cost or ramping cost terms are important for
understanding the bidding decisions of base-load generations such as coal-fired units. Since the
focus of my study is on the cost changes of gas-fired generators, I disregard quadratic, ramping, or
dynamic costs throughout the analysis.1

B Estimation

Resampling The empirical analogue of the first-order condition (shown in equation (2) of a firm
involves expectation over others’ bid, b−it. In order to deal with the expectation term, I adopt
the resampling methodology that is commonly used in the literature (Hortaçsu, 2002; Hortaçsu

1However, there are some generators that submit excessively high price bids compared to the others, and they
quickly supply electricity only when the demand is high, by ramping up fast. For these units, I included the ramping
cost term in order to avoid heat rate parameter being overestimated.
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Resampling b−it of firm i on auction day t:

Step 1: Fix the bids of firm i to its actual ex-post observed bids of day t
Step 2: Randomly sample the bids of each firm m 6= i from the pool of days that are similar to day t. That is,

if the similar days of day t are Tt = {t1, t2, . . . , t6}, randomly sample one day from the set Tt for each
firm m.

Step 3: Clear the market using the supply offer curve constructed using the resampled bids from steps 1-2,
and the ex-post demand bid curve of day t. Market clearing yields one set of market price, Pt,s =
{p1t,s . . . , p24t,s}.

Step 4: Step 1-3 is for one resampled draw, i.e. s = 1. Thus, repeat the steps 1-3 for S = 100 times, and get
Pt,i = {Pt,i,1, . . . , Pt,i,S}

Step 4: Going through Steps 1-4 gives a set of resampled prices for firm i, i.e., Pt,i. Now repeat steps 1-4 for
each firm in the sample, i ∈ F and get Pt,i for i ∈ F

Table B.1: Resampling Procedure

and McAdams, 2010; Kastl, 2011; Hortaçsu and Kastl, 2012; Reguant, 2014 ; Ryan, 2014). The
basic idea of the methodology is to approximate the expected term using the resampling procedure.
Each resampled set of bids represent one possible realization of the ex-ante expected bids. Thus, a
collection of resampled bids will approximate the ex-ante expected bid distribution of a firm.

It was pointed out in Hortaçsu and Kastl (2012) and Reguant (2014) that the resampling method
can be extended to allow for the ex-ante observable asymmetries between days by performing the
resampling within the ex-ante symmetric group of days, i.e., Similar days. I adopt this and select
similar days for each day t in the sample based on the following criteria: demand forecast, peak
temperature, weekday, and gas market conditions. The values of each criterion of Similar days are
similar to those of day t. I also find that bidding patterns of firms on similar days closely resemble
those of day t. In the main estimation, I used six similar days when resampling. As a robustness
check, I also resampled with different numbers of similar days, and the parameter estimates were
not qualitatively different from the estimates obtained from the resampling with six similar days.2

Resampling procedure is as follows. First, we need to resample firm i’s beliefs about its com-
petitors’ bids, b−it, on day t, by randomly drawing sets of bids from the ex-post realized bids of
Similar days of day t. I resampled S = 100 sets of bids for each firm i and obtained a market
clearing prices for each resampled set of bids. The market is cleared at which point the supply bid
curve constructed with the resampled bids intersects with the ex-post realized demand bid curve
of day t. Conducting the clearing process for the entire resampled draws gives a distribution of
market prices that is expected by firm i in ex-ante, which can be used to construct the ex-ante
expected first-order condition of firm i. More details of the procedure, which is similar to that of
Hortaçsu (2002) and Reguant (2014), are provided in Table B.1.

Note that the identity of each firm is fixed within the resampling process, which was also the case
in Reguant (2014). This approach is different from the one implemented in Hortaçsu and McAdams
(2010) where the firms were treated ex-ante symmetric, and thus randomization occurs over firms
(N) and auctions (T ). In my analysis, randomization occurs across auctions (T = {t1, . . . , t6}).

From a bidder i’s point of view, we need to resample the distribution of b−i = {b1, . . . , bn−1}.
Suppose r = {1, 2, 3, 4, 5, 6} is a random variable (each number indexes the selected similar days),
and rbsj denotes the random variable selected by firm j (j 6= i) for a bsth bootstrap draw. Below

2There is a possibility that the ex-ante similar days we have chosen may have some unobserved heterogeneity
components which could bias our cost estimates, especially for extremely high shock days where we cannot find days
that are ex-ante similar. One way to address this problem is to use the method of Cassola, Hortaçsu and Kastl (2013),
where resampling randomization occurs over bidders having fixed the day. However, this method faces a tradeoff
because it requires a symmetry of firms (at least within each firm block) which is a more problematic assumption
than the symmetry of days as the focus of our study is to explore heterogeneity across firms.
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shows the randomly selected auctions (t) for each bootstrapped sample:

bs = 1 : {tr11 , tr12 , . . . , tr1n−1
}

...

bs = S : {trS1 , trS2 , . . . , trSn−1
}

Then, the resampling process is completed once we select the bid of firm j (i.e., bj) of the selected
day trbsj

.

Despite having a small number of T , we have enough variation by having a large number of
bidders (N) by randomizing in the fashion described above (TN is a sufficiently large number).
The randomizing process used here is similar to the wild bootstrapping, while in the standard
example of wild bootstrap, r is r = {−1, 1}. Our example is similar to a wild bootstrap with r
dimension of the number of similar days (six in this case). Since the dimension of T is equal to
the dimension of r, it is also important to ensure that T is not too large as the convergence speed
must be greater for N than for T . Therefore, having a large number of T is not necessary to get a
consistent estimate in my empirical set up.

Endogenous residual demand slope Firm-specific unobserved cost shock could shift the firm’s
bid up, resulting in a larger slope of residual demand. Failing to account for such unobserved shock
will misleadingly conclude that a firm behaves less competitively by adding higher markup when
actually the higher bid is a reflection of unobserved cost shock. Therefore, following Reguant (2014)
and Ryan (2014), I instrumented the slope of residual demand in the estimation. As for the Sample
0 estimation, I used hourly forecasted demand and the daily forecasted temperature, both of which
exogenously shift the endogenous slope variable, but are not correlated with the unobserved supply
shock, as instruments. For the Sample 1 estimation, I used forecasted demand error (i.e., actual
demand - forecasted demand) to eliminate the dependency of moments across hours.

Smoothed supply bid, residual demand and weight The derivatives of the supply offer
curve and the residual demand curve of each firm enter the empirical analogue of the first-order
condition. Since these curves are submitted as step functions, I first smooth the curves using the
normal kernel smoothing approach following Wolak (2007), using a bandwidth of $3/MWh for the
Sample 0 estimations and $6/MWh for the Sample 1 estimations. As a robustness check, I tried
different bandwidths to see how sensitive the derivatives are to the bandwidth selection. Results
are quite robust across bandwidths except for some days when electricity prices are extremely high.

Let firm i’s unit j’s step k bid to be bijkht =< bijkht, qijkht >. Suppose the market clearing price
at hour h is Pht. Note that K and κ are the CDF and pdf of a normal distribution. Then, the
smoothed supply bid curve of firm i using the bandwidth bw is represented as below:

Q̂iht (Pht,biht) =
∑
j∈Ji

∑
k

qijkht K
(Pht − bijkht

bw

)
The smoothed residual demand curve of firm i, using bandwidth bw is shown below:

R̂Diht (Pht,b−iht) = Dht −
∑
m 6=i

∑
j∈Jm

∑
k

qmjkht K
(Pht − bmjkht

bw

)
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Figure C.1: Estimated Marginal Generation Costs by Fuel Type: Averaged Across Firms

Then the derivative of the residual demand curve is:

∂R̂Diht

∂Pht
(Pht,b−iht) = − 1

bw

∑
m 6=i

∑
j∈Jm

∑
k

qmjkht κ
(Pht − bmjkht

bw

)
Finally, the expression of the weight, which is the probability of bid step bijkht being the marginal
unit, is shown below (Wolak, 2007):

∂Pht
∂bijkht

=
∂Q̂iht(Pht)

∂bijkht

/(∂R̂Diht(Pht)

∂Pht
− ∂Q̂iht(Pht)

∂Pht

)
Inference Standard errors of the heat rates and forward contract rates estimated from Sample
0 are constructed using a bootstrap method. Although I do not incorporate generating units’
dynamic decisions (dynamic parameters) in my model, I implement the block bootstrap method
in order to generate standard errors, addressing the possibility of the temporal dependence in the
underlying data process (see Reguant (2014) for details). Standard errors of Sample 1 marginal
cost parameters are generated using a GMM standard error formula. Because this Sample 1 GMM
estimation is indeed a linear IV estimation, I use IV standard errors. Alternatively, we could also
bootstrap the standard errors. In this case, block bootstrapping is not necessary as the temporal
dependence disappears by our selection of instrument (demand forecast error that is i.i.d. across
hours).

C Estimation Results

C.1 Marginal cost estimates by fuel types

I first estimate the unit-specific marginal costs of electricity generation (m̂cijt) for each day in
Sample 1 where gas prices are volatile. In Figure C.1, I take the daily cross-sectional average of
the estimates separately by fuel type – coal, gas, dual and oil units – and plot them against the
gas price index value for each day, which proxies for an overall size of a gas price shock. Not
surprisingly, the average of the marginal cost of gas-fired units increases with the overall size of the
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Gas Procurement Channels (plant level)

Year Plants (N) Contract Spot Market Max. # of spot
gas suppliers

2013 38 19 % 81 % 6
2014 39 12 % 88 % 9

Data source: EIA-923 Schedule 2

Table C.1: Percentage of Firms Procuring Gas from Long-term Contract vs. Spot Market (Plant Level)

shock, while that of coal and oil units does not change much in the sample.3 The average of the gas
units’ marginal costs becomes similar to that of oil units when the daily gas price lies between the
range of oil prices ($18 - 25/MMBtu), and becomes the highest among all fuel types when the gas
price exceeds the level of the oil price. This finding suggests that the cost advantage of a gas-fired
unit relative to other fuel type units changes with the intensity of the gas price shock.

C.2 Exploring the dispersion in the implied gas price estimates

The sources of heterogeneous impacts discussed earlier in Section 2 could potentially explain our
main findings from the estimation of implied gas prices: (i) dispersion in the firm- and generator-
level implied gas prices, which exists even within a day, and (ii) the dispersion increases with
the overall size of the daily gas price shock. Here, I validate my estimates from the bid data by
comparing them with information obtained from the external sources - the EIA-923 form.4 Note
that the comparison provided here is incomplete as the EIA-923 dataset does not cover the entire
sample.

Does a firm with a long-term contract have a lower estimated implied gas price? In
Table C.1, I summarized percentages of gas-fired power plants in New England that purchase gas
through the long-term contract and from the spot market, using power plants that appear in the
EIA-923 data. Although the sample size is small, about 20 percent of the power plants purchase
gas through long-term contracts, and the rest of the plants purchase gas at the spot market from
various different gas suppliers.

By cross-comparing the EIA-923 data with my estimates, I identified the firms in my bidding
data that procure gas through a long-term contract.5 In order to verify whether firms with a long-
term gas contract would have implied gas price estimates that are lower than those without the
contract, I regressed implied gas prices on a dummy variable assigned to firms identified as having
a long-term contract.6 Additionally, to see how the difference in implied gas prices between those

3The slightly increasing path of the average of the marginal cost of oil units is a result of having more high-cost
oil units included in the sample when taking the average.

4EIA-923 Schedule 2 (mandatory collection of data by U.S. Energy Information Administration) contains infor-
mation on fuel receipts (including the cost and the quality of fuel) as well as whether plants purchased gas at the spot
market or through the long-term contract. However, starting from 2013, only the plants of sizes greater than 200
MW are required to submit the information to the EIA, and only the regulated firms and plants have an obligation to
disclose the fuel cost information. Furthermore, since all of the information is reported at a monthly level, conducting
an analysis on a daily basis using this dataset is not possible. Finally, matching the generating units that appear
in the bidding data to the plants (which consists of several generating units), that appear in the EIA-923 data is
difficult as they use different IDs.

5Unfortunately, matching data at the generator level was not possible because the identity of the plant is masked
in the bidding data.

6I included in the regression the time (t) fixed effect so that the variation used in the estimation is the cross-firm
variation within a day.
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Figure C.2: Difference in Implied Gas Prices: Firms with and without the Long-Term Gas Procurement Contract

with and without the long-term contract varies with the overall size of the gas price shock, I ran
regressions separately on subsamples that vary in sizes of gas price shocks. Figure C.2 shows the
estimated coefficients. The negative coefficient estimates indicate that the implied gas prices are, on
average, lower for firms that purchase gas via the long-term contract than those that do not. Also,
the magnitude of coefficient estimates increases as the overall size of the shock increases, which
corresponds to the fact that the difference between the long-term contracted price and the spot
price of gas becomes larger as the gas price shock increases considerably. Therefore, the existence
of a long-term gas contract explains the dispersion that we find in the implied gas price estimates.

Why do estimated implied gas prices of generators vary within a firm? One particularly
interesting finding is that the implied gas prices differ across generators operated by the same firm.
Indeed, uncovering the true source of such a dispersion is extremely challenging, but several factors
may explain the dispersion in the estimates. A firm’s generation portfolio consists of several different
power plants that are in some way operated independently. While the management and bidding
for these plants are done by a single entity, the fuel procurement channels could vary significantly
across plants and even across generators.

Since we know that spot gas prices can vary within a day, power plants ordering gas at different
time points could lead to different gas prices across plants and generators, even if all of them
purchase gas on the spot market. One possible explanation for such a procurement practice is the
dispatch uncertainty in the day-ahead electricity auction. In general, firms do not know at the time
of the bidding which of their generating units will finally be accepted in the auction so that they
could actually generate electricity in the market. Thus, purchasing gas for all of their generating
units at the time of the bidding is risky for firms. Instead, firms will purchase gas in advance only
for those units that are most likely to generate electricity in the market, and postpone purchasing
for the rest of the uncertain units. The fuel price implied in the bids of these postponed generators
could be the expected price of gas at the time of the gas use, which could differ from the spot price
at the time of bidding. Such gas procurement and bidding practices are evidenced by the Market
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# of firms purchasing gas from:
Gas procurement channels 2013 2014

Spot gas market only 16 14
Long-term contract only 3 1

Both spot and long-term contract 2 5
More channels than above 0 1

Total # of firms in the sample 21 21

Table C.2: Summary of the Number of Gas Procurement Channels (Firm Level)

rule published by the ISO-NE.7. These behaviors, combined with the increase in the volatility of
the spot gas prices, result in a dispersion in implied gas prices across generators. Also, the fact
that volatility increases more as the gas price shock becomes larger could potentially explain why
the dispersion among generators increases with the overall size of the shock.

Also, when some of the firm’s generating units purchase gas through a long-term contract, while
others purchase from the spot market, the implied prices could vary across units. In Table C.2,
I summarize the number of gas procurement channels from which each firm purchases gas, which
shows that some firms indeed rely on both spot market and long-term contracts.8

Is opportunity cost of gas always the spot price of gas? One may argue that, even if the
long-term contracted prices of gas are lower than the daily spot prices, the opportunity cost of gas
is always the spot price when considering the resale option in the secondary gas market. In this
case, the existence of the long-term contract cannot explain the dispersion in the estimates.

The above argument may be true when the gas market is under normal conditions – thus, fully
liquid – which supports the use of single gas price index value for constructing costs of all gas
generators in Sample 0 estimation. Since the opportunity cost of gas would be close to the spot gas
price regardless of the gas procurement channel – whether they purchase gas from forward or from
spot – the cost generated with the gas price index represents the true opportunity cost of gas for
each firm. In this case, the bias of using index data may exist, but is significantly less pronounced
than in a volatile period.

However, when the gas market is under stress that is mainly caused by the congestion in pipelines,
the transportation cost of gas may become too high, and the resale of gas becomes less attractive
as the gas market is not fully liquid (see Borenstein, Busse and Kellogg (2012) for more details of
illiquid gas market). Moreover, the primary goal of firms in the wholesale market is to generate
and sell electricity; thus the gas resale option may receive less priority in their decision. When the
long-term contracted price of gas of a generating unit is lower than the spot prices at the time,
and if the unit is close to being a marginal price setter, the firm may form the bid of this marginal
unit based on the actual contracted price. This is because, if the firm instead submits a higher bid
for this unit based on the spot price of gas at the moment, the chance of this unit being accepted
in the auction will be forgone, as well as the positive profit that would have been earned from the

7For the purpose of monitoring market participants’ bids, market monitors sometimes require a market participant
to submit a fuel price whenever the market participant’s expected price to procure fuel for the unit will be greater
than that used by the Internal Market Monitor – the gas price index. It is stipulated in the Market Rule that firms
may submit “a price from a publicly available trading platform or price reporting agency, demonstrating that the
submitted fuel price reflects the cost at which the Market Participant “expected” to purchase fuel for the operating
period covered by the Supply Bid, as of the time that the Supply Bid was submitted, under an arm’s length fuel
purchase transaction (ISO-NE Market Rule, Appendix A: Fuel Price Adjustments).”

8The number of firms that rely on both channels could be large in the total sample because EIA-923 is not
representative of all firms that participate in the auction.
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unit’s electricity sale.

Any possibility of optimization error? The final point to address is whether the dispersion
we observe in our estimates is a result of an optimization error that may arise from firms not
bidding strategically according to the first-order condition. This is certainly an issue for small
fringe suppliers that are far from being marginal, as pointed out in Hortaçsu and Puller (2008).
However, in the estimation, we included only those units close to being marginal, thus firms that do
not have the incentive to bid optimally, as well as the units of firms far from being marginals, have
been taken out at the estimation stage. Even if optimization error exists, the dispersion becoming
larger – as we look at the sample with larger gas price shock – is hard to explain only with the
error. That is, such findings could be rationalized only if firms behave less optimally when gas prices
become higher, which cannot be supported by any theoretical or empirical evidence. Moreover, we
find that the dispersion in the bids (of strategic bidders) increases as the shock becomes more
intense. Since bids observed in data are not subject to any optimization error, dispersion in bids
implies the existence of the dispersion in either costs or markups, or both.

C.3 More on dual unit’s fuel switch identification

Here I provide a more detailed explanation of how I identified the dual gas unit’s fuel switch
decision. Detecting the fuel switch of a dual gas unit is possible by comparing its implied fuel price
estimate to the data on spot prices of gas and oil (index values). Note again that both the level
and volatility of spot prices are useful for the identification. That is, the spot oil prices are stable
over the entire sample, which makes the oil price revealed in the marginal costs of the generator
– if they had used oil for generation – to be close to the spot oil price observed from the data. If
the estimated fuel price of a dual unit differs from the level of spot oil price, or if it fluctuates over
the sample following the path of a volatile spot gas prices, we can conclude that the dual unit did
not use oil but used gas for generation. For example, the estimated fuel price of $12/MMBtu or
$30/MMBtu indicates a use of gas by the unit because these levels differ significantly from the oil
price, i.e. $18 - 22/MMBtu.

The most problematic price range is where the spot gas prices are similar to the oil price, i.e.,
between $18 - 22/MMBtu, as it is hard to determine whether the estimated fuel price corresponds
to oil or gas. To precisely identify the fuel switch of dual units over this price range, I first checked
the overall pattern of the estimated fuel prices together with the pattern of daily spot gas price
data. If the fuel switch from gas to oil occurs, the estimates of fuel price will stay constant around
the level of spot oil price, while the spot gas price of the time continuously increases. Even if this
flat part does not continuously appear over the sample period, observing at least one flat portion
is indicative of the fuel price at which the switch occurs for this dual unit, which can be used as a
reference level.

I further verified the identified fuel switch decisions of dual units over this problematic price
range using the EPA emissions data (CEMS). The CEMS data contains the daily emissions rate of
a generator which can be used to tell the type of fuel used by the generator, since burning gas and
oil generate different emission rates. However, the emissions rate data exists only for those that
actually generated electricity in the market (by being accepted in the auction), thus the dataset
does not include all of the dual units and days in our sample. This is one of the reasons why
I instead identified the fuel switch decisions mainly from the fuel price estimates in this paper.
At least for generators that appear in the CEMS data, I verified my fuel switch decision to be
consistent with what the emissions rate data suggests.
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D Markup Simulation

Sizes of cost perturbation imposed in the simulation Sizes of cost perturbation resulting
from the counterfactual gas price shock of 10 cents differ across units because each unit uses different
types of fuels and has different heat rates. The generation cost of only the gas-fired units will be
perturbed by the gas price shock, and the sizes of perturbations vary among gas-fired units due
to differences in heat rates, though not substantial. Also, because firms have different proportion
of gas-fired generation in their generation set, sizes of cost perturbations at firm-level would vary
as well. Therefore, we can say that the heterogeneity in the impacts from the gas price shock has
been accounted for at the cost perturbation stage. Table D.1 summarizes the sizes of marginal
cost perturbation at both the unit- and firm-level. I also implemented a cost perturbation that
incorporates the differences in implied gas prices across firms and units. More description can be
found in Section G.5.

∆ MC mean min max p25 p50 p75 s.d
Generator-level 0.47 0 1.896 0 0 0.941 0.55
Firm-level 3.20 0 8.9 0.754 2.70 5.48 2.68

Notes: Unit of the cost change is $/MWh. Includes generators of all fuel
types.

Table D.1: Summary of Sizes of Marginal Cost Perturbations to a Gas Price Increase of $0.1/MMBtu

E Pass-through

Identifying the ex-post marginal units from data I identified ex-post marginal units from
two data sources: hourly day-ahead electricity auction bids (supply offer bids) and the hourly
equilibrium market clearing prices (Energy Component price), both obtained from the ISO-NE
website. Among the submitted supply offer bids (which consists of price bids and quantity bids), I
found the price bid that equals the equilibrium market clearing price, and identified the unit that
submitted the selected price bid as a marginal unit of the auction.

More on pass-through specification and endogeneity of hrthGht

pht = ρ hrhtGht + β0X
D
ht + β1Iht + εht

As described earlier, pht is the electricity price and hrhtGht is the gas cost variable. I also specified
XD
ht which is the demand side control variable where I used peak-time temperature data. Fixed

effects, Iht, are specified as well including month, day of the week, hour fixed effects.
The gas cost component, hrhtGht, is subject to potential endogeneity. Because the identity

of the marginal unit is determined by the electricity market equilibrium which is affected by the
unobserved demand and supply side factors, the heat rate of the marginal unit, hrht, suffers from
endogeneity. Therefore, I instrumented the gas cost term with the gas price index, Ḡht,index, which
is exogenous to electricity prices as it is determined by the conditions of the spot gas market, but
correlated with the gas cost term. The selection of instrument is similar to that of Fabra and
Reguant (2014).9

9Note that it is possible that an increase in the electricity generation could affect the gas market through an
increased demand for the gas from the electricity generators, in which case our instrument would not be valid.
However, I find that the variation in electricity generation (resulting from increased demand for electricity) is not
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Exploring the cause of underestimation To investigate why the näive regression underes-
timates the pass-through, I checked percentage of marginal units whose costs measured with the
index data overstate their actual costs, shown in Table E.1. That is, for each gas-fired marginal unit,
I compared ĥrij Ḡht,index with ĥrij F̂ijt, and selected those units with ĥrij Ḡht,index > ĥrij F̂ijt.

Note that F̂ijt is the implied fuel prices of the unit estimated earlier from the model.

N % % w.r.t

(1) Gas marginal units in total 3,129 100 -
(2) Marginal units with overstated cost measure 2,076 66.34 to (1)
(3) Dual marginal units among overstated units 615 29.62 to (2)

Notes: If a unit’s marginal cost measured with the gas price index data is greater than that measured with the
implied gas price estimate, I categorized the unit as having an overstated cost measure. First row (1) shows a total
number of marginal units used in the regression, and row (2) shows how many among them have overstated cost
measure. Row (3) shows how many of the units in (2) are dual gas units that switched fuel from oil to gas on the
day. Percentage is calculated with respect to the sample shown in column % w.r.t.

Table E.1: Marginal Units with Overstated Cost Measure

The first row (1) of Table E.1 shows the total number of gas-fired marginal units in the sample
used for the pass-through estimation, and the second row (2) shows how many of them have the
overstated cost measures. I find that, for 66 percent of the marginal units in the sample, the costs
measured with the gas price index were greater than the costs implied by the unit-specific implied
gas price estimates. The fact that a substantial portion of marginal units have overstated cost
measures explains the finding of underestimation of pass-through parameters in näive regressions.

Also, among those marginal units with the overstated cost measure, almost 30 percent (29.62
%) of them are dual units that switched fuel from gas to oil. Note that the measurement error of
the inaccurate cost variable is substantially larger for these fuel-switched dual units than units that
relied on gas for generation.

Measurement error and the bias The instrument used in the main regression is for addressing
the endogeneity of the identity of the marginal unit. That is, the unobserved demand and supply
factors in the error term could affect which type of units become marginal – price setter – in the
auction. For instance, when the electricity demand is low, the generating units with lower heat
rates or gas prices are likely to be marginal, and vice versa when the demand is high.

To correct for this type of endogeneity of the gas cost term of the ex-post marginal unit, I
used the gas price index (Ḡht) as an instrument. However, this instrument cannot correct the
measurement error arising from omitting heterogeneous impacts. To explain this, I provide a more
general formulation of the problem which is described below. Denote the näive measure of the
marginal cost as X̃ht(= ĥrijḠht). Then X̃ht can be decomposed into roughly three parts:

X̃ht = X∗ht + µht + υht

X∗ht is the true value of the unit’s marginal cost, µht is the measurement error, and υht is the
endogenous part that is correlated with the unobserved demand and supply factors. Since the
instrument Z (= Ḡht) used in the regression is chosen to correct for the endogenous part, υht, it
satisfies the condition E(Z ′υht) = 0.

If Z is also exogenous to the measurement error part µht, then the pass-through rate can be
estimated without the measurement error bias, even in näive regressions. However, as shown in the

correlated with the variation in gas prices. Instead, an increased demand for gas from the residential heating sector
was the primary cause of the variation in gas prices.
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plot provided in Figure E.1 of the online Appendix E, the chosen instrument Z is correlated with
the measurement error, i.e., E(Z ′µht) 6= 0.

More details on how I generated the graphs in Figure E.1 are as follows. First, the measurement
error (µht) is obtained by taking a difference between a näive marginal cost ( i.e., ĥrijḠht) and the

marginal cost generated with the estimated implied fuel prices (ĥrijF̂P ijt). Then, the measurement

error variable (µht = ĥrijḠht− ĥrijF̂P ijt) is plotted against the instrument used in the regression,
i.e., the gas price index (Z = Ḡht). As shown in Figure E.1, the instrument variable is positively
correlated with the measurement error; the measurement error tends to increase in magnitude as
the instrument value increases. Such positive correlation can be explained by our findings from the
cost analysis; since the dispersion in firms’ costs increases with the size of the gas price shock (as
measured by the gas price index value), the measurement error generated from using the average
value for firm-specific cost increases with the gas price shock as well.

F Data

F.1 Dual units

Dual generation technology Installing dual-generation technology to electricity generator is
not too difficult as one needs to change the nozzles, install the equipment that handles fuel supply
and modify the control system (EPA-CHP Combustion Technology Report, 2015; Power Engineer-
ing, 2004). Once the technology has been installed, gas turbines can quickly switch from using
gas to using another fuel, without much interruption. Although the installation is not difficult,
not every gas unit is equipped with the technology because of the environmental regulations (on
burning oil) and lack of incentives to install technology during the period with low gas prices. Most
of the existing dual units were constructed or converted in either 1980s or early 2000s when natural
gas was relatively more expensive than other fuels (Power Engineering, 2004).

Heat rate of the dual gas unit Note that dual unit’s heat rate does not change significantly
between burning gas and burning oil. I have partially verified this with the actual heat rate com-
ponent reported in the EPA CEMS (Continuous Emission Monitoring Systems) data. The CEMS
(Continuous Emission Monitoring Systems) dataset contains information of heat content (MMBtu)
and generation (MWh) of generators that enables calculation of their heat rates. However, the
information of heat rates provided in CEMS data cannot be matched to the bidding data because
the identify of firms and power plants are masked in the bidding data. Alternatively, I selected one
dual unit from the CEMS dataset, and compared its heat rates on days when the unit was identified
to have used gas versus days when it had switched to burning oil. Average of heat rates are 10.2
(MMBtu/MWh) when burning gas and 9.9 (MMBtu/MWh) when burning oil (diesel). Although
slightly more efficient (lower heat rate) when burning oil, the difference is not substantial.10

Additionally, the heat rate defined in this paper aims to capture efficiency as a part of the cost
that is invariant to the shock. Therefore, the heat rate I specify in my model could be conceptually
slightly different from the one used by engineers measured by the thermal energy divided by the
electricity.

10The different heats of combustion result in slightly higher mass flows through the expansion turbine when liquid
fuels are used, and may lead to a small increase in the generator’s efficiency performance (EPA-CHP combustion
technology report, 2015).
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(c) Scatter plot : measurement error vs. instrument
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(d) Scatter plot : measurement error vs. instrument
Z – full sample

Notes: The measurement error (µht) is constructed by taking a difference between the näive cost measure and the accurate cost

measure, i.e., µht = ĥrijḠht − ĥrij F̂P ijt. The graph above shows the measurement error plotted against the instrument used
in the regression, i.e., the gas price index (Ḡht), where the sample is restricted to hour 16 (4 pm) observations. I also plotted
the graph for different hours and found similar patterns across hours. In panels (a) and (c) the dual-technology marginal units
are dropped from the sample, whereas in (b) and (d), those are included. When dual units are included in the sample, the
magnitude of the measurement error is bigger especially when Z is large. The correlation coefficient of the measurement error
and the instrument is 0.34 (for hour = 16 and dual units dropped), and 0.57 (for hour = 16 and when dual units are included–
full sample).

Figure E.1: Correlation between the measurement error of the marginal cost variable and the instrument variable
used in the regression (gas price index)
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Notes: The daily day-ahead LMP is the daily average of the final wholesale
electricity prices (locational marginal price) and daily non-ptf demand is the
daily average electricity demand in the wholesale market.

Figure F.1: Daily Day-Ahead Electricity Demand: Years 2010 - 2015

F.2 Electricity demand

Aggregate demand is another important factor that determines the market price in the whole-
sale electricity market, and it is natural to ask whether demand shocks contributed to a surge
in wholesale electricity prices during the period of gas price shocks. I find that demands were
not unusually higher during the period when electricity prices surged than on normal days when
electricity prices were within a reasonable range. Moreover, while the electricity demand was on
average higher in December 2013 than in January 2014, the electricity prices were much higher
in January 2014. Given that gas prices were higher in January 2014 than in December 2013, this
implies that the demand-side shock did not play a significant role in increasing the prices, rather,
the cost increase resulting from the gas price shock was the primary cause of the surge in electricity
prices. The historical trend of the electricity demand, shown in Figure F.1, also reveals that no
significant demand shocks were present in the winters of 2013-2014 compared to other years.

G Additional

G.1 New England Wholesale Electricity Market

Day-ahead electricity market New England wholesale electricity market supplies electricity to
the region’s 6.5 million households and businesses (ISO - NE Market overview, 2014). The market
is operated by ISO-New England, a non-profit company that clears the market. Electricity is
supplied by firms that own generating assets, and is demanded by the local utilities and distribution
companies (LDCs) that offer retail electricity services to the residential customers.

Both the supply and demand sides participate in the day-ahead electricity market, which is held
one day prior to the day of actual electricity generation, to sell and purchase electricity in advance.
Another type of market exists in the wholesale electricity market, which is the real-time electricity
market held on the day when actual generation occurs. This paper focuses on the firm behavior and
market outcomes in the day-ahead electricity market, for the following reasons. First, more than
95 % of the electricity supplied during the next day is scheduled in the day-ahead auction (ISO-NE
EMM Report, 2015). Second, the day-ahead auction offers a more favorable set-up by which to
study strategic decisions made by firms than the real-time auction. This is because the goal of the
real-time auction is to schedule any deviations in the real-time load from the commitments made in
the day-ahead market, which are mainly caused by unexpected real-time market conditions (e.g.,
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transmission line congestion).

Market clearing electricity prices The New England grid adopted the Locational Marginal
Price (LMP) system, where the final market prices differ across pricing nodes after the single,
system-clearing price (Energy Component Price, ECP) is adjusted by the size of the congestion
cost that varies across nodes. As LMP depends on the hourly grid conditions at pricing nodes,
it is difficult to use LMP in the analysis without having detailed information and understanding
of ISO’s market clearing algorithm. Therefore, I disregard the regional variation in prices across
nodes and use the single price that clears the entire system – the Energy Component Price (ECP)–
for the analysis. In fact, the LMPs do not differ much across nodes, and from the ECP, in my
sample.

G.2 Natural Gas Price Shocks and the Spot Gas Market

Natural gas price shocks in New England New England does not have sufficient gas pipeline
capacity, and as a result, the gas spot prices in New England is the highest in the U.S. Two major
gas pipelines that deliver most of the gas into the region are Algonquin Gas Transmission pipeline
(AGT) and Tennessee Gas Pipeline (TGP). The total capacity of these two pipelines combined is 3.5
bcf/day (EIA report, 2014), which runs very close to the total gas demanded in the region.11 Since
the pipeline congestion problem is unique to New England, severe shocks to gas prices during the
winters of 2013 and 2014 occurred only in New England and other Northeastern regions, including
New York. In fact, the highest gas spot price at Henry Hub which offers a starting point for all
regional gas spot prices at various trading locations was $8/MMBtu in the winters of 2013-2014.
This implies that the congested pipelines that deliver gas from Henry Hub to New England were
the main cause of the gas price shocks that impacted New England.

Long-term contract and firm-level gas spot prices A long-term gas supply contract is de-
fined as receiving gas under a purchase order with a term of one year or longer. Any contract
with a duration less than a year is considered a spot purchase (EIA-923). While it is difficult to
obtain specific details of long-term contracts as the information is confidential, the existence of the
long-term contract is reported in various data sources. For example, EIA-923 data contains some
basic information about whether a firm purchases gas in the spot market or through a long-term
contract. However, the EIA-923 does not disclose the exact prices that firms paid at the spot
market and for contracts unless the firm is regulated. Furthermore, the reported prices of those
regulated are the monthly average values, which are not precise enough to use in our analysis.

The spot market price of gas at the local trading hub, the city gate, reflects all charges incurred
for the acquisition, storage, and transportation of gas; it is the total price paid by the end user,
the electricity generating firms. Most of the spot gas purchase occurs through a broker (e.g., ICE
(Intercontinental Exchange)). After the acquisition of gas, firms must request (nominate) pipeline
capacity to the pipeline companies, in order to secure the delivery of the purchased amount to their
generation site. In New England, a problem occurs at the pipeline nomination stage as the capacity
is constrained, which drives up the spot gas prices at the Algonquin city gate.

It is difficult to acquire firm-level spot gas prices, namely the over-the-counter spot gas prices.
The ICE (International Commodity Exchange) over-the-counter gas price data, which I used for

11Other than these major pipelines, Massachusetts’s Everett liquefied natural gas (LNG) terminal also supplies
natural gas to the region and is connected with the AGT and TGP pipelines. Also, Canaport LNG import terminal
sends gas into the region through Maritimes & Northeast pipeline.
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generating graphs in Figure 2, is disclosed based on an agreement between EIA (Energy Informa-
tion Administration) and ICE, starting from year 2015. However, the data set discloses only the
summary statistics (average, minimum, and maximum) of the firm-level transaction prices and does
not cover the sample period (2012 to 2014) used in my analysis.

Dispatch uncertainty and firm’s gas procurement behavior Although the bulk of gas
trading occurs in the morning of the day-ahead market ( a day before the actual generation day),
gas can be traded at different points of time both on the day before and during the operating day.
The problem is that bidding in the electricity auction must be completed before noon of the day
before the generation. In the day-ahead electricity auction, auction participants (both supply and
demand) must submit bids for the next day between 10:00 am and 12:00 pm of the day before the
generation. The outcome of the auction, such as which suppliers will be dispatched in the next day
generation, is released at 4:00 pm. The uncertainty about which of their generating units will be
accepted in the auction gives firms incentives to hold on gas procurement for their gas units that
are less likely to be dispatched. Indeed, it is common among generators to acquire some additional
gas after the auction result has finally been released. In this case, the bids they submit for those
units may be based on their estimates of gas prices at the expected time of purchase.

G.3 Cost of Electricity Generation

Marginal fuel cost The unit of heat rate is MMBtu/MWh, and the unit of gas price is $/MMBtu.
Hence, the marginal fuel cost of electricity generation using gas ($/MWh) is the heat rate multiplied
by the gas price. In order to compute the fuel cost of oil-fired units, we must first convert the unit
of oil spot prices, such as $/gallon or $/barrel, into $/MMBtu. To do so, I divided the oil spot
prices by the heat conversion rate taken from the EIA report (2013); 1 gallon of oil is equivalent to
138,690 Btu (for diesel fuel and heating oil), and 1 barrel of crude oil is equivalent to 5,800,000 Btu.
Then, the marginal fuel cost of electricity generation using oil products is obtained by multiplying
the converted oil prices with the heat rate.

Marginal emissions cost We can calculate the amount of CO2 produced per kWh for specific
fuels and for different types of generators, by multiplying the CO2 emissions factor (or emissions
rate) with the heat rate. Data on CO2 emissions factor (lb CO2 /MMBtu) for different types of
fuels (gas, coal, oil and etc.) and different types of generators (e.g., combustion cycle) come from
the EIA (2013). Then, the emissions cost of a generator can be calculated by multiplying the
emissions permit price (Environmental Protection Agency (EPA) RGGI auction clearing price) to
the amount of CO2 produced by the unit.

Emissions regulation in New England The Northeast regions (New England) is and was
subject to the following regulations: RGGI ( Regional Greenhouse Gas Initiative), Ozone Transport
Region (OTR) NOx Cap and Allowance Trading Program, and Clean Air Interstate Rule (CAIR)
(only MA and CT). OTR trading program is an implementation of emissions trading that primarily
targets coal-burning power plants, allowing them to sell and buy emissions permits of SO2 and NOx.
OTR trading program was replaced by Cross-state Air Pollution Rule (CSAPR) starting from year
2011, and the Northeast regions (all states in New England) are exempted from the new regulation.
CAIR (Clean Air Interstate Rule) is a program that aims to reduce ozone level by suppressing SO2

and NOx emissions in 28 eastern states. All affected states chose to meet their emission reduction
requirements by controlling power plant emissions through three separate interstate cap and trade
programs: CAIR SO2 annual trading program,NOx annual trading program, and NOx ozone season
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trading program. CAIR was again replaced by Cross-state Air Pollution Rule, as of January, 2015.
The permit trading programs were temporarily reinstated until EPA could issue its new CSAPR
rule.

In this study, I omit the NOx and SO2 permit prices when calculating the emissions cost because
these pollutants are mostly regulated during the summer season, which starts from May 1 until
Oct. 1. In fact, all the past NOx and SO2 regulations were effective only during this time period.
The sample period that I use in the analysis is from October to March and does not include the
period where any existing NOx and SO2 regulation might be effective. Therefore, the only effective
emissions regulation during the study period that we must consider when calculating emissions
costs is the RGGI (carbon permit trading).

RGGI is the first market-based regulatory program in the U.S. to reduce greenhouse gas emissions
(RGGI.org). All states in the New England region, along with NY and MD, participate in this
program. RGGI caps the CO2 emissions where the capped amount decreases every year. It requires
fossil fuel-fired electric power generators with a capacity of 25 MW or greater to hold allowances
equal to their CO2 emissions over a three-year control period. And then, the state allocate CO2

allowances via quarterly, regional CO2 allowance auctions. There were total 29 auctions as of
September of 2015. Market participants can purchase CO2 allowances at the quarterly allowance
auctions or in the secondary market, such as the ICE and NYMEX Green Exchange, or via over-
the-counter transactions.

G.4 Bidding Data

Import and export bids About 10 percent of electricity demand in New England is met by
imports from Canada. Since the flow of imported and exported amount of electricity into the
grid depends on the transmission constraints which I do not have information about, accounting
for import/export bids together with the supply and demand bids when clearing the market is
difficult. Instead, I use the hourly net interchange data, which is the final observed net flow of
electricity into the grid measured by the difference in import and export. I subtracted the net
interchange from the total electricity demand to generate the net demand that has to be met by
the internal market supply.

Financial bids Besides supply and demand bids, financial traders can submit the virtual bids
in the day-ahead electricity auction. Financial bids consist of a small portion of the day-ahead
electricity transactions (about 1.5 %), and these bids are not associated with physical assets (ISO-
NE EMM Report, 2015). I compared the outcomes with and without financial bids in the model
and found no significant differences in the result. Despite this, I included financial bids in my
analysis, treating them as a non-strategic, price takers.

Dynamic parameters of the auction Suppliers participating in the auction can submit the
dynamic parameters, such as the must take capacity, minimum economic level of capacity and
cold-start cost, etc., together with their quantity and price bids. Out of these dynamic parameters,
I used the must-take capacity parameter, e.g., the minimum capacity a unit must dispatch in the
auction, to detect the units that are unavailable for electricity generation. That is, setting the
must-take capacity above the total capacity of a generator indicates that the unit cannot operate
on a given day.

Identifying the masked information The identity of firms and generating units is masked,
but I was able to identify most of the firms and some of their generating units by matching the
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information from bids data to other data sources such as the Seasonal Capacity Auction data. For
those firms that I was unable to identify, at least the type of fuel used by their generating units
was identified from the estimated implied fuel prices.

G.5 Estimation

Grouping of firms based on the estimated implied gas prices In the main analysis, I
use the grouping of firms based on how intensive their generation is in gas-fired units. I also
tried a slightly different grouping which is based on the cross-sectional differences in the estimated
implied gas prices. For this second grouping, I look at the cross-sectional distribution of implied
gas prices, for each day in the sample. I then classified firms that fall above the 50th percentile of
the distribution as being “high-impact” firms, and the rest as “low-impact” firms. I used weighted-
average of implied gas prices for those firms that operate multiple gas units because the levels of
implied gas prices differ across gas units operated by the same firm. This weighted-average value
measures a firm’s average exposure to the gas price shock. For example, the average measure of a
firm that operates mostly dual gas units would be smaller than that of others, indicating that the
firm’s impact from the gas price shock is smaller than the others.

Two firm groupings are similar except that while a set of firms grouped under Gas-intensive
category is fixed over time and across auctions, those grouped under High-impact category may
change every day depending on the distribution of the implied gas prices. Since the firms classified
based on two different measures overlap in most of the days in my sample, the results from each
categorization are qualitatively similar. Therefore, I use the Gas-intensive grouping throughout
the analysis of markups. However, I also present the simulated markups plotted separately by firms
grouped under “high-impact” and “low-impact” categories, shown in Figure H.5.

G.6 Bid markup

Suppose that a kth step bid of firm i’s generating unit j is the ex-ante marginal unit of the
auction held at hour h of day t. After rearranging the first-order condition, the bid markup of
this unit is expressed as in equation (9). Since we already have estimated the marginal cost of
electricity generation, mcijt, the bid markup is measured by subtracting the marginal cost estimate
m̂cijt from the price bids data, i.e. bijkht − m̂cijt.

Dispersion in post-shock bid markups Another important observation from Figure 8 is that
the post-shock bid markup distribution is more dispersed than the pre-shock bid markup distribu-
tion. Such dispersion implies that firm-level bid markups in the post-shock period were substantially
heterogeneous.

To explore this, I plotted in Figure G.1 the firm-level bid markups of two firms, Firm 9 (gas only)
and Firm 53 (oil only). The size of the bid markup increases along the horizontal axis for both
firms, which indicates that both added larger bid markups, on average, as the size of the gas price
shock increased. The interesting pattern arises within the competitive range of gas prices when
daily gas index values are between $15 and $25/MMBtu. While bid markups of gas-only firm start
decreasing within the competitive range, bid markups of oil-only firms increase constantly. This
implies that firms adjust bid markups according to different patterns depending on their impacts
received from the gas price shock. Therefore, the increased dispersion in post-shock bid markup
distribution is a combination of having different impacts on costs across firms and having different
levels of gas prices across days.
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Notes: The graph shows daily bid markups of two specific firms, Firm 9 and Firm 53, plotted against
the gas price index values of days in the sample. Thus, overall size of the gas price shock increases
along the x-axis. Firm 9 is a gas-intensive firm, and Firm 53 is an oil-intensive firm. Three vertical
lines are drawn at gas price index levels of $15, $20, and $25, respectively.

Figure G.1: Bid Markups of Two Firms: Sample 1

G.7 Markup Simulation

Simulation of the ex-ante first-order condition The bids of competitors observed in the
auction ex-post is not the information that a firm used when making bidding decisions in ex-ante.
That is, a firm chooses its optimal bid based on its expectations of bids of competitors. To tackle
this, I exploited the resampling technique that is similar to the one used in the parameter estimation
in order to construct the average supply offer curve out of the set of resampled supply offer curves.
This average curve mimics the supply offer curve that the firm expected in ex-ante. I perturbed
this average curve and measured the resulting endogenous changes in markups separately for each
firm, because different ex-ante expected supply offer curves apply to each firm as they have different
set of beliefs of others’ bids. This method is a slight extension of Fabra and Reguant(2014)’s first
order approach simulation where they perturbed ex-post realized bids for the simulation.

I resampled each observation randomly from a pool of similar days. The results reported in this
paper are based on random draws from three similar days. Because it is practically challenging
to take an average of curves and then perturb it again, I instead took a weighted average of the
markups obtained from the perturbation of the each resampled supply curve. I used the probability
of becoming marginal unit, ∂ph

∂bijkh
, as a weight for calculating the weighted average.

For example, Firm i’s markup response was simulated in a following way. I used S number of
random draws of bids of other firms from the pool of three similar days, while fixing Firm i’s bid
to the ex-post realized bid. I then perturbed each of the S supply curves and obtained endogenous
changes in markup for each perturbation, i.e. ∆markups for s = 1 . . . S. The weighted-average of
markups is generated with ∆markups, weighted by ∂ph

∂bijkh
.

Simulation with different sizes of gas price perturbation Instead of imposing the equal
size of 10 cents to all gas units in the simulation, I conducted another simulation where I imposed
a gas price shock weighted by the actual impact as captured by the implied gas price estimates.
For example, if the gas price index of the day is $20/MMBtu and a unit’s implied gas price is $
18/MMBtu, I imposed a gas price shock equivalent to (18/20) ∗ 0.1 = 0.09 (9 cents) to this unit.
The final increase in the marginal cost of this unit is hr ∗ 0.09. This type of cost perturbation
more precisely incorporates the heterogeneity in the impacts among gas-fired generators, as mea-
sured by the implied gas prices across units. The results based on the alternative simulation were
qualitatively similar to the result from the main analysis.

18



H Additional Figures and Tables
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Notes: The graph shows the spot prices of each fossil fuel over the period when gas price shocks are
present. For the gas price, I used daily day-ahead gas spot price index at Algonquin city gate (source:
NGI, SNL), and for the petroleum liquid products (FO2, FO6, KER) and coal (BIT), I used daily spot
price index available from EIA and SNL Energy. All price index values are converted to $/MMBtu.

Figure H.1: Spot Fuel Prices of Days when Gas Price Shocks were Present
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model.

Figure H.2: Forward Contract Rates: Summarized Across Firms
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Simulated pass-through rates
ρht

Hard-hit firm -0.041∗

(0.0195)

Cost shock -0.099∗

(0.0464)

Hard-hit * Dgas -0.0089∗∗∗

(0.002)

Dgas 0.00004
(0.006)

Constant 1.007∗∗∗

(0.0427)

Observations 2,214

Notes: Auction-level pass-through rates (including only the auctions where gas units are marginal
units) are regressed on several variables. The hard-hit variable is a group dummy assigned to firms
grouped under the hard-hit category, and Cost shock is the size of the cost perturbation imposed in the
simulation. Dgas is a difference between the gas price of the auction day and the average of gas prices
over the sample which is around $21/MMBtu. Outliers above and below 98th and 2nd percentiles are
dropped. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table H.1: Regression of Simulated Pass-through Rates on Types of Price Setting Firms

Figure H.3: Example of a Residual Demand Shift After the Perturbation

20



Figure H.4: Graphical Illustration of the Pass-Through Simulation

Figure H.5: Simulated Markups of High-Impact vs. Low-Impact Firms
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Number of Steps Number of Generators Percentage (%)

1 166 54.43
2 21 6.89
3 39 12.79
4 23 7.54
5 28 9.18
6 2 0.66
7 3 0.98
8 5 1.64
9 4 1.31
10 14 4.59

Total 305 100

Notes: Number of steps submitted by generators is summarized in this table. Number of Generators
shows how many generators submitted bids with steps shown in Number of Steps column. Percentage
is the percentage of generators submitted the step out of a total 305 generators.

Table H.2: Summary of Number of Bid Steps
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