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A A microeconomic interpretation of the model

Here we provide an interpretation of our model in a familiar microeconomic setting. Con-

sider a competitive firm that produces a quantity qt of product at time n, and faces linear

marginal costs of production C ′(q) = c0 + c1q. The firm faces uncertain prices (pt)t≥0 in

the future, and quadratic adjustment costs k(qt − qt−1)2. These costs are a reduced form

representation of costs sustained due to rejigging operations at the intensive and extensive

margins. Small changes in production are handled at the intensive margin, and are thus

cheap – current employees work longer/shorter hours, installed capital is used more/less

intensively, and orders from existing suppliers are tweaked to meet small fluctuations in

demand. However, large changes in production require extensive margin changes – large

numbers of new employees must be hired/fired, new machinery must be bought or rented,

and new suppliers found and terms negotiated. The form of our adjustment costs amounts

to assuming that extensive margin adjustments are cheaper if done in a planned sequence

of steps, rather than in an abrupt transition. There are several reasons why this might be.

With early warning the firm could find creative ways of adapting its existing resources to

new market conditions. Early warning may also place the firm in a stronger negotiating

position with respect to employment and supply contracts (because of the lack of urgency),

and could reduce the opportunity costs associated with under/over capacity. Quadratic

adjustment costs are an analytically convenient reduced form way of representing these

inertial forces on adjustment.

Since the firm takes prices pt as given, its instantaneous profit function can be written

as:

Πt = ptqt − (c0qt +
1

2
c1q

2
t )− k(qt − qt−1)2

= −c1

2
(qt − θt)2 − k(qt − qt−1)2 +Mt

where θt = (pt − c0)/c1, and Mt is a decision irrelevant constant, which may be neglected

when computing the value of information about the sequence of values (θt)t≥0. Thus the

firm’s profit function is of the form (2), up to an irrelevant factor of c1.
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B Proof of Proposition 1

We use the Bellman equation (10) to solve for the optimal policy function Xn+1 =

π(Xn, Y n). When referring to functions and operations on functions, we will adopt a

notation in which primed variables denote next period quantities, and unprimed variables

denote current period quantities, i.e., W = W (X ′, X, Y ) and V = V (X, Y ). So ∂W
∂X′ , for

example, refers to the function whose value is the partial derivative of W with respect to

its first argument, i.e., the next period value of X. When we evaluate functions and their

derivatives at specific times, we will still use e.g. Xn, Xn+1 to denote function arguments.

Thus ∂W
∂X′ (X

n+1, Xn, Y n) is the partial derivative of W with respect to its first argument,

evaluated at (Xn+1, Xn, Y n). With this notation, the first order condition for Xn+1 is

∂W

∂X ′
(π(Xn, Y n), Xn, Y n) + β

∫
R∞

∂V

∂X
(π(Xn, Y n), F (Y n, Sn))Q(Sn;Y n)dSn = 0. (A.1)

By the envelope theorem,

∂V

∂X
(Xn, Y n) =

∂W

∂X
(π(Xn, Y n), Xn, Y n). (A.2)

From (2), and (A.2) evaluated at time n+ 1, we have

∂W

∂X ′
(π(Xn, Y n), Xn, Y n) = µ0 + αXn − (1 + α)π(Xn, Y n)

∂V

∂X
(π(Xn, Y n), F (Y n, Sn)) =

∂W

∂X
(π(π(Xn, Y n), F (Y n, Sn)), π(Xn, Y n), F (Yn, S

n))

= α(X ′ −X)|X′=π(π(Xn,Y n),F (Y n,Sn)),X=π(Xn,Y n)

= α(π(π(Xn, Y n), F (Y n, Sn))− π(Xn, Y n)).

Substituting into (A.1), we find that the policy rule must satisfy

µn0 +αXn−(1+α)π(Xn, Y n)+β

∫
R∞

[α(π(π(Xn, Y n), F (Y n, Sn))− π(Xn, Y n))]Q(Sn;Y n)dSn = 0.

(A.3)

We solve this equation by the ‘guess and verify’ method. The certainty equivalence property

of the quadratic control problem suggests that we should look for a control rule of the form

π(X, Y ) = aX +
∞∑
t=0

btµt
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where the coefficients (a, (bt)t≥0) are to be determined. Plugging this guess into (A.3), and

now suppressing the index n, we find:

[µ0 + αX − (1 + α)(aX +
∞∑
t=0

btµt)]+

βα

[∫
R∞

(
a(aX +

∞∑
t=0

btµt) +
∞∑
t=0

btµ
′
t(st+1)− (aX +

∞∑
t=0

btµt)

)
Q(S, Y )dS

]
= 0

where µ′t(st+1) is the next period value of µt conditional on receiving a signal st+1, given

by (5). Since Estµ
′
t(st+1) = µt+1, we can simplify this to:

µ0 + αX − (1 + α)(aX +
∞∑
t=0

btµt)+

β[αa2X + aα
∞∑
t=0

btµt + α
∞∑
t=0

btµt+1 − aαX − α
∑
t

btµt] = 0.

Since this equation must hold for all values of X,µt, we must equate the coefficients of

each state variable to zero. The equation for the coefficient of X is:

αβa2 − (1 + α(1 + β))a+ α = 0 (A.4)

⇒a =
1 + α(1 + β)±

√
(1 + α(1 + β))2 − 4α2β

2αβ
(A.5)

To pick the correct root, note that if α→ 0, the policy rule should reduce to

π(X, Y ) = µ0.

This follows since when adjustment is costless, the optimal policy simply maximizes period

payoffs. For the positive root we have

lim
α→0

a(α)→∞,

thus giving incorrect behaviour. By contrast, we show below that the correct behaviour is

obtained if we select the negative root. Thus we conclude that

a = a(α, β) =
1 + α(1 + β)−

√
(1 + α(1 + β))2 − 4α2β

2αβ
(A.6)
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The equation for b0 is:

1− (1 + α)b0 + aβαb0 − αβb0 = 0

⇒b0 =
1

1 + α + αβ(1− a)
. (A.7)

For t ≥ 1, the equation for bt is:

− (1 + α)bt + aβαbt + αβbt−1 − αβbt = 0

⇒bt =
αβ

1 + α + αβ(1− a)
bt−1.

Thus for all t ≥ 0,

bt =
1

1 + α + αβ(1− a)

[
αβ

1 + α + αβ(1− a)

]t
(A.8)

We can simplify this further by using the equation for a in (A.4). Define

Λ ≡ 1 + α + αβ(1− a) (A.9)

From (A.4) we have

(αβ)a2 − (1 + α(1 + β))a+ α = 0

Now

1 + α(1 + β) = Λ + αβa

⇒ (αβ)a2 − (Λ + αβa)a+ α = 0

⇒ Λ =
α

a
.

Thus

bt =
a

α
(aβ)t . (A.10)

We now prove the properties of the coefficients a, bt, stated below the proposition:

1. limα→0 a(α, β) = 0

Use l’Hopital’s rule: differentiate the numerator and denominator of a with respect
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to α, and evaluate the limit of each as α→ 0:

lim
α→0

a(α, β) =
1 + β − 1

2×1
(2× 1× (1 + β)− 0)

2β

= 0.

2. limα→∞ a(α, β) = 1:

lim
α→∞

a(α, β) =
1 + β

2β
− 1− β

2β

= 1.

3. ∂a
∂α
> 0.

From (A.6) we have

∂a

∂α
= −1

2

−αβ +
√
α2(1− β)2 + 2α(1 + β) + 1− α− 1

α2β
√
α2(1− β)2 + 2α(1 + β) + 1

. (A.11)

Hence, ∂a
∂α
> 0 iff

− αβ +
√
α2(1− β)2 + 2α(1 + β) + 1− α− 1 < 0

⇐⇒
√
α2(1− β)2 + 2α(1 + β) + 1 < 1 + α + αβ

⇐⇒ α2(1− β)2 + 2α(1 + β) + 1 < α2(1 + β)2 + 2α(1 + β) + 1

which is obviously satisfied for all α > 0, β ∈ (0, 1).

4. a+
∑∞

t=0 bt = 1.

From the previous calculations we know that a ∈ [0, 1]⇒ aβ ∈ [0, 1]. It follows from

(A.10) that

a+
∞∑
t=0

bt − 1 = a+
a

α

1

1− aβ
− 1

=
−αβa2 + a(1 + α(1 + β))− α

α(1− aβ)

= 0
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where the last equality follows from the defining equation for a in (A.4).

5. ∂
∂α

(bt+1/bt) > 0, ∂b0
∂α

< 0.

Since a +
∑∞

t=0 bt = 1, and a is increasing in α, we know that
∑∞

t=0 bt must be

decreasing in α. From (A.10) we see that

bt+1

bt
= aβ

and hence this ratio is increasing in α. Since bt declines more slowly as α increases,

it must be the case that ∂b0
∂α

< 0 in order to ensure that
∑∞

t=0 bt is decreasing in α.

C Illustration of the dependence of optimal policies

on adjustment costs α.

To illustrate how the adjustment cost parameter α affects decisions quantitatively, consider

a deterministic version of the model in which the values θ̃n are chosen be a fixed sequence of

draws from an arbitrary univariate random variable with finite variance σ2. When α = 0,

optimal decisions coincide with the current value of θ̃n, i.e., Xn = µn0 = θ̃n for all n. As

α increases, adjustment becomes more costly, and the values of Xn fluctuate less than θ̃n

itself. Using the formula (11) and some simple ergodic arguments one can show that

lim
n→∞

Var(Xn, Xn+1, . . .) =

∑∞
t=0 b

2
t

1− a2
σ2

=

[( a
α

)2 1

(1− a2)(1− a2β2)

]
σ2

for arbitrary initial condition X0. Figure F.1 plots the asymptotic variance of the sequence

of decisions as a function of α for several β. The figure illustrates how α controls the

magnitude of the adjustments the decision-maker makes to adapt to fluctuations in a

stationary environment. For a wide range of β, α > 1.5 implies that the decision maker

adjusts to less than 20% of the variability in θ̃, and α > 3 implies adjustment to less than

10% of the variability. In addition, changes in α have a greater effect on behaviour when

α is small (e.g. α < 1) than when it is large.
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Figure F.1: Asymptotic variability of the decision variable X relative to the variability of
the loss-minimizing decisions θ̃, assuming that the values of θ̃n are deterministic and given
by a fixed sequence of draws from a random variable with variance σ2.

D Proof of Proposition 2

As in the derivation of the optimal policy function, we use the ‘guess and verify’ method.

Begin by guessing that the value function has the form

V (X, Y ) = kX2 +
∞∑
t=0

ctµtX +
∞∑
t=0

∞∑
p=t+1

Dt,pµtµp +
∞∑
t=0

dtµ
2
t +

∞∑
t=0

∞∑
i=0

fi,t
λt + hi,t

. (A.12)

All except the last term of this expression are straightforward to guess simply by inspection

of the formula for the period payoff in (2). The last term will however be the most

important, as it will turn out that this is the only term that depends on the precision

sequence ~τ = (τt)t≥1.

Consider the quadratic terms in this guess of the form µtµp. We are going to need to

know how these will transform under the updating rule (5) and after the expectation over

signal realizations has been applied. Letting a prime denote the next period value of a
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variable, we are interested in computing expectations of the form

ESµ
′
tµ
′
p = Est+1,sp+1µ

′
t(st+1)µ′p(sp+1)

where signals are distributed according to the agents’ current posterior predictive distri-

bution, given by (7). Recall that

µ′t(st+1) =
τt+1

τt+1 + λt+1

st+1 +
λt+1

τt+1 + λt+1

µt+1

When t 6= p, we can immediately write down the answer, as means are martingales, and

signals are independent:

Est+1,sp+1µ
′
t(st+1)µ′p(sp+1) = µt+1µp+1

For t = p however, things are different:

Est+1µ
′
t(st+1)µ′t(st+1) = Est+1

[
τt+1

τt+1 + λt+1

st+1 +
λt+1

τt+1 + λt+1

µt+1

]2

Consider the quadratic term in st+1 in this expression:

Est+1

(
τt+1

τt+1 + λt+1

)2

s2
t+1 =

(
τt+1

τt+1 + λt+1

)2

[Var(st+1) + µ2
t+1]

=

(
τt+1

τt+1 + λt+1

)2

[
λt+1 + τt+1

λt+1τt+1

+ µ2
t+1]

=
τt+1

λt+1(λt+1 + τt+1)
+

(
τt+1

τt+1 + λt+1

)2

µ2
t+1

When we combine this expression with the other terms in the expression for Est+1µ
′
t(st+1)µ′t(st+1),

the factor in front of µ2
t+1 in the second term will cancel to 1 (as occurs in the case t 6= p),

and we are left with

Est+1µ
′
t(st+1)µ′t(st+1) =

τt+1

λt+1(λt+1 + τt+1)
+ µ2

t+1. (A.13)

Hence, in summary:

Est+1,sp+1µ
′
t(st+1)µ′p(sp+1) =

{
µt+1µp+1 t 6= p
τt+1

λt+1(λt+1+τt+1)
+ µ2

t+1 t = p.
(A.14)
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It will be more convenient in what follows to write the terms that depend on λt+1 is this

expression as
τt+1

λt+1(λt+1 + τt+1)
=

1

λt+1

− 1

λt+1 + τt+1

. (A.15)

We now want to write down the Bellman equation for our assumed functional form for the

value function. The first step is to compute the period payoff:

W (π(X, Y ), X, Y ) = −1

2

[
(1 + α)[π(X, Y )]2 + αX2 − 2π(X, Y )(µ0 + αX) +

1

λ0

+ (µ0)2

]
= −1

2

[
(1 + α)(aX +

∞∑
t=0

btµt)
2 + αX2 − 2(aX +

∞∑
t=0

btµt)(µ0 + αX) +
1

λ0

+ (µ0)2

]

= −1

2

[
(1 + α)(a2X2 + 2aX

∞∑
t=0

btµt +
∞∑
t=0

∞∑
p=t+1

2btbpµtµp +
∞∑
t=0

b2
tµ

2
t ) + αX2

−2aXµ0 − 2aαX2 − 2µ0

∞∑
t=0

btµt − 2αX
∞∑
t=0

btµt + (µ0)2 +
1

λ0

]

We also have

ESV (π(X, Y ), F (Y, S)) = ES

[
k(π(X, Y ))2 +

∞∑
t=0

ctµ
′
t(st+1)π(X, Y ) +

∞∑
t=0

∞∑
p=t+1

Dt,pµ
′
t(st+1)µ′p(sp+1)

+
∞∑
t=0

dt(µ
′
t(st+1))2 +

∞∑
i=0

∞∑
t=0

fi,t
λ′t + hi,t

]

= k[aX +
∑
t

btµt]
2 +

∞∑
t=0

ctµt+1[aX +
∞∑
p=0

bpµp] +
∞∑
t=0

∞∑
p=t+1

Dt,pµt+1µp+1

+
∞∑
t=0

dt(µt+1)2 +
∞∑
t=0

dt

[
1

λt+1

− 1

λt+1 + τt+1

]
+
∞∑
i=0

∞∑
t=0

fi,t
λt+1 + τt+1 + hi,t

We now have expressions for each of the three terms V (X, Y ),W (π(X, Y ), X, Y ),ESV (π(X, Y ), F (Y, S)),

and must choose the free coefficients of the value function so that

V (X, Y ) = W (π(X, Y ), X, Y ) + βESV (π(X, Y ), F (Y, S))

holds as an identity. We begin by focussing on the terms that depend on λt. If we focus
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just on these terms, the Bellman equation reads

∞∑
i=0

∞∑
t=0

fi,t
λt + hi,t

= −1

2

1

λ0

+ β

(
∞∑
t=0

dt

[
1

λt+1

− 1

λt+1 + τt+1

]
+
∞∑
i=0

∞∑
t=0

fi,t
λt+1 + τt+1 + hi,t

)
(A.16)

We must determine values for the sequences fi,t, hi,t such that this equation holds as an

identity. Since the right hand side of this equation contains terms of the form 1/λt for all

t, we must have terms of this form on the left hand side as well. We thus begin by choosing

h0,t = 0

for all t ≥ 0. Then if (A.16) is to hold as an identity for all λt, τt we require

f0,0 = −1

2
(A.17)

f0,t = βdt−1 for t ≥ 1. (A.18)

Notice that setting h0,t = 0 creates an imbalance of terms of the form

∞∑
t=0

f0,t

λt+1 + τt+1

on the right hand side of the Bellman equation through the last term in (A.16). To correct

this imbalance through terms on the left hand side, we must choose

h1,t = τt

implying in turn that we must choose

f1,0 = 0

f1,t = β[−dt−1 + f0,t−1] for t ≥ 1.

Again we create an imbalance of terms on the right hand side, which we correct by picking

h2,t = τt + h1,t−1 = τt + τt−1
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and we find that

f2,0 = 0

f2,t = βf1,t−1.

We can complete this imbalance/rebalance procedure indefinitely to solve for all the coef-

ficients fi,t, hi,t. We find:

h0,t = 0; hi,t = τt + hi−1,t−1 i ≥ 1 (A.19)

f0,0 = −1

2
; f0,t = βdt−1 t ≥ 1 (A.20)

f1,0 = 0; f1,t = β[−dt−1 + f0,t−1] t ≥ 1 (A.21)

fi,0 = 0; fi,t = βfi−1,t−1. n ≥ 2, t ≥ 1. (A.22)

It is straightforward to solve the set of recurrence relations for fi,t. It is convenient to write

the solution as an infinite dimensional matrix:

f =



−1
2

βd0 βd1 βd2 βd3 . . .

0 −β(d0 + 1
2
) β(βd0 − d1) β(βd1 − d2) β(βd2 − d3) . . .

0 0 −β2(d0 + 1
2
) β2(βd0 − d1) β2(βd1 − d2) . . .

0 0 0 −β3(d0 + 1
2
) β3(βd0 − d1) . . .

...
...

...
...

... . . .


(A.23)

The i, t entry of this matrix corresponds to fi−1,t−1, i.e., the rows correspond to fixed values

of i, and the columns to fixed values of t, both starting at zero.1

Clearly fi,t = 0 for any i > t. Thus the only parameters hi,t that are relevant have

1Notice that
∑∞
i=0 fi,t = − 1

2β
t. To understand this suppose that τt = 0 for all t, i.e., the agent receives

no forecasts. Then her beliefs will not change over time, and the variance of her beliefs about θ̃n+t will
be the same once time n + t rolls around as they are in the current period n. The contribution of the
variance terms to the value function in this case is thus straightforward to compute, since variance terms
only enter the period payoff through the term − 1

2λ0. Thus, when τt = 0, we should expect the following
term in the value function: − 1

2

∑∞
t=0 β

t 1
λt

. Now when τt = 0 for all t, we have

∞∑
i=0

∞∑
t=0

fi,t
λt + hi,t

=

∞∑
t=0

∑∞
i=0 fi,t
λt

= −1

2

∞∑
t=0

βt
1

λt

as expected.
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0 ≤ i ≤ t. It is straightforward to solve the recurrence relation (A.19) to find

h0,t = 0

hi,t =
t∑

k=t+1−i

τk, 1 ≤ i ≤ t

The matrix f makes it clear that we will need to understand the parameters dt if we

are to solve for fi,t. We can find these parameters by solving the µ2
t terms of the Bellman

equation. Define

δi,j =

{
1 i = j

0 i 6= j
(A.24)

Then the Bellman equation for the µ2
t terms yields

dt = −1

2
[(α + 1)(bt)

2 + (1− 2b0)δt,0] + β(k(bt)
2 + ct−1bt(1− δt,0) + dt−1(1− δt,0)

=

(
kβ − 1

2
(α + 1)

)
(bt)

2 − 1

2
(1− 2b0)δt,0 + βct−1bt + βdt−1 (A.25)

where d−1 ≡ 0 ≡ c−1. This equation in turn depends on the coefficients of X2 and µtX,

i.e., k and ct. The X2 terms of the Bellman equation give:

k = −1

2
((1 + α)a2 + α− 2aα) + β(ka2)

⇒ k = −1

2

(
(1 + α)a2 + α− 2aα

1− βa2

)
, (A.26)

which is a known quantity. As a check, another way to compute k is to use the envelope

theorem result:

∂V

∂X
= α(π(X, Y )−X)

= α((a− 1)X +
∑
t

btµt)

Integrating this, we should find that

k = α
a− 1

2
.

Using (A.4) it can be shown that these two formulae for k agree, and we thus use the
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second, simpler, expression.

Equating coefficients of the µtX terms in the Bellman equation gives:

ct = −1

2
((1 + α)2abt − 2aδt,0 − 2αbt) + β(2kabt + act−1(1− δt,0))

= (α− a(1 + α) + 2βka)bt + aδt,0 + aβct−1

Consider the factor in front of bt in this expression. Substituting k = α
2
(a − 1) into this

factor we see that it is equal to

αβa2 − a(1 + α(1 + β)) + α

But from the definition of a in (A.4) this expression is identically zero. Thus ct satisfies

ct = aδt,0 + aβct−1

where c−1 = 0. Thus, we conclude that

ct = a(aβ)t (A.27)

for all t ≥ 0.

Equation (A.25) thus becomes:

dt =

(
αβ

a− 1

2
− 1

2
(α + 1)

)
b2
t +

(
b0 −

1

2

)
δt,0 + (aβ)tbt + βdt−1

= −1

2
(1 + α + αβ(1− a))b2

t + (aβ)tbt + (b0 −
1

2
)δt,0 + βdt−1

From (A.8) and the definition of Λ in (A.9) we have

bt =
1

Λ

(
αβ

Λ

)t
.
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Thus

d0 = −Λ

2
b2

0 + b0 −
1

2

= −Λ

2
(

1

Λ
)2 +

1

Λ
− 1

2

=
1

2
(

1

Λ
− 1)

Also for t ≥ 1:

dt = − 1

2Λ

(
αβ

Λ

)2t

+ (aβ)t
1

Λ

(
αβ

Λ

)t
+ βdt−1

= − 1

2Λ

(
αβ

Λ

)2(
αβ

Λ

)2(t−1)

+
1

Λ

aαβ2

Λ

(
aαβ2

Λ

)t−1

+ βdt−1

This is a non-homogeneous first order difference equation. The solution for t ≥ 1 is

dt = βtd0 −
1

2Λ

(
αβ

Λ

)2 t−1∑
k=0

βt−k−1

(
αβ

Λ

)2k

+
1

Λ

aαβ2

Λ

t−1∑
k=0

βt−k−1

(
aαβ2

Λ

)k
= βtd0 −

1

2Λ

(
αβ

Λ

)2

βt−1

t−1∑
k=0

(
α2β

Λ2

)k
+

1

Λ

aαβ2

Λ
βt−1

t−1∑
k=0

(
aαβ

Λ

)k
= βtd0 −

1

2Λ

(
αβ

Λ

)2

βt−1

(
1− (α2β/Λ2)t

1− α2β/Λ2

)
+

1

Λ

aαβ

Λ
βt

1−
(
aαβ
Λ

)t
1− aαβ

Λ

= βt

(
1

2Λ
− 1

2
− 1

2Λ

α2β

Λ2

(
1− (α2β/Λ2)t

1− α2β/Λ2

)
+

1

Λ

aαβ

Λ

1−
(
aαβ
Λ

)t
1− aαβ

Λ

)

Since Λ = α
a

we see that
α2β

Λ2
=
aαβ

Λ
= a2β.

Thus the solution for dt simplifies to

dt =
1

2
βt
[
a

α
− 1 +

a

α

a2β

1− a2β
(1− (a2β)t)

]
. (A.28)

We can use this solution for dt, and the matrix f to find an explicit solution for the

15



coefficients fi,t. Let i = t− ν where 1 ≤ ν < t. Then the matrix f shows that

ft−ν,t = βt−ν(βdν−1 − dν)

= βt−ν
[
β

(
1

2
βν−1

[
a

α
− 1 +

a

α

a2β

1− a2β
(1− (a2β)ν−1)

])
− 1

2
βν
[
a

α
− 1 +

a

α

a2β

1− a2β
(1− (a2β)ν)

]]
= −1

2
βt−ν

a

α
(aβ)2ν

For t = i ≥ 1, f gives

ft,t = −βt(d0 +
1

2
)

= −βt
[

1

2
(
a

α
− 1) +

1

2

]
= −1

2
βt
a

α
.

Thus we conclude that for any t ≥ 1, 1 ≤ i ≤ t,

fi,t = −1

2

a

α
βi(aβ)2(t−i).

The values of f0,t and fi,0 can be read directly off the matrix f . Summarizing these results,

the terms of interest to us are given by:

T (~τ) =
∞∑
t=1

t∑
i=1

fi,t
λt + hi,t

(A.29)

where for t ≥ 1, 1 ≤ i ≤ t,

hi,t =
t∑

k=t+1−i

τk, (A.30)

fi,t = −1

2

a

α
βt(a2β)t−i. (A.31)

Using the definition of F k
t (~λ) as the (t+1)-th element of the k-th iterate of F (i.e., F (k)(~λ)),

where F (~λ) is given by (13), we can reorder the terms of the sum in our expression for

16



T (~τ) to see that

T (~τ) =− 1

2

aβ

α

[(
1

λ1 + τ1

+ (a2β2)
1

λ2 + τ2

+ (a2β2)2 1

λ3 + τ3

+ . . .

)
+ β

(
1

(λ2 + τ2) + τ1

+ (a2β2)
1

(λ3 + τ3) + τ2

+ (a2β2)2 1

(λ4 + τ4) + τ3

+ . . .

)
+β2

(
1

(λ3 + τ3 + τ2) + τ1

+ (a2β2)
1

(λ4 + τ4 + τ3) + τ2

+ (a2β2)2 1

(λ5 + τ5 + τ4) + τ3

+ . . .

)
+ . . .

]
=− 1

2

aβ

α

[(
1

F0(~λ)
+ (a2β2)

1

F1(~λ)
+ (a2β2)2 1

F2(~λ)
+ . . .

)

+ β

(
1

F 2
0 (~λ)

+ (a2β2)
1

F 2
1 (~λ)

+ (a2β2)2 1

F 2
2 (~λ)

+ . . .

)

+β2

(
1

F 3
0 (~λ)

+ (a2β2)
1

F 3
1 (~λ)

+ (a2β2)2 1

F 3
2 (~λ)

+ . . .

)
+ . . .

]

=− 1

2
b0

[
∞∑
k=1

βk
∞∑
t=0

(
bt
b0

)2
1

F k
t (~λ)

]
. (A.32)

where in the last line we’ve used the solution for bt in (A.8). This is the expression stated

in the proposition.

In the process of solving for the parameters that enter the term T we solved for k, ct, dt,

fi,t and hi,t. To show that our guess for the value function does indeed yield the solution,

we now derive expressions for the final outstanding coefficients of the value function, Dt,p.

From the Bellman equation we see that

Dt,p = −1

2
[(1 + α)2btbp − δt,02bp]+β

[
2kbtbp+(1− δt,0)ct−1bp+ btcp−1 +(1− δt,0)Dt−1,p−1

]
.

For t = 0, we find

D0,p = A(aβ)p , A =
a

α
.

For t ≥ 1,

Dt,p = A(aβ)t+p + βDt−1,p−1 , A =
a

α
.

The recursive equation

y(m,n) = Aξm+n +By(m− 1, n− 1) , m < n

17



has the solution

y(m,n) = Aξm+n
1−

(
B
ξ2

)m
1− B

ξ2

+Bmy(0, n−m) .

Applying this general formula with ξ = aβ leads to

Dt,p =
a

α
(aβ)t+p

1− (a2β)−t

1− (a2β)−1
+
a

α
βt(aβ)p−t .

Thus we have found unique solutions for all the free coefficients of our guess for the value

function, confirming that the initial guess does indeed yield the solution.

E Proof of Proposition 3

From the proof of Proposition 2 we have

dV

dτm
=

dT

dτm
= −

∞∑
i=1

∞∑
t=1

fi,t
(λt + hi,t)2

dhi,t
dτm

.

From (A.19),

dhi,t
dτm

=

{
1 t ≥ m and t ≥ i ≥ t+ 1−m
0 otherwise

Hence,

dV

dτm
= −

∞∑
t=m

t∑
i=t+1−m

fi,t

(λt +
∑t

k=t+1−i τk)
2

(A.33)

Evaluate this quantity at τt = 0 for all t:

dV

dτm

∣∣∣∣
0

= −
∞∑
t=m

1

λ2
t

t∑
i=t+1−m

fi,t

Let t = m + k where k ≥ 0, and consider the sum
∑t

i=t+1−m fi,t =
∑m+k

i=k+1 fi,m+k. This

sum is equivalent to starting at diagonal element m + k + 1,m + k + 1 of the matrix f in

(A.23), and summing the m terms above this diagonal element (including the diagonal).

Reading off the matrix, we see that this sum simplifies to:

m+k∑
i=k+1

fi,m+k = −βk+1dm−1 −
1

2
βm+k.
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and hence

dV

dτm

∣∣∣∣
0

= −
∞∑
t=m

1

λ2
t

t∑
i=t+1−m

fi,t

=

(
dm−1

∞∑
k=0

βk+1

λ2
m+k

+
1

2
βm

∞∑
k=0

βk

λ2
m+k

)
.

Using the definition of g(m) this expression becomes

dV

dτm

∣∣∣∣
0

= βg(m)

(
dm−1 +

1

2
βm−1

)
.

From (A.28) we have

dm−1 +
1

2
βm−1 = βm−1

(
a

α
+
a

α

a2β

1− a2β
(1− (a2β)m−1)

)
=
a

α
βm−1

(
1 +

a2β

1− a2β
(1− (a2β)m−1)

)
=
a

α
βm−1

[
1− (a2β)m

1− a2β

]
.

The result follows.

F Behaviour of Rm

When φ < β, it is obvious from (21) that Rm is increasing in m. We thus focus on

the case φ > β. From the formula (21), and the requirement φ > β, it is clear that

limm→∞Rm = 0. Here we show that Rm is either monotonically decreasing in m, or has

a unique global maximum for some m ≥ 2, and characterize the parameter ranges where

these two behaviours occur.

The fact that Rm has at most one maximum at m ≥ 2 can be shown by treating m as a

continuous variable. Then Rm has a stationary point iff d
dm
Rm = 0, which a little algebra

shows occurs if

(a2β)m ln

(
a2β2

φ

)
= ln

(
β

φ

)
. (A.34)

This condition has at most one solution for m ≥ 1. Since Rm > 0 for all m, R1 =

1, limm→∞Rm = 0, and dRm/dm changes sign at most once, Rm cannot have a local
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minimum. Thus Rm must be either monotonically declining, or be unimodal with a global

maximum at some m ≥ 2.

It is simple to determine conditions under which these different qualitative behaviours

occur. Since if Rm is not monotonically declining it must be unimodal, the condition

R2 > R1 = 1 is both necessary and sufficient for Rm to be unimodal. A little algebra

shows that R2 > 1 ⇐⇒ Γ ≡ a2β2 + β − φ > 0. Since a = 0 at α = 0, we know

Γ = β− φ < 0 when α = 0. Also, since a is increasing in α, so is Γ. Combining these facts

we see that the set of parameters values for which Γ > 0 must either be empty, or of the

form α > α̂(β, φ), where α̂(β, φ) is some critical value of α at which Γ = 0. Solving the

condition Γ = 0 for α, we find two solutions:

α1 =
(φ− β)(1 + β) + φ

√
φ− β

β2 + (φ− β)2 − (φ− β)(1 + β2)
, α2 =

(φ− β)(1 + β)− φ
√
φ− β

β2 + (φ− β)2 − (φ− β)(1 + β2)
.

α2 is negative for all β and φ ∈ [β, 1] so we conclude that

α̂(β, φ) =
(φ− β)(1 + β) + φ

√
φ− β

β2 + (φ− β)2 − (φ− β)(1 + β2)
. (A.35)

Observe that α̂(0, φ) = φ(1+
√
φ)

φ(φ−1)
< 0 so Γ is negative at β = 0 irrespective of α. To find the

conditions on β under which α̂(β, φ) ≥ 0 we solve α̂(β, φ) = 0 for β, finding the following

three roots:

β1 = φ , β2 = −1 +
√

1 + 4φ

2
, β3 =

√
1 + 4φ− 1

2
.

β1 violates the condition β < φ, β2 is always negative, but β3 < φ which makes the latter

the relevant critical level of β at which α̂(β, φ) ≥ 0. Thus we define the critical value of β

as

β̂(φ) =

√
1 + 4φ− 1

2
. (A.36)

Thus, when β ∈ [β̂, φ), Rm has a maximum at some m > 1 if α > α̂, otherwise Rm is

decreasing. Figure F.2 below demonstrates these results graphically.
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(a) φ = 1

(b) β = 0.9

Figure F.2: Qualitative behaviour of Rm in different regions of parameter space.



G Uniqueness of the solution to the predictability al-

location problem in Eq. 22

Define

P (~λ) = −
(

1

λ0

+ (a2β2)
1

λ1

+ (a2β2)2 1

λ2

+ . . .

)
= −

∞∑
k=0

(aβ)2k 1

λk
,

and assume that

lim
k→∞

λk+1

λk
> (aβ)2

so that P (~λ) converges.

From (14) we see that finding the optimal vector ~τ in (22) is equivalent to solving the

following deterministic dynamic programming problem:

Q(~λ) = max
~τ

P (~λ) + βQ(F (~λ))

where

F (~λ) = ∆(~λ) + ~τ (A.37)

as in (13), the operator ∆ is defined in (12), and ~τ satisfies the additional constraint

∞∑
m=1

τm = B. (A.38)

P (~λ) is a strictly concave function of ~λ, the ‘state equations’ (A.37) are concave func-

tions of the states and controls, and the auxiliary constraint (A.38) is also concave. Thus ~τ

lies in a convex set, and standard results (see e.g. ?) imply that this optimization problem

has a unique solution.

H Sensitivity analysis for Figures 3 and 4

Figures F.3 and F.4 below represents the outcome of a calculation identical to that in Fig.

3, but for λ0/B = 1/50 and λ0/B = 50 respectively. Fig. F.3 simply demonstrates that

the rate of decline of the prior with the time horizon has no effect on budget allocations
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when λ0/B is small. In Fig. F.4 predictions are marginal relative to the prior, making

interactions between lead times unimportant. To a good approximation then, the value

function is linear in forecast precisions in this case, as discussed in Proposition 3. Thus,

when φ > β, we expect the entire budget to be allocated to the most valuable forecast lead

time (i.e., the value of m for which Rm in (21) is maximised). The bottom panel of Fig.

F.4 confirms this expectation. When φ < β however, the marginal analysis in Proposition

3 shows that the value of a marginal unit of predictability is increasing in lead time m –

there is no ‘most valuable’ lead time. Since the agent cannot allocate her entire budget to

infinite lead times, and λ0/B is large, but not infinite in Fig. F.4 (so forecasts are only

approximately marginal), interaction effects are still at work in this case, and lead to the

spread out peaks in the top panel of Fig. F.4. Notice however that these peaks place more

weight on the long run than the analysis for λ0/B = 1 in Fig. 3, indicating that first order

effects are more important in this case than in Fig. 3, as we would expect when choosing

a very large value of λ0/B. We emphasise however that λ0/B = 50 is an unrealistically

large value. As discussed in the text, priors and forecasts usually have roughly the same

precisions in practice, so the results in Fig. F.4 grossly underestimate the importance of

the interactions between lead times.

In addition, Fig. F.5 presents results analogous to those in Fig. 4, for the lower value

β = 0.95.
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Figure F.3: Budget share σm allocated to lead time m in the optimization problem in (22).
β = 0.95, λ0

B
= 1/50.



25

2 4 6 8 10 12 14

Lead time (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ
m

φ  = 0.9 < β

α = 2
-2

α = 2
-1

α = 1

α = 2

α = 2
2

α = 2
3

2 4 6 8 10 12 14

Lead time (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
m

φ  =1 > β

α = 2
-2

α = 2
-1

α = 1

α = 2

α = 2
2

α = 2
3

Figure F.4: Budget share σm allocated to lead time m in the optimization problem in (22).
β = 0.95, λ0

B
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Figure F.5: Budget share σm allocated to lead time m in the optimisation problem in (22),
when β = 0.95, λ0

B
→ 0. This figure illustrates the ‘pure’ effect of substitution between

lead times when priors play no role in the analysis.


