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C Extensions

C.1 Alternative objective: learning

Separate from any decision problem, the public might value more precise knowledge of
the state of the world for its own sake. One natural way of measuring the precision of
beliefs is by looking at the variance. We formalize a learning objective by supposing
that the public seeks a publication rule that minimizes the expected variance of the
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posterior beliefs π1. Formally, under the learning objective we replace the earlier
“relevance” welfare function W (D, a, θ) from Equation (1) with

W (D, π1) = −Varθ∼π1 [θ]−Dc, (19)

where c > 0 continues to represent the social opportunity cost of publication. The
learning-optimal publication rule p is the one which maximizes the ex-ante expecta-
tion of (19).

Suppose that the public uses Bayesian updating. There is then a clear connection
between learning and relevance. The posterior expectation of the relevance utility
under a quadratic loss utility function −(a− θ)2 – with the public choosing an action
equal to its expectation of the state – is minus the posterior variance. That is exactly
the learning welfare. So the learning-optimal policy is identical to the policy that
maximizes the quadratic loss relevance objective under Bayesian updating, regardless
of assumptions about signals or priors. In order to maximize learning and minimize
uncertainty over the state of the world, then, it remains optimal to publish only those
studies which induce extreme posteriors. This gives an alternative interpretation of
some previous results that were motivated by decision problems.

C.2 Alternative objective: accuracy

Under an accuracy objective, a journal seeks to publish point estimates X that are as
close as possible to the true state of the world θ. These estimates can be thought of as
the ones that would be the most “replicable” by future studies. Letting Θ = X = R,
we formalize our accuracy objective by replacing welfare from (1) with

W (D, θ, X) = D · (−(X − θ)2 + b), (20)

where b > 0 indicates the shadow benefit of publication; if no study arrives, welfare
is normalized to zero. For simplicity, we now assume a quadratic loss from publishing
values of X further from θ. (We consider a generalized loss function below.)

If the goal is to publish accurate results, a non-selective rule will do better than one
that publishes only extreme findings. But, as we show, a different kind of selective rule
can do even better. Let the accuracy-optimal publication rule be the one maximizing
the ex-ante expectation of this welfare function.

Under the accuracy objective, publication depends only on the belief π
(X,S)
1 . The

accuracy-optimal rule publishes a study (X,S) = (x, s) if the interim expected welfare
from (20) is greater than 0, i.e., if

E
θ∼π

(x,s)
1

[(x− θ)2] ≤ b. (21)

We can explicitly solve for this rule when there are normal priors: publish if

(X − µ0)
2 ≤

!
1 +

σ2
0

S2

"!
b+ b

σ2
0

S2 − σ2
0

"
.1 At any standard error S, it is accuracy-

1As a first step to deriving this expression, rewrite (21) as Var
θ∼π

(x,s)
1

[θ]+ (x−E
θ∼π

(x,s)
1

[θ])2 ≤ b.

Then plug in the variance and expectation from (4) to derive the publication rule above.
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optimal to publish studies with the point estimate X in a symmetric interval about
µ0; see Figure 1. (At sufficiently high standard errors, it may be the case that no
studies are published.)

In other words, the accuracy-optimal publication rule has the opposite form as
the publication rule maximizing quadratic loss relevance: at a given standard error,
it publishes moderate findings and does not publish extreme ones. By the same
token, publishing only extreme findings at a given standard error would minimize
accuracy. This is because point estimates closer to the prior mean are thought (under
the interim belief) to be closer to the true state. For intuition, recall that the distance

of the point estimate from the interim mean, X − µ
(X,S)
1 , is linear in the distance of

the point estimate from the prior mean, X − µ0. Of course, the accuracy-optimal
publication rule is still partially aligned with the earlier (relevance-)optimal rules in
that it publishes a larger range of point estimates when standard errors are smaller.

Figure 1: Accuracy-optimal publication region (shaded) for quadratic distance, nor-
mal prior.
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s

S

(a) In terms of the point estimate X and
the standard error S.

0
t0

s

S

(b) In terms of the t-statistic t = (X −
µ0)/S and the standard error S.

If b < σ2
0 , as pictured, then no studies are published for S > s̄, with s̄ = σ0

√
b√

σ2
0−b

. If instead

b ≥ σ2
0 , then an interval of X containing [µ0 − (b − σ2

0), µ0 + (b − σ2
0)] would be published

for any S.

Just as the relevance-optimal rule is bad for accuracy, so too is the accuracy-
optimal rule bad for relevance. For a fixed standard error and a fixed share of studies
to be published, the rule of publishing only moderate point estimates would actually
minimize quadratic loss utility – and would therefore also be the worst for the learning
objective.2 A non-selective publication rule would be intermediate on both quadratic
loss relevance and on accuracy.

2As described in Appendix A, we solved for the rule that maximized quadratic loss utility for
Bayesian updating by first showing that the problem was equivalent to maxp maxa0 EW (p, a0);
rearranging the order of maximization let us conclude that the globally optimal p was also interim-
optimal given a0. To solve for the policy that minimizes quadratic loss utility (at a fixed and
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Without giving an explicit characterization, the same qualitative result of pub-
lishing moderate results to maximize accuracy would hold if we were to generalize the
accuracy objective (20) beyond a quadratic cost of distance. Consider a generalized
accuracy objective of

W (D, θ, X) = D · (−δ((X − θ)2) + b), (20′)

for a strictly increasing function δ(·). (An arbitrary increasing function of (X − θ)2

is equivalent to an arbitrary increasing function of |X − θ|.) One can establish that
under normal priors, the generalized accuracy-optimal policy maximizing (20′) takes
the same qualitative form as that maximizing (20): at a given standard error, either
point estimates in a symmetric interval around µ0 are published, or no point estimates
are published.

Proposition 1. Let there be normal priors. The publication rule maximizing the
generalized accuracy objective (20′) takes the following form: at S = s, either no
studies (X, s) are published, or there exists k such that a study (X, s) is published if
and only if (X − µ0)

2 ≤ k.

C.3 A model with researcher incentives

Thus far, we have taken submissions to the journal to be exogenous. In reality
submissions come about from a sequence of decisions by researchers: which topics
to work on, what designs S to choose, and which findings X to actually write up
and submit. In solving for an optimal journal publication rule, one ought to take into
account the researchers’ endogenous response to the incentives provided. To illustrate,
this section presents a stylized model with incentives that explores a publication-
motivated researcher’s choices of whether to conduct a study and how to design that
study.

Our analysis here complements some other recent theoretical investigations of how
researcher or experimenter design choices may respond to incentives. In our example,
the researcher’s type will be commonly known and the design of a (submitted) study
will be publicly observable, as in Henry and Ottaviani (2017) or the main analysis of
McClellan (2017). Tetenov (2016) and Yoder (2018) study how a principal can screen
across heterogeneous experimenters with privately known types. Libgober (2015)
considers a setting in which study findings are observable, but the study design that
led to a finding may be obscured.

Set-up. There is a single researcher who takes a research topic as given. There is
a common prior θ ∼ π0 shared by all parties: the researcher, the journal, and the
public.

commonly known standard error), one solves minp maxa0 EW (p, a0). By a minimax theorem, one
can rearrange the order of minimization and maximization and conclude that the globally pessimal
p is also interim-pessimal given a0, and the interim-pessimal policy is to publish moderate results.
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The timing of the game is as follows. First, the journal publicly commits to a
publication rule p for studies on this topic. Then the researcher chooses whether to
conduct a study and, if so, what study design S to use; the researcher will submit the
results of any study to a journal. Then the game proceeds as in Section 2. If a study
(X,S) is submitted it is published with probability p(X,S), and finally the public
updates its belief and takes a policy action. The key distinction from the original
model is that the study submission probability q and the distribution of study designs
FS are now endogenous to the publication rule p.

To keep the analysis simple, we will restrict attention to naive updating. We will
also continue to focus on a normal signal structure, with S ∈ R++ and X|θ, S ∼
N (θ, S2).

The researcher’s problem. The researcher observes the publication rule p and
then decides whether to conduct a study. If she does conduct a study then she chooses
its standard error S ∈ (0,∞).

Normalize the researcher’s outside option payoff from not conducting a study to
0. If a study is conducted, the researcher values its publication, but pays a cost that
depends on the precision of the study. Specifically, the researcher gets a benefit of 1
for getting a study published, independently of the study’s results. The researcher
pays a cost κ(S) for conducting a study with standard error S, with κ : (0,∞) → R+.
(Assumptions such as κ′(S) < 0 would be natural – the researcher pays more for an
experiment with a larger sample size, say – but we do not actually need to impose
any conditions on the cost function for the results that follow.) So the researcher’s
ultimate payoff if she conducts a study with standard error S and publication outcome
D is

D − κ(S).

Denote the researcher’s expected payoff from conducting a study with standard error
S = s, given journal publication rule p, by V (s, p):

V (s, p) = Eθ∼π0,X∼N (θ,s2)[p(X, s)]− κ(s).

The researcher’s participation constraint for being willing to conduct a study is

max
s∈(0,∞)

V (s, p) ≥ 0, (P)

where we assume that the maximum is attained. Conditional on conducting a study,
the researcher’s choice of standard error S is determined by the incentive compatibility
condition

S ∈ arg max
s∈(0,∞)

V (s, p). (IC)

As before, we will assume that an argmax exists for any relevant p, without giving
explicit conditions on primitives to guarantee that this will be the case.
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The journal’s problem. Let the journal maximize the expectation of welfare W
given by the policy payoff minus any cost of publication:

W = U(a, θ)−Dc.

That is, we suppose that the journal does not place any weight on the researcher’s
utility. Furthermore, assume that the public updates naively, so that the public’s
default action is fixed at a0 = a∗(π0).

The journal’s objective function takes the same form as in the original model,
with the key distinction that the arrival of studies is no longer exogenous to the
publication rule p. First, the study submission probability q depends on p: q = 1
if the participation constraint (P) is satisfied, and q = 0 otherwise. Second, con-
ditional on participation, the standard error S depends on p through the incentive
compatibility condition (IC). As is standard, assume that the researcher resolves
indifferences in favor of the journal’s preferences. The journal’s problem is to choose
an incentive-optimal publication rule p that maximizes expected welfare subject to
these endogenous responses.

Observe that, conditional on the arrival of a study, the journal’s gross interim
benefit of publication is unchanged from its earlier definition in (6). A study that

induces a journal interim belief of π
(X,S)
1 when the public’s default action is a0 = a∗(π0)

yields gross interim benefit of ∆(π
(X,S)
1 , a∗(π0)).

In the original model with exogenous study submission, the journal’s optimal
policy was given by the interim-optimal publication rule in which a study is published
if and only if ∆(π

(X,S)
1 , a∗(π0)) ≥ c; indicate this interim-optimal publication rule by

pI(a
∗(π0)). Let us impose the assumption that the researcher would in fact be willing to

participate if the journal were to use the publication rule pI(a
∗(π0)) and would submit

a study with S = sint. This assumption will simplify both the solution and the
exposition of our results.

Assumption 1. The participation constraint (P) is satisfied under the interim-
optimal publication rule p = pI(a

∗(π0)). Let sint ∈ argmaxs V
#
s; pI(a

∗(π0))
$
be the

researcher’s choice of study design in response to the interim-optimal publication rule.

Characterizing the optimal publication rule.

Proposition 2. Consider the model with incentives under naive updating, and sup-
pose that Assumption 1 holds. Then there exist s ≤ sint, λ ≥ 0, and ρ ∈ [0, 1] such
that the following rule p is incentive-optimal:

p(X,S) =

%
&&&'

&&&(

1 if S = s and ∆(π
(X,S)
1 , a∗(π0)) > c− λ,

or if S < s and ∆(π
(X,S)
1 , a∗(π0)) ≥ c

ρ if S = s and ∆(π
(X,S)
1 , a∗(π0)) = c− λ

0 otherwise

.

Given this rule, the researcher chooses to conduct a study with S = s.
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The form of the optimal rule – at least at the chosen study design S = s – is very
similar to the interim-optimal rule that was used in the model without incentives. A
study is published if the gross interim benefit is sufficiently high.

However, the journal distorts publication from the interim-optimal rule in two
ways. First, the journal does not publish any studies with standard error S > s.
The researcher is therefore induced to invest additional resources into the precision
of studies and to reduce S from sint to s. Second, at S = s the journal relaxes
the interim benefit threshold for publication from c to c − λ in order to encourage
researcher participation. Without that relaxation, a researcher might decide that
a study at S = s would be too costly to conduct given its low likelihood of being
published. (While in equilibrium the researcher never chooses S < s, the journal has
no reason to distort the publication rule at those more precise designs.)

In the original model without incentives, a journal which internalized all costs
and benefits of publication would not need commitment power: ex-ante payoffs were
maximized by publishing according to what was interim-optimal after receiving a
study. Having added researcher incentives, the two distortions now require two forms
of journal commitment. The journal commits not to publish imprecise studies, even if
such a study was conducted and turned out to have extremely striking results. This
commitment is never actually tested on the equilibrium path, though – imprecise
studies are not conducted. The journal also commits to publish studies with weak
findings when they have the appropriate precision. This second form of commitment
is tested, as these studies are submitted (and published) in equilibrium.

One key simplification of this model of incentives is the assumption that there
is no heterogeneity across researchers. This fact guarantees that researchers would
always choose to conduct a study with a single standard error, known in advance. In a
richer model, we would expect publication rules to reward more precise studies with
higher publication probabilities in a more continuous manner than what we found
here.

C.4 Imperfectly observed study designs

In determining whether to publish a study, a journal cares about the study’s true
information content. It may not be enough to treat the reported standard error as
the variable S in our model of normal signals. As previously discussed, one concern is
external validity: the parameter being estimated in the study may only be a proxy for
the policy parameter of interest. Another concern is that the study may be internally
flawed: a study with a misspecified model or an unconvincing identification strategy
may report a very small standard error without actually being close to the truth.

When the study design is imperfectly observed, the point estimate can itself be
informative as to the study’s precision. To be concrete, assume that there are normal
priors with mean normalized to 0 and there are normal signals, so that θ ∼ N (0, σ2

0)
and X ∼ N (θ, S2). But now assume that the realization of S ∼ FS is unobserved
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by the journal and the public. As noted in Subramanyam (1996), observing a point
estimate with a larger magnitude |X| leads to higher beliefs on the unobserved noise
S. In our application, a small point estimate would suggest that the study design was
precise, while a large point estimate would be suggestive of some hidden noise. The
extreme realization might be attributed to a violation of the identifying assumptions,
to a coding error, or to some other unseen flaw.

Continuing the example with X but not S observed by the journal and public,
and with θ ∼ N (0, σ2

0) and X ∼ N (θ, S2), suppose further that there is quadratic
loss utility. The journal makes a publication decision based on the posterior mean of
θ, now conditional on X but not S:

µ
(X)
1 = E[θ|X] = E[E[θ|X,S]|X] = E

)
σ2
0

S2+σ2
0
|X

*
·X.

The journal wants to publish if the interim benefit (µ
(X)
1 −µ0

1)
2 exceeds the publication

cost c. A higher belief on S due to a larger point estimate |X| translates into a lower

weight E
)

σ2
0

S2+σ2
0
|X

*
on the point estimate. Indeed, when the prior on S is sufficiently

dispersed, E
)

σ2
0

S2+σ2
0
|X

*
can decrease fast enough that E[θ|X] is nonmonotonic and

falls to 0 as X goes to infinity. (In addition to Subramanyam (1996), see discussion
of this issue in Dawid (1973), O’Hagan (1979), and Harbaugh et al. (2016).) An
intermediate point estimate would therefore move an observer’s mean belief more
than a very large, “implausible,” point estimate would. Let us restate that our results
in Section 3 support publishing “extreme results” in the sense of results that lead to
extreme beliefs. If extreme signal realizations are written off as implausible, then they
would not lead to extreme beliefs and thus should not be published.

A related possibility is that the study design S, capturing the true informational
content of the study’s findings, is better observed by the journal than by the public.
After all, the journal editor and referees are experts who are charged with carefully
evaluating the quality of a paper; a policymaker reading the study might not have
this expertise. Consider a model where the journal observes (X,S) when making a
publication decision, while if a paper is published the public sees only X. In such a
model, the public can make an inference on the quality of the study design from the
fact that the study was published. Publication implies that the journal had chosen to
certify the study as clearing the bar of peer review. Suppose additionally that even
unpublished studies are publicly available as working papers or preprints. In this case
the only role of “publication” by a journal is certification or signaling value. A formal
analysis of optimal publication rules in such an environment is an interesting topic
for future research.
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D Additional Results

D.1 Additional comparative statics

Proposition 3 presents additional comparative statics on the binary action publication
rule solved for in Proposition 2. Recall that this result assumed a normal prior, and
allowed for either Bayesian or naive updating.

Proposition 3. Under the hypotheses and publication rule of Proposition 2,

1. The publication cutoff
!
1 + S2

σ2
0

"
c− S2

σ2
0
µ0 in terms of the point estimate is inde-

pendent of the study arrival probability q. It is decreasing in the mean µ0. It is
larger when the standard error S is larger, the prior variance σ2

0 is smaller, or
the cost of publication c is larger.

2. The publication cutoff
!

1
S
+ S

σ2
0

"
(c−µ0) in terms of the t-statistic is nonmono-

tonic and convex in the standard error S: it has minimum at S = σ0 and goes
to infinity as S → 0 or S → ∞.

Next we present additional comparative statics for the gross interim benefit of
publishing null results in two-period model. Here we maintain the assumptions of
Proposition 4, looking at naive updating, normal priors, and quadratic loss utility.

Proposition 4. Under the hypotheses of Proposition 4, the gross interim benefit of
publishing a result (X1, S1) with X1 = µ0, given by

(1− α)
σ8
0s

4
2

(σ2
0 + S2

1)(σ
2
0 + s22)

2(σ2
0S

2
1 + σ2

0s
2
2 + S2

1s
2
2)
,

is:
1. decreasing in α, going to 0 as α → 1;
2. increasing in σ0, going to 0 as σ0 → 0;
3. decreasing in S1, going to 0 as S1 → ∞;
4. nonmonotonic and quasiconcave in s2, approaching 0 as s2 → 0 or s2 → ∞.

D.2 Size control for selective publication rules

Fix a z-score z > 0. In this subsection we show how to construct selective publication
rules for which the coverage probability of the confidence interval [X − zS,X + zS]
is equal to Φ[z] − Φ[−z] for all θ. (Of course, as established by Theorem 2 part 4,
such publication rules can not take the form of those in Theorem 1.) This exercise
demonstrates that while non-selectivity is sufficient for confidence intervals to control
size, it is not necessary.
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Case of S=1: Normalizing S = 1, let the distribution of the finding X be given by
X ∼ N (θ, 1) and the publication probability be given by p(X). Then the coverage
probability of a confidence interval of the form [X − z,X + z] is given by

P (θ ∈ [X − z,X + z]) =

+
p(θ + ε)1(ε ∈ [−z, z])ϕ(ε)dε+

p(θ + ε)ϕ(ε)dε
.

This coverage probability is equal to its nominal level, Φ(z)−Φ(−z), for all θ, if and
only if

,
p(θ + ε) [1(ε ∈ [−z, z])− (Φ(z)− Φ(−z))]ϕ(ε)dε = 0 for all θ.

Taking the Fourier transform F of this expression, and recalling that the Fourier
transform maps convolutions into products, the above expression is equivalent to the
condition

F (p(·)) · F ([1(· ∈ [−z, z])− (Φ(z)− Φ(−z))]ϕ(·)) ≡ 0.

If the coverage probability is equal to its nominal level, we thus get that F (p(·)) has to
equal zero everywhere except possibly at points where F ([1(· ∈ [−z, z])− (Φ(z)− Φ(−z))]ϕ(·)) =
0. Reversely, by the Fourier inversion theorem,3 this condition is also sufficient for
the coverage probability to be equal to its nominal level.

The Fourier transform F ([1(· ∈ [−z, z])− (Φ(z)− Φ(−z))]ϕ(·)) is real-valued,
even, and continuous. Let t∗ be any zero of this Fourier transform. Then for any
publication rule of the form p(x) = r0 + r1 · sin(t∗ · x) + r2 · cos(t∗ · x) we get that
nominal size control is satisfied. (Of course, one must ensure that the publication
probability is bounded between 0 and 1.) We can also take linear combinations of
these functions over different roots t∗. These are the only publication rules with
nominal size control.

While we cannot obtain analytic solutions, at any z we can numerically solve
for such roots. For instance, for z = 1.96, solutions include t∗ ≃ 2.11045, 3.49544,
etc. So under either of the publication rules p(x) = .5 + .5 cos(2.11045x) or p(x) =
.5+.5 cos(3.49544x), for example, the probability of θ ∈ [X−1.96, X+1.96] conditional
on publication would be 95% at all θ.

General case: Fixing z, suppose that p(x) is some publication rule that satisfies
nominal coverage for S = 1. Then p(x, s) = p(x/s) achieves nominal coverage for
S = s.

D.3 Two-period model with binary actions

Consider the two-period model with normal priors and naive updating. Proposition
4 in Section 5 presented the gross interim benefit of publication – and therefore the

3https://en.wikipedia.org/wiki/Fourier_inversion_theorem
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optimal publication rule – for that setting under quadratic loss utility. Here, we will
illustrate how some conclusions can change under binary action utility. We focus on
characterizing how the interim benefit of publication varies as a function of the point
estimate of the first-period study, X1.

First, recall the quadratic loss analysis. With quadratic loss utility, the benefit
of publishing towards the t = 1 action payoff – that is, the expected increase in
αU(a1, θ) – is quadratic in (X1 − µ0), giving a symmetric benefit of publishing more
extreme results in either direction. The benefit of publishing towards the t = 2 action
payoff – the expected increase in (1− α)U(a2, θ) – has one term that is quadratic in
(X1 −µ0) and another term that is positive and constant in X1. There is a benefit of
publishing any result, including a null result with X1 = µ0, and an additional benefit
of publishing more extreme results. These disaggregated benefits are illustrated in
panel (a) of Figure 2.

Now consider the model with binary action utility. The public’s optimal action
is a = 0 when its posterior mean is negative and a = 1 when its posterior mean is
positive. Assume that µ0 < 0, and recall that we consider the case of naive updating,
so the default action at t = 1 under nonpublication is a = 0. In that case the benefit
towards the t = 1 payoff is αµ

(X1,S1)
1 if µ

(X1,S1)
1 > 0 and is 0 otherwise.4 Since µ

(X1,S1)
1

increases linearly with X1, the benefit is zero at every X1 from minus infinity through
some positive number, and it increases linearly for larger X1. See the blue curve in
panel (b) of Figure 2.

Conditional on (X1, S1) and on X2, the realized benefit of publication towards the

t = 2 payoff is (1 − α)|µ(X1,S1),(X2)
2 | if µ(X1,S1),(X2)

2 and µ
0,(X2)
2 are of different signs,

and is zero otherwise. The publication decision is made at t = 1, and so the benefit
is evaluated by taking expectation over X2 (under the t = 1 interim beliefs π

(X1,S1)
1 ).

See the orange curve in panel (b) of Figure 2 for an illustration of this expected t = 2
benefit. As we see, this t = 2 benefit is somewhat subtle.

The first thing to note is that the expected t = 2 payoff is strictly positive every-
where except X1 = 0. The t = 2 benefit of publishing a result with X1 = 0 is zero
(as is the t = 1 benefit) because a study reporting X1 = 0 never changes the period 2
action. The action depends on the sign of the mean, and a study with X1 = 0 moves
the posterior mean closer to zero without changing the sign.

Moving away from X1 = 0, there is a positive t = 2 benefit of publishing a result
X1 with an intermediate positive or negative value. Publishing a positive finding
avoids the public’s mistake of taking the action a = 0, in accord with its priors, when
the unpublished period-1 study would actually indicate that the state is positive.
Publishing a negative finding avoids the public’s mistake of taking a = 1 after a
positive finding in the second period, when the period-1 study would have indicated

4We follow the notational convention of the proof of Proposition 4 here, in which µ
(X1,S1)
1 is the

period 1 mean belief conditional on observing the period 1 study; µ
(X1,S1),(X2)
2 is the period 2 mean

conditional on observing both studies; and µ
0,(X2)
2 is the period 2 mean after observing the second

study if the first was not published.

11



a negative state. Figure 2 shows that these costs are asymmetric (a conclusion we see
in other numerical examples): there is a larger cost of failing to publish a study with
a positive result, one that goes against the public’s prior.

Finally, as X1 gets more extreme in either direction, the t = 2 payoff benefit
approaches zero. This is because “t = 2” is defined as the time after some additional
information has arrived.5 And an extreme X1 is suggestive of an extreme state,
meaning that the period 2 signal is very likely to reveal whether the state is positive
or negative. For instance, if X1 has a very large positive value, then we expect X2

to have a very large positive value as well. So publishing this study would give a
t = 1 benefit by moving the first period action from a1 = 0 to a1 = 1. But the public
will take a2 = 1 in the second period regardless of whether the first period study is
published.

Figure 2: Dynamic interim payoffs

t=1

t=2

�0 0
X1

Benefit

t=1

t=2

�0 0
X1

Benefit

(a) Quadratic loss utility (b) Binary action utility

For both examples, we set S1 = 2, σ0 = 2, µ0 = −1, and s2 = 2. The relative weight
coefficient on the first period, α, is chosen to make the curves of similar scale as graphed;
increasing α scales up the t = 1 benefit relative to that at t = 2. For quadratic loss utility,
we have chosen α = .3, with X1 ranging from −5 to 3. For binary action utility, we have
chosen α = .05, with X1 ranging from −10 to 15.

E Proofs for Appendix results

E.1 Proofs for Appendix A

Proof of Lemma 2. Follows from arguments in the text of Appendix A.

5If there is a longer expected wait before new studies arrive and actions are updated, that
corresponds in our model to a larger weight α on the t = 1 payoff.
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Proof of Lemma 3. Follows from arguments in the text of Appendix A.

Proof of Proposition 5. By Lemma 3 part 1, it suffices to show that a = a∗(π0,pI(a)

1 )
is uniquely solved by a = µ0 – in other words, that a0 = µ0 is the unique fixed point
when we map default actions to interim optimal publication rules, and then map
publication rules back to default actions.

Conditional on a study (X,S) arriving when the default action is a0, the journal

will not publish if (µ
(X,S)
1 −a0)2 < c, i.e., if µ

(X,S)
1 lies in the interval (a0−

√
c, a0+

√
c).

Let µ̄(a0) indicate E[θ|µ(X,S)
1 ∈ (a0 −

√
c, a0 +

√
c)], the expected state conditional on

a study arriving and not being published. If this expectation is undefined due to the
event µ

(X,S)
1 ∈ (a0 −

√
c, a0 +

√
c) occurring with zero probability, let µ̄(a0) = µ0.

The mean of the default belief – and therefore the implied default action – condi-
tional on nonpublication will be a convex combination of µ̄(a0) (with weight q) and
µ0 (weight 1 − q). Therefore, to show that a0 = µ0 is the unique fixed point, it is
sufficient to show the following three items: (i) for a0 = µ0, it holds that µ̄(a

0) = a0;
(ii) for any a0 < µ0, it holds that µ̄(a

0) > a0; and (iii) for any a0 > µ0, it holds that
µ̄(a0) < a0. (If we had assumed q < 1 then it would be sufficient to show (ii) and (iii)
with weak inequalities.)

Item (i) follows from the fact that µ
(X,S)
1 is symmetric about µ0, and therefore

it remains symmetric when this random variable is truncated outside of the interval
(µ0 −

√
c, µ0 +

√
c). The proofs of items (ii) and (iii) will be identical to each other,

up to the direction of inequalities, so let us focus on proving (ii). Fix a0 < µ0. First,

if there is a zero probability that µ
(X,S)
1 ∈ (a0 −

√
c, a0 +

√
c), then µ̄(a0) = µ0 > a0

and we are done. Otherwise, notice that symmetry about µ0 combined with single-
peakedness means that the pdf of µ

(X,S)
1 is larger at a0 + k than at a0 − k for any

k > 0, with the inequality being strict for any ε such that either pdf value is nonzero.
Hence the mean of µ

(X,S)
1 conditional on being in the interval (a0 −

√
c, a0 +

√
c) is

strictly above the midpoint a0. That completes the proof of item (ii).

Proof of Proposition 6. By Lemma 3 part 2, it suffices to show that the payoff
under default action a0 = 0 is higher than under default action a0 = 1, i.e., that
EW

#
pI(0), 0

$
≥ EW

#
pI(1), 1

$
. The interim optimal publication rule pI(a

0) is as fol-

lows: for a0 = 0 publish if µ
(X,S)
1 ≥ c, and for a0 = 1 publish if µ

(X,S)
1 ≤ −c.

Expanding out EW (p, a0) from (5) for each possible value of a0,

EW (pI(0), 0) = qE

-.
µ
(X,S)
1 − c if µ

(X,S)
1 ≥ c

0 if µ
(X,S)
1 < c

/

EW (pI(1), 1) = qE

-.
µ
(X,S)
1 if µ

(X,S)
1 > −c

−c if µ
(X,S)
1 ≤ −c

/
+ (1− q)µ0.

13



Taking the difference,

EW (pI(0), 0)− EW (pI(1), 1) = qE

0

12

%
&'

&(

−c if µ
(X,S)
1 ≥ c

−µ
(X,S)
1 if µ

(X,S)
1 ∈ (−c, c)

c if µ
(X,S)
1 ≤ −c

3

45− (1− q)µ0.

(22)

We seek to show that this difference is nonnegative. Since µ0 ≤ 0 by assumption, it
is sufficient to show that the expectation term is nonnegative.

To show that the expectation term is nonnegative, first define a weakly increasing
function l : R → R+ as follows:

l(k) =

%
&'

&(

0 if k ≤ 0

k if k ∈ (0, c)

c if k > c

.

The expectation term in (22) can be rewritten as E[l(−µ
(X,S)
1 )]− E[l(µ(X,S)

1 )], and so
it is sufficient to show that this difference is nonnegative.

Next, observe that the distribution of −µ
(X,S)
1 first order stochastically dominates

that of µ
(X,S)
1 :

P (−µ
(X,S)
1 ≤ k) = 1− P (µ

(X,S)
1 ≤ −k)

≤ 1− P (µ
(X,S)
1 ≥ k)

= P (µ
(X,S)
1 ≤ k),

where the inequality comes from the assumption of P (µ
(X,S)
1 ≤ −k) ≥ P (µ

(X,S)
1 ≥ k).

By FOSD, then, the expectation of l(−µ
(X,S)
1 ) is weakly larger than the expectation

of l(µ
(X,S)
1 ), completing the proof.

E.2 Proofs for Appendix B

Proof of Lemma 4. Let a′ = a∗(π′), a′′ = a∗(π′′), and a′′′ = a∗(π′′′). Moreover,
recall that for any actions a ≤ a and any distributions π ≤FOSD π, supermodularity
implies that

Eθ∼π[U(a, θ)] + Eθ∼π[U(a, θ)] ≤ Eθ∼π[U(a, θ)] + Eθ∼π[U(a, θ)]. (23)

Now consider the two exhaustive cases of a0 ≤ a′′ and a0 ≥ a′′.
If a0 ≤ a′′, then

Eθ∼π′′′ [U(a0, θ)] + Eθ∼π′′ [U(a′′, θ)] ≤ Eθ∼π′′ [U(a0, θ)] + Eθ∼π′′′ [U(a′′, θ)]

≤ Eθ∼π′′ [U(a0, θ)] + Eθ∼π′′′ [U(a′′′, θ)]

⇒ Eθ∼π′′ [U(a′′, θ)]− Eθ∼π′′ [U(a0, θ)] ≤ Eθ∼π′′′ [U(a′′′, θ)]− Eθ∼π′′′ [U(a0, θ)]

⇒ ∆(π′′, a0) ≤ ∆(π′′′, a0),

14



where, on the first line, the first inequality follows from (23) and the second inequality
follows from the fact that a′′′ = a∗(π′′′). The second line then rearranges terms from
the left-hand side and the right-hand side of the first line.

Alternatively, if a0 ≥ a′′, then by a similar argument

Eθ∼π′ [U(a0, θ)] + Eθ∼π′′ [U(a′′, θ)] ≤ Eθ∼π′′ [U(a0, θ)] + Eθ∼π′ [U(a′′, θ)]

≤ Eθ∼π′′ [U(a0, θ)] + Eθ∼π′ [U(a′, θ)]

⇒ Eθ∼π′′ [U(a′′, θ)]− Eθ∼π′′ [U(a0, θ)] ≤ Eθ∼π′ [U(a′, θ)]− Eθ∼π′ [U(a0, θ)]

⇒ ∆(π′′, a0) ≤ ∆(π′, a0).

Proof of Lemma 5. As stated, when publication is non-selective, the distribution
of X|θ, S = s,D = 1 is identical to the distribution X|θ, S = s for every s. Parts 1
and 4 follow immediately from that observation. Part 2 follows from the definition
of non-selective publication: p(x, s) constant in x implies that E[p(X,S)|θ, S = s]
is equal to that same constant. To show part 3, recall that the independence of S
and θ implies that if E[p(X,S)|θ, S = s] is constant for each s, then it is constant in
expectation across S, and so E[p(X,S)|θ] is constant as well. The result then follows
from (3).

Proof of Lemma 6. First observe that

Eθ∼π[(X
(s2)
2 − θ)2] = s22

⇒ lim
s2→0

Eθ∼π[(X
(s2)
2 − θ)2] = 0. (24)

Next recall that for any s2 and any realization X
(s2)
2 = x, the posterior mean of

the updated belief, m(x; πI
1 , s2), minimizes the expected square distance to θ:

m(x; π, s2) ∈ arg min
gs2 :R→R

Eθ∼π[(gs2(x)− θ)2|X(s2)
2 = x]

⇒ Eθ∼π[(m(x; π, s2)− θ)2|X(s2)
2 = x]

≤ Eθ∼π[(gs2(x)− θ)2|X(s2)
2 = x] ∀gs2 .

Since this inequality holds for each realization X
(s2)
2 = x, it also holds in expectation:

Eθ∼π[(m(X
(s2)
2 ; π)− θ)2] ≤ Eθ∼π[(gs2(X

(s2)
2 )− θ)2] ∀gs2 .

Plugging in gs2(x) equal to the identity function x,

0 ≤ Eθ∼π[(m(X
(s2)
2 ; π, s2)− θ)2] ≤ Eθ∼π[(X

(s2)
2 − θ)2].

Taking the limit as s2 → 0 as in (24), the right-hand side of the above expression
converges to 0, and hence

lim
s2→0

Eθ∼π[(m(X
(s2)
2 ; π, s2)− θ)2] → 0. (25)
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So we see that m(X
(s2)
2 ; π, s2) and X

(s2)
2 both converge to θ in mean-square as

s2 → 0. We can conclude that m(X
(s2)
2 ; π, s2) converges to X

(s2)
2 in mean-square,

and hence we have proven our result, if m(X
(s2)
2 ; π, s2), X

(s2)
2 , and θ are all square-

integrable under θ ∼ π. In turn it suffices to show that these random variables all
have a finite mean and a variance. By assumption, the mean and variance of θ under
π are finite. Then X

(s2)
2 and m(X

(s2)
2 ; π, s2) also share the mean of θ under π for all s2.

The variance of X2 is given by Varθ∼π(θ) + s22. Finally, the variance of m(X2; π, s2)
is bounded above by Varθ∼π(θ) by the Law of Total Variance: the variance of the
posterior mean given some signal is bounded above by the variance of the prior.

Proof of Lemma 7. Applying a transformation with λ = 1/s2, let X̂
(λ)
2 = λX

(1/λ)
2 ;

X
(λ)
2 is equal to the t-statistic X

(s2)
2 /s2. That is, X̂

(λ)
2 |θ ∼ N (λθ, 1), where X̂

(λ)
2 |θ has

pdf at x̂ of ϕ(x̂− λθ). Correspondingly, let

m̂(x̂; π,λ) = Eθ∼π[θ|X̂(λ)
2 = x̂]

be the public’s period-2 expectation of θ given period-1 belief π followed by period-2
observation X̂

(λ)
2 = x̂, i.e., givenX

(1/λ)
2 = x̂/λ. This transformation will be convenient

because as s2 → ∞ and λ = 1/s2 → 0, the variable X̂(λ)|θ approaches a standard

normal, whereas X
(s2)
2 |θ approaches an improper distribution with infinite variance.

We seek to show that for any π with mean µ1 that is bounded by Pareto tails with
finite variance, it holds that

lim
λ→0

Eθ∼π[(m̂(X̂(λ); π,λ)− µ1)
2] = 0. (26)

Writing the expectation from (26) out in integral form,

Eθ∼π[(m̂(X̂(λ); π,λ)− µ1)
2] =

, ,
(m̂(x̂; π,λ)− µ1)

2ϕ(x̂− λθ)dπ(θ)dx̂.

By Lebesgue’s dominated convergence theorem, to show (26), it suffices to show
(i) for all x̂, limλ→0

+
(m̂(x̂; π,λ) − µ1)

2ϕ(x̂ − λθ)dπ(θ) = 0; and (ii) there exists a
“dominating” function g : R+ → R+ that is Lebesgue-integrable, i.e.,

+
g(x̂)dx̂ is

finite, such that for λ sufficiently small,
+
(m̂(x̂; π,λ)−µ1)

2ϕ(x̂−λθ)dπ(θ) ≤ g(x̂) for
all x̂.
Step 1: Show that for all x̂, limλ→0

+
(m̂(x̂; π,λ)− µ1)

2ϕ(x̂− λθ)dπ(θ) = 0.
It holds that
,

(m̂(x̂; π,λ)− µ1)
2ϕ(x̂− λθ)dπ(θ) = (m̂(x̂; π,λ)− µ1)

2

,
ϕ(x̂− λθ)dπ(θ)

≤ (m̂(x̂; π,λ)− µ1)
2

,
ϕ(0)dπ(θ)

= (m̂(x̂; π,λ)− µ1)
2ϕ(0).
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So to show the desired result that
+
(m̂(x̂; π,λ)− µ1)

2ϕ(x̂− λθ)dπ(θ) converges to 0
for all x̂, it suffices to show that (m̂(x̂; π,λ) − µ1)

2 converges to 0 for all x̂. In turn,
it suffices to show that m̂(x̂; π,λ) converges to µ1 for any fixed x̂. Writing m̂(x̂; π,λ)
in integral form,

m̂(x̂; π,λ) =

+
θϕ(x̂− λθ)dπ(θ)+
ϕ(x̂− λθ)dπ(θ)

(27)

In the denominator of (27), for all θ, ϕ(x̂ − λθ) → ϕ(x̂) as λ → 0. Moreover,
ϕ(x̂ − λθ) ≤ ϕ(0) for all θ and λ, and

+
ϕ(0)dπ(θ) = ϕ(0) < ∞. So ϕ(0) is a

dominating function for ϕ(x̂−λθ) that is integrable with respect to π0, and hence by
the dominated convergence theorem the denominator approaches

+
ϕ(x̂)dπ(θ) = ϕ(x̂).

In the numerator of (27), for all θ, θϕ(x̂ − λθ) → θϕ(x̂) as λ → 0. Moreover,
|θϕ(x̂ − λθ)| ≤ |θ|ϕ(0) for all θ and λ, and

+
θϕ(0)dπ(θ) = ϕ(0)

+
|θ|dπ(θ) < ∞

because π has a finite mean. So |θ|ϕ(0) is a dominating function for θϕ(x̂− λθ) that
is integrable with respect to π, and hence by the dominated convergence theorem the
numerator approaches

+
θϕ(x̂)dπ(θ) = µ1ϕ(x̂).

Taking the ratio, we have that m̂(x̂; π,λ) converges to µ1ϕ(x̂)/ϕ(x̂) = µ1 as λ → 0,
completing this step.
Step 2: Show that there exists a dominating function g : R+ → R+ that is Lebesgue-
integrable, such that for λ sufficiently small,

+
(m̂(x̂; π,λ)−µ1)

2ϕ(x̂−λθ)dπ(θ) ≤ g(x̂)
for all x̂.

First, observe that
,

(m̂(x̂; π,λ)− µ1)
2ϕ(x̂− λθ)dπ(θ) = (m̂(x̂; π,λ)− µ1)

2

,
ϕ(x̂− λθ)dπ(θ)

=

6+
θϕ(x̂− λθ)dπ(θ)+
ϕ(x̂− λθ)dπ(θ)

− µ1

72

·
,

ϕ(x̂− λθ)dπ(θ)

≤
+
(θ − µ1)

2ϕ(x̂− λθ)dπ(θ)+
ϕ(x̂− λθ)dπ(θ)

·
,

ϕ(x̂− λθ)dπ(θ)

=

,
(θ − µ1)

2ϕ(x̂− λθ)dπ(θ) (28)

where the inequality in the third line follows from Jensen’s inequality: (E[θ|X̂(λ) =
x̂]− µ1)

2 = (E[θ − µ1|X̂(λ) = x̂])2 ≤ E[(θ − µ1)
2|X̂(λ) = x̂].

So it suffices to find an integrable function g for which g(x̂) is everywhere larger
than (28) for all λ ∈ (0, 1].

• Constructing g for x̂ ∈ [−2K, 2K].
The expression (28) is uniformly bounded above by

+
(θ − µ1)

2ϕ(0)dπ(θ) =
ϕ(0)Varθ∼π(θ). So, let

g(x̂) = ϕ(0)Varθ∼π(θ) for x̂ ∈ [−2K, 2K].

It holds that
+ 2K

−2K
g(x̂)dx̂ = 4Kϕ(0)Varθ∼π(θ) < ∞.
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• Constructing g for x̂ > 2K.
Expanding out (28), we have

,
(θ − µ1)

2ϕ(x̂− λθ)dπ(θ) =

, x̂
2λ

−∞
(θ − µ1)

2ϕ(x̂− λθ)dπ(θ)

8 9: ;
A

+

, ∞

x̂
2λ

(θ − µ1)
2ϕ(x̂− λθ)dπ(θ)

8 9: ;
B

(29)

First let us bound the term labeled A in (29). For θ ≤ x̂
2λ
, it holds that

x̂ − λθ ≥ x̂/2. Therefore, assuming further that x̂ ≥ 2K – and in particular
that x̂ ≥ 0 – it holds that ϕ(x̂− λθ) ≤ ϕ(x̂/2). Hence,

, x̂
2λ

−∞
(θ − µ1)

2ϕ(x̂− λθ)dπ(θ)

8 9: ;
A

≤
, x̂

2λ

−∞
(θ − µ1)

2ϕ(x̂/2)dπ(θ)

≤
, ∞

−∞
(θ − µ1)

2ϕ(x̂/2)dπ(θ)

= ϕ(x̂/2)Varθ∼π(θ).

Now we move to the term labeled B in (29). By the fact that π is bounded by
Pareto tails with finite variance,

, ∞

x̂
2λ

(θ − µ1)
2ϕ(x̂− λθ)dπ(θ)

8 9: ;
B

≤
, ∞

x̂
2λ

Cθ−γ(θ − µ1)
2ϕ(x̂− λθ)dθ

≤
, ∞

x̂
2λ

Cθ−γ(θ + |µ1|)2ϕ(x̂− λθ)dθ

≤ C
( x̂
2λ

+ |µ1|)2

( x̂
2λ
)γ

, ∞

x̂
2λ

ϕ(x̂− λθ)dθ

= C
( x̂
2λ

+ |µ1|)2

( x̂
2λ
)γ

1

λ
(1− Φ(− x̂

2
))

= 2γ−2Cλγ−3 (x̂+ 2λ|µ1|)2
x̂γ

Φ(
x̂

2
)

≤ 2γ−2C
(x̂+ 2|µ1|)2

x̂γ
for λ ∈ (0, 1]

The inequality in the third line follows because θ−γ(θ + |µ1|)2 is decreasing in
θ over θ > 0 for any γ > 2, so we increase the expression when we plug in
the lowest value of θ, i.e., θ = x̂/(2λ). The inequality in the last line follows
because λγ−3(x̂ + 2λ|µ1|)2 is increasing in λ over λ > 0 for any γ > 3, so we
increase the expression relative to λ ≤ 1 when we plug in λ = 1; and we also
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increase the expression when we replace Φ( x̂
2
) by 1. These two observations

about increasing and decreasing functions can be straightforwardly confirmed
by taking derivatives.6

Putting the bounds on terms A and B together, let

g(x̂) = ϕ(x̂/2)Varθ∼π(θ) + 2γ−2C
(x̂+ 2|µ1|)2

x̂γ
for x̂ > 2K.

As established, g(x̂) is larger than (28) for all λ ≤ 1. Moreover,
+∞
2K

g(x̂)dx̂ is
finite: the first term is an integral of a normal pdf, and the second term is an
integral of an expression that decays to zero as x̂ goes to infinity at a rate of
x̂2−γ, with the exponent 2− γ < −1.

• Constructing g for x̂ < −2K.
This case proceeds symmetrically to the construction for x̂ > 2K, now taking

g(x̂) = ϕ(x̂/2)Varθ∼π(θ) + 2γ−2C
(|x̂|+ 2|µ1|)2

|x̂|γ for x̂ < 2K.

Just as with x̂ > 2K, when x̂ < −2K we have that g(x̂) is an upper bound for

(28) when λ ≤ 1, and
+ −2K

−∞ g(x̂)dx̂ is finite.
We have now established that g(x̂) is an upper bound for (28) for all λ ≤ 1 and for
all x̂, and that

+
g(x̂)dx̂ < ∞, concluding the proof.

Proof of Lemma 8. Define f I

X
(s2)
2

(x) = 1
s2

+
ϕ(x−θ

s2
)dπI

1(θ) and f 0

X
(s2)
2

(x) = 1
s2

+
ϕ(x−θ

s2
)dπ0

1(θ)

to be the marginal densities of X
(s2)
2 under the respective distributions on θ of πI

1 and
π0
1.

Step 1: Show that there exists C ′ > 0 such that
fI

X
(s2)
2

(x)

f0

X
(s2)
2

(x)
≤ C ′ for all s2.

First observe that

f I

X
(s2)
2

(x)

f 0

X
(s2)
2

(x)
=

+
ϕ(x−θ

s2
)dπI

1(θ)+
ϕ(x−θ

s2
)dπ0

1(θ)
=

+
ϕ(x−θ

s2
)
dπI

1(θ)

dπ0
1(θ)

dπ0
1(θ)+

ϕ(x−θ
s2

)dπ0
1(θ)

≤ sup
θ

dπI
1(θ)

dπ0
1(θ)

.

Next, recall that πI
1 = π

(x1,s1)
1 , which is a posterior belief on θ given prior θ ∼ π0

and some fixed signal realization (X1, S1) = (x1, s1). Hence

dπI
1(θ)

dπ0(θ)
=

ϕ(x1−θ
s1

)
+
ϕ(x1−θ′

s1
)dπ0(θ′)

⇒ sup
θ

dπI
1(θ)

dπ0(θ)
≤ ϕ(0)+

ϕ(x1−θ′

s1
)dπ0(θ′).

6The derivative of θ−γ(θ + |µ1|)2 with respect to θ evaluates to −θ−(1+γ)(θ + |µ1|)(|µ1|γ + (γ −
2)θ) < 0. The derivative of λγ−3(x̂+ 2λ|µ1|)2 with respect to λ evaluates to λγ−4(x̂+ 2|µ1|λ)((γ −
3)x̂+ 2|µ1|(γ − 1)λ) > 0.
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Under naive updating, π0
1 = π0, and thus supθ

dπI
1(θ)

dπ0
1(θ)

= supθ
dπI

1(θ)

dπ0(θ)
, bounded by

the finite constant C ′ = ϕ(0)
!
ϕ(

x1−θ′
s1

)dπ0(θ′)
. (Recall that x1 and s1 are taken as con-

stants here.) Under Bayesian updating with study arrival probability q < 1, (3)

implies that dπ0(θ)

dπ0
1(θ)

≤ 1
1−q

for all θ, and therefore that supθ
dπI

1(θ)

dπ0
1(θ)

= supθ
dπI

1(θ)

dπ0(θ)
dπ0(θ)

dπ0
1(θ)

≤
1

1−q
supθ

dπI
1(θ)

dπ0(θ)
. Hence for Bayesian updating we have a bound C ′ = 1

1−q
ϕ(0)

!
ϕ(

x1−θ′
s1

)dπ0(θ′)
.

In either case C ′ gives an upper bound on
fI

X
(s2)
2 2

(x)

f0

X
(s2)
2

(x)
.

Step 2: Show that Eθ∼πI
1

)
y
!
X

(s2)
2

"*
≤ C ′Eθ∼π0

1

)
y
!
X

(s2)
2

"*
.

Rewriting expectations in integral form,

Eθ∼πI
1

)
y
!
X

(s2)
2

"*
=

,
y
!
X

(s2)
2

"
f I

X
(s2)
2

(x)dx

=

,
y
!
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2

" f I

X
(s2)
2

(x)

f 0

X
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2

(x)
f 0

X
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(x)dx
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!
X
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2

"
C ′f 0

X
(s2)
2

(x)dx (by Step 1)

= C ′Eθ∼π0
1

)
y
!
X

(s2)
2

"*
.

E.3 Proofs for Online Appendix C

E.3.1 Proofs for Online Appendix C.2

Proof of Proposition 1. Recall that under normal priors, the variance of π
(X,S)
1 is

independent of X. So fix S = s, and without loss of generality normalize the variance
of π

(X,s)
1 to 1. Then given X = x and θ ∼ π

(x,s)
1 , the distribution of a random variable

Y = (x − θ)2 is a noncentral chi-squared distribution with noncentrality parameter
λ (equal to (x − E

θ∼π
(x,s)
1

[θ])2) that increases in (x − µ0)
2. The variable Y has CDF

over realizations y given by 1 − Q1/2(
√
λ,

√
y) for Q the Marcum Q-function.7 By

Sun et al. (2010) Theorem 1(a), Q1/2(
√
λ,

√
y) strictly increases in its first term

√
λ,

implying that the distribution of (x− θ)2 under π
(x,s)
1 increases in the sense of FOSD

as (x − µ0)
2 increases. Hence E

θ∼π
(x,s)
1

[δ((x − θ)2)] increases in (x − µ0)
2. A study

(X,S) = (x, s) is published if and only if E
θ∼π

(x,s)
1

[δ((x − θ)2)] ≤ b, so at standard

error S = s studies are published only if (X − µ0)
2 is sufficiently small.

7See Wikipedia for details: https://en.wikipedia.org/wiki/Noncentral_chi-squared_

distribution.
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E.3.2 Proofs for Online Appendix C.3

Proof of Proposition 2. We first state a lemma that does not depend on Assump-
tion 1.

Lemma 1. In searching for an incentive-optimal publication rule, it is without loss
of generality to restrict to rules p(X,S) satisfying

p(X,S) =

%
&&&&&&'

&&&&&&(

1 if S = s and ∆(π
(X,S)
1 , a∗(π0)) > c− λ,

or if S < s and ∆(π
(X,S)
1 , a∗(π0)) ≥ c

0 if S > s,

or if S = s and ∆(π
(X,S)
1 , a∗(π0)) < c− λ

or if S < s and ∆(π
(X,S)
1 , a∗(π0)) > c

for some s ∈ (0,∞) and λ in R ∪ {−∞,∞} in which the researcher chooses S = s if
she conducts a study.

It remains only to show that in the incentive-optimal contract of the form in
Lemma 1, the researcher chooses to conduct a study; that s ≤ sint; and that λ ≥ 0.

The facts that the researcher conducts a study and that s ≤ sint both follow from
Assumption 1.

First, Assumption 1 guarantees that the journal prefers to follow the interim-
optimal rule – at which the researcher conducts a study with S = sint, and the
journal only publishes studies with a nonnegative interim net benefit – than any rule
that publishes nothing at all. (In the model without incentives in which q = 1 and
S is deterministically equal to sint, publishing no studies is feasible, but the interim-
optimal rule is preferred.) So the incentive-optimal rule will induce the researcher to
conduct a study, meaning that the researcher must be choosing S = s.

Second, fix any publication rule of the form in Lemma 1 with s = sh and λ = λh,
for sh > sint. We claim that the publication rule of the same form with s = sint and
λ = 0 weakly improves payoffs. To see why this claim holds, note that the publication
rule with s = sh and λ = λh would be weakly improved upon by one with s = sint and
λ = 0, supposing researcher participation. Recall that normal signals are Blackwell
ordered by their standard errors: at standard error S = sint, the findings X can be
garbled into something informationally equivalent to findings from S = sh. So some
stochastic publication rule at S = sint, combined with a garbling of these signals to
the public, replicates the distribution of outcomes8 that occur when a study arrives
with S = sh and is published under the publication rule given by s = sh and λ = λh.
But the journal’s payoffs given a study with S = sint are improved by removing the
garbling to the public. Payoffs are further improved by publishing under the interim-
optimal publication rule at S = sint, which is exactly that given by a rule of the form

8I.e., the probability of publication at each state, and the joint distribution over public actions
and states conditional on publication.
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in Lemma 1 with s = sint and λ = 0. Finally, by Assumption 1, the publication rule
with s = sint and λ = 0 does indeed get researcher to conduct a study, since the
interim outcome satisfies the researcher’s participation constraint.

The final step is to show that λ ≥ 0. This is because, for any publication rule of the
form of Lemma 1, increasing λ increases the publication probability at S = s. Hence,
it makes the researcher better off if she chooses S = s and slackens her incentive
constraints. Moreover, starting from λ < 0, increasing λ to 0 improves the journal’s
payoff, since again λ = 0 is interim optimal and hence optimal conditional on a study
being submitted at S = s.

Proof of Lemma 1. Take an arbitrary publication rule p̃. We will show that it can
be replaced by a rule p of the desired form that weakly increases the journal’s payoff.

First suppose that p̃ does not induce the researcher to conduct a study. Then
define some p of the form in the statement of the Lemma by setting s arbitrarily and
setting λ = 0. If the publication rule p induces the researcher not to participate,
then the journal’s payoffs are unchanged from p̃. If the rule p induces the researcher
to conduct a study with standard error S = s, then the journal’s payoffs are weakly
higher than before, since under p the journal never publishes studies that give negative
net interim payoff.

So, for the rest of the proof, assume that p̃ does in fact induce the researcher to
conduct a study with S equal to some level s. We show that there exists λ such
that we can replace p̃ with a publication rule p satisfying the following properties and
weakly improve the journal’s payoff:

1. At s > s, p(x, s) = 0:
Let p(x, s) = p̃(x, s) at s ≤ s and 0 at x > s. The publication rule p gives
the researcher the same payoff from choosing S = s and weakly reduces her
payoff from choosing other values of S, and so under p the researcher’s behavior
is unchanged. She continues to conduct a study with S = s and the journal’s
payoff given the choice of S = s is also unchanged.

2. At s = s, p(X, s) = 1 if∆(π
(X,s)
1 , a∗(π0)) > c−λ, and p(X, s) = 0 if∆(π

(X,s)
1 , a∗(π0)) <

c− λ:
Let p(x, s) = p̃(x, s) at all s ∕= s. Denote the probability of publication under p̃
at S = s, given by E[p̃(X,S)|S = s], by y ∈ [0, 1]. If y = 0 then p̃ is equivalent
to a publication rule p of the appropriate form with λ = ∞. If y = 1 then p̃ is
equivalent to a publication rule p of the appropriate form with λ = −∞.
For interior y, define p(·, s) so as to maximize the journal’s payoff subject to
accepting a share y of papers at this standard error. To do so, first set λ ∈ R
as the supremum over values of l such that P (∆(π

(X,s)
1 , a∗(π0)) > c − l|S =

s) ≤ y. Next, let p(x, s) = 0 if ∆(π
(x,s)
1 , a∗(π0)) < c − λ and let p(x, s) = 1 if

∆(π
(x,s)
1 , a∗(π0)) > c − λ. Finally, if ∆(π

(x,s)
1 , a∗(π0)) = c − λ, set p(x, s) such

that the publication probability at S = s, E[p(X,S)|S = s], is equal to y. (This

last step is only relevant if ∆(π
(X,s)
1 , a∗(π0)) = c−λ with positive probability at
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S = s.)
The publication rules p and p̃ publish with the same probability as each other
conditional on any choice S by the researcher. Hence, the researcher continues
to be willing to pick S = s. Moreover, given the constraint of publishing with
probability y at S = s, the journal’s expected payoff given a researcher choice
of S = s is maximized by p. Hence, the journal weakly prefers p to p̃ if the
researcher is to choose S = s.

3. At s < s, p(x, s) = 1 if ∆(π
(x,s)
1 , a∗(π0)) ≥ c and p(x, s) = 0 if ∆(π

(x,s)
1 , a∗(π0)) <

c:
Let p(x, s) = p̃(x, s) at s ≥ s; at s < s, let p(x, s) = 1 if ∆(π

(x,s)
1 , a∗(π0)) ≥ c

and p(x, s) = 0 if ∆(π
(x,s)
1 , a∗(π0)) < c.

Under publication rule p, the researcher will either continue to choose S = s
or will switch to s′ < s. If the researcher continues to choose S = s, then the
journal’s payoffs are as before. If the researcher now chooses s′ < s, we claim
that the journal must be weakly better off. (This argument exactly follows an
argument in the proof of Proposition 2.) To show the claim, recall that normal
signals are Blackwell ordered by their standard errors: at standard error S = s′,
the finding X can be garbled into something informationally equivalent to a
finding from S = s. So some stochastic publication rule at S = s′, combined
with a garbling of these signals to the public, replicates the distribution of
outcomes (probability of publication at each state, and joint distribution over
public actions and states conditional on publication) that occur when a study
arrives with S = s and is published under the publication rule given by p(X, s).
But the journal’s payoffs given a study that has been published with S = s′ are
improved by removing the garbling to the public. Payoffs are further improved
by publishing under the interim-optimal publication rule at S = s′, which is
exactly that under p.

The only remaining item to prove is that it is without loss of generality to suppose
that if the researcher chooses to conduct a study, she chooses S = s; applying step
3 above could possibly have changed the researcher’s choice of S to something below
s. However, iterating step 1 (with s redefined to the new choice of S) recovers a
publication rule of the appropriate form in which the researcher does choose S =
s.

E.4 Proofs for Online Appendix D

E.4.1 Proofs for Online Appendix D.1

Proof of Proposition 3.
1. All comparative statics are immediate from the formula.
2. The only comparative static that is not immediate is that for the t-statistic

cutoff,
!

1
S
+ S

σ2
0

"
(c−µ0), with respect to S. The argument for this result follows
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identically as the argument for the analogous result in the proof of Proposition
1 part 3.

Proof of Proposition 4.
1. This result is immediate.
2. The derivative of the benefit with respect to σ0 evaluates to

(1− α)
2s42σ

7
0(S

4
1σ

4
0 + 2s42(S

2
1 + σ2

0)(2S
2
1 + σ2

0) + s22(5S
4
1σ

2
0 + 4S2

1σ
4
0))

(s22 + σ2
0)

3(S2
1 + σ2

0)
2(S2

1σ
2
0 + s22S

2
1 + s22σ

2
0)

2

which is positive. As σ0 → 0, the numerator goes to 0 while the denominator
goes to a positive limit.

3. The derivative of the benefit with respect to S1 evaluates to

−(1− α)
2s42S1σ

8
0(2S

2
1σ

2
0 + σ4

0 + 2s22S
2
1 + 2s22σ

2
0)

(s22 + σ2
0)

2(S2
1 + σ2

0)
2(S2

1σ
2
0 + s22S

2
1 + s22σ

2
0)

2

which is negative. As S1 → ∞, the numerator is constant while the denominator
goes to infinity.

4. The derivative of the benefit with respect to s2 evaluates to

(1− α)
2σ8

0s
3
2(−s42(S

2
1 + σ2

0) + s22σ
2
0(S

2
1 + σ2

0) + 2S2
1σ

4
0)

(s22 + σ2
0)

3(S2
1 + σ2

0)(S
2
1σ

2
0 + s22S

2
1 + s22σ

2
0)

2
.

This has the sign of −s42(S
2
1 + σ2

0) + s22σ
2
0(S

2
1 + σ2

0) + 2S2
1σ

4
0. This expression

is a concave quadratic in s22, which is positive at s22 = 0 and maximized at

s22 =
σ2
0

2
> 0. In particular, the derivative in s2 is positive and then negative.

As s2 → 0, the numerator goes to zero while the denominator goes to a positive
limit. As s2 → ∞, the numerator increases at a rate of s42 while the denominator
increases at a rate of s62, so the ratio goes to 0.
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