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A Proofs for the Results in the Main Text

A.1 Proofs for Section 4

Proof of Theorem 1

We use Theorem 2 (in Section 4.2) to prove Theorem 1. The proof of Theorem 2 does

not depend on Theorem 1.

“If” part: Since Theorem 2 implies that x∗ ∈ XM is a SPE outcome, we show that

x∗ is a unique SPE outcome. Consider the shortest terminal history h under which

each player i announces (Yes, Pi), where
⋂
i∈N Pi = {x∗} (such a history h exists

by assumption). At the history ht(h)−1, player i1 = ρ(ht(h)−1) can guarantee herself

a payoff of ui1(x
∗), her maximum possible SPE payoff (note that any y ∈ X with

ui(y) > ui(x
∗), if it exists, is not individually rational for some other player). Since

ui1(x
∗) > di1 by assumption, x∗ is the unique outcome in the subgame starting at

ht(h)−1 in any SPE. Next, at ht(h)−2, player i2 = ρ(ht(h)−2) can guarantee herself a

payoff of ui2(x
∗), her maximum possible SPE payoff. Since ui2(x

∗) > di2 by assump-

tion, x∗ is the unique outcome in the subgame starting at ht(h)−2 in any SPE. Solving

backwards in this way, for each j ∈ {1, . . . , t(h)}, at any ht(h)−j, player ij = ρ(ht(h)−j)

can guarantee herself a payoff of uij(x
∗), her maximum possible SPE payoff. Hence,

x∗ is the unique SPE outcome in the subgame starting at the initial history h0.
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“Only if” part: Suppose that x∗ is a unique SPE outcome. First, note that

XM = {x∗} because Theorem 2 implies that if XM(6= ∅) is not a singleton then

the negotiation has multiple SPE outcomes. Next, if there is x ∈ X \ {x∗} such that

ui(x) = maxv∈IR(U,d) vi for some i ∈ N , then x ∈ XM , a contradiction. Hence, for each

i ∈ N , x∗ is the unique alternative that generates her maximum individually-rational

payoff. Thus, u(x∗) > v for all v ∈ IR(U, d) \ {u(x∗)}, as desired.

Proof of Theorem 2

Let x(0) := x ∈ XM . For each j ∈ N , let x(j) ∈ X be player j’s worst individually-

rational and Pareto-efficient alternative. For each j ∈ {0} ∪ N , fix (P
(j)
i )i∈N with

{x(j)} =
⋂
i∈N P

(j)
i (such a profile exists by assumption). Denote Pi = P

(0)
i for each

i ∈ N . Note that it is possible that x = x(j) for some j ∈ N .

Let h∗ be the shortest terminal history under which every player i announces

(Yes, Pi) at any subhistory at which she speaks (such h∗ exists by assumption). Let

Q0 := {h ∈ H \ Z | h v h∗} be the set of non-terminal subhistories of h∗. For each

j ∈ N , let Qj be the set of non-terminal histories h ∈ (H \ Z) \Q0 such that player

j deviates from announcing (Yes, Pj) first: j = min Iτ (h) with τ = min{t′ ∈ N |
(Rt′

i (h), P t′
i (h)) 6= (Yes, Pi) for some i ∈ N}.

We define the following strategy profile s∗. For each i ∈ N and h ∈ Hi, let

s∗i (h) :=

(Yes, Pi) if h ∈ Hi ∩Q0

s
(j)
i (h) if h ∈ Hi ∩Qj for some j ∈ N

,

where s
(j)
i (h) is defined as

s
(j)
i (h) :=


(Yes, P̃i(h)) if h ∈ Hi ∩Qj,1

(Yes, P
(j)
i ) if h ∈ Hi ∩Qj,2

(No, P
(j)
i ) if h ∈ Hi ∩ (Qj \ (Qj,1 ∪Qj,2))

with the following properties. Intuitively, the set Qj,1 contains any non-terminal

history h ∈ Qj such that there are a group of players who can collectively terminate

the negotiation with an outcome x̃ ∈ X \ {x(j)} at h, which gives a strictly greater

payoff to each of them. Note that Qj,1 could be empty (e.g., in negotiations with a

common-interest alternative). Formally, h ∈ Qj,1 if and only if (i) h ∈ Qj and (ii) there
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are a sequence h̃(k∗) := ((N`, ((Yes, P̃m(h)))m∈N`
))k
∗

`=1 with k∗ ∈ N and x̃ ∈ X \ {x(j)}
such that, denoting h̃(k) := ((N`, ((Yes, P̃m(h)))m∈N`

))k`=1 for each k ∈ {1, . . . , k∗},
N1 = ρ(h), N`+1 = ρ(h, h̃(`)) for all ` ∈ {1, . . . , k∗−1}, ϕcon(h, h̃(k∗)) = x̃ ∈ X\{x(j)},
and that u`(x̃) > u`(x

(j)) for all ` ∈
⋃k∗

k=1Nk. Note that x̃ depends only on h. This

is because of the following: Since x(j) is Pareto efficient,
⋃k∗

k=1Nk 6= N for any choice

of h̃(k∗). Also, any player in N \ (
⋃k∗

k=1Nk) has to be ok with x̃ at h. Hence, x̃ does

not depend on h̃(k∗) but only on h. We denote this x̃ by x̃(h).

The set Qj,2 has any non-terminal history h ∈ Qj \ Qj,1 with the following prop-

erties: Either (i) every player ` who spoke at the end of h announced (No, P
(j)
` ), i.e.,

h = (ht(h)−1, (I t(h)(h), ((No, P
(j)
` ))`∈It(h)(h))); or (ii) every player ` has been announc-

ing (Yes, P
(j)
` ) since the most recent announcement of “No” at time tNo(h) ≤ t(h)−1,

i.e., h = (ht
∗
, ((Ik(h), ((Yes, P

(j)
` ))`∈Ik(h)))

t(h)
k=t∗+1) with t(h)− 1 ≥ t∗ := tNo(h).

We now show that each player i ∈ N following s∗i is a best response to s∗−i in

any subgame, which implies that the SPE s∗ induces the history h∗ and the outcome

x. To show this, first consider a subgame starting at h ∈ Hi ∩ (Qj \ Qj,1) for some

j ∈ N . The continuation strategy profile s∗|h := (s∗i |h)i∈N induces x(j), where s∗i |h is

the restriction of s∗i on {h′ ∈ Hi | h′ w h}. If player i announces “No” at h′ ∈ Hi

with h′ w h, then it is impossible for any x′ ∈ X with ui(x
′) > ui(x

(j)) to be an

outcome under s∗−i. Suppose to the contrary that some alternative x′ = ϕcon(h′′)

with ui(x
′) > ui(x

(j)) and h′′ w h′ is an outcome under s∗−i. Since player i cannot

terminate the negotiation with outcome x′ at h′ by saying “No,” h′′ A h′. Since

u(x(j)) ∈ PE(U), some player k with uk(x
′) ≤ uk(x

(j)) is ok with x′ at h′′. This is

impossible because such player k, who follows s∗k, must not be okay with x′ at h′′.

For any strategy of player i such that she announces “Yes” after each history at

which it is her turn to move in the the subgame starting at h, either every player k

keeps announcing (Yes, P
(j)
k ) to agree upon x(j) or some player announces “No” in the

subgame starting at h. In the subgame starting at history h at which some player

announces “No,” no x′ ∈ X with ui(x
′) > ui(x

(j)) can be an outcome under s∗−i|h.
Second, consider h ∈ Hi ∩ Qj,1. If player i follows s∗i |h, then s∗|h induces x̃(h).

Suppose, on the other hand, player i deviates at a history h′ ∈ Hi with h′ w h. If she

announces “No” at h′, then any alternative x′ with ui(x
′) > ui(x

(j)) (which includes

x̃(h)) cannot be an outcome. If her announcement is “Yes,” then either every player

k keeps announcing (Yes, P̃k) to agree upon x̃(h) or some player announces “No” at

some point. In the latter case, any induced history h ∈ Hi no longer belongs to Qj,1.

3



Third, consider the subgame starting at h ∈ Hi∩Q0. Player i gets a payoff of ui(x)

by following s∗i |h, as s∗|h induces h∗. Her deviation induces a non-terminal history

h′ ∈ Qi \ Qi,1, as any other player k follows s∗k. Thus, player i’s maximum possible

payoff in the subgame starting at h′ is ui(x
(i)) ≤ ui(x).

A.2 Proofs for Section 5

Proof of Proposition 5

As discussed in the main text, the proof consists of two steps.

First Step: Fix i ∈ N satisfying the condition in the statement of the proposition.

Let Yi := {x ∈ X | ui(x) < v[i,m] and u−i(x) ≥ v[−i,m]}. Suppose to the contrary that

there is y ∈ XSPE∩Yi. Let s∗ be a SPE that induces y, and let h∗ be the finite terminal

history induced by s∗. Let h be a subhistory of h∗ such that i ∈ ρ(h) and that if

h′ @ h∗ satisfies i ∈ ρ(h′) then h′ v h. Letting (R−i, P−i) = (R
t(h)
−i (h), P

t(h)
−i (h)) and

(Ri, Pi) = s∗i (h), we have P1∩P2 = {y}. Since y is unilaterally improvable for player i,

there exists (y′, P ′i ) ∈ X×Pi such that u(y′) > u(y) and {y′} = P ′i ∩P−i. Choose one

such (y′, P ′i ), and consider i’s deviation to announce (Yes, P ′i ) at h. On the one hand,

in the subgame starting at (h, (Yes, P ′i )), one strategy player −i can take is to keep

announcing (Yes, P−i). The consensual termination rule terminates the negotiation

under such a strategy profile at (h, (Yes, P ′i ), (Yes, P−i)) with the outcome y′. Thus,

player −i’s payoff conditional on the history (h, (Yes, P ′i )) under s∗|(h,(Yes,P ′i )) is at

least u−i(y
′). On the other hand, since s∗ is a SPE, player i’s deviation to announce

(Yes, P ′i ) cannot lead to a payoff strictly higher than ui(y). These facts imply that

s∗|(h,(Yes,P ′i )) leads to an outcome in {y′ ∈ X | ui(y′) ≤ ui(y) and u−i(y
′) > u−i(y)}.

Thus, there is an infinite sequence (yk)k∈N such that yk+1 ∈ {y′ ∈ X | ui(y′) ≤
ui(y

k) < v[i,m] and u−i(y
′) > u−i(y

k) ≥ v[−i,m]} for each k ∈ N. By construction,

yk+1 6= y` for all ` ≤ k. This contradicts the assumption that X is finite.

Second Step: Pick x ∈ X with u ≤ u(x) < (v[1,m], v[2,m]). Suppose to the contrary

that x is sustained by a SPE s∗. Let h∗ be the finite terminal history induced by

s∗. Let h be a subhistory of h∗ such that i ∈ ρ(h) and that if h′ @ h∗ satisfies

i ∈ ρ(h′) then h′ v h. Let (Ri, Pi) = s∗i (h) and (R−i, P−i) = (R
t(h)
−i (h), P

t(h)
−i (h)). We

have P1 ∩ P2 = {x}. Let (P
(−i)
1 , P

(−i)
2 ) be such that P

(−i)
1 ∩ P (−i)

2 = {x(−i)}, where
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x(−i) ∈ X satisfies u(x(−i)) = (v[i,M ], v[−i,m]).

At the history h′ = (h, (No, P
(−i)
i )), if player −i announces (Yes, P

(−i)
−i ), then

player i can receive the best SPE payoff v[i,M ] by announcing (Yes, P
(−i)
i ). Thus,

player −i can secure herself a payoff of v[−i,m] at h′. By the equilibrium condition,

letting y ∈ X be the outcome induced by s∗|h′ , we have ui(y) ≤ ui(x) < v[i,m] and

u−i(y) ≥ v[−i,m](> u−i(x)). Now, one must be able to construct an infinite sequence

defined in the first step, which leads to a contradiction.

Proof of Proposition 6

Part 1: This part follows from Theorem 2.

Part 2: Fix (i, x) ∈ N × X such that di ≤ ui(x) < v[i,m] and u−i(x) ≥ v[−i,m]. Fix

(P1, P2) with {x} = P1 ∩P2. Let (yi, y−i) = (x, x(−i)). That is, u−i(y
−i) = v[−i,m] and

ui(y
−i) = v[i,M ]. Choose (P

(−i)
1 , P

(−i)
2 ) such that P

(−i)
1 ∩ P (−i)

2 = {y−i}. Note that the

profiles of proposals (P1, P2) and (P
(−i)
1 , P

(−i)
2 ) exist by assumption.

Let Qi ⊆ H \ Z be the set of non-terminal histories with the following two prop-

erties: First, h0 ∈ Qi. Second, any h ∈ (H \ Z) \ {h0} is in Qi if and only if, for any

h′ ∈ H \ Z with h′ @ h and −i ∈ ρ(h′), the history ht(h
′)+1 satisfies the following:

ht(h
′)+1 =


(h′, (Yes, P−i)) if h′ = h0

(h′, (Yes, P−i)) if h′ 6= h0 and (R
t(h′)
i (h′), P

t(h′)
i (h′)) = (Yes, Pi)

(h′, (No, P−i)) if h′ 6= h0 and (R
t(h′)
i (h′), P

t(h′)
i (h′)) 6= (Yes, Pi)

.

We let Q−i := (H \ Z) \Qi.

Consider the following strategy profile s∗. For player i ∈ N and h ∈ Hi, let

s∗i (h) :=


(Yes, Pi) if h ∈ Hi ∩Qi

(Yes, P
(−i)
i ) if h ∈ Hi ∩Q−i and ϕcon(h, (Yes, P

(−i)
i )) = y−i

(No, P
(−i)
i ) if h ∈ Hi ∩Q−i and ϕcon(h, (Yes, P

(−i)
i )) 6= y−i

.

Note that, at h ∈ Hi ∩Qi, since Pi is limited and x is not unilaterally improvable for

i, there is no (y, P ′i ) ∈ X ×Pi with ϕcon(h, (Yes, P ′i ), (Yes, P−i)) = y and u(y) > u(x).

For player −i, let h ∈ H−i. If h = h0 ∈ H−i, then let s∗−i(h) := (Yes, P−i). If
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h ∈ Qi \ {h0}, then let

s∗−i(h) :=



(Yes, P−i) if (R
t(h)
i (h), P

t(h)
i (h)) = (Yes, Pi)

(Yes, P−i) if t(h) ≥ 2 and h = (ht(h)−2, (·, P−i), (Yes, P̃i)) for some

(P̃−i, y) with P̃i ∩ P−i = {y} and u−i(y) > u−i(x)

(No, P−i) otherwise

.

Next, we define s∗−i(h) for h ∈ Q−i. First, define Q∗−i ⊆ Q−i by h ∈ Q∗−i if and only if

there are P̃−i and x̃ such that ϕcon(h, (Yes, P̃−i)) = x̃ and u−i(x̃) > u−i(y
−i). Since x̃

depends only on h, we write x̃(h) := x̃. If h ∈ Q∗−i, then s∗−i(h) := (Yes, P̃−i). Second,

h ∈ Q−i \Q∗−i, then let

s∗−i(h) :=

(Yes, P
(−i)
−i ) if P

t(h)
i (h) = P

(−i)
i

(No, P
(−i)
−i ) otherwise

.

We show that s∗ is a SPE, i.e., for each j ∈ N , following s∗j is a best response to s∗−j

in any subgame. The strategy profile s∗ induces the history ((Yes, P1), (Yes, P2), (Yes, P1))

or ((Yes, P2), (Yes, P1), (Yes, P2)), and the outcome x in both cases. We show i’s best-

response condition first, and then −i’s best-response condition.

Player i’s best-response condition: Take h ∈ Hi. If h ∈ Q−i, then s∗|h induces

player i’s best SPE outcome y−i. Suppose h ∈ Qi. The continuation strategy profile

s∗|h induces x. Notice that any non-terminal history in Hi induced by a continua-

tion strategy profile (si, s
∗
−i)|h is in Hi ∩ Qi. If player i proposes (Yes, P̃i) so that

player −i can terminate the negotiation with y ∈ X such that {y} = P̃i ∩ P−i and

u−i(y) > u−i(x), then player i receives a payoff ui(y) ≤ ui(x). Otherwise, a possible

outcome is either x or the disagreement outcome. Hence, s∗i is a best response to s∗−i

in the subgame starting at h ∈ Hi.

Player −i’s best-response condition: Take h ∈ H−i. First, suppose h ∈ Q−i \
Q∗−i. The continuation strategy profile s∗|h induces y−i. Any continuation strategy

profile (s−i, s
∗
i )|h induces either y−i or the disagreement outcome.

Second, suppose h ∈ Q∗−i. The continuation strategy profile s∗|h induces x̃(h),

and player −i gets a payoff of u−i(x̃(h)) > u−i(y
−i). If player −i does not terminate
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the negotiation with x̃(h) at h, then the outcome following the continuation play is

either y−i or the disagreement outcome.

Finally, suppose h ∈ Qi. Assume h = h0 ∈ H−i. The continuation strategy

profile s∗|h induces the outcome x. If −i announces (R′−i, P
′
−i) 6= (Yes, P−i) at h0,

then s∗i (R
′
−i, P

′
−i) = (No, P

(−i)
i ). At the history ((R′−i, P

′
−i), (No, P

(−i)
i )) ∈ H−i ∩Q−i,

player −i can obtain at most u−i(y
−i).

Now, assume h 6= h0. We consider three cases: (i) (R
t(h)
i (h), P

t(h)
i (h)) = (Yes, Pi);

(ii) h = (ht(h)−2, (·, P−i), (Yes, P̃i)) with t(h) ≥ 2, P̃i∩P−i = {y}, and u−i(y) > u−i(x);

and (iii) otherwise. In case (i), the continuation strategy profile s∗|h induces x. If

player −i uses s−i and announces s−i(h) 6= (Yes, P−i) at h, then player i announces

s∗i (h, s−i(h)) = (·, P (−i)
i ). If this announcement terminates the negotiation then the

outcome is y−i. If not, then in the subgame starting at the resulting history h′ =

(h, s−i(h), s∗i (h, s−i(h))) ∈ H−i ∩ (Q−i \Q∗−i), player −i can obtain at most u−i(y
−i).

In case (ii), player −i can obtain a payoff of u−i(y) by terminating the negoti-

ation. Indeed, following s∗−i terminates the negotiation. For the case in which she

does not terminate the negotiation, consider h′ = (h, (R
t(h)+1
−i (h′), P

t(h)+1
−i (h′))). If

(R
t(h)+1
−i (h′), P

t(h)+1
−i (h′)) = (No, P−i), then player −i can obtain a payoff of at most

u−i(x) at h′′ = (h′, s∗i (h
′)). If (R

t(h)+1
−i (h′), P

t(h)+1
−i (h′)) 6= (No, P−i), then in the sub-

game starting at h′′ = (h′, s∗i (h
′)) = (h′, (No, P

(−i)
i )), player −i can obtain a payoff of

at most u−i(y
−i).

In case (iii), the continuation strategy profile s∗|h induces x. Suppose that player

−i does not announce (No, P−i) at h. If she terminates the negotiation, then she

can get a payoff of at most u−i(x). If she uses a strategy s−i so as not to terminate

the negotiation, then the resulting history h′ = (h, s−i(h)) is in Hi ∩Q−i. If player i

terminates the negotiation at h′, player −i gets u−i(y
−i). If not, the resulting history

h′′ = (h′, s∗i (h
′)) is in H−i ∩ (Q−i \ Q∗−i). Player −i can obtain a payoff of at most

u−i(y
−i) in the subgame starting at h′′. Hence, s∗−i is a best response to s∗i in the

subgame starting at h ∈ H−i.

Part 3: Fix x ∈ X with (v[1,m], v[2,m]) > u(x)(≥ u) satisfying the conditions of the

statement. Fix (P1, P2) with {x} = P1 ∩ P2. For each i ∈ {1, 2}, fix (P i
1, P

i
2) with

{yi} = P i
1 ∩ P i

2. Also, for each i ∈ N , let (P
(i)
1 , P

(i)
2 ) be such that {x(i)} = P

(i)
1 ∩ P

(i)
2 .

Recall that each x(i) ∈ X satisfies ui(x
(i)) = v[i,m] and u−i(x

(i)) = v[−i,M ]. Our proof

of this part consists of three steps. In the first step, in order to define a strategy
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profile s∗ that induces the alternative x, we partition the set of non-terminal histories

H \ Z. In the next step, using the partition, we define the strategy profile s∗. In the

last step, we show that each s∗i is a best response to s∗−i.

Partitioning H \ Z: Fix j = ρ(h0). We partition H \ Z into Q1, Q2, and Q0 :=

{h0, ((Yes, Pj)), ((Yes, Pj), (Yes, P−j))}. Here, we define each Qi to be the set of non-

terminal histories under which player i deviates from announcing (Yes, Pi) first. For-

mally, h ∈ Qj if and only if h ∈ H \ Z satisfies either (i) h1 6= ((Yes, Pj)) or (ii)

h2 = ((Yes, Pj), (Yes, P−j)) and (R3
j (h), P 3

j (h)) 6= (Yes, Pj). Likewise, h ∈ Q−j if and

only if h ∈ H \ Z satisfies h1 = ((Yes, Pj)) and h2 6= ((Yes, Pj), (Yes, P−j)).

For each i ∈ N , we further partition Qi into Qon
i and Qoff

i := Qi \Qon
i . Define Qon

i

so that h ∈ Qon
i if and only if h ∈ Qi satisfies either of the following two properties:

First, ht(h)−1 ∈ Q0. Second, for any proper subhistory h′ @ h with h′ ∈ Qi ∩H−i,

ht(h
′)+1 =


(
h′, (Yes, P i

−i)
)

if ht(h
′)−1 ∈ Qi and P

t(h′)
i (h) = P i

i(
h′, (No, P i

−i)
)

if ht(h
′)−1 6∈ Qi or P

t(h′)
i (h) 6= P i

i

.

Defining s∗: We define the strategy profile s∗. For any h ∈ Hi ∩ Q0, let s∗i (h) :=

(Yes, Pi). For any h ∈ Hi ∩Qoff
i , let

s∗i (h) :=

(Yes, P
(−i)
i ) if ϕcon(h, (Yes, P

(−i)
i )) = x(−i)

(No, P
(−i)
i ) otherwise

.

For any h ∈ Hi ∩Qoff
−i, let

s∗i (h) :=


(Yes, P̃i) if ϕcon(h, (Yes, P̃i)) = x̃(=: x̃(h)) and ui(x̃) > ui(x

(i)) for some (P̃i, x̃)

(Yes, P
(i)
i ) if (R

t(h)
−i (h), P

t(h)
−i (h)) = (No, P

(i)
−i ) or ϕcon(h, (Yes, P

(i)
i )) = x(i)

(No, P
(i)
i ) otherwise

.

For any h ∈ Hi ∩ Qon
i , let s∗i (h) := (Yes, P i

i ). Let h ∈ Hi ∩ Qon
−i. If there are P̃i and

x̃(=: x̃(h)) with ϕcon(h, (Yes, P̃i)) = x̃ and ui(x̃) > ui(y
−i), then let s∗i (h) := (Yes, P̃i).
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Otherwise, let

s∗i (h) :=

(Yes, P−ii ) if P
t(h)
−i (h) = P−i−i

(No, P−ii ) if P
t(h)
−i (h) 6= P−i−i

.

Showing that s∗i is a best response to s∗−i: We show that each s∗i is a best re-

sponse to s∗−i in any subgame starting at h ∈ Hi. First, let h ∈ Qoff
i . The continuation

strategy profile s∗|h induces i’s best SPE outcome x(−i).

Second, let h ∈ Qoff
−i. Suppose that there is no (P̃i, x̃) with ϕcon(h, (Yes, P̃i)) = x̃

and ui(x̃) > ui(x
(i)). The continuation strategy profile s∗|h induces the outcome x(i).

Any continuation strategy profile (si, s
∗
−i)|h induces either x(i) or the disagreement

outcome. Next, suppose that there is (P̃i, x̃(h)) with ϕcon(h, (Yes, P̃i)) = x̃(h) and

ui(x̃(h)) > ui(x
(i)). The continuation strategy profile s∗|h induces x̃(h). If player i

does not terminate the negotiation at h with x̃(h), then the outcome following the

continuation play is either x(i) or the disagreement outcome.

Third, let h ∈ Qon
i . We start with showing that s∗|h induces yi. Since h ∈ Qon

i ∩Hi,

h = (ht(h)−1, (R
t(h)
−i (h), P i

−i)). If R
t(h)
−i (h) = Yes, then (h, (Yes, P i

i )) induces yi. If

R
t(h)
−i (h) = No, then (h, (Yes, P i

i ), (Yes, P i
−i)) induces yi.

We now show that s∗i is a best response to s∗−i in the subgame starting at h ∈ Hi∩
Qon
i . Assume R

t(h)
−i (h) = No. If player i announces (Yes, Pi) such that Pi ∩ P i

−i = {y}
and u−i(y) > u−i(y

i) for some y, then player −i terminates the negotiation with

y by announcing (Yes, P i
−i). However, since yi is not unilaterally improvable for i,

ui(y) ≤ ui(y
i). If player i announces (R̂i, P̂i) 6= (Yes, Pi), then player −i’s following

s∗−i induces (h, (R̂i, P̂i), (·, P i
−i)) ∈ Hi ∩Qon

i .

Assume that R
t(h)
−i (h) = Yes. Thus, P

t(h)−1
i (h) = P i

i so that player −i is ok with

yi at ht(h)−1. If player i terminates the negotiation, then the outcome must be yi.

In fact, s∗i (h) = (Yes, P i
−i) terminates the negotiation. If she uses si so as not to

terminate the negotiation at h, then (h, si(h), (·, P i
−i)) ∈ Hi ∩Qon

i .

Fourth, let h ∈ Qon
−i. Suppose that there is no (P̃i, x̃) with ϕcon(h, (Yes, P̃i)) = x̃

and ui(x̃) > ui(y
−i). The continuation strategy profile s∗|h induces y−i. If player i uses

si and induces (h, si(h)) ∈ H−i ∩ Qoff
−i, then the outcome following the continuation

play is either x(i) or the disagreement outcome. If player i’s announcement induces

(h, si(h)) ∈ H−i∩Qon
−i, then player−i is ok with y−i at (h, si(h), (Yes, P i

−i)). If this his-

tory is non-terminal (i.e, in Hi∩Qon
−i), then there is no (P̃i, x̃) with ϕcon(h, (Yes, P̃i)) =

9



x̃ and ui(x̃) > ui(y
−i).

Suppose that ϕcon(h, (Yes, P̃i)) = x̃ and ui(x̃) > ui(y
−i) for some (P̃i, x̃). Since

x̃ depends only on h, write x̃(h) := x̃. Player i can obtain a payoff of ui(x̃(h)) >

ui(y
−i) by following s∗i . Suppose that player i does not terminate the negotiation

with x̃(h) at h, inducing h′ = (ht(h)−1, (Yes, P
t(h)
−i ), (R

t(h)+1
i (h′), P

t(h)+1
i (h′))). If h′ ∈

H−i ∩ Qoff
−i, then player i can obtain a payoff of at most ui(x

(i)) in the subgame

starting at h′. Suppose that h′ ∈ H−i ∩ Qon
−i. Then, in the subgame starting at(

h, (·, P−ii ), (Yes, P−i−i )
)
∈ Hi ∩Qon

−i, player i can obtain a payoff of at most ui(y
i).

Fifth, let h ∈ Q0. The continuation strategy profile s∗|h induces x. If player i

follows si and announces si(h) 6= (Yes, Pi) at h, then, since Pi is limited and x is

not unilaterally improvable for i, player i’s maximum payoff in the continuation play

against s∗−i is ui(y
i) ≤ ui(x).

Overall, for each i ∈ N , s∗i is a best response to s∗−i in the subgame starting at

any history. Thus, s∗ is a SPE. It induces the history ((Yes, Pj), (Yes, P−j), (Yes, Pj))

with j = ρ(h0) and the outcome x.

B Supplementary Remarks on Propositions 5 and

6

B.1 Counterexample to Proposition 5 for Infinite X

Define X = {(10, 3), (7, 10), (4, 5), (0, 0)} ∪ {xn | n ∈ N}, where

xn =


(

4 + 2( 1√
2
)n−1, 5− ( 1√

2
)n−1

)
if n = 2k − 1 for some k ∈ N(

4 + 4( 1√
2
)n−2, 5− 3

2
( 1√

2
)n
)

if n = 2k for some k ∈ N
.

Let players’ payoff functions be u(x) = x for each x ∈ X. Let d = (0, 0). Since (xn)n∈N

converges to (4, 5), IR(U, d) is compact. Figure 10 depicts the feasible payoff set.

Notice that {(4, 5)} ∪ {x2k−1 | k ∈ N} ⊆ {x ∈ X | u1(x) < v[1,m] and u2(x) ≥ v[2,m]}.
The proposer rule is such that player 1 moves in odd periods while player 2 moves in

even periods.
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u1

u2

d 10 = v[1,M ]7 = v[1,m]

3 = v[2,m] = u2

10 = v[2,M ]

4 = u1

5

x1

x2

x3

x4

Figure 10: Counterexample to Proposition 5 for infinite X: The solid arrows indicate
deviations by player 1 and the dashed arrows indicate punishments against such
deviations.

Define the specification rule as follows:

P1 = {{xn, (0, 0)} | n ∈ N} ∪ {{(10, 3), (4, 5)}, {(7, 10), (0, 0)}} ; and

P2 = {{x2k−1, x2k} | k ∈ N} ∪ {{(10, 3), (7, 10)}, {(7, 10), (4, 5)}, {(10, 3), (0, 0)}} .

For any k ∈ N, the alternative x2k−1 is unilaterally improvable for player 1. The

only pair (P1, P2) such that P1∩P2 = {x2k−1} is (P1, P2) = ({x2k−1, (0, 0)}, {x2k−1, x2k}),
and P ′1 = {x2k, (0, 0)} satisfies the property that P ′1∩P2 = {x2k} and x2k > x2k−1. The

alternative (4, 5) is also unilaterally improvable for player 1. The only pair (P1, P2)

such that P1 ∩ P2 = {(4, 5)} is (P1, P2) = ({(10, 3), (4, 5)}, {(7, 10), (4, 5)}), and

P ′1 = {(7, 10), (0, 0)} satisfies the property that P ′1∩P2 = {(7, 10)} and (7, 10) > (4, 5).

For a fixed k ∈ N, we construct a SPE s∗ that induces x2k−1. The idea of the

construction is as follows. First, any deviation by player 2 is punished by the outcome

(10, 3). In order to incentivize player 1 to comply with the specified strategy, we

define a sequence of punishments that we illustrate in Figure 10. If player 1 deviates

when the game is supposed to end with outcome xK under a given history with

K ∈ {2k − 1, 2k + 1, ...}, then players’ future strategies are such that the game ends

with outcome xK+2. This specification provides player 1 with an appropriate incentive

for any finite length of histories because there are infinitely many alternatives.

11



We define s∗ recursively as follows. Let s∗1(h0) := (Yes, {x2k−1, (0, 0)}) and, for

h ∈ H2 such that t(h) = 1,

s∗2(h) :=

(Yes, {x2k−1, x2k}) if h = (Yes, {x2k−1, (0, 0)})

(Yes, {x2k+1, x2k+2}) if h 6= (Yes, {x2k−1, (0, 0)})
.

Next, let Hi(h) := {h′ ∈ Hi | h′ @ h} for each i ∈ N and h ∈ H \ Z. Suppose

that, for some h ∈ H \Z with t(h) ≥ 2, s∗i (h
′) is defined for every h′ ∈ Hi(h) for each

i ∈ N . For such h ∈ H \ Z, we define `(h) ∈ N0 by

`(h) := 2

∣∣∣∣{h′ ∈ H1(h)

∣∣∣∣s∗1(h′) 6= (R
t(h′)+1
1 (h), P

t(h′)+1
1 (h))

}∣∣∣∣ .
We also define

Q(h) :=

{
h′ ∈ H2(h)

∣∣∣∣s∗2(h′) 6= (R
t(h′)+1
2 (h), P

t(h′)+1
2 (h))

}
.

Now, we define (s∗1(h), s∗2(h)). Consider player 1. If h ∈ H1, then let

s∗1(h) :=



(Yes, {x2k−1+`(h), (0, 0)}) if Q(h) = ∅

(No, {(10, 3), (4, 5)}) if Q(h) 6= ∅ and player 1 is ok

with (4, 5) at (h, (Yes, {(10, 3), (4, 5)}))

(Yes, {(10, 3), (4, 5)}) otherwise

.

If h ∈ H2, then let

s∗2(h) :=



(Yes, {x2k−1+`(h), x2k+`(h)}) if Q(h) = ∅

(Yes, P2) if Q(h) 6= ∅ and there is (P2, x) with

ϕcon(h, (Yes, P2)) = x(=: x(h)) ∈ X and u2(x) > 3

(Yes, {(10, 3), (7, 10)}) otherwise

.

We show that s∗ is a SPE. It induces a terminal history

(
(Yes, {(0, 0), x2k−1}), (Yes, {x2k−1, x2k}), (Yes, {(0, 0), x2k−1})

)
.
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Consider player 1. Let h ∈ H1. First, suppose that Q(h) 6= ∅. Then, s∗|h
induces player 1’s best SPE outcome (10, 3). Next, suppose that Q(h) = ∅. The

strategy profile s∗|h induces the outcome x2k−1+`(h). The definition of s∗2 implies that,

irrespective of 1’s announcement at h, 2’s announcement in the subsequent period is

(Yes, {x2k−1+`(h), x2k+`(h)}). Hence, following s∗1|h to obtain a payoff of u1(x2k−1+`(h))

is a best response to s∗2|h.
Consider player 2. Let h ∈ H2. First, suppose Q(h) 6= ∅. Suppose that there is

(P2, x(h)) ∈ P2×X with ϕcon(h, (Yes, P2)) = x(h) and u2(x(h)) > 3. If he terminates

the negotiation with x(h) at h, then he gets a payoff of u2(x(h)). In fact, following

s∗2|h terminates the negotiation. If he does not terminate the negotiation at h with

outcome x(h), then the outcome can be either (10, 3) or the disagreement outcome.

Second, suppose Q(h) = ∅. The continuation strategy profile s∗|h induces x2k−1+`(h).

If he deviates at h, the outcome can be either (10, 3) or the disagreement outcome.

Overall, s∗2|h is a best response to s∗1|h in the subgame starting at h ∈ H2.

B.2 An Example of a SPE Alternative in X \ XM that is

Unilaterally Improvable for a Player

We provide an example in which, x ∈ X\XM with u(x) ≥ u is unilaterally improvable

for some player i but is a SPE outcome when there is y ∈ X \ XM with u(y) ≥ u

that is not unilaterally improvable for i.

Let X = {x1, . . . , x6} be such that x1 = (10, 2), x2 = (7, 10), x3 = (5, 3),

x4 = (6, 4), x5 = (4, 5), and x6 = (0, 0). Let u(x) = x for each x ∈ X. Set

d = (0, 0). The left panel of Figure 11 depicts the feasible payoff set. We define the

specification rule as follows: P1 = {{x1, x6}, {x2, x6}, {x3, x6}, {x4, x6}, {x5, x6}} and

P2 = {{x1, x2}, {x3, x4}, {x1, x5}, {x4, x6}}. The proposer rule is such that player 1

speaks in odd periods while player 2 does in even periods.

While each of x4 and x5 is not unilaterally improvable for player 1, x3 is unilaterally

improvable for player 1. We define a SPE s∗ that induces x3, together with states θ1,

θ3, and θ5 and a transition rule among those states.

Before we formally introduce the SPE s∗, we explain the intuition behind its

construction with the right panel of Figure 11. On the equilibrium path, the players

make announcements so that they agree on x3. If player 1 deviates first (e.g., by

proposing {x4, x6} to try to agree on x4), then player 1 is punished by a continuation

13



u1

u2

x1

x2

x3

x4
x5

d = x6 v[1,M ]v[1,m]u1

v[2,m] = u2

v[2,M ]

u1

u2

x1

x2

x3

x4
x5

d = x6

Figure 11: An example in which an alternative is a SPE outcome while it is unilater-
ally improvable for a player: The left panel depicts the feasible payoff set. Alternative
x3 is a SPE outcome and it is unilaterally improvable for player 1. In the right panel,
the dashed arrows indicate punishments for player 1 while the dotted arrows do for
player 2.

play in which x5 is sustained. In the continuation play, while player 2 sticks to

agreeing on x5 even if player 1 deviates, player 2’s deviation triggers a punishment in

which x1 is implemented. Player 1’s deviation to announcing {x2, x6} does not lead

to an agreement on x2 because player 2 fears that his responding “Yes” to {x2, x6}
is punished by x1. If player 2 deviates first from x3, a punishment involves the

alternative x1 in a similar manner.

Notice that x3 is in {x ∈ X | u1(x) < v[1,m] and u2(x) ≥ v[2,m]}. This example

shows that some alternative can be sustained as a SPE outcome in this region without

condition 2 of Proposition 6 when there is another alternative (x5 in the current

example) which is not unilaterally improvable and which can be used as a punishment

for player 1.

Now, let us formally define s∗. Our construction uses a state space that we define

to be {θ1, θ3, θ5}. The initial state is θ3. Suppose that the state is θ3 at a non-terminal

history h ∈ H \ Z. Then, let s∗1(h) := (Yes, {x3, x6}) if h ∈ H1. If h ∈ H2, then let

s∗2(h) := (Yes, {x3, x4}). The state transition at θ3 is defined as follows. If player 1

does not follow this strategy, then the state changes to θ5. If player 2 does not follow

this strategy, the state changes to θ1. Otherwise, the state stays at θ3.

Suppose that the state is θ5. Let h ∈ H1. If there is (P1, x) ∈ P1 × X such

that ϕcon(h, (1, (Yes, P1))) = x ∈ {x1, x2, x3, x4}, then we let s∗1(h) := (Yes, P1).1

1With a slight abuse of notation, in describing an element of a history, we identify the set
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Write x(h) := x as x depends only on h. If ϕcon(h, (1, (Yes, {x5, x6}))) = x6, then

s∗1(h) := (No, {x5, x6}). If ϕcon(h′) = Continue and ϕcon(h′, (2, (Yes, {x1, x2}))) =

x2 with h′ = (h, (1, (Yes, {x2, x6}))), then s∗1(h) := (Yes, {x2, x6}). Otherwise, let

s∗1(h) := (Yes, {x5, x6}). For h ∈ H2, let

s∗2(h) :=


(Yes, {x1, x2}) if ϕcon(h, (2,Yes, {x1, x2})) = x2

(No, {x1, x5}) if ϕcon(h, (2,Yes, {x1, x2})) 6= x2 and P
t(h)−1
1 (h) 6= {x5, x6}

(Yes, {x1, x5}) otherwise, i.e., if P
t(h)−1
1 (h) = {x5, x6}

.

Note that the second condition includes the case where ϕcon(h, (2,Yes, {x1, x5})) = x1.

The state transition at θ5 is defined as follows. If player 2 does not follow this strategy,

then the state changes to θ1. Otherwise the state stays at θ5.

Let the state be θ1, which we define to be absorbing. For each h ∈ H1, let

s∗1(h) :=

(No, {x1, x6}) if ϕcon(h, (1,Yes, {x1, x6})) = x6

(Yes, {x1, x6}) otherwise
.

Let h ∈ H2. If there is (P2, x) ∈ P2×X with ϕcon(h, (2, (Yes, P2))) = x ∈ {x2, x3, x4, x5},
then let s∗2(h) := (Yes, P2). Since x depends only on h, write x(h) := x. Otherwise,

let s∗2(h) := (Yes, {x1, x5}).
We show that s∗ is a SPE. Since s∗ induces its outcome x3 and the terminal history

((1, (Yes, {x3, x6})), (2, (Yes, {x3, x4})), (1, (Yes, {x3, x6}))), showing that s∗ is a SPE

completes the proof.

Consider player 1. Suppose that the state is θ1 at h ∈ H1. The strategy profile

s∗|h induces x1, which is player 1’s best SPE outcome. Thus, when the state is θ1 at

h ∈ H1, s∗1|h is a best response to s∗2|h in the subgame starting at h.

Let the state be θ5 at h ∈ H1. Suppose there is (P1, x(h)) ∈ P1 × {x1, x2, x3, x4}
with ϕcon(h, (1, (Yes, P1))) = x(h). Player 1, following s∗1|h, gets a payoff of u1(x(h)).

If player 1’s announcement does not terminate the negotiation, then the possible

outcome following the continuation play is either x5 or the disagreement outcome.

Now, assume that there is no P1 ∈ P1 such that ϕcon(h, (1, (Yes, P1))) ∈ {x1, x2, x3, x4}.
Suppose further that 1’s announcement (Yes, {x2, x6}) leads to a non-terminal history

of prospers by simply writing the name of the proposer, e.g., we write (1, (Yes, P1)) instead of
({1}, (Yes, P1)). In what follows, we employ the same abuse of notation whenever we identify the
set of prospers in describing a history.
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satisfying ϕcon(h, (1, (Yes, {x2, x6})), (2, (Yes, {x1, x2}))) = x2. Following s∗1|h leads to

the outcome x2. If not, the negotiation can terminate with either x5 or the disagree-

ment outcome. Finally, suppose that player 1’s announcement (Yes, {x2, x6}) does not

lead to a non-terminal history satisfying ϕcon(h, (1, (Yes, {x2, x6})), (2, (Yes, {x1, x2}))) =

x2. Then, the negotiation can terminate with either x5 or the disagreement outcome.

Following s∗1|h leads to the outcome x5. Overall, when the state is θ5 at h ∈ H1, s∗1|h
is a best response to s∗2|h in the subgame starting at h.

Suppose that the state is θ3 at h ∈ H1. If player 1 follows s∗1|h then she obtains

a payoff of u1(x3). If not, the state moves to θ5. After player 1’s deviation, the

possible outcome is either x5 or the disagreement outcome. Player 1 can obtain at

most u1(x5) < u1(x3). Thus, when the state is θ3 at h ∈ H1, s∗1|h is a best response

to s∗2|h in the subgame starting at h.

Consider player 2. Suppose that the state is θ1 at h ∈ H2. First, if there is

(P2, x(h)) ∈ P2×{x2, x3, x4, x5} with ϕcon(h, (2, (Yes, P2))) = x(h), then player 2 ob-

tains a payoff of u2(x(h)) > max{u2(x1), u2(x6), d2} by terminating the negotiation

with x(h) by announcing (Yes, P2) at h. In fact, following s∗2|h terminates the negoti-

ation. Suppose instead that player 2 follows a strategy s2|h that does not terminate

the negotiation at h. Then, since player 1 follows s∗1|h, the outcome of the negotiation

induced by the continuation strategy profile (s∗1, s2)|h is either x1, x6, or the disagree-

ment outcome. Second, suppose that there is no (P2, x(h)) ∈ P2 × {x2, x3, x4, x5}
with ϕcon(h, (2, (Yes, P2))) = x(h). If player 2 follows s∗2|h then the outcome is x1. If

he does not follow s∗2|h, since player 1 follows s∗1|h, the possible outcome is either x1,

x6, or the disagreement outcome. Thus, when the state is θ1 at h ∈ H2, s∗2|h is a best

response to s∗1|h in the subgame starting at h.

Suppose that the state is θ3, i.e., h = (1, (Yes, {x3, x6})). If player 2 follows s∗2|h,
then he obtains a payoff of u2(x3). If not, the state moves to θ1. Since there is no

P2 ∈ P2 such that ϕcon(h̃, (2, (Yes, P2))) ∈ {x2, x3, x4, x5} at any h̃ ∈ H2 after player

2’s deviation at h, player 2 can obtain at most u2(x1). Hence, when the state is θ3 at

h ∈ H2, s∗2|h is a best response to s∗1|h in the subgame starting at h.

Let the state be θ5 at h ∈ H2. If ϕcon(h, (2, (Yes, {x1, x2}))) = x2 then player 2 can

get her maximum SPE payoff by following s∗2|h. Suppose ϕcon(h, (2,Yes, {x1, x2})) 6=
x2. If he follows s∗2|h then the state stays at θ5, and he obtains a payoff of u2(x5). If

he deviates from s∗2|h then the state moves to θ1 in which the outcome is either x1,

x6, or the disagreement outcome. Thus, when the state is θ5 at h ∈ H2, s∗2|h is a best
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response to s∗1|h in the subgame starting at h.

C Tightness of Payoff Bounds under Limited Speci-

fiability

Section 5.2.2 shows that, under limited specifiability, whether an alternative x with

ui(x) ≤ v[i,m] for some i ∈ N is sustained as a SPE outcome depends on the structure

of the environment and on the way in which the specification rule is imposed. Here,

we demonstrate the tightness of payoff lower bounds. First, we show that for any

feasible payoff set U , there exists a negotiation whose feasible payoff set is U in which

the SPE lower bounds u are tight. Second, we show that there exists a negotiation

whose feasible payoff set is U in which the SPE payoff set is the IR-Pareto-meet.

Denote u by u(U, d) to make clear its dependence on (U, d).

Corollary 4 (Existence of games with tight bounds). Let U ⊆ R2 and d ∈ U be such

that {v ∈ U | v ≥ d} is compact and, for each i ∈ N , there is w ∈ {v ∈ U | v ≥ d}
with wi > di. Let ρ be an asynchronous proposer rule.

1. Suppose |U | ≥ 2. There is a two-player negotiation ΓL = 〈GL, d, ρ, (PLi )i∈N , ϕ
con〉

with the following properties: (i) GL = 〈N,XL, (uLi )i∈N〉 satisfies U = {uL(x) ∈
R2 | x ∈ XL}; (ii) (PLi )i∈N is limited; and (iii) x ∈ XL is a SPE outcome of

ΓL if and only if uL(x) ≥ u(U, d).

2. Suppose 3 ≤ |U | <∞. There is a two-player negotiation ΓH = 〈GH , d, ρ, (PHi )i∈N , ϕ
con〉

with the following properties: (i) GH = 〈N,XH , (uHi )i∈N〉 satisfies U = {uH(x) ∈
R2 | x ∈ XH}; (ii) (PHi )i∈N is limited; and (iii) x ∈ XH is a SPE outcome of

ΓH if and only if it is in the IR-Pareto-meet.

To show part 1 of Corollary 4, we first construct a negotiation associated with a

normal-form game in which each player’s action corresponds to her own payoff. Let

XL = R2. The payoff functions are defined as follows:

uL(v1, v2) =

(v1, v2) if (v1, v2) ∈ U

d otherwise
.2

2Note that d ∈ U implies that the feasible payoff set of the environment GL coincides with U .
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Let the specification rule be such that each player i announces her own payoff: PLi =

{{vi}×R | vi ∈ R}. Since any proposal in PLi (i.e., {vi}×R) is not a singleton, PLi is

limited. No alternative x ∈ XL with uL(x) ≥ u(U, d) is unilaterally improvable, and

thus Propositions 3 and 6 establish the result.

To obtain part 2 of Corollary 4, let XH = U and uH(x) = x. Suppose first that

|{v ∈ U | v ≥ d}| ≥ 2. Then, let the specification rule be PHi = {{v, (v[i,M ], v[−i,m])} |
v ∈ U\{(v[i,M ], v[−i,m])}} for each i ∈ N .3 Since any proposal in PHi (i.e., {v, (v[i,M ], v[−i,m])})
consists of two alternatives, Pi is limited. Theorem 3 establishes the result because,

for any v ∈ U such that v−i ≥ v[−i,m] and vi < v[i,m], the alternative v is not uni-

laterally improvable for i. Suppose next that |{v ∈ U | v ≥ d}| = 1, that is,

{v ∈ U | v ≥ d} = {v∗}. Then, for any specification rule, the negotiation has a unique

SPE payoff profile v∗. Choosing distinct v1, v2, v
∗ ∈ U , we can define the following lim-

ited specification rule: For each i ∈ N , let PHi =
⋃
w∈{v1,v2,v∗}{{w, v} | v ∈ U \ {w}}.

This establishes the desired result.

To conclude the discussion on part 2 of Corollary 4, let us go back to the example

in Section 1, where U is the convex hull of {(0, 0), (2, 4), (4, 2)} and d = (0, 0). The

arguments made here show that the set of SPE payoffs under limited specifiability is

as depicted in the right panel of Figure 1.

D Supplementary Discussions

D.1 Impatience

In the main analysis, we do not assume discounting. Here we consider a model with

discounting, and show that the main insight does not change unless discounting is

significant. Specifically, consider a model in which di = 0 for each i ∈ N , and there

exists a discount factor δ ∈ (0, 1] such that, if an agreement is made at time t with

outcome x, each player i receives a payoff of δt−1ui(x).

First, consider a negotiation with the synchronous proposer rule. For any δ ∈
(0, 1], an alternative x is a SPE outcome if and only if it is individually rational.

The strategy profile we constructed in Proposition 2 is a SPE with discounting as

well. As we discussed in footnote 19 in the main text, a related result is obtained in

3We assume |U | ≥ 3 to ensure that the specification rule satisfies the requirement that for each
x ∈ XH , there is (P1, P2) ∈ PH

1 × PH
2 such that P1 ∩ P2 = {x}.
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Stahl (1986). He examines a dynamic Bertrand competition model with or without

discounting where each seller can synchronously change her price announcements.

Analogous to our “folk theorem,” he shows that any price no more than the monopoly

price (and no less than the marginal cost) can be sustained as a SPE outcome for any

discount factor.

Next, we consider negotiations with asynchronous moves. Theorem 2 implies

that if the IR-Pareto-meet consists of multiple points, then there are multiple SPE

alternatives under any specification rule. This is in stark contrast to the uniqueness

of SPE in complete-information bargaining models with an asynchronous proposer

rule such as St̊ahl (1972) and Rubinstein (1982). The reason for this difference is

that we do not assume discounting. For the following argument, assume N = {1, 2}
and that a proposer rule is such that players 1 and 2 propose in odd and even periods,

respectively.

To see the connection clearly, first note that, in Rubinstein (1982)’s bargaining

model, if δ = 1 and indefinite disagreement results in a payoff of zero, then all

possible divisions of the pie can be sustained under SPE. A related result is that if

one discretizes the space of offers to make it a finite set, then for sufficiently large

δ < 1, all possible divisions of the pie can be sustained under SPE (Van Damme et al.

(1990) and Muthoo (1991)).

A parallel result can be obtained in our model. If the Pareto-frontier is charac-

terized by a strictly decreasing and weakly concave continuous function, then there

is a unique SPE payoff profile under an unlimited specification rule for any δ < 1.

On the other hand, suppose that a feasible payoff set consists of a finite number of

points with no payoff ties.4 Then, any SPE that we have constructed in the main

text remains to be a SPE for sufficiently large δ < 1.

Suppose, on the other hand, that δ is close to 0. Then an alternative may be a

SPE outcome even if it is not a SPE outcome under no discounting, provided such

an alternative requires less time to reach a consensus. The next example illustrates

this point.

Example 5. Suppose that N = {1, 2}, X = {(1, 1), (α, α), (β, β), (0, 0)} with 0 <

β < α < 1. Let d = (0, 0). Let Pi = {{(α, α)}, {(1, 1), (0, 0)}, {(1, 1), (β, β)}, {(0, 0), (β, β)}}
for each i ∈ N .

4That is, there is no (i, x, y) ∈ N ×X ×X such that x 6= y and ui(x) = ui(y).
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We show that if δ ∈ (0, α) then (α, α) is a unique SPE outcome. Also, we show

that the following strategy profile s∗ is a SPE that supports (α, α). For each i ∈ N
and h ∈ Hi,

s∗i (h) =


(Yes, {(1, 1), (0, 0)}) if i is ok with (1, 1) at (h, (i,Yes, {(1, 1), (0, 0)}))

(Yes, {(1, 1), (β, β)}) if i is ok with (1, 1) at (h, (i,Yes, {(1, 1), (β, β)}))

(Yes, {(α, α)}) otherwise

.

This s∗ induces the terminal history ((1, (Yes, {(α, α)})), (2, (Yes, {(α, α)}))) and the

outcome (α, α).

Now, we show that (α, α) is a unique SPE outcome given that a SPE exists.

If player i announces (Yes, {(α, α)}) at any history h at which it is her turn to

move, then player −i can terminate the negotiation by announcing (Yes, {(α, α)})
at (h, (i, (Yes, {(α, α)}))). In the subgame starting at (h, (i, (Yes, {(α, α)}))), player

−i’s best discounted SPE payoff is α = u−i(α, α) which she can obtain by an-

nouncing (Yes, {(α, α)}). If she announces P−i ∈ {{(1, 1), (0, 0)}, {(1, 1), (β, β)}} at

(h, (i, (Yes, {(α, α)}))), then players need at least two more periods to agree on (1, 1).

Since δ2 < δ < α, the outcome after player i’s announcement (Yes, {(α, α)}) at h

is (α, α) in any SPE. Now, at any history at which it is player i’s turn to move,

player i can secure herself a payoff of δui(α, α) = δα. If player i instead announces

Pi ∈ {{(1, 1), (0, 0)}, {(1, 1), (β, β)}}, then it would need at least two more periods to

agree on (1, 1). Thus, player i can obtain at most a payoff of δ2 < δα. Hence, (α, α)

is the unique SPE outcome, provided that a SPE exists.

Next, we show that s∗ is indeed a SPE. At any history after which i becomes ok

with (1, 1) if she announces (Yes, Pi) where Pi ∈ {{(1, 1), (0, 0)}, {(1, 1), (β, β)}}, we

show that it is of i’s best interest to become ok with (1, 1) by announcing (Yes, Pi). If

ϕcon(h, (i, (Yes, Pi))) = (1, 1), then i can obtain her best feasible payoff. If not, player

−i can terminate the negotiation with (1, 1) at (h, (i, (Yes, Pi)), (−i, (Yes, P−i))), which

brings −i her best feasible payoff in the subgame starting at (h, (i, (Yes, Pi))). Note

that P−i ∈ {(1, 1), (0, 0)} or {(1, 1), (β, β)}. Thus, the outcome after (h, (i, (Yes, Pi)))

is (1, 1), and player i obtains a discounted payoff of δ in the subgame starting at

(h, (i,Yes, Pi)). If player i instead announces (Ri, {(α, α)}) at h, then player −i
will terminate the negotiation at (h, (i, (Ri, {(α, α)})), (−i, (Yes, {(α, α)}))). Hence,

player i’s discounted payoff is δα < δ. At any other history, the previous argument
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showing the uniqueness establishes that following s∗i |h and announcing (Yes, {(α, α)})
is a best response.

The relevance of our arguments surrounding the comparison of specifiability de-

pends on the relative magnitudes of the salience of impatience and the variety of

available alternatives. In light of our discussion in which we argue that impatience

may not play a key role in determining the negotiation outcome in our applications

such as COP meetings, we believe that our results have economically meaningful

content in the applications we have in mind (cf., the “Bargaining” part of Section 6).

D.2 Stochastic Announcements

Here, we allow each player to make their announcements stochastically. We provide

an example in which the SPE payoff set becomes larger and complicated when players

are allowed to use behavioral strategies.

Example 6. Consider the finite normal-form game given by the left panel of Figure

12. Assume an asynchronous proposer rule and limited specifiability under which

each player’s proposals correspond to her own actions. Each player i is allowed to use

a behavioral strategy: a mapping from the set of histories at which she speaks to the

set of probability distributions on {Yes,No} × Pi. Let d = (0, 0).

The set of pure-strategy SPE payoffs is given by {(3, 1), (2, 3), (1, 0), (0, 4), (0, 2)}.
Now, the right panel of Figure 12 depicts the di-convex span of the set of pure-

strategy SPE payoffs.5 For each point in the di-convex span, one can construct a

SPE to support such a payoff profile. The specification of the feasible payoff set and

the construction of the SPE closely follows the one in the context of long cheap talk

in Aumann and Hart (2003).

To understand the idea, consider the payoff profile (1, 2). To sustain this payoff

profile, at time 1, player 1 mixes between (No, U) and (No, D) with probability 1/2 for

each, where the former induces the continuation payoff (1, 1) and the latter induces

(1, 3). Now, consider sustaining a point on the six solid line-segments in the right

panel of Figure 12, except for the points in {(3, 1), (2, 3), (1, 0), (0, 4), (0, 2)}. As an

example, take a point (2, 1) on the line segment from (1, 1) to (3, 1). To sustain this

continuation payoff profile, player 2 mixes in his turn between (No, L) and (No, R),

5See Aumann et al. (1968) for the definition of di-convex span.

21



L C R
U 2, 3 3, 1 0, 4
M 0, 2 0, 2 0, 2
D 1, 0 1, 0 1, 0

u1

u2

0 = v[1,m] = u1

1 2 3 = v[1,M ]

0 = u2

1 = v[2,m]

2

3

4 = v[2,M ]

Figure 12: Stochastic announcements under an asynchronous proposer rule and lim-
ited specifiability: The left panel is the normal-form game with which the negotiation
is associated. The right panel depicts the di-convex span of the SPE payoff set of the
negotiation under deterministic announcements (the shaded area and the bold and
solid line segments). Any payoff profile in the di-convex span is a SPE payoff profile
under stochastic announcements.

where the former is assigned probability 1/2 and induces the continuation payoff (1, 1),

while the latter is assigned probability 1/2 and induces (3, 1). If (3, 1) is reached, then

the players play as in the pure SPE that supports it.

E Various Negotiation Protocols

The generality of our negotiation model enables one to formally compare various

negotiation protocols. To demonstrate wide applicability of the framework and to

guide future work, here we provide some possible rules of interest.

E.1 Termination Rules

In the main analysis of this paper, we restricted attention to the consensual termina-

tion rule. One can vary termination rules to examine how such variations change the

set of SPE outcomes.

1. Coalitional consensual rules. Our consensual rule assumes unanimity in the

sense that all players have to be ok with x to terminate the negotiation with

the outcome being x. One can alternatively consider a rule in which there is

a non-empty set of winning coalitions C ⊆ 2N \ {∅} such that the negotiation

terminates at h if there is C ∈ C such that (i) all players in C are ok with x
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at their respective latest opportunity after the latest “No” and (ii) at least one

player in C speaks at t(h). Our consensual rule corresponds to the case with

C = {N}.

2. Plurality rule. A plurality rule can be expressed as a termination rule. For

example, consider unlimited specifiability, and a proposer rule in which each

player proposes exactly once. A plurality rule can be described by a termination

rule that ignores the Yes/No responses and terminates the negotiation right after

all players have had chances to move, with an alternative that is announced the

greatest number of times (with some tie-breaking rule).

3. Deadline. One can introduce a deadline by appropriately defining a termination

rule. For example, one can construct a new rule ϕT such that ϕT (h) = ϕcon(h)

if t(h) ≤ T and ϕT (h) = Continue if t(h) > T . This means that under ϕT ,

any negotiation process that lasts more than T periods necessarily ends up

in the disagreement outcome. We conjecture that the existence of a deadline

further enhances commitment power. For example, with two players under an

asynchronous proposer rule and an unlimited specification rule, one can show

that there always exists a SPE in which the second-last mover obtains the best

payoff in IR(U, d).

4. Other rules in the literature. Many of the negotiation rules considered in the

literature can be expressed as a particular instance of our termination rule. For

example, one can consider a termination rule that does not depend in any way on

the Yes/No responses. Such a termination rule can be thought of as representing

the situation in which each party only announces their own proposals/actions.

As a concrete example, we formalize Bhaskar (1989)’s “quick-response game”

in Section E.4.

5. k-consensual rules. One can consider a class of termination rules such that

a -necessary- condition to terminate is that every player is ok with the given

outcome. A special case of this class is our consensual rule. In general, we can

consider a termination rule that terminates with an alternative x at history h

if at each of the latest k opportunities for each player i after the latest “No,” i

is ok with x.
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6. An alternative definition of being ok. We could define a termination rule in a

way that player i is ok with x at h when it is a unique element of the intersection

of players’ proposals after her own most recent announcement of “No,” instead

of the most recent announcement of “No” that she has observed or made. This

alternative termination rule is different from the consensual termination rule,

and we did not use it due to the following example. Suppose that N = {1, 2},
X = {a, b, c}, P1 = {{a}, {b}, {c}}, P2 = {{a, b}, {a, c}}, and u2(a) < d2. Con-

sider the asynchronous proposer rule in which player 1 moves at odd periods and

player 2 moves at even periods. We can show that player 1 can always achieve a

as an outcome irrespective of player 2’s strategy, which implies that it is possi-

ble that 2’s SPE payoff is not individually rational. To see this, suppose that 1

announces (No, {a}) at the first period. Then, irrespective of 2’s announcement

in the second period, 2 becomes ok with a under the alternative termination

rule. Player 1 can then announce (Yes, {a}) to terminate the negotiation with

the outcome a.

E.2 Stochastic Rules

The main part of the paper dealt with deterministic negotiation protocols and pure

strategies. We considered behavioral strategies in Section D.2. Here we consider

stochastic negotiation protocols.

1. Stochastic proposer rules. There are various bargaining models in which pro-

posers are randomly chosen each period (pioneered by Baron and Ferejohn

(1989)). One can consider stochastic proposer rules to nest such random pro-

poser models. Also, in some models such as Ambrus and Lu (2015) and Ka-

mada and Kandori (2019), the moving players are stochastically determined by

Poisson processes in continuous time. We can approximate such processes by

considering stochastic proposer rules that allow for the empty set of proposers.

2. Stochastic specification rules. Stochastic specification rules may represent the

situations where, for example, an interest group imposing a feasibility constraint

on available proposals occasionally becomes conciliatory and such an event hap-

pens at random times (in the eyes of the negotiating parties).

3. Stochastic termination rules. One example of a stochastic termination rule is
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that the negotiation ends exogenously with probability p each period. There

are various possibilities for the resulting outcome upon ending. One possibility

is that the disagreement outcome results, and formally the termination rule

returns “Continue” for any history after the exogenous ending. Another is that

an outcome x results, where x is the alternative with which the number of

players who were ok at the time of exogenous ending is the greatest (with some

tie-breaking rule). Another example of a stochastic termination rule is that the

negotiation ends with probability p at each history at which every player is ok

with some alternative. This last possibility is again in the class of termination

rules such that a -necessary- condition to terminate is that every player is ok

with the terminating outcome, as in k-consensual rules explained in Section E.1.

E.3 Other Possible Extensions

Here we describe more complicated extensions of our model that may capture addi-

tional features of some negotiations in reality.

1. Side-payments. In footnote 1, we discussed the difference between conditional

and unconditional INDC in the context of the Paris Agreement, where a country

may make a proposal that specifies monetary transfers from other countries. We

can incorporate side-payments that are made conditional on agreeing upon some

alternatives, by expanding X so that the description of each of its elements has

side-payments to each player.6

2. Agreeing on a subset of alternatives. It would also be interesting to consider

the possibility that players can agree on a subset of X (not just on a single

alternative), and the final outcome resulting from such agreements is exoge-

nously or endogenously specified. On the one hand, if such an alternative is

specified exogenously,7 then one can model such a negotiation by modifying the

termination rule. On the other hand, our model may not nest the endogenous

case: Suppose that the negotiation is associated with a normal-form game and

each player’s specification rule corresponds to announcing a subset of her own

action space. As in Renou (2009), one could consider an extension of our game

with the possibility of an agreement on a smaller normal-form game, which the

6See Jackson and Wilkie (2005) for a related model with side-payments.
7That is, there exists a pre-specified mapping from 2X to X.
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players play after it is agreed upon. In this way, we could replace the commit-

ment stage of Renou (2009)’s game with a negotiation phase, and examine the

effect of the detail of such a negotiation phase on the equilibrium outcome of

the whole game.

3. Mediator. In reality, negotiations are sometimes conducted in the presence of

a third party such as a mediator or an arbitrator. It would be an interesting

avenue for further research to study how different forms of third party interven-

tions lead to different negotiation outcomes by extending our basic framework.

To get an idea, consider a mediator who helps the negotiating parties agree on a

Pareto-efficient alternative. In order to add such a mediator in our model, con-

sider a set of players N ∪ {m} where m represents the mediator. The mediator

would not announce any Yes/No response but announce only a proposal. One

reasonable possibility of the mediator’s preferences would be that she prefers an

alternative to another if the former Pareto dominates the latter for players in

N . We would modify the consensual termination rule so that, for an alternative

x to be agreed upon, m would not need to be ok with x but all other players in

N would have to be.

E.4 Quick-Response Termination Rule

Here we introduce the quick-response termination rule, and demonstrate that our

framework can nest Stahl (1986), Bhaskar (1989), and Muto (1993).

We define the quick-response termination rule ϕQR : H → X ∪{Continue} so that

it returns ϕQR(h) = x ∈ X for a given history h ∈ H if and only if the following three

conditions hold. First, there is i ∈ ρ(ht(h)−1) such that

R
t(h)−1
i (h) = Rti

i (h), where ti = max{t′ ∈ N0 | t′ < t(h)− 1 and i ∈ ρ(ht
′
)}.

That is, at least one player repeats her announcement twice in a row at the end of

h. Second, for any j ∈ N , there is a proper subhistory hj of h with ti < t(hj) and

j ∈ ρ(hj). That is, every player has announced at least once by the end of h after i’s

announcement at ti. Third, {x} =
⋂
j∈N P

τj(h)
j (h), where τj(h) := max{t(h′) ∈ N0 |

h′ @ h and j ∈ ρ(h′)}. That is, the intersection of the players’ most recent announce-

ments is equal to the singleton set {x}. Note that the quick-response termination
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rule ignores the Yes/No responses.

First, we observe that the quick-response termination rule generalizes Bhaskar

(1989)’s Bertrand duopoly game in a general two-player context. Consider a ne-

gotiation associated with a two-player normal-form game 〈N, (Ai)i∈N , (ui)i∈N〉. Let

a proposer rule ρ be asynchronous such that player 1 moves in odd periods and

player 2 moves in even periods. Players can only announce their actions, that is,

Pi = {{ai} × A−i | ai ∈ Ai} for each i ∈ N . Then, the quick-response termination

rule ϕQR : H → A ∪ {Continue} terminates the negotiation as follows.

ϕQR(h) =

(a1, a2) if h =
(
ht(h)−3, (·, ai), (·, a−i), (·, ai)

)
Continue otherwise

.

Thus, the quick-response termination rule ϕQR terminates the negotiation whenever

some player i has announced the same action ai in two consecutive periods of hers.

This is exactly the rule of the quick-response game described in Bhaskar (1989). Since

Muto (1993) studies the same rule as Bhaskar (1989)’s, this also shows that Muto

(1993)’s rule can be described as the quick-response termination rule, too.

Second, Stahl (1986) assumes the synchronous proposer rule. As above, players

can only announce their actions. Then, the quick-response termination rule ϕQR :

H → A ∪ {Continue} is given as follows.

ϕQR(h) =

(ai)i∈N if h =
(
ht(h)−2, ((·, a′i))i∈N , ((·, ai))i∈N

)
with a′i = ai for some i ∈ N

Continue otherwise
.

That is, the quick-response termination rule ϕQR terminates the negotiation whenever

some player i has announced the same action ai in two adjacent periods. This is

exactly the rule of the model in Stahl (1986).

To summarize, our framework can also accommodate other termination rules such

as the quick-response termination rule, which we demonstrated encompasses Stahl

(1986), Bhaskar (1989), and Muto (1993).
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