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1 Proofs of Results from Main Text

1.1 Proof of Lemma 1

Our objective is to maximize the objective given in (7) subject to σA ∈ Σ∗A (σp) . Notice
that, for each σP , if A is indifferent between two pure strategies (of the dynamic game), then
we can arbitrarily pick the one better for P . In addition, the past effort levels or types do
not directly affect P ’s or A’s payoffs. Thus, for each σA which depends on the past types
or efforts, there exists another σ′A which (i) does not depend on those variables, (ii) solves
(6), and (iii) brings P the same payoff. Hence, without loss of generality, we assume that
the agent takes pure strategies that do not depend on past effort levels or types. Now,
the relaxed problem becomes (7). Therefore, it remains to show that the solution to (7)
constitutes a PBE.

Given the agent’s problem (6), the effort level by the H-type agent in period t after
(ht, zt, ρt) depends only on the continuation payoff after each possible realization of ot con-
ditional on θt = H:

(w(σP , ht, zt, ρt, ιt, ot))ot ≡(
max
σA

E

[
∞∑

τ=t+1

∏τ

j=t+1
ρjδ

τ−tu (eτ ) |σP , σA, ht, zt, ρt, ιt, {θt = H} , ot

])
ot

. (1)

By feasibility, all of them are included in [0, 1/(1− δ)].
For each (ht, zt, ρt, ιt) and (wo)o satisfying wo ∈ [0, 1/(1− δ)] for each o, there exists σ∗P

such that (i) σ∗P guarantees that the agent’s payoff equals (wo)o : w(σ∗P , ht, zt, ρt, ιt, ot) = wot
after each ot; and (ii) σ∗P guarantees that the principal’s continuation payoff given each ht+1

is no less than vP , where

vP ≡
1

1− δ
· (−Pr (b|0) · l − Pr ((g,B) |0) · L) . (2)

We construct such a σ∗P as follows: Given wo, the principal calculates the probability αo
such that αo ·1/(1−δ) = wo. Using the public randomization at the beginning of period t+1,
the principal keeps the agent forever (regardless of the future outcomes) with probability αo
and replaces him with probability 1 − αo after ot = o. In the latter case, the principal
replaces the future agents after one period regardless of the outcome. The principal always
intervenes. Given such σ∗P , the H-type agent does not provide any effort after each history.
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Hence, the principal’s continuation payoff in (7) is no less than vP after each history
ht.

1 It remains to show that there exists a punishment equilibrium such that the principal’s
payoff given ht+1 is no more than vP .

Consider the following strategy profile: the principal replaces the agent and intervenes
after each history, and the H-type agent does not provide any effort after each history.
Clearly this strategy profile is a mutual best response. Moreover, the principal’s payoff is no
more than vP after each history ht, (ht, zt), or (ht, zt, ρt); and no more than E [u|e = 0, ιt] +
δ · vP ≤ vP after each history (ht, zt, ρt, ιt), as desired.

1.2 Proof of Lemma 2

Monotonicity with respect to µ.

Suppose that J (µ) = J for some µ. Then, for a higher value µ′ > µ, we have J (µ′) ≥ J .
To see why, if (ρ, ι) is a feasible policy when the belief is µ, then it is also feasible when the
belief is µ′. Recall that the instantaneous utility for P given ι is

Pr (s = g|µ) · uP (0|µ, e, s) + Pr (s = b|µ) · uP (ι(s = b)|µ, e, s) , (3)

which is (weakly) increasing in µ. Hence, by the standard arguments (Stokey, 1989) , J (µ)
is (weakly) increasing in µ.

Convexity with respect to µ.

Let J (µ, θ) be the payoff when P follows the optimal strategy given µ, and the current
type is θ ∈ {H,L}. Then,

J (µ) = µ · J (µ,H) + (1− µ) · J (µ, L) = J (µ, L) + µ · [J (µ,H)− J (µ, L)] . (4)

Take µ, µ1, µ2 and β ∈ [0, 1] such that µ = β · µ1 + (1− β) · µ2. For n ∈ {1, 2}, by taking
the strategy given µ when the belief is µn, P obtains

J (µ, L) + µn · [J (µ,H)− J (µ, L)] ≤ J (µn) . (5)

Hence,

β · J (µ1) + (1− β) · J (µ2)

≥ β · J (µ, L) + β · µ1 · [J (µ,H)− J (µ, L)]

+ (1− β) · J (µ, L) + (1− β) · µ2 · [J (µ,H)− J (µ, L)]

= J (µ, L) + µ · [J (µ,H)− J (µ, L)] = J (µ) . (6)

1Otherwise, replace the principal’s continuation strategy from ht with σ∗P ; this change improves her
continuation payoff from ht without affecting the agent’s incentive before period t.
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1.3 Proof of Lemma 4

After s = b, the principal does not intervene if

l

C
≤ Pr(H|µ, s = b) · Pr(B|H, b) + Pr(L|µ, s = b) · Pr(B|L, b), (7)

where θ = H implies e = 1 and θ = L implies e = 0. This inequality reduces to

µ ≥ µS :=
Pr(b, B|L) ·

(
1− l

C

)
(Pr(b, B|L)− Pr(b, B|H)) ·

(
1− l

C

)
+ l

C
· Pr(b,G|H)

. (8)

1.4 Proof of Proposition 1

After s = b, by Bayes’ rule, the belief is updated to

µb =
µ

µ+ (1− µ) · Pr(b,B|L)+Pr(b,G|L)
Pr(b,B|H)+Pr(b,G|H)

. (9)

Writing uθ (ι) as the expected payoff from ι ∈ {0, 1} if s = b and the agent is of type θ, the
principal’s problem given s = b is

µb · uH (ι) + (1− µb) · uL (ι)

+ δ · ι · J (µb) + δ · (1− ι) · (α · µb · J (1) + (1− α · µb) · J (µ′)) , (10)

where µ′ is the belief after s = b and y = B:

µ′ =
µ · Pr(b, B|H)

µ · Pr(b, B|H) + (1− µ) · Pr(b, B|L)
. (11)

Notice that when µ ≥ µS, ι = 0 is optimal by Lemma 4. When µ = ∆, where ∆→ 0, we
have µ′ → 0. Thus, ι = 1 is optimal for µ→ 0. Therefore, we can establish that intervention
is optimal for µ sufficiently small, and no intervention is optimal for µ sufficiently large.

Since the prior µ and the interim belief µb have a monotone relationship, it suffices to
show that there exists µ∗b ∈ (0, 1) such that the intervention after s = b is optimal if and
only if µb ≤ µ∗b for some µ∗b ∈ (0, 1).

Notice also that µ′ is increasing in µ. Hence, µ′ ≤ µH for all µ ≤ µS whenever the
following condition is satisfied:

1− µS

µS
≥ 1− µH

µH
· Pr(b, B|H)

Pr(b, B|L)
, (12)

where µS is derived in (8). Thus, substituting for µS, the above condition reduces to:

Pr(b, B|H)

Pr(b,G|H)
≤

l
C

1− l
C

· µH . (13)
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Therefore, with the upper bound l/C ·(1− l/C)−1 µH on Pr(b, B|H)/Pr(b,G|H), we have
J (µ′) = J (µH) for each µ ≤ µS. Hence, for each µ ≤ µS, in (10), the expression

µb · uH (ι) + (1− µb) · uL (ι) + δ · (1− ι) · (α · µb · J (1) + (1− α · µb) · J (µ′)) (14)

is linear in µb, while J (µb) is convex in µb. Together with the facts that (i) at µ ≥ µS, no
intervention is optimal and (ii) at µb = 0, intervention is optimal, there exists a unique µ∗b
such that, conditional on s = b, intervention is optimal if and only if µb ≤ µ∗b .

1.5 Proof of Lemma 5

We show that J (V ) is concave in V . Suppose V = β ·V1+(1− β)·V2 for V1, V2, β ∈ [0, 1]; and
let α [V1] and α [V2] be the optimal policies for (V1) and (V2), respectively. Suppose P chooses
α [V1] with probability β and α [V2] with probability 1 − β, according to the realization of
the public randomization device.

1. Since α [V1] delivers V1 to the agent and α [V2] delivers V2, the agent’s expected payoff
is V = β · V1 + (1− β) · V2. Hence, promise keeping is satisfied.

2. Conditional on the realization of the public randomization device, since both α [V1]
and α [V2] are incentive compatible, the agent’s incentive compatibility is satisfied.

3. With probability β, the principal achieves J (V1), and with probability 1 − β, she
achieves J (V2), since we fixed µ. Hence she achieves β · J (V1) + (1− β) · J (V2).

Hence, the principal with V achieves at least β · J (V1) + (1− β) · J (V2).

1.6 Proof of Proposition 2

Fix an equilibrium. Suppose there exist period t̄ (of the current agent’s tenure), history h̄t̄,
and public randomization z̄t̄ such that (i) e(h̄t̄, z̄t̄) = 0 and (ii) there exists τ > t̄, history hτ

that is a continuation of
(
ht̄, z̄t̄

)
, and public randomization zτ satisfying e(hτ , zτ ) = 1.

We show that there exists another equilibrium such that (i) it coincides with the orig-
inal equilibrium up to period t̄, and also after

(
ht̄, zt̄

)
6=
(
h̄t̄, z̄t̄

)
, and (ii) after

(
h̄t̄, z̄t̄

)
, P

again draws a binary public randomization. After the first realization of the binary draw,
the equilibrium is as if we skip period t̄, and, after the other realization, the agent retires
with probability one (i.e., he exerts e = 0 in all future periods). That is, we replace the
continuation play after

(
ht̄, z̄t̄

)
with the following two paths: (a) the period of e(hτ , zτ ) = 1

is front loaded by one period; and (b) the agent is allowed to retire. Recursively, we can
create another equilibrium in which the agent takes e = 1 or he retires.

Let V (ht, zt) be the agent’s continuation payoff after (ht, zt). Since J (V ) is concave in V ,
we have V (ht, zt, ω) = 1/δ · {V (ht, zt)− 1} for each ω. Hence, the principal’s payoff equals

J
(
V (ht, zt)

)
= u (0, 1) + δ · J

(
1

δ
·
{
V (ht, zt)− 1

})
. (15)
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Suppose that, at (ht, zt), the principal offers the relational contract to bring 1/δ·{V (ht, zt)− 1}
with probability δ and the one to bring 1/(1− δ) (that is, to let the agent retire) with prob-
ability 1− δ. Then, the agent still obtains the value V (ht, zt), and the principal obtains

δ · J
(

1

δ

{
V (ht, zt)− 1

})
+ (1− δ) · u (0, 1)

1− δ
= J

(
V (ht, zt)

)
. (16)

Hence, the principal is (weakly) better off.
Note that the best PBE may not be unique since here we start from one equilibrium and

create another with front loaded effort with the same equilibrium payoff for the principal.

1.7 Proof of Lemma 7

Part 1. Concavity with respect to V.

Since µ is fixed, the proof is the same as Lemma 5.

Part 2. Convexity with respect to µ.

Since V is fixed, the proof is the same as Lemma 2.

Part 3. Monotonicity with respect to µ.

Suppose that J (µ, V ) = J for some µ and V . Then, for a higher value µ′ > µ and the
same promised utility V , we have J (µ′, V ) ≥ J . Since V is fixed, the proof is the same as
Lemma 2.

We now show it is strictly increasing for V ∈ (0, 1/(1− δ)). Fix public history ht with
(µ, V ) with V ∈ (0, 1/(1− δ)) arbitrarily, and let α[µ] be the principal’s optimal strategy
from this history. Given the starting belief µ′ > µ, suppose the principal in period τ ≥ t
takes the same strategy α[µ′] = α[µ] as long as ezτ = 0 for each zτ given α[µ]. Then, as long
as ezτ = 0 for zτ given α[µ], the payoff is exactly the same between µ and µ′ (and the belief
stays the same unless replacement happens); and once the current agent exerts a positive
effort (if he is of H type), the principal’s expected payoff is higher with µ′ than with µ.
Hence, we have J (µ′, V ) > J (µ, V ) if there exist t̃ ≥ t and zt̃ such that, given α[µ], (i) ht̃

happens with a positive probability, (ii) the same agent stays until period t̃ given ht̃, and
(iii) ezt̃ > 0.

We now show that there exists such (ht̃, zt̃). Suppose otherwise. Then, the principal’s
payoff is equal to J (µ, V ) = α · J(µ, Ṽ ) + (1− α) · J̄ , where 1 − α is the probability of
immediate replacement and the promise keeping constraint implies V = αṼ . That is,

J (µ, V ) =
V

Ṽ
· J(µ, Ṽ ) +

(
1− V

Ṽ

)
· J̄ . (17)
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Suppose Ṽ = 1. Then, since e = 0, we have J(µ, Ṽ ) = (1− δ) · vP + δ · J̄ , and so
J̄ − J(µ, Ṽ ) = (1− δ) ·

(
J̄ − vP

)
. Suppose next that Ṽ = 1 + ∆. Then, the principal

can implement e = 0 in period t, which makes the next-period promised value equal to
(Ṽ − 1)/δ = ∆/δ. Hence, the principal can achieve the payoff at least

(1− δ) · vP + δ ·
(

∆

δ
·
(
(1− δ) · vP + δ · J̄

)
+

(
1− ∆

δ

)
· J̄
)
. (18)

Hence,

J(µ, Ṽ + ∆)− J(µ, Ṽ )

∆

≥
(1− δ) · vP + δ ·

(
∆
δ
·
(
(1− δ) · vP + δ · J̄

)
+
(
1− ∆

δ

)
· J̄
)
− (1− δ) · vP − δ · J̄

∆
≥ − (1− δ) ·

(
J̄ − vP

)
. (19)

In total,
d

dṼ

[
V

Ṽ
· J(µ, Ṽ ) +

(
1− V

Ṽ

)
· J̄
]∣∣∣∣
Ṽ=1

≥ 0. (20)

Hence, the first order effect of increasing Ṽ by ∆ keeping e fixed is no less than 0. Suppose
that the principal increases V ′gG in the problem to maximize J(µ, Ṽ ), keeping all the other

continuation payoffs fixed. This increases e and Ṽ . Since the first order effect of changing
Ṽ given e is 0, the principal is strictly better off by implementing e > 0, as desired.

1.8 Proof of Lemma 8

We have J (µ, 0) = J̄ for each µ since P has to replace A right away. Hence we are left to
prove the other four properties:

Part 1. There exists V (µ) such that J (µ, V ) is linear forV ∈ [0, V (µ)].

Suppose such V (µ) does not exist. By Lemma 7, this means that J (µ, V ) is strictly
concave near V = 0.

Take V ∈ (0, 1). This means that P needs to stochastically replace A, since otherwise A
receives 1 by not working. Let β be the probability of a replacement. The promise keeping
condition implies

β · 0 + (1− β) · V̂ = V, (21)

where V̂ ≥ 1 is the promised utility conditional on A not being replaced.
P maximizes

max
β∈[0,1],V̂ ∈[0, 1

1−δ ]
β · J (µ, 0) + (1− β) · J(µ, V̂ ) (22)
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subject to
β · 0 + (1− β) · V̂ = V and V̂ ≥ 1. (23)

Substituting the constraint, P ’s payoff is

J (µ, 0) +
V

V̂
·
[
J(µ, V̂ )− J (µ, 0)

]
. (24)

Taking the derivative with respect to V̂ (the differentiability of J(µ, V̂ ) follows from the
Envelope Theorem), we obtain

V ·
J (µ, 0) +

[
J2(µ, V̂ ) · V̂ − J(µ, V̂ )

]
V̂ 2

, (25)

where Jn is the derivative of J with respect to its nth argument.
We show that the numerator is always negative for each V̂ ≥ 0. With V̂ = 0, the

numerator is 0. Taking the derivative of the numerator,

d

dV̂
·
{
J (µ, 0) +

[
J2(µ, V̂ )V̂ − J(µ, V̂ )

]}
= V̂ · d

2

dV̂ 2
· J(µ, V̂ ). (26)

Since we assumed J (µ, ·) is strictly concave, this is negative for each V̂ ≥ 0. Therefore, the
numerator is globally negative.

Hence, the smallest V̂ = 1 is optimal. Given V̂ = 1, by (24),

J (µ, V ) = J (µ, 0) + V · [J (µ, 1)− J (µ, 0)] , (27)

for V ∈ [0, 1], which is linear in V .

Part 2. For µ ≥ µH , we have V (µ) > 1.

Suppose µ ≥ µH . For the sake of contradiction, assume that V ≤ 1 for each V ∈
arg maxV J (µ, V ). Then, in the above problem (22), V̂ = 1 — the smallest continuation
payoff without immediate replacement — is the unique optimum. Recall that β is defined as
the probability of immediate replacement in (21). Hence P cannot replace A in the current
period after P picks V̂ with probability 1− β. If P promised a positive continuation payoff
from the next period, then since c (0) = lime→0 c

′(e) = 0, A could obtain a payoff greater than
1 with providing a sufficiently small e. We therefore have to make sure that V ′z [V̂ ] (ω) = 0
for each z and ω, and so ez = 0 for each z. Therefore, the effort has to be equal to 0. Then,
P ’s instantaneous payoff is (1 − δ) · vP . Moreover, since V ′z [V̂ ] (ω) = 0 for each z and ω,
the agent will be replaced in the next period with probability one. Hence, the continuation
payoff is δ · J̄ . Since β = 0 if the current promised value is 1 and V̂ = 1,

J (µ, 1) = (1− δ) · vP + δ · J̄ . (28)
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Recall that vP is defined as the principal’s dynamic game payoff when no effort is provided
and P intervenes every period.

It will be useful to verify that the payoff at the arrival of a new agent is higher than vP .
To see why, the principal can improve upon vP as follows: For each z, the principal always
takes ιz = 1 as in the no effort equilibrium. If ω = (g,G), then P keeps the agent forever.
Otherwise, P replaces the agent (and goes back to the no effort equilibrium). That is, P
rewards the agent after a good outcome in the first period, which incentivizes the high-type
agent to supply a positive effort. Hence, the principal can obtain a payoff greater than vP in
the first period, and then obtain the continuation payoff of δ · vP . In total, we have J̄ > vP .
Given J̄ > vP , for each (µ, V ) with V ∈ (0, 1/(1− δ)), by concavity of J (µ, ·),

J (µ, V ) ≥
1

1−δ − V
1

1−δ
· J̄ +

V
1

1−δ
· J
(
µ,

1

1− δ

)
> vP . (29)

For µ = µH , (28) together with (29) implies that J (µH , 0) = J̄ and J (µH , V ) is linear
and less than J̄ for each V ∈ (0, 1]. By concavity, this means that J (µH , V ) < J̄ for each
V > 0. Thus, arg maxV J (µH , V ) = 0. This means that J̄ is uniquely obtained by always
replacing A; however, this implies that A exerts no effort, which is a contradiction. Hence,
V (µH) > 1. Moreover, since J̄ = maxV J (µH , V ), it follows that

J (µH , V ) = J̄ for V ∈ [0, V (µH)] . (30)

For µ > µH , by Lemma 7, we have J (µ, 1) > J (µH , 1) ≥ J̄ , which contradicts (28).
Hence, V (µ) > 1 as well.

Part 3. The Slope of the Linear Part.

Since J (µ, V ) is strictly increasing in µ ∈ (0, 1), and J (µ, 0) = J̄ for each µ, (30) implies
the slope of the linear part is negative for µ < µH and positive for µ > µH .

Part 4. Property of V ∈ arg maxV̂ J(µ, V̂ ).

Define
uP (ιz|µ, ez) ≡

∑
s

Pr(s|µ, ez) · uP (ιz|µ, ez, s) . (31)

Without loss of generality, we can take V ∈ arg maxV̂ J(µ, V̂ ) such that V is the extreme

point of the graph {V̂ , J(µ, V̂ )}V̂ . This means that no mixture can implement (V, J(µ, V )).

Hence, P ’s payoff J (µ, V ) at V ∈ arg maxV̂ J(µ, V̂ ), denoted by J (µ), is determined by the
dynamic program without mixture:

J (µ) = max
(e,ι,V ′)

{uP (ι|µ, e) + δ ·
∑
ω

Pr (ω|µ, e, ι) · J (µ′ (µ, e, ω) , V ′ (ω))}, (32)
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subject to incentive compatibility constraint:

e ∈ arg max

[
1− c (e) + δ ·

∑
ω

Pr (ω|e, ι) · V ′ (ω)

]
. (33)

Note that we do not impose the promise keeping constraint since we are free to choose V̂
to maximize J(µ, V̂ ). Moreover, since the first-order condition for e is always necessary and
sufficient by the assumption of the cost function c, we can see the above dynamic program
as deciding (V ′ (ω))ω, and then e is determined by the first-order condition.

In this problem, we first show that V ′ (ω) ≤ arg maxV̂ J(µ′ (µ, e, ω) , V̂ ) after µ′ (µ, e, ω) ≤
µ. Suppose otherwise: There exists ω̄ such that V ′ (ω̄) > arg maxV̂ J(µ′ (µ, e, ω̄) , V̂ ) after
µ′ (µ, e, ω̄) ≤ µ.

Since

µ′ (µ, e, ω̄) =
µ · Pr (ω̄|e, ι)

µ · Pr (ω̄|e, ι) + (1− µ) · Pr (ω̄|0, ι)
≤ µ, (34)

we have Pr (ω̄|0, ι) ≥ Pr (ω̄|e, ι). We assume Pr (ω|e, ι) is monotone in e for each ω and ι, so
the probability Pr (ω̄|e, ι) is decreasing in e.

Then, the first-order condition for the optimality of V ′ (ω̄) is

0 =
d

dV ′ (ω̄)
{uP (ι|µ, e) + δ ·

∑
ω

Pr (ω|µ, e, ι) · J (µ′ (µ, e, ω) , V ′ (ω))}

= {uPe (ι|µ, e) + δ ·
∑
ω

Pre (ω|µ, e, ι) · J (µ′ (µ, e, ω) , V ′ (ω))

+ δ ·
∑
ω

Pr (ω|µ, e, ι) · J1 (µ′ (µ, e, ω) , V ′ (ω)) · µ′e (µ, e, ω)} · de

dV ′ (ω̄)

+ δ · Pr (ω̄|µ, e, ι) · J2 (µ′ (µ, e, ω̄) , V ′ (ω̄)) , (35)

where Jn is the derivative of J with respect to its nth argument; and uPe ≥ 0, Pre, and
µ′e are the derivatives of uP , Pr, and µ′ with respect to e, respectively. Since Pr (ω̄|e, ι) is
decreasing in e, it follows that de/dV ′ (ω̄) < 0. Moreover, J2 (µ′ (µ, e, ω̄) , V ′ (ω̄)) < 0, since
V ′ (ω̄) > arg maxV̂ J(µ′ (µ, e, ω̄) , V̂ ) and J is concave. Hence,

uPe (ι|µ, e) + δ ·
∑
ω

Pre (ω|µ, e, ι) · J (µ′ (µ, e, ω) , V ′ (ω))

+ δ ·
∑
ω

Pr (ω|µ, e, ι) · J1 (µ′ (µ, e, ω) , V ′ (ω)) · µ′e (µ, e, ω) < 0. (36)

Similarly, if there exists ω̂ such that Pr (ω̂|e, ι) is decreasing in e but
V ′ (ω̂) ≤ arg maxV̂ J(µ′ (µ, e, ω̂) , V̂ ), then the symmetric argument implies that

{uPe (ι|µ, e) + δ ·
∑
ω

Pre (ω|µ, e, ι) · J (µ′ (µ, e, ω) , V ′ (ω))

+ δ ·
∑
ω

Pr (ω|µ, e, ι) · J1 (µ′ (µ, e, ω) , V ′ (ω)) · µ′e (µ, e, ω)} ≥ 0, (37)
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which is a contradiction.
Therefore, letting Ω− be the set of signal-outcome pairs ω such that Pr (ω|e, ι) is de-

creasing in e, for each ω ∈ Ω−, we have V ′ (ω) > arg maxV̂ J(µ′ (µ, e, ω) , V̂ ). Symmetrically,
letting Ω+ be the set of ω such that Pr (ω|e, ι) is increasing in e, for each ω ∈ Ω+, we have
V ′ (ω) < arg maxV̂ J(µ′ (µ, e, ω) , V̂ ).

Now we set V ∗ (ω) = arg maxV̂ J(µ′ (µ, e, ω) , V̂ ) for each ω, and let e∗ be the new optimal
effort (fixing ι throughout). Since V ∗ (ω) < V ′ (ω) for ω ∈ Ω− and V ∗ (ω) > V ′ (ω) for
ω ∈ Ω+, we have e∗ > e (here, e is the original effort). Hence,

uP (ι|µ, e∗) > uP (ι|µ, e) . (38)

In addition, we adjust V ∗ (ω) so that the continuation payoff increases with fixed e:∑
ω

Pr (ω|µ, e, ι) · J (µ′ (µ, e, ω) , V ′ (ω)) <
∑
ω

Pr (ω|µ, e, ι) · J (µ′ (µ, e, ω) , V ∗ (ω)) . (39)

Moreover, since maxV̂ J(µ′, V̂ ) is increasing in µ′,

J (µ′ (µ, e, ω) , V ∗ (ω)) < J (µ′ (µ, e, ω̂) , V ∗ (ω̂)) (40)

for each ω ∈ Ω− and ω̂ ∈ Ω+. Since increase in e increases the probability of event ω if and
only if ω ∈ Ω+,∑

ω

Pr (ω|µ, e, ι) · J(µ′ (µ, e, ω) , V ∗ (ω)) <
∑
ω

Pr (ω|µ, e∗, ι) · J (µ′ (µ, e, ω) , V ∗ (ω)) . (41)

Finally, learning (the difference between µ′ (µ, e, ω) and µ′ (µ, e∗, ω)) further increases the
continuation payoff. To show this, we first make the following claim:

Claim 1 For µ1 < µ2, V ∗ (µ1) ∈ arg maxV̂ J(µ1, V̂ ) and V ∗ (µ2) ∈ arg maxV̂ J(µ2, V̂ ), we
have J1(µ1, V

∗(µ1)) ≤ J1(µ2, V
∗(µ2)).

Proof. J is convex in µ, so

J (µ1, V
∗ (µ1)) + J1 (µ1, V

∗ (µ1)) [µ2 − µ1] ≤ J (µ2, V
∗ (µ1)) . (42)

V ∗ (µ2) maximizes J (µ2, V ) at µ2, so

J (µ1, V
∗ (µ1)) + J1 (µ1, V

∗ (µ1)) [µ2 − µ1] ≤ J (µ2, V
∗ (µ2)) . (43)

Also,
J (µ1, V

∗ (µ1)) ≥ J (µ2, V
∗ (µ2))− J1 (µ2, V

∗ (µ2)) [µ2 − µ1] , (44)

since J is convex in µ. From the first inequality of the proof,

J (µ1, V
∗ (µ1)) ≥ J (µ1, V

∗ (µ1)) + J1 (µ1, V
∗ (µ1)) [µ2 − µ1]

− J1 (µ2, V
∗ (µ2)) [µ2 − µ1] . (45)
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Hence,
0 ≥ [J1 (µ1, V

∗ (µ1))− J1 (µ2, V
∗ (µ2))] (µ2 − µ1) . (46)

Given this claim, J1 (µ′ (µ, e, ω) , V ∗ (ω)) is larger for ω with µ′ (µ, e, ω) > µ than for ω
with µ′ (µ, e, ω) < µ. Since the distribution of {µ′ (µ, e∗, ω)}ω given e∗ is the mean-preserving
spread of the distribution of {µ′ (µ, e, ω)}ω given e and we have µ′ (µ, e∗, ω) ≥ µ′ (µ, e, ω) if
and only if ω satisfies µ′ (µ, e, ω) ≥ µ, faster learning increases the continuation payoff.
Together with (39) and (41), this leads to∑

ω

Pr (ω|µ, e, ι) · J (µ′ (µ, e, ω) , V ′ (ω)) <∑
ω

Pr (ω|µ, e, ι∗) · J (µ′ (µ, e∗, ω) , V ∗ (ω)) . (47)

Together with (38), we have proven that P ’s payoff increases.
The proof for V ′ (ω) ≥ arg maxV̂ J(µ′ (µ, e, ω) , V̂ ) after µ′ (µ, e, ω) ≥ µ is completely

symmetric, and so it is omitted.

1.9 Proof of Lemma 9

Recall that we refer to intervention as the intervention decision after signal s = b, since
P never intervenes after s = g. Given s = g, the principal observes the same information
regardless of ι(s = b). Given s = b, she can observe o ∈ {G,B} after s = b without
intervention while she can only observe o = I with intervention. Hence, intervention is
more informative in the Blackwell sense, and, given e, the distribution of the updated beliefs
(µ′ (µ, e, ω))ω after no intervention is a mean-preserving spread of that after intervention.

In particular, the belief update is given by

µ′(µ, e, b, I) =
µ · Pr (b|e)

µ · Pr (b|e) + (1− µ) · Pr (b|0)
, (48)

µ′(µ, e, b, G) =
µ · Pr (b,G|e)

µ · Pr (b,G|e) + (1− µ) · Pr (b,G|0)
, (49)

µ′(µ, e, b, B) =
µ · Pr (b, B|e)

µ · Pr (b, B|e) + (1− µ) · Pr (b, B|e)
. (50)

Hence, the difference in the variance of µ′(µ, e, ω) is given by

d (µ) :=
∑
ω

Pr (ω|µ, e, ι = 0) · (µ′(µ, e, ω)− µ)
2 −

∑
ω

Pr (ω|µ, e, ι = 1) · (µ′(µ, e, ω)− µ)
2

=
∑

y∈{G,B}

µ2 · (1− µ)2 · (Pr (b, y|e)− Pr (b, y|0))2

µ · Pr (b, y|e) + (1− µ) · Pr (b, y|0)

− µ2 · (1− µ)2 · (Pr (b|e)− Pr (b|0))2

µ · Pr (b|e) + (1− µ) · Pr (b|0)
. (51)
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Note that this difference is 0 with µ = 0 and µ = 1. Moreover, taking the second derivative
of d (µ) with respect to µ yields∑

y∈{G,B}

Pr (b, y|e)2· Pr (b, y|0)2

(µ · Pr (b, y|e) + (1− µ) · Pr (b, y|0))3 −
Pr (b|e)2 · Pr (b|0)2

(µ · Pr (b|e) + (1− µ) · Pr (b|0))3 . (52)

The function f (x, y) := x2y2 (µx+ (1− µ) y)−3 is convex since, for each (a, b) ∈ R2,

(a, b)

(
fxx fxy
fxy fyy

)(
a
b

)
=

2 (b2x2 − abxy + a2y2) (µ2x2 + 4µ (1− µ)xy + y2)

(µx+ (1− µ) y)5 ≥ 0, (53)

as b2x2−abxy+a2y2 = (bx+ ay)2−abxy = (bx− ay)2 +abxy. Given Pr (b|e) = Pr (b,G|e)+
Pr (b, B|e), we thus have d′′ (µ) ≤ 0.

1.10 Proof of Proposition 3

The proof consists of the three steps: (1) proving that intervention is optimal in the initial
period, (2) intervention is optimal for a sufficiently large T , and (3) in some period t ≥ 2,
no intervention is optimal.

Intervention is Optimal in the Initial Period.

Lemma 1 There exist µ̄H ∈ (0, 1) and q̄ ∈ (0, 1) such that, for each µH ≤ µ̄H and
Pr (G|0) ≤ q̄, it is optimal to intervene after s = b in the initial period of an agent’s
appointment.

Proof. In period 1 of the agent’s appointment, after an s = b, the belief is no more than
µH . Hence, the instantaneous cost of non-intervention is no less than

−l − [µH · Pr (G|e, b) · 0 + (1− µH) · (−C)] ≥ C − l − µH · C. (54)

On the other hand, the gain in the continuation payoff of no intervention is at most

δ ·
[
µH · 0 + (1− µH) ·max

V
J (µH , V )

]
− δ · J (µb, Vb) . (55)

We now drive an upper bound for maxV J (µH , V ):

max
V

J (µH , V ) ≤ µH · 0 + (1− µH) ·
(

Pr (y = B|0) · (−l) + δ ·max
V

J (µH , V )
)
. (56)

Here, the H-type would deliver the best outcome, the L-type would be replaced immediately
after period 1, and we allow P to intervene if and only if the outcome is bad, so that we
derive an upper bound. Rearranging,

max
V

J (µH , V ) ≤ − (1− µH) · (1− q̄) · l
1− (1− µH) · δ

. (57)
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By contrast, J (µb, Vb) ≥ −l/(1 − δ) since the principal can always intervene. Hence, the
continuation payoff gain is bounded by

δ ·
(

(1− µH) · − (1− µH) · (1− q̄) · l
1− (1− µH) · δ

− −l
1− δ

)
. (58)

Hence, if

C − l − µH · C > δ ·
(

(1− µH) · − (1− µH) · (1− q̄) · l
1− (1− µH) · δ

− −l
1− δ

)
, (59)

then intervention is uniquely optimal. At µH = 0 and q̄ = 0, (59) holds since C − l > 0.
Therefore, there exist µ̄H > 0 and q̄ > 0 such that, for µH ≤ µ̄H and Pr (G|0) ≤ q̄, we have
(59).

Intervention at the Limit.

Lemma 2 For any parameter values, if we start from µ = µH and V = arg maxṼ J(µH , Ṽ ),
then after ω with Pre (ω|e) < 0, we have J2 (µ′ (µ, ez, ω) , V ′z (ω)) = 0.2

Proof. From Lemma 2, we have J (µ′ (µ, ez, ω) , V ′z (ω)) = maxV J (µH , V ). Hence, Lemma
8 implies the result.

We form the Lagrangian

J (µ, V ) =

∫
z

(1− ρz) · J̄

+ ρz ·

[
uP (ιz|µ, ez) + δ ·

∑
ω

Pr (ω|µ, ez, ιz) · J (µ′ (µ, ez, ω) , V ′z (ω)) dz

]

+ λ ·

(
V −

∫
z

ρz ·

{
1− c (ez) + δ ·

∑
ω

Pr (ω|ez, ιz) · V ′z (ω)

}
dz

)

+

∫
z

ρz · ηz ·

(
δ ·
∑
ω

Pre (ω|ez, ιz) · V ′z (ω)− c′(ez)

)
dz (60)

with ηz ≥ 0 (higher effort is beneficial). Recall that Pr (ω|ez, ιz) = Pr (ω|µ = 1, ez, ιz). By
the Envelope theorem, J2 (µ, V ) = λ. Taking the first order conditions and substituting

2Jn is the derivative of J with respect to its nth argument.
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J2 (µ, V ) = λ, we obtain

ez : −J2 (µ, V ) · c′ (ez) + ηz · c′′(ez)

= uPe (ιz|µ, ez) + δ ·
∑
ω

Pre (ω|µ, ez, ιz) · J (µ′ (µ, ez, ω) , V ′z (ω))

+ δ ·
∑
ω

Pr (ω|µ, ez, ιz) · J1 (µ′ (µ, ez, ω) , V ′z (ω)) · µ′e (µ, ez, ω)

− δ ·
∑
ω

Pre (ω|ez, ιz) · V ′z (ω) · J2 (µ, V )

+ δ · ηz ·
∑
ω

Pree (ω|ez, ιz) · V ′z (ω) , (61)

and

V ′z (ω) : J2 (µ′ (µ, ez, ω) , V ′z (ω)) =
Pr (ω|ez, ιz)

Pr (ω|µ, ez, ιz)
· J2 (µ, V )− ηz ·

Pre (ω|ez, ιz)
Pr (ω|µ, ez, ιz)

. (62)

Using these two first order conditions, we will show that the effort level converges to 0.

Lemma 3 On the equilibrium path, given a history h such that the belief updates positively,
µ (ht) ≥ µ (ht−1) for each t, effort converges to 0.

Proof. Fix (zt, ωt)
∞
t=1 to satisfy µ (ht) ≥ µ (ht−1) for each t, and let (ιt, et)

∞
t=1 be the imple-

mented intervention decisions and effort levels along the history. For notational simplicity,
we omit (zt)

∞
t=1 since the argument holds conditional on (zt)

∞
t=1.

On such a history, we have J2 (µ′ (µ, e1, ω1) , V ′ (ω1)) < 0. To see why, since Pre (ω1|e1, ι1) >
0 given µ (ht) ≥ µ (ht−1) and J2(µ1, V1) = 0 in the initial period, given (62), it suffices to
show that η > 0. If η = 0, since J2(µ, V ) = 0 in the initial period, Lemma 2 and (61) yield

0 = uPe (ι1|µ1, e1) + δ ·
∑
s̃1,õ1

Pre (ω̃1|µ1, e1, ι1) · J (µ′ (µ1, e1, ω̃1) , V ′ (ω̃1))

+ δ ·
∑

ω̃1:µ′e(µ1,e1,ω̃1)>0

Pr (ω̃1|µ1, e1, ι1) · J1 (µ′ (µ1, e1ω̃1) , V ′ (ω̃1))

· µ′e (µ1, e1, ω̃1) . (63)

The first two terms of the right hand side is the benefit of increasing e1 to the principal’s
value fixing ι1 and V ′ (ω̃1); and the last term is non-negative given J1 (µ, V ) ≥ 0. Hence, the
right hand side is positive.3 This is a contradiction.

3Otherwise, the principal should have implemented e1 = 0 and V ′ (ω̃1) = V ′ (ω̃′1) for each ω̃1, ω̃
′
1 given

concavity of J (µ, V ). However, (i) the first order condition for e (this is necessary and sufficient given
our assumption), (ii) Lemma 2, and (iii) parts 2 and 3 of the proof to Lemma 8(omitting z for notational
simplicity) imply

c′ (e1) = δ
∑

ω1:Pre(ω1|e1)>0

Pre (ω1|ι1, e1) ,

which means e1 > 0. This is a contradiction.

14



In addition, on such a history, we have Pre (ωt|et, ιt) ≥ 0 and Pr (ωt|et, ιt) ≥ Pr (ωt|µt, et, ιt)
for each t. Hence, recursively applying to (62),

J2 (µ′ (µt, et, ωt) , Vt+1 (ωt)) ≤
Pr (ωt|et, ιt)

Pr (ωt|µt, et, ιt)
· J2 (µt, Vt) − ηt ·

Pre (ωt|et, ιt)
Pr (ωt|µt, et, ιt)

, (64)

so it is monotonically decreasing. If et does not converge to 0, then µt converges to 1 and
ηt ≥ 0 converges to 0, since otherwise J2 diverges to −∞.

Suppose µt converge to 1 and ηt converges to 0. At this limit, (61) converges to

− J2 (1, V ) c′ (e) = uPe (1, e, ι) + δ ·
∑
ω

Pre (ω|1, e, ι) · J (µ′ (1, e, ω) , V ′ (ω))

+ δ ·
∑
ω

Pr (ω|e, ι) · J1 (1, V ′ (ω)) · µ′e (1, e, ω)

− δ ·
∑
ω

Pre (ω|e, ι) · V ′ (ω) · J2 (1, V ) . (65)

Since

µ′e (1, e, ω) = lim
µ→1

(
d

de
· µ · Pr (ω|e)
µ · Pr (ω|e) + (1− µ) · Pr (ω|0)

)
= 0 (66)

for each Pr (ω|e) with e > 0 (recall that we assumed that e > 0 for the sake of a contradiction)
and c′ (e) = δ ·

∑
ω Pr (ω|e, ι) · V ′ (ω) from (15),

0 = uPe (ι|1, e) + δ ·
∑
ω

Pre (ω|e, ι) · J (1, V ′ (ω)) . (67)

This means that the benefit of increasing e to the principal’s value fixing V ′ (ω), i.e.,

d

de
[uP (ι|1, e) + δ ·

∑
ω

Pr (ω|e, ι) · J (1, V ′ (ω))], (68)

is 0. This in turn implies that e is equal to 0. Therefore, et converges to 0.
Given that e converges to 0, intervention is optimal at the limit:

Lemma 4 There exists ê ∈ (0, 1) such that, for any belief µ ∈ [0, 1] and promised value V ,
if the principal implements e ≤ ê, then ι = 1 is optimal.

Proof. With discounting, e ∈ [0, 1], and V ∈ [0, 1/(1− δ)], the principal’s payoff is contin-
uous in e. Hence, it suffices to show that it is uniquely optimal for the principal to choose
ι = 1 for effort e = 0. With e = 0, we have µ′ (µ, e, ω) = µ. Since J (µ, V ) is concave in V ,
it is optimal to choose V ′ (ω|ι) = V ′ (ω′|ι) for each ω, ω′. Hence, the continuation payoff is
fixed regardless of ι. Since ι = 1 maximizes the instantaneous utility uP (ι|µ, e, s) after s = b
given e = 0, intervention ι(s = b) = 1 is uniquely optimal.
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No intervention is Optimal in a Period after the Initial Period.

The following lemma ensures that e1 is bounded below:

Lemma 5 For sufficiently small q̄ > 0, if c′ (ē) ≤ Pre (g,G|ē) · q̄, then the initial effort level
e(∅) is no less than ē.

Proof. From (i) the first order condition for e (this is necessary and sufficient given our
assumption), (ii) Lemma 2, and (iii) parts 2 and 3 of Lemma 8 (omitting z for notational
simplicity), we have

c′ (e1) = δ ·
∑

ω1:Pre(ω1|e1)>0

Pre (ω1|e1, ι1) ≥ δ · Pre (g,G|e1, ι1) = δ · Pre (g,G|e1 (69)

Hence, e1 ≥ ē.

Lemma 6 For each µH and (Pr (b|e))e∈[0,1], there exists q̄ > 0 such that, if the effort provi-
sion condition holds given q̄ and Pr (G|0) ≤ q̄, then there exists t ≥ 2 such that no interven-
tion is optimal in period t.

Proof. It suffices to show that there exists t ≥ 2 with e ≥ ē, and µ′ (ht) is sufficiently close
to 1 since then no intervention is statically optimal. Note that we first fix (Pr (b|e))e∈[0,1].

Hence, if µ′ (ht) is sufficiently close to one, µ′ (ht, b) is also close to one.
On the one hand, if there is no period t ≥ 2 such that no intervention is optimal along

the path of repeated (g,G). Then, the payoff is bounded by

uP (ι1|µH , ē) + δ ·max

{
max
V

J (µH , V ) ,
1

1− δ
· Pr (s = b|ē) · (−l)

}
. (70)

Here, to obtain an upper bound, we allow P to replace the L-type at the end of period 1, and
she learns that the agent is an H-type at the end of period 1 (we then take the maximum of
these two continuation payoffs). In the latter event, intervention is optimal after s = b since
(i) there is no learning benefit if P learned the type and (ii) if the belief were sufficiently high
for no intervention to be statically optimal after some history, then it would get sufficiently
high along the path of repeated (g,G).

On the other hand, if P implements et = ē without replacement for each t = 1, ..., T as
long as ω = (g,G), then she obtains a payoff of at least

uP (ι1|µH , ē) +
T∑
t=1

δt−1 ·
{∏t−1

τ=1
Pr (ωτ = (g,G))

}
· Pr (ωt 6= (g,G))

·
(
−C + δ ·max

V
·J (µH , V )

)
+ δT−1 ·

∏T

τ=1
Pr (ωτ = (g,G)) · −l

1− δ
, (71)

where the probability is determined by the initial belief µH and the H-type agent taking ē.
The second line says that, until ωt 6= (g,G) is first observed, no cost is incurred, and once
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ωt 6= (g,G) happens, the principal pays C and replaces the agent. The last line says that, if
ωt 6= (g,G) never happens until period T , then s = b happens all the time and the principal
always intervenes for t = T + 1, ....

For each µH , for sufficiently large Pr (g,G|ē) and sufficiently small Pr (g,G|0), the belief
µ′ (µH , g, G) is sufficiently close to 1 and uP (ι1|µH , 1) and uP (ι1|µH , ē) are close to each
other. Hence, at T =∞ (namely, δT−1 = 0), the latter is larger.

For each T , for sufficiently small q̄, it is possible to implement et ≥ ē for each t = 1, ..., T
by keeping the agent if and only if he generates the outcome (g,G). Hence, limq̄→0 T =∞.
Therefore, for sufficiently small q̄, there exists t ≥ 2 with e ≥ ē, and µ′ (ht) sufficiently close
to 1.

2 Three-Period Model for Comparative Statics

In this appendix, we introduce the three-period model to theoretically derive comparative
statics. As mentioned in the main text, effort choice is binary, e ∈ {0, 1} with c(0) = 0
and c(1) = γ. We write Pr(ω|e) = αω + βωe for each ω. We also write βG = βgG + βbG,
βb = βbG + βbB, and so on. We keep Assumption 2: βgG, βbG > 0, βgB, βbB < 0, and
αbG = 0. We also assume that βbB/αbB < βgB/αgB (hazard rate is lower for bB). Given this
assumption, starting from a fixed µ and e = 1, the belief update µω = αω+βω

αω+µβω
satisfies

µbB < µgB < µ < µgG < µbG = 1. (72)

We assume that keeping the agent for another term after ω ∈ {gG, bG} or keeping
him for another two terms after ω ∈ {gG} is sufficient to incentivize the effort: γ <

min
{
δβG, δβgG

(
1 + δ − 1−αG

βG
γ
)}

, where the term −1−αG
βG

γ represents the cost of effort that

the agent pays to exert effort in the second period.
We assume that there are only three periods. In period 1, the principal has initial belief

µ1 ∈ [0, 1] and starts with the initial promised value V1 ∈ [1, 1 + δ + δ2], and the principal
cannot replace the agent in period 1 (that is, V1 is the promised value conditional on the
realization of the public randomization in the language of the infinitely repeated game).
Although the game formally starts from period 1, by endowing the principal with (µ1, V1),
we can measure the effect of the state variable (µ1, V1).

In periods 2 and 3, for simplicity, we assume that the principal cannot observe a signal
s. Hence, the principal’s payoff is −C if y = B and 0 otherwise.4 As in the main text, in
periods 2 and 3, the newly arriving agent is an H-type with probability µH .

2.1 Backward Induction

We now specify the principal’s optimal strategy by backward induction.

4This assumption keeps the derivation of the continuation payoff simple and allows us to talk about the
main trade-off faced by the principal in a clear way. If we allowed her to observe a warning, then the principal
could tailor the intervention decision based on her belief and promised value in period 2. This additional
effect would increase the principal’s incentive to learn the agent’s type, so not to intervene in period 1.
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Period 3 In the third period, since there is no future period, no agent exerts effort. Hence,
regardless of (µ, V ), the principal’s payoff is J3(µ, V ) = αB (−C).

Period 2 If the public randomization tells her to keep the agent and provide him with
value V , the principal solves (ignoring the continuation payoff since it is constant)

J∗2 (µ, V ) = max
e∈{0,1},Vω∈[0,δ]

µHu
P (e) + (1− µH)uP (0) (73)

subject to

γ ≤ δ
∑

ω
βωVω if e = 1, (74)

V = 1− γ · 1{e=1} +
∑
ω

(αω + βωe)Vω. (PK)

Suppose the promise keeping (PK) is not binding. Since uP (e) is increasing in e and
e = 1 is implementable, we have

J∗2 (µ) = − (αB + µβB)C. (75)

We now derive the range of V in which (PK) is not binding. Effort e = 1 is implementable
if and only if βGδVG+βBδVB ≥ γ, and given e = 1, the agent obtains 1−γ+(αG + βG) δVG+
(αB + βB) δVB. Given γ < δβG, the lowest payoff that the agent obtains given e = 1 is
V 2 := 1 + γαG/βG and the highest payoff is

V̄2 := 1− γ + (αG + βG) δ + (αB + βB)
γ − δβG
βB

= 1 + δ − 1− αG
βG

γ, (76)

where the second equality follows from αG + αB = 1 and βG + βB = 0.
Given this observation, we solve for J∗2 (µ, V ). If

J∗2 (µH) + αBC

1 + δ
≥ J∗2 (µ) + αBC

1 + δ − V̄2

⇔ µ ≤ µ := µH
1

1 + δ

1− αG
βG

γ, (77)

then the principal maximizes the probability of replacing the current agent by mixing V = 0
and V = 1 + δ. Hence,

J∗2 (µ, V ) =
1 + δ − V

1 + δ
J∗(µH)− V

1 + δ
αBC for each V ∈ [0, 1 + δ] . (78)

If µ ∈ [µ, µH ], then since the problem is linear, it is optimal to mix 0 and V̄2 for V ≤ V̄2

and to mix V̄2 and 1 + δ otherwise. Hence, we have

J∗2 (µ, V ) =

{
V̄2−V
V̄2

J∗2 (µH) + V
V̄2
J∗2 (µ) for V ≤ V̄2,

1+δ−V
1+δ−V̄2J

∗(µ)− V−V̄2
1+δ−V̄2αBC for V > V̄2.

(79)

Finally, for µ ≥ µH , for V < V 2, it is optimal to mix 0 and V 2; and for V > V̄2, it is
optimal to mix V̄2 and 1 + δ. Hence,

J∗2 (µ, V ) =


V 2−V
V 2

J∗2 (µH) + V
V 2
J∗2 (µ) for V < V 2,

J∗2 (µ) for V ∈
[
V 2, V̄2

]
,

1+δ−V
1+δ−V̄2J

∗(µ)− V−V̄2
1+δ−V̄2αBC for V > V̄2.

(80)
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Period 1 In the first period, the principal given (µ1, V1) maximizes

J1 (µ1, V1) = max
ι∈{0,1},e∈{0,1},Vω∈[0,1+δ]

µ1u
P (ι, e) + (1− µ1)uP (ι, 0)

+ δ
∑
ω

(αω + µ1βωe)J2 (µω, Vω) (81)

subject to

µω =
µ1 (αω + βω)

αω + µ1βω
, (82)

γ ≤ δ
∑

ω
βωVω if e = 1, (83)

V1 = 1− γ · 1{e=1} + δ
∑
ω

(αω + βωe)Vω. (84)

Except for the claim about V1 in Proposition 6, we assume that (PK) is not binding.
Hence, we omit V1 until we prove Proposition 6. If e = 0, then ι = 1 is optimal since there
is no learning or incentive reason not to intervene. Since the continuation payoff is concave
in Vω, it is optimal to have Vω = 1

δ
(V1 − 1) and obtain

−αbl − αgBC + δJ∗2

(
µ1,

1

δ
(V1 − 1)

)
. (85)

Especially, if (PK) is not binding, then the principal’s value is

−αbl − αgBC + δJ∗2 (max {µ1, µH}) . (86)

If e = 1 is implemented, then we can write the problem as

J1 (µ1) = max
ι,Vω

µuP (ι, 1) + (1− µ)uP (ι, 0) + δ
∑
ω

(αω + µβω)J2 (µω, Vω) (87)

subject to

µω =
αω + βω
αω + µ1βω

and γ ≤ δ
∑

ω
βωVω. (88)

Since the derivation of the optimal continuation payoffs requires tedious algebra, we first
summarize the result: For ι = 0, there are following four cases, depending on the value of
µ1 and µH :

1. µH < µbB < µgB < µgG < µbG: VbG = VgG = V̄2, and find the maximum VgB ∈ [0, V 2]
and VbB ∈ [0, V 2] to satisfy the incentive compatibility constraint (IC), γ ≤ δ

∑
ω βωVω.

We first decrease VbB before we decrease VgB: VgB < V 2 only if VbB = 0. The principal’s
payoff is

J1 (µ1) = (αB + µ1βB) (−C) + δαB (−C) + δµ1βB (−C)

−
∑

ω∈{bB,gB}

δβω (V 2 − Vω)

V 2

(
αω
βω

(µH − µ1)− µ1 (1− µH)

)
βBC. (89)
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2. µbB < µH < µgB < µgG < µbG: VbG = VgG = V̄2, VbB = 0, and find the maximum
VgB ∈ [0, V 2] to satisfy the incentive compatibility constraint (IC), γ ≤ δ

∑
ω βωVω.

The principal’s payoff is

J1 (µ1) = (αB + µ1βB) (−C) + δαB(αG + µ1βG) (−C) + δβBµ1(αG + βG) (−C)

+ δαB(αgB + µ1βgB) (−C) + δβBµ1(αgB + βgB) (−C)

+ δ(αbB + µ1βbB) (αB + µHβB) (−C)

− δβgB (V 2 − Vω)

V 2

(
αgB
βgB

(µH − µ1)− µ1 (1− µH)

)
βBC. (90)

3. µbB < µgB < µH < µgG < µbG: VbG = VgG = V̄2, and VgB = VbB = 0. The principal’s
payoff is

J1 (µ1) = (αB + µ1βB) (−C) + δαB(αG + µ1βG) (−C) + δβBµ1(αG + βG) (−C)

+ δ(αB + µ1βB) (αB + µHβB) (−C) . (91)

4. µbB < µgB < µgG < µH < µbG: VbG = V̄2 and VgB = VbB = 0, and find the minimum
VgG ∈

[
0, V̄2

]
to satisfy IC. The principal’s payoff is

J1 (µ1) = (αB + µ1βB) (−C) + δαB(αbG + µ1βbG) (−C) + δβBµ1(αbG + βbG) (−C)

+ δ(αgG + µ1βgG) (αB + µHβB) (−C) + δ(αB + µ1βB) (αB + µHβB) (−C)

+
δβgGVgG
V̄2

(
αgG
βgG

(µH − µ1)− µ1 (1− µH)

)
βBC. (92)

For ι = 1, there are following four cases, depending on the value of µ1 and µH :

1. µH < µb, µgB < µgG: VgG = V̄2, and find the maximum VgB ∈ [0, V 2] and Vb ∈ [0, V 2] to
satisfy IC. We first decrease Vω with lower βω

αω
: Vω∗∗ < V 2 for ω∗∗ = arg maxω∈{b,gB}

βω
αω

only if Vω∗ = 0 for ω∗ = arg minω∈{b,gB}
βω
αω

.

The principal’s payoff is

J1 (µ1) = (αb + µ1βb) (−l) + (αgB + µ1βgB) (−C) + δαB (−C) + δµ1βB (−C)

−
∑

ω∈{b,gB}

δβω (V 2 − Vω)

V 2

(
αω
βω

(µH − µ1)− µ1 (1− µH)

)
βBC. (93)

2. min {µb, µgB} < µH < max{µb, µgB} < µgG: VbG = VgG = V̄2, Vω∗ = 0 for ω∗ =
arg minω∈{b,gB}

βω
αω

, and find the maximum Vω∗∗ ∈ [0, V 2] to satisfy IC for ω∗∗ =

arg maxω∈{b,gB}
βω
αω

.
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The principal’s payoff is

J1 (µ1) = (αb + µ1βb) (−l) + (αgB + µ1βgB) (−C)

+ δαB(αgG + αω∗∗ + µ1 (βgG + βω∗∗)) (−C)

+ δβBµ1(αgG + αω∗∗ + (βgG + βω∗∗)) (−C)

+ δ(αω∗ + µ1βω∗) (αB + µHβB) (−C)

− δβω∗∗ (V 2 − Vω)

V 2

(
αω∗∗

βω∗∗
(µH − µ1)− µ1 (1− µH)

)
βBC. (94)

3. max{µb, µgB} < µH < µgG: VgG = V̄2 and VgB = Vb = 0. The principal’s payoff is

J1 (µ1) = (αb + µ1βb) (−l) + (αgB + µ1βgB) (−C)

+ δαB(αgG + µ1βgG) (−C) + δβBµ1(αgG + βgG) (−C)

+ δ(αgB + αb + µ1 (βgB + βb)) (αB + µHβB) (−C) . (95)

4. µgG < µH : VgB = Vb = 0, and find the minimum VgG ∈
[
0, V̄2

]
to satisfy IC. The

principal’s payoff is

J1 (µ1) = (αb + µ1βb) (−l) + (αgB + µ1βgB) (−C)

+ δ(αgG + µ1βgG) (αB + µHβB) (−C)

+ δ(αgB + αb + µ1 (βgB + βb)) (αB + µHβB) (−C)

+
δβgGVgG
V̄2

(
αgG
βgG

(µH − µ1)− µ1 (1− µH)

)
βBC. (96)

2.2 Period-1 Problem without Promise Keeping

Suppose ι = 0 is optimal. Given (72), there are following four cases:

1. µH < µbB < µgB < µgG < µbG: In this case, the principal would like to set VgG =
VbG = V̄2, VgB = VbB = V 2. This satisfies IC if and only if δβGV̄2 + δβBV 2 ≥ γ.

If IC is not satisfied, then the principal either increases VgG or VbG, or she decreases VgB
or VbB. To relax the IC constraint by one unit by changing Vω, we must change Vω by

1
δβω

. The marginal effect of increasing VgG by 1
δβgG

units on δ
∑

ω(αω +µ1βω)J2 (µω, Vω)

is
1

βgG
(αgG + µ1βgG)

µgGβBC

1 + δ − V̄2

= µ1

(
αgG
βgG

+ 1

)
βBC

1 + δ − V̄2

< 0. (97)

Similarly, the marginal payoff of increasing VbG by 1
δβbG

is µ1
βBC

1+δ−V̄2 < 0.

21



The cost to change VgB by 1
δβgB

is

1

βgB
(αgB + µ1βgB)

J∗2 (µgB)− J∗2 (µH)

V 2

=
1

V 2

(
αgB
βgB

(µH − µ1)− µ1 (1− µH)

)
βBC. (98)

Similarly, the cost to change VbB by 1
δβbB

is 1
V 2

(
αbB
βbB

(µH − µ1)− µ1 (1− µH)
)
βBC.

Since 1+δ−V̄2 < δ < 1 < V 2, and αω
βω

(µH − µ1)−µ1 (1− µH) ∈ [0, µ1] given µω ≥ µH , it
is optimal to decrease VgB or VbB instead of increasing VgG or VbG. Moreover, given that
βbB
αbB

<
βgB
αgB

, we have 0 < αbB
βbB

(µH − µ1) − µ1 (1− µH) <
αgB
βgB

(µH − µ1) − µ1 (1− µH),

so it is most efficient to decrease VbB then decrease VgB.

If decreasing VbB is enough, that is, if δβGV̄2+δβgBV 2 ≥ γ, then the principal decreases
VbB such that IC holds with equality: δβGV̄2 + δβgBV 2 + δβbBVbB = γ. Otherwise,
she sets VbB = 0 and decreases VgB such that IC is satisfied with equality: δβGV̄2 +
δβgBVgB = γ. Since VgB = 0 satisfies IC by assumption, there exists VgB ∈ [0, V 2] to
satisfy IC for sure.

In total, we have VbG = VgG = V̄2, and largest VgB ∈ [0, V 2] and VbB ∈ [0, V 2] to satisfy
IC γ ≤ δ

∑
ω βωVω. Moreover, VgB < V 2 only if VbB = 0. The principal’s payoff is

J1 (µ1) = (αB + µ1βB) (−C) + δ
∑

ω∈{bG,gG}

(αω + µ1βω)J∗2 (µω)

+ δ
∑

ω∈{bB,gB}

(αω + µ1βω)

(
V 2 − Vω
V 2

J∗2 (µH) +
Vω
V 2

J∗2 (µω)

)
= (αB + µ1βB) (−C) + δαB (−C) + δµ1βB (−C)

−
∑

ω∈{bB,gB}

δβω (V 2 − Vω)

V 2

(
αω
βω

(µH − µ1)− µ1 (1− µH)

)
βBC. (99)

2. µbB < µH < µgB < µgG < µbG: In this case, the principal would like to set VgG =
VbG = V̄2, VgB = V 2, and VbB = 0. This satisfies IC if and only if δβGV̄2 + δβgBV 2 ≥ γ.

If this condition is not satisfied, then the principal either increases VgG or VbG, or
decreases VgB. As in Case 1, it is optimal to decrease VgB instead of increasing VgG or
VbG. Hence, the optimal continuation payoff will be: VgG = VbG = V̄2, VbB = 0, and
VgB ≥ 0 solves IC with equality: δβGV̄2 + δβgBVgB = γ.

Hence, we have VbG = VgG = V̄2, VbB = 0, and largest VgB ∈ [0, V 2] to satisfy IC
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γ ≤ δ
∑

ω βωVω. The principal’s payoff is

J1 (µ1) = (αB + µ1βB) (−C) + δαB(αG + µ1βG) (−C) + δβBµ1(αG + βG) (−C)

+ δαB(αgB + µ1βgB) (−C) + δβBµ1(αgB + βgB) (−C)

+ δ(αbB + µ1βbB) (αB + µHβB) (−C)

− δβgB (V 2 − Vω)

V 2

(
αgB
βgB

(µH − µ1)− µ1 (1− µH)

)
βBC. (100)

3. µbB < µgB < µH < µgG < µbG: In this case, the principal would like to set VgG =
VbG = V̄2, VgB = VbB = 0. This satisfies IC by assumption. The principal’s payoff is

J1 (µ1) = (αB + µ1βB) (−C) + δαB(αG + µ1βG) (−C) + δβBµ1(αG + βG) (−C)

+ δ(αB + µ1βB) (αB + µHβB) (−C) . (101)

4. µbB < µgB < µgG < µH < µbG: In this case, the principal would like to set VbG = V̄2,
VgG = VgB = VbB = 0. This satisfies IC if and only if δβbGV̄2 ≥ γ.

Otherwise, the principal has to either increase VbG or increase VgG. On the one hand,
the marginal payoff of increasing VgG by 1

δβgG
units on δ

∑
ω(αω + µ1βω)J2 (µω, Vω) is,

if µgG > µ, then

1

βgG
(αgG + µ1βgG)

J∗2 (µgG)− J∗2 (µH)

V̄2

=
1

V̄2

(
αgG
βgG

(µH − µ1)− µ1 (1− µH)

)
βBC, (102)

and if µgG < µ, then

µ1

(
αgG
βgG

+ 1

)
βBC

1 + δ
. (103)

By definition of µ, the cost of increasing VgG is no more than

1

V̄2

(
αgG
βgG

(µH − µ1)− µ1 (1− µH)

)
βBC. (104)

On the other hand, the marginal payoff to increase VbG by 1
δβbG

is

µ1
βBC

1 + δ − V̄2

. (105)

Since 1+δ− V̄2 ≤ δ, V̄2 ≥ 1, and
αgG
βgG

(µH − µ1)−µ1 (1− µH) ∈ [0, µ1] given µgG ≤ µH ,

it is optimal to increase VgG such that IC holds with equality. Hence, the optimal
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continuation payoff will be: VbG = V̄2, VgB = VbB = 0, and smallest VgG ≥ 0 to satisfy
δβbGV̄2 + δβgGVgG ≥ γ. The principal’s payoff is

J1 (µ1) = (αB + µ1βB) (−C)

+ δαB(αbG + µ1βbG) (−C) + δβBµ1(αbG + βbG) (−C)

+ δ(αgG + µ1βgG) (αB + µHβB) (−C)

+ δ(αB + µ1βB) (αB + µHβB) (−C)

+
δβgGVgG
V̄2

(
αgG
βgG

(µH − µ1)− µ1 (1− µH)

)
βBC. (106)

Suppose next that ι = 1 is optimal. Let ω∗ ∈ {b, gB} and ω∗∗ ∈ {b, gB} such that
µω∗ < µω∗∗ . There are following four possible cases:

1. µH < µω∗ < µω∗∗ < µgG: In this case, the principal would like to set VgG = V̄2,
VgB = Vb = V 2. This satisfies IC if and only if

δβgGV̄2 + δ (βgB + βb)V 2 ≥ γ. (107)

If this condition is not satisfied, then the principal either increases VgG, or decreases
Vb or VgB. On the one hand, the marginal payoff of increasing VgG by 1

δβgG
is

µ1

(
αgG
βgG

+ 1

)
βBC

1 + δ − V̄2

. (108)

On the other hand, for ω ∈ {b, gB}, the cost to change Vω by 1
δβω

is

1

βω
(αω + µ1βω)

J∗2 (µω)− J∗2 (µH)

V 2

=
1

V 2

(
αω
βω

(µH − µ1)− µ1 (1− µH)

)
βBC. (109)

Since 1 + δ − V̄2 < δ < V 2 and αω
βω

(µH − µ1) − µ1 (1− µH) ∈ [0, µ1], it is optimal to
decrease VgB or Vb instead of increasing VgG. Moreover, the marginal payoff of changing
Vω∗ by 1

δβω∗
is higher. Hence, the optimal continuation payoff will be: VgG = V̄2,

Vω∗ ∈ [0, V 2], and Vω∗∗ = V 2 if there exists Vω∗ ∈ [0, V 2] to solve IC with equality:
δβgGV̄2 + δβω∗∗V 2 + δβω∗Vω∗ = γ. Otherwise, VgG = V̄2, Vω∗ = 0, and Vω∗∗ ∈ [0, V 2],
where Vω∗∗ ∈ [0, V 2] solves IC with equality: δβgGV̄2 + δβω∗∗Vω∗∗ = γ.

The calculation of the principal’s payoff is the same as in the case with ι = 0, so it is
omitted.

2. µω∗ < µH < µω∗∗ < µgG: In this case, the principal would like to set VgG = V̄2,
Vω∗∗ = V 2, and Vω∗ = 0. If this is not enough, then by the same calculation as Case 1,
it is more efficient to decrease Vω∗∗ . Hence we take Vω∗∗ ∈ [0, V 2] to solve IC when it
holds with equality:

δβgGV̄2 + δβω∗∗Vω∗∗ = γ. (110)
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3. µω∗ < µω∗∗ < µH < µgG: In this case, the principal would like to set VgG = V̄2 and
Vω∗∗ = Vω∗ = 0. By definition, this continuation payoff satisfies IC.

4. µω∗ < µω∗∗ < µgG < µH : As in Case 4 for ι = 0, the principal sets VgG ∈ [0, 1 + δ] and
Vω∗∗ = Vω∗ = 0, where VgG solves IC with equality: δβgGVgG = γ.

2.3 Proof of Proposition 4

Discount Factor δ: Let J1(ι, δ) be the principal’s payoff given e = 1, ι ∈ {0, 1}, and
δ ∈ [0, 1], keeping all the other parameters fixed. We show that the marginal benefit of no
intervention is increasing in δ ∈ [0, 1]:

d

dδ
(J1(0, δ)− J1(1, δ)) ≥ 0. (111)

Note that the following variables are independent of δ: J∗2 (·), V 2, and 1 + δ − V̄2. Given
e = 1, let ω(ι) be the outcome ω such that Vω changes as we change δ, and let w(ι, δ) :=
δ
∑

ω̃ 6=ω(ι) βω̃Vω̃(ι) be the expected sum of the other continuation payoffs. Note that ω(ι) is
non-empty if and only if IC is binding.

Suppose that it is not the case that ω(ι) = gG and µgG < µ. Note that δβω(ι)Vω(ι)(ι) +

w(ι, δ) = γ if IC is binding, and so d
dδ

(
δβω(ι)Vω(ι)(ι)

)
= −

∑
ω̃ 6=ω(ι) βω̃Vω̃(ι). As seen in Ap-

pendix B.2, the marginal effect of changing Vω(ι)(ι) by 1/(δβω(ι)) unit (or changing δβω(ι)Vω(ι)

by one unit) is independent of δ. Hence, there exists mcω(ι)(ι) ≥ 0 such that the marginal
effect of increasing δ is given by

d

dδ
J1(ι, δ) = mcω(ι)(ι) + J2(ι, δ), (112)

where J2(ι, δ) is the expected continuation payoff from period 2. In particular, mcω(ι)(ι)
corresponds to the absolute value of the marginal payoff of increasing δβω(i)Vω(ι) by one unit,
multiplied by

∑
ω̃ 6=ω(ι) βω̃Vω̃(ι) (the change in δβω(ι)Vω(ι)(ι) when we change δ).

Since J2 is piecewise linear and no intervention guarantees the higher continuation payoff
for the principal, the benefit in terms of continuation payoff from no intervention is larger
than the cost that the principal has to pay in state ω(ι):

mcω(1)(1)−mcω(0)(0) ≤ J2(0, δ)− J2(1, δ). (113)

Hence, we have the desired inequality (111).
Next, suppose µgG < µ < µH . If ω(1) = ∅ (IC is not binding for intervention), then we

have ω(0) = ∅ since no intervention allows the principal to monitor the effort more precisely.
Hence, (111) holds.
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If ω(0) = ω(1) = gG, then for ι = 0, we have w(ι, δ) = 0 and δβgGVgG is fixed at
γ − δβbGV̄2. The expected continuation payoff from VgG, δ (αgG + µ1βgG) J2 (µgG, VgG), is

δ (αgG + µ1βgG)

(
1 + δ − VgG

1 + δ
J∗(µH)− VgG

1 + δ
αBC

)
= δ (αgG + µ1βgG) (αB + µHβB) (−C)− 1

1 + δ

γ

βgG
(αgG + µ1βgG)µHβB (−C)

+
δ

1 + δ

βbGV̄2

βgG
(αgG + µ1βgG)µHβB (−C) . (114)

For ι = 1, in contrast, δβgGVgG is fixed at γ. The expected continuation payoff from VgG,
δ(αgG + µ1βgG)J2(µgG, VgG), is

δ (αgG + µ1βgG)

(
1 + δ − VgG

1 + δ
J∗(µH)− VgG

1 + δ
αBC

)
= δ (αgG + µ1βgG) (αB + µHβB) (−C)− 1

1 + δ

γ

βgG
(αgG + µ1βgG)µHβB (−C) , (115)

since δ (αω + µ1βω) J2 (µω, Vω) = δJ2(µH) for each ω 6= gG. Direct calculation implies (111).
The proof for ω(0) = ∅ and ω(1) = gG is analogous.

Cost of Effort γ: Let J1(ι, γ) be the principal’s payoff given e = 1, ι ∈ {0, 1}, and γ,
keeping all the other parameters fixed. There exists a set of parameters such that

d

dγ
(J1(0, γ)− J1(1, γ)) (116)

is negative for some γ while it is positive for others.
For example, suppose that, with ι = 0, µH < µbB < µgB < µgG < µbG, and VgB = V 2 and

VbB ∈ (0, V 2) to satisfy IC:

δ (βbG + βgG) V̄2 + δβgBV 2 + δβbBVbB = γ. (117)

At the same time, assume that, with ι = 1, µH < µb < µgB < µgG, and VgB = V 2 and
Vb ∈ (0, V 2) to satisfy IC:

δβgGV̄2 + δβgBV 2 + δβbVb = γ. (118)

Since d
dγ
V̄2 = −1−αG

βG
, βbG > 0, βb < 0, and βbB < 0, given (117) and (118), we have

d
dγ
βbBVbB > d

dγ
βbVb. Since µH < µbB, µb, increasing βbBVbB and βbVb (decreasing VbB

and Vb) is costly. In particular, depending on the relative values of d
dγ
βbBVbB, d

dγ
βbVb,

d
dVbB

(αbB + βbB) δJ2 (µbB, VbB), and d
dVb

(αb + βb) δJ2 (µb, Vb),
d
dγ

(J1(0, γ)− J1(1, γ)) can be
negative or positive. A specific numerical example is available upon request.
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2.4 Proof of Proposition 5

For ι = 0, since the instantaneous payoff − (αB + βB)C stays the same, we focus on the
continuation payoff. Except for Case 4 of Appendix B.2, the continuation payoff is constant
given βB and βG being fixed.

In Case 4, VbG = V̄2, VgB = VbB = 0, and we set VgG ∈
[
0, V̄2

]
as the smallest value

to satisfy IC: δβbGV̄2 + δβgGVgG = γ. Hence, the marginal effect of increasing βbG (and
decreasing βgG) on δβgGVgG is −δV̄2. The marginal effect of increasing βbG (and decreasing
βgG) on the principal’s payoff is, given the result of Appendix B.2,

δαBµ1 (−C) + δβBµ1 (−C)− δµ1 (αB + µHβB) (−C)

+
−δV̄2

V̄2

(
αgG
βgG

(µH − µ1)− µ1 (1− µH)

)
βBC

+
δβgGVgG
V̄2

αgG

(βgG)2 (µH − µ1) βBC

= δ
αgG
βgG

(µH − µ1) (−βB)C

(
1− VgG

V̄2

)
. (119)

Since µgG < µH implies µH − µ1 > 0 and we have VgG < V̄2, the marginal payoff is positive.
For ι = 1, the instantaneous payoff− (αb + βb) l−(αbB+βbB)C decreases since βb increases

while other variables stay the same. In addition, the continuation payoff decreases as well.
Since the verification is analogous in all the four cases listed in Appendix B.2, here, we focus
on Case 1: µH < µb, µgB < µgG. Recall that VgG = V̄2, and we take the largest VgB ∈ [0, V 2]
and Vb ∈ [0, V 2] to satisfy IC: δβgGV̄2 + δβgBVgB + δβbVb ≥ γ. Hence, δβgBVgB and δβbVb
increase as βgG decreases: dδβωVω

dβbG
− dδβωVω

dβgG
≥ 0. Given the result of Appendix B.2, the total

effect on the continuation payoff is

∑
ω∈{b,gB}

(
dδβωVω
dβbG

− dδβωVω
dβgG

)
︸ ︷︷ ︸

(+)

1

V 2

(
αω
βω

(µH − µ1)− µ1 (1− µH)

)
︸ ︷︷ ︸

(+)

βBC

+
δ (V 2 − Vb)

V 2

αb
βb

(µH − µ1)︸ ︷︷ ︸
(+) given µ1>µH and βb<0

βBC < 0. (120)

2.5 Proof of Proposition 6

Promised Value V1: Suppose µ1 = µH , and γ > δβbG, that is, keeping the agent only after
ω = bG for one period is not sufficient to incentivize the effort. Given this assumption, since
αgG > 0, to implement e = 1, the H-type agent obtains the payoff more than one (that is,
the principal has to pay the rent to the agent). Hence, with V1 = 1, the principal has to
implement e = 0. So, optimal ι is 1. Similarly, with V1 = 1 + δ + δ2, the principal has to
retire the agent, so e = 0 and intervention is optimal.
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On the other hand, suppose V1 ∈ [1, 1 + δ + δ2] is such that (PK) is not binding. Then,
the results in Appendix B.2 implies that e = 1 and ι = 0 are optimal for sufficiently small
βbB.

Initial Belief µ1: We consider non-binding (PK), and let J1(µ1, ι) be the principal’s
payoff given e = 1, ι ∈ {0, 1}, and µ1 ∈ [0, 1], keeping all the other parameters fixed. Suppose
the µ1 is sufficiently small such that µgG < µH . In addition, the reward V̄2 after ω = bG is
sufficient to satisfy IC with VgG = VgB = VbB = 0. Then, d

dµ
J1 (µ, 0) is equal to

βB (−C) + δαBβbG) (−C) + δβB(αbG + βbG) (−C)

+ δβgG (αB + µHβB) (−C) + δβB (αB + µHβB) (−C) , (121)

while d
dµ
J1 (µ, 1) is equal to

βb (−l) + βgB (−C) + δβgG (αB + µHβB) (−C)

+ δ (βgB + βb) (αB + µHβB) (−C) +
γ

V̄2

(
αgG
βgG

(−1)− (1− µH)

)
βBC. (122)

Hence,

d

dµ
J1 (µ, 0)− d

dµ
J1 (µ, 1)

= βbGl − βbB (C − l) + δ |βB|C
(
βbG (1− µH)− γ

V̄2

(
αgG
βgG

+ (1− µH)

))
. (123)

At the limit where δ → 1 and
∣∣δβbGV̄2 − γ

∣∣→ 0, this value is

βbG

(
l − αgG

βgG
|βB|C

)
− βbB (C − l) . (124)

This can be positive or negative, depending on the parameters. Hence, for sufficiently large
δ and small

∣∣δβbGV̄2 − γ
∣∣, the sign of d

dµ
J1 (µ, 0)− d

dµ
J1 (µ, 1) is not determined.
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