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I. Proof of Proposition 2

Proof. We begin by showing necessity of our N-GARP conditions in Definition
5, i.e. any observed demand originating from utility maximization under normal-
ity must satisfy the conditions in Proposition 2. In a following step, we show
sufficiency of the N-GARP conditions by using the auxiliary results stated in
Lemmata 1, 2 and 3 below.

Necessity. — Let S = (pt, qt)t∈T be rationalizable under normal demand (on
the set M ⊆ {1, ..., n}) by the utility function u : Rn+ → R and expansion paths
qt : R+ → Rn+ that are monotone and continuous in x for all goods i ∈ M and
such that qt(xt) = qt for xt = ptqt.

For all t ∈ T , define ut ≡ u(qt) and, for all t, v ∈ T , define ht,v as the bundle on
the intersection of the expansion path qt(x) and the indifference curve through
qv, i.e. ht,v represents the Hicksian demand bundle h(pt, uv). Given that the
utility function u(.) and the expansion paths qt(.) are continuous and monotone,
this bundle is unique. By definition, we have that the intersection of qt(x) with
the indifference curve through qt is qt. This gives the first N-GARP condition in
Definition 5, i.e. ht,t = h(pt, ut) = qt for all t ∈ T .

We know that ht,v ≡ h(pt, uv) solves the corresponding expenditure minimiza-
tion problem

e(pt, uv) = min
h
pth s.t. u(h) ≥ uv.

For the second N-GARP condition, let ut ≥ uv and assume (towards a contra-
diction) that prhr,v > prhs,t. This means that

prhr,v = prh(pr, uv) = e(pr, uv) > prhs,t = prh(ps, ut).

Given that h(pr, uv) is expenditure minimizing at utility level uv and prices pr,
this requires that uv > ut. Indeed, if this were not the case, then it would have
been less expensive to buy hs,t instead of hr,v and still attain at least the same
utility level. This is a contradiction, which implies prhr,v ≤ prhs,t. We can derive
the third N-GARP condition in a directly similar way.
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Finally, for the fourth N-GARP condition, we observe that, if ut ≥ uv, then
we obtain that hir,t = hi(pr, ut) ≥ hi(pr, uv) = hir,v, because the Hicksian demand
functions for i ∈M are monotone in utility.

Sufficiency. — Suppose the data set S = {(pt, qt)}t∈T is consistent with the
N-GARP conditions in Definition 5 (for the set M = {1, ..., n}). We want to
construct a utility function u : Rn+ → R and expansion paths qt : R+ → Rn+
(which are monotone in x for each good i ∈ M) that generate the observed
demand.

Our result is based on an application of Proposition 1, which is taken from
Nishimura, Ok and Quah (2017):

PROPOSITION 1 (Nishimura, Ok and Quah): Let (qt(.))t∈T be a set of contin-
uous expansion paths (i.e. qt : R+ → Rn+ are continuous functions such that, for
all x ∈ R+ : ptqt(x) = x). Then, the following equivalence holds:
There exists a continuous and monotone utility function u : Rn+ → R such that,
for all t ∈ T and x ∈ R+,

qt(x) ∈ arg max
q
u(q) s.t. ptq ≤ x

if and only if,
for all N ∈ N, all sequences of income values x1, . . . , xN in R+ and all sequences
of observations t1, . . . tN ∈ T , the data sets (pn, qt(xn))n≤N satisfy GARP.

Let (ut, ht,v)t,v∈T be the solution of the N-GARP restrictions. The idea is to
construct income expansion paths qt(x) that satisfy the condition of Proposition
1 above. A straightforward idea would be to define qt(x) by taking a linear
interpolation between the various bundles (ht,r)r∈T . A potential problem with
this approach, however, is that the solution to the N-GARP conditions may set
us = ur for different observations r, s ∈ T . This means that our expansion
path would contain two potentially distinct bundles on the same (counterfactual)
indifference curve, which would violate the assumption that qt(x) is a function.

Given this potential issue, the proof takes three steps. In a first step, we show
that feasibility of the N-GARP restrictions is equivalent to feasibility of a similar
set of restrictions where all utility values ut are distinct. In Step 2, we use linear
interpolation to define, for each observation t ∈ T , an increasing and continuous
income expansion path qt(.) through the observed bundle qt. Finally, Step 3 shows
that these expansion paths satisfy the condition of Proposition 1 above.

Step 1: For the ease of interpretation, we separate the indices attached to the
utility values from the indices attached to the prices and quantities. To this end,
we define Tu ≡ T and Tp ≡ T . Let (uv, ht,v)t∈Tp,v∈Tu solve the N-GARP restric-
tions for the given data set S = (pt, qt)t∈Tp . Observe that feasibility of N-GARP
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is equivalent to feasibility of the following problem, which we call FP (Tu, S, ρ)
(for ρ : Tp → Tu defined as ρ(t) = t).

PROGRAM 1 (FP (Tu, S, ρ)): There exist numbers (ut)t∈Tu and vectors (ht,v)t∈Tp,v∈Tu
(ht,v ∈ Rn+) such that

1) ∀t ∈ Tp: ht,ρ(t) = qt,

2) ∀t, v ∈ Tu,∀r, s ∈ Tp: if ut ≥ uv, then prhr,v ≤ prhs,t,

3) ∀t, v ∈ Tu,∀r, s ∈ Tp: if ut > uv, then prhr,v < prhs,t,

4) ∀t, v ∈ Tu,∀r ∈ Tp,∀i ∈M : if ut ≥ uv, then hir,v ≤ hir,t.

If this problem gives a solution with ut = uv for some t, v ∈ Tu such that t 6= v,
we can apply Lemma 1 below to show that there exists a solution for the problem
FP (T ′u, S, ρ

′) where T ′u = Tu − {v} and

ρ′(i) =

{
ρ(i) if i 6= v,
t if i = v

We can repeat this argument n times until ut 6= uv for all indices t, v ∈ T (n)
u . In

turn, this leads us to define the following feasibility problem.

PROGRAM 2 (FP (T
(n)
u , S, ρ(n))): There exist distinct numbers (ut)t∈T (n)

u
and

vectors (ht,v)t∈Tp,v∈T (n)
u

(ht,v ∈ Rn+) such that

1) ∀t ∈ Tp: ht,ρ(n)(t) = qt,

2) ∀t, v ∈ Tu,∀r, s ∈ Tp, if ut > uv, then prhr,v < prhs,t,

3) ∀t, v ∈ Tu,∀r ∈ Tp,∀i ∈M , if ut ≥ uv, then hir,v ≤ hir,t.

Let |T (n)
u | = R and, for notational convenience, let us re-index the elements of

the set T
(n)
u to obtain the set {1, . . . , R} such that

u1 < u2 < . . . < uR.

Step 2 will start from a solution (uv, ht,v)v≤R,t∈Tp as obtained from this last prob-
lem.

Step 2: We construct piecewise linear expansion paths qt(x) in the following
way:

• If x > ptht,R, then qt(x) ≡ γht,R with γ = x
ptht,R

.

We say that qt(x) is of level R+ 1. Observe that ptqt(x) = x.
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• If x ≤ ptht,1, then qt(x) ≡ γht,1 with γ = x
ptht,1

.

We say that qt(x) is of level 1. Again, observe that ptqt(x) = x.

• If ptqt,1 < x ≤ ptht,R, then the ordering of the observations and the second

condition of FP (T
(n)
u , S, ρ(n)) above imply that there exists a unique v ≤ R

such that ptht,v−1 < x ≤ ptht,v. As such, there exists a unique α ∈ (0, 1]
such that

x = α(ptht,v) + (1− α)(ptht,v−1).

Given this α ∈ (0, 1], define

qt(x) ≡ αht,v + (1− α)ht,v−1.

In this case, we will say that qt(x) is of level v. Also, ptqt(x) = x.

Observe that, for all goods i ∈ M , the path qit(x) is monotone in x. In addition,
the expansion path is piecewise linear and, therefore, continuous. Moreover, the
expansion path qt(x) contains all bundles (ht,v)v≤R and, thus, also the observed
bundle qt.

Step 3: We need to show that, for any N ∈ N, any sequence of income levels
x1, x2, · · · , xN and any sequence of observations t1, . . . , tN ∈ T , the set (pti , qti(xi))i≤N
satisfies GARP. Suppose (towards a contradiction) that the result does not hold.
Then, there is a N ∈ N, a sequence x1, x2, · · · , xN of income levels, and a sequence
t1, t2, · · · , tN of observations that violate GARP. That is,

pt1qt1(x1) ≥ pt1qt2(x2),

pt2qt2(x2) ≥ pt2qt3(x3),

...

ptN qtN (xN ) ≥ ptN qt1(x1),

with at least one strict inequality. From Lemma 2, we know that the level of
the bundles (as defined above) along the cycle cannot increase. Also, it cannot
strictly decrease as this would mean that somewhere along the cycle it must
strictly increase. This implies that the level of all bundles should be the same,
say r. We distinguish three cases for r:
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• If r = R+ 1, then there are γ1, . . . , γN such that

qt1(x1) = γ1ht1,R,

qt2(x2) = γ2ht2,R,

. . .

qtN (xN ) = γNhtN ,R.

By Lemma 3, we have γ1 ≥ γ2 ≥ · · · ≥ γn ≥ γN ≥ γ1 with at least one
strict inequality, a contradiction.

• If r = 1, then there are γ1, . . . , γN such that

qt1(x1) = γ1ht1,1,

qt2(x2) = γ2ht2,1,

. . .

qtN (xN ) = γNhtN ,1.

Again, by Lemma 3, we have γ1 ≥ γ2 ≥ · · · ≥ γN ≥ γ1, with at least one
strict inequality, a contradiction.

• If 1 < r < R+ 1, then there are α1, . . . , αN ∈ (0, 1] such that

qt1(x1) = α1ht1,r + (1− α1)ht1,r−1,

qt2(x2) = α2ht2,r + (1− α2)ht2,r−1,

. . .

qtN (xN ) = αNhtN ,r + (1− αN )htN ,r−1.

By Lemma 3, we have α1 ≥ α2 ≥ · · · ≥ αN ≥ α1, with at least one strict
inequality, a contradiction.

Thus, we conclude that, for any N ∈ N, any sequence x1, x2, · · · , xN of income
levels and any sequence t1, t2, · · · , tN of observations, the set (pti , qti(xi))i≤N satis-
fies GARP. Then, Proposition 3 implies that there exists a continuous and strictly
increasing utility function that rationalizes our constructed expansion paths.

LEMMA 1: Let Tu be a finite index set, let S = (pt, qt)t∈Tp be a data set and let
ρ : Tp → Tu. Then, the problem FP (Tu, S, ρ) has a solution with uk = uj if and
only if FP (Tu − {j}, S, ρ′) has a solution where

ρ′(i) =

{
ρ(i) if ρ(i) 6= j,
k if ρ(i) = j.

Proof of Lemma 1. Let (ut)t∈Tu , (ht,v)t∈Tp,v∈Tu be a solution of FP (Tu, S, ρ)
with uk = uj .
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Define (ũt)t∈Tu−{j}, (h̃t,v)t∈Tp,v∈Tu−{j} in the following way:

h̃t,v ≡ ht,v if ρ(t) 6= j or v 6= k,

h̃t,v ≡ qt if ρ(t) = j and v = k,
ũv ≡ uv ∀v ∈ Tu − {j}.

Let us show that this provides a solution for FP (Tu − {j}, S, ρ′). For the first
condition, let t ∈ Tp. If ρ(t) 6= j then ht,ρ′(t) = ht,ρ(t) = qt, as was to be shown. If
ρ(t) = j then ht,ρ′(t) = ht,k = qt, as was to be shown.

For the second condition, let t, v ∈ Tu − {j} and assume that ũt ≥ ũv, i.e.
ut ≥ uv. Take r, s ∈ Tp. There are four cases.

• (ρ(r) 6= j or v 6= k) and (ρ(s) 6= j or t 6= k). Then,

prh̃r,v ≤ prh̃s,t ⇔ prhr,v ≤ prhs,t,

as was to be shown.

• (ρ(r) = j and v = k) and (ρ(s) 6= j or t 6= k). Then,

prh̃r,k ≤ prh̃s,t ⇔ prqr ≤ prhs,t ↔ prhr,j ≤ prhs,t.

This holds as ut ≥ uv = uk = uj .

• (ρ(r) 6= j or v 6= k) and (ρ(s) = j and t = k). Then,

prh̃r,v ≤ prh̃s,k ⇔ prhr,v ≤ prqs ⇔ prhr,v ≤ prhs,j .

This holds as ut = uk = uj ≥ uv.

• (ρ(r) = j and v = k) and (ρ(s) = j and t = k). Then, ut = uk = uj = uv
and

prh̃r,k ≤ prh̃s,k ⇔ prqr ≤ prqs ⇔ prhr,j ≤ prhs,j .
This holds as uj ≥ uj .

Replacing the weak inequalities by strict inequalities shows that the third condi-
tion is satisfied. For the last condition, let ũt ≥ ũv, i.e. ut ≥ uv. Let i ∈ M and
r ∈ Tp. If ρ(r) 6= j or (t 6= k and v 6= k) then,

h̃ir,v ≤ h̃ir,t ⇔ hir,v ≤ hir,v,

as was to be shown. If ρ(r) = j and t = k but v 6= k, then

h̃ir,v ≤ h̃ir,k ⇔ hir,v ≤ qir ⇔ hir,v ≤ hir,j .
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This holds as ut = uk = uj ≥ uv. If ρ(r) = j and t 6= k but v = k, then

h̃ir,k ≤ h̃ir,t ⇔ qir ≤ hir,t ⇔ hir,j ≤ hir,t.

This holds as ut ≥ uv = uk = uj . Finally, we have the case that ρ(r) = j and

t = v = k, but then h̃ir,t = h̃ir,k = h̃ir,v so this case is obviously satisfied.

LEMMA 2: If ptqt(x) ≥ ptqv(y), then the level of qv(y) is not strictly higher than
the level of qt(x).

Proof of Lemma 2. Let qv(y) be of level r and qt(x) be of level s. Assume
(towards a contradiction) that Lemma 2 does not hold, that is, r > s. Then,

• If r(= R+ 1) > s(= 1), then ptht,1 ≤ pthv,R, so

ptqt(x) ≤ ptht,1 ≤ pthv,R < ptqv(y),

a contradiction.

• If r(= R + 1) > s > 1, then ptht,s ≤ pthv,R and ptqt,s−1 < ptqv,R. As such,
if qt(x) = αht,s + (1− α)ht,s−1 with α ∈ (0, 1], then

ptqt(x) = α(ptht,s) + (1− α)(ptht,s−1) ≤ pthv,R < ptqv(y),

a contradiction.

• If R+ 1 > r > s = 1, then ptht,1 ≤ pthv,r−1 and ptht,1 < pthv,r. As such, if
qv(y) = βhv,r + (1− β)hv,r−1 with β ∈ (0, 1], then

ptqt(x) ≤ ptht,1 < βpthv,r + (1− β)pthv,r−1 = qv(y).

• If R + 1 > r > s > 1, then ptht,s ≤ pthv,r−1, ptht,s < pthv,r, ptht,s−1 <
pthv,r−1 and ptht,s−1 < pthv,r. This implies that any convex combination of
ptht,s and ptht,s−1 must always be strictly smaller than any convex combi-
nation of pthv,r−1 and pthv,r. As such, if qt(x) = αht,s + (1 − α)ht,s−1 and
qv(y) = βhv,r + (1− β)hv,r−1 with α, β ∈ (0, 1], then

ptqt(x) = αptht,s + (1− α)ptht,s−1

≤ βpthv,r + (1− β)pthv,r−1 = ptqv(y),

a contradiction.

LEMMA 3: Let ptqt(x) ≥ ptqv(y), with the level of qt(x) the same as the level of
qv(y). Then:
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• If both qt(x) and qv(y) are of level R+ 1, and qt(x) = γht,R, qv(y) = δhv,R,
we have γ ≥ δ. In addition, if ptqt(x) > ptqv(y), then γ > δ.

• If both qt(x) and qv(y) are of level 1, and qt(x) = γht,1, qv(y) = δhv,1, we
have γ ≥ δ. In addition, if ptqt(x) > ptqv(y), then γ > δ.

• If both qt(x) and qv(y) are of level r with 1 < r < R + 1, and qt(x) =
αht,r + (1− α)ht,r−1, qv(y) = βhv,r + (1− β)hv,r−1 with α, β ∈ (0, 1], then
we have α ≥ β. In addition, if ptqt(x) > ptqv(y), then α > β.

Proof of Lemma 3. We look at the three cases separately:
Suppose that both qt(x) and qv(y) are of level R+1. From the second N-GARP

condition in Definition 5, we know that ptht,R ≤ pthv,R. This implies

δpthv,R = ptqv(y)

≤ ptqt(x) = γptht,R

≤ γpthv,R.

So, δ ≤ γ with a strict inequality if ptqt(x) > ptqv(y).

Suppose that both qt(x) and qv(y) are of level 1. From the second N-GARP
condition in Definition 5, we know that ptht,1 ≤ pthv,1. This implies

δpthv,1 = ptqv(y)

≤ ptqt(x) = γptht,1

≤ γpthv,1.

So, δ ≤ γ with a strict inequality if ptqt(x) > ptqv(y).

Suppose that both qt(x) and qv(y) are of level r with R + 1 > r > 1. From
the second N-GARP condition in Definition 5, we know that ptht,r ≤ pthv,r and
ptht,r−1 ≤ pthv,r−1. As such,

α(ptht,r) + (1− α)(ptht,r−1) = ptqt(x)

≥ ptqv(y)

= β(pthv,r) + (1− β)(pthv,r−1)

≥ βptht,r + (1− β)ptht,r−1.

This is equivalent to the condition (α − β)(ptht,r − ptht,r−1) ≥ 0. The third N-
GARP condition in Definition 5 implies that ptht,r > ptht,r−1. As such, it must
be that α ≥ β, with a strict inequality if ptqt(x) > ptqv(y).

II. Practical implementation
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Mixed integer programming formulation of N-GARP. — The N-GARP con-
ditions in Definition 5 can be reformulated in terms of linear inequalities that are
characterized by (binary) integer variables.

PROPOSITION 2: A data set S = {(pt, qt)}t∈T satisfies the N-GARP conditions
in Definition 5 if and only if there exist binary numbers rt,v ∈ {0, 1} vectors
ht,v ∈ Rn+, and numbers ut ∈ [0, 1] such that, for all r, s, t, v ∈ T ,

• ht,t = qt,

• ut − uv < rt,v,

• (rv,t − 1) < uv − ut,

• prhr,v − prhs,t < rv,tA,

• A(rt,v − 1) ≤ (prhs,t − prhr,v),

• B(rt,v − 1) ≤ hir,t − hir,v for all i ∈M .

where A is a fixed number greater than any possible value prhr,v(r, v ∈ T ) and B
is a fixed number greater than any hir,v(i ∈M, r, v ∈ T ). By default A and B are
finite numbers.

Proof of Proposition 2. Necessity. Assume that the N-GARP conditions
in Definition 5 are satisfied. Let us use the same solution and define rt,v = 1 if
and only if ut ≥ uv. The the first three conditions above are satisfied by default.
By the definition of A, the fourth condition is only binding if rv,t = 0, which
means that ut > uv. In this case, Definition 5 implies that prhr,v < prhs,t and the
condition holds. Similarly, the fifth condition is binding only if rt,v = 1, which
implies that ut ≥ uv and thus that prhs,t ≥ prhr,v. Finally, the last condition
only binds if rt,v = 1, which implies that ut ≥ uv, In this case the last condition
of Definition 5 gives hir,v ≤ hir,t. We can thus conclude that the conditions of
Proposition 2 are feasible whenever Definition 5 is satisfied.
Sufficiency. Assume that there exists a solution for the conditions in Proposition
2. Then we can show that the conditions in Definition 5 are also satisfied for the
same solution. The first condition in Definition 5 is satisfied by default. For the
second condition, if ut ≥ uv then rt,v = 1 by the second condition above and as
such the fifth condition implies that prhs,t ≥ prhr,v. This shows that the second
condition of Definition 5 holds. Next, let ut > uv. If, towards a contradiction,
prhr,v ≥ prhs,t, then, by the fourth condition above, rv,t = 1. This implies, by
the third condition, that uv ≥ ut, a contradiction. This shows that the third
condition of Definition 5 holds. For the final condition, let ut ≥ uv. Then, by the
second condition above, rt,v = 1 and, by the last condition, hir,t ≥ hir,v, as was to
be shown.
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Computing the CCEI. — The CCEI is found by solving the following optimiza-
tion problem:

max e

s.t. 0 ≤ e ≤ 1

∀t ∈ T : 0 ≤ ut ≤ 1

∀t ∈ T : ht,t = qt

∀t, v, r, s ∈ T such that r 6= v : ut ≥ uv → prhr,v ≤ prhs,t
∀t, v, r, s ∈ T such that r 6= v : ut > uv → prhr,v < prhs,t

∀i ∈M, ∀t, v, r ∈ T, such that r 6= v : ut ≥ uv → hir,v ≤ hir,t
∀t, v, r, s ∈ T such that r = v : ut ≥ uv → eprqr ≤ prhs,t
∀t, v, r, s ∈ T such that r = v : ut > uv → eprqr < prhs,t

∀i ∈M, ∀t, v, r ∈ T such that r = v : ut ≥ uv → eqir ≤ hir,t.

The if–then conditions can be reformulated in terms of linear restrictions with
binary variables, following our reasoning leading up to Proposition 2. As a result,
the above optimization problem can be reformulated as a mixed integer linear
programming problem.

III. Data

Table 1 provides a summary of the data set that we use in our empirical ap-
plication. As explained in the main text, we assume that the individuals spend
their full potential incomes on four different consumption categories: leisure, food,
housing and other goods. Table 1 reports information on prices, quantities, in-
comes and some demographics for our sample of 821 singles.

We compute leisure quantities by assuming that each individual needs 8 hours
per day for personal care and sleep. Leisure equals the available time that could
have been spent on market work but was not (i.e., leisure per week = (24-8)*7
- market work). Food expenditures include food at home, delivered and eaten
away from home. Housing expenditures include mortgage and loan payments,
rent, property tax, insurance, utilities, cable tv, telephone, internet charges, home
repairs and home furnishing. Others expenditures include health, transportation,
education and childcare. We calculate the individuals’ weekly expenditures (i.e.,
nominal dollars per week) on the three remaining consumption categories (food,
housing and other goods) as the reported annual expenditures divided by 52.

The price of leisure equals the individual’s hourly wage for market work. The
prices of food, housing and other goods are region-specific consumer price indices
that have been constructed by the Bureau of Labor Statistics.

.
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Table 1—Summary statistics

mean std. dev. min max

age in 2007 37.95 13.38 18.00 81.00
is male 0.34 0.47 0.00 1.00
has home in 2007 0.36 0.48 0.00 1.00
has children 0.31 0.46 0.00 1.00
number of children in 2007 0.54 0.96 0.00 6.00
years of education in 2007 13.53 2.10 6.00 17.00
quantity food in 2011 0.43 0.27 0.00 1.99
quantity food in 2009 0.41 0.26 0.00 2.13
quantity food in 2007 0.44 0.30 0.00 2.25
quantity housing in 2011 1.20 2.06 0.00 56.28
quantity housing in 2009 1.08 0.69 0.00 7.06
quantity housing in 2007 1.17 1.38 0.00 22.60
quantity other in 2011 0.72 0.66 0.00 6.94
quantity other in 2009 0.82 1.24 0.00 22.86
quantity other in 2007 0.82 0.75 0.00 6.03
quantity leisure in 2011 71.35 11.00 16.00 111.00
quantity leisure in 2009 72.98 10.12 22.00 111.00
quantity leisure in 2007 70.31 12.15 12.00 105.00
price food in 2011 226.53 4.00 220.43 233.20
price food in 2009 217.00 4.35 211.09 224.35
price food in 2007 201.09 4.44 195.48 207.76
price housing in 2011 213.27 17.03 199.98 248.68
price housing in 2009 211.90 16.48 197.21 243.76
price housing in 2007 204.13 15.99 193.38 236.24
price other in 2011 238.61 2.58 235.89 241.36
price other in 2009 209.32 3.98 205.15 214.13
price other in 2007 205.29 2.57 202.62 208.21
price leisure in 2011 20.55 17.58 0.50 180.85
price leisure in 2009 19.66 15.32 2.05 165.52
price leisure in 2007 16.46 11.95 2.15 149.29
expenditures in 2007 1649.61 1070.51 289.31 13231.01
expenditures in 2009 1919.20 1294.08 245.85 13179.54
expenditures in 2011 1973.16 1442.99 181.25 13235.89
full potential income 2007 1842.97 1338.09 240.80 16720.48
full potential income 2009 2202.09 1715.59 229.60 18538.24
full potential income 2011 2301.66 1968.76 56.00 20255.20
nonlabor income 2007 -193.36 513.20 -3489.47 4213.92
nonlabor income 2009 -282.88 617.01 -5358.70 4887.96
nonlabor income 2011 -328.50 802.93 -7999.98 10699.09
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IV. Additional empirical results

In this appendix, we first provide several robustness checks of our empirical
results discussed in Section 4 of the main text. These checks largely confirm our
principal conclusions. In a following step, we conduct a regression analysis that
relates our estimated cost of living indices to observable individual characteristics.
This provides an (exploratory) investigation of who has been affected by the 2008
crisis. To avoid an overload of empirical results, we only present the results for
N-GARP(3).

Cost of living indices. — As a first robustness check, Table 2 summarizes our
N-GARP(3)-based and GARP-based estimated bounds on c2011,2007 for the 587
individuals whose behavior is exactly rationalizable under normal demand (i.e.,
N-GARP(3)-based CCEI equals 1). We observe that the results are closely similar
to the ones contained in Table 3 in the main text.

Table 2—Bounds on c2011,2007 for individuals with N-GARP(3)-based CCEI = 1

N-GARP(3)-based GARP-based

min max ∆n min max ∆g
∆g−∆n

∆g

mean -0.048 0.029 0.077 -0.049 0.099 0.148 0.425
std. dev. 0.308 0.262 0.138 0.308 0.292 0.176 0.379
min -3.044 -2.492 0.000 -3.044 -2.489 0.001 0.000
25% -0.128 -0.050 0.012 -0.128 0.000 0.042 0.000
50% -0.012 0.000 0.035 -0.012 0.000 0.095 0.402
75% 0.082 0.137 0.085 0.082 0.249 0.196 0.821
max 0.830 0.897 2.099 0.830 0.899 2.285 0.998

Better-off and worse-off individuals. — As a following robustness check
of our results in Section 4, we consider the classification of worse-off, better-off
and cannot-say individuals for two alternative scenarios: the first scenario uses
the N-GARP(3)-based and GARP-based classifications for the 587 individuals
of which the N-GARP(3)-based CCEI equals 1 (also included in Table 2); the
second scenario uses the GARP-based classification for the 782 individuals whose
behavior is exactly rationalizable when not imposing normality on any good (i.e.,
GARP-based CCEI equals 1).

The results for the two scenarios are summarized in Table 3. Comfortingly, we
find that the results in Table 3 are generally close to the ones in Table 5 that we
discuss in the main text. Again, it suggests that our main qualitative conclusions
are robust.
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Table 3—Worse-off and better-off individuals for individuals with N-GARP-based CCEI=1

and GARP-based CCEI=1

N-GARP-CCEI=1 GARP-CCEI=1
(587 individuals) (782 individuals)

N-GARP GARP GARP

UB < 0 Worse off in 2011 33.39 22.66 22.38
LB > 0 Better off in 2011 45.32 44.97 48.59
LB ≤ 0 and 0 ≤ UB Cannot say 21.29 32.37 29.03

Four PSID waves: 2007, 2009, 2011 and 2013. — Next, we check robustness of
our main findings for a longer panel containing four consumption observations per
individual (adding the 2013 PSID wave to our original data set). The following
Tables 4, 5 and 6 have a directly analogous interpretation as the Tables 1, 3 and
5 that we discussed in the main text.

Generally, we can conclude that the results in Tables 4, 5 and 6 are fairly close to
those in Tables 1, 3 and 5. For our application, adding a consumption observation
(i.e., PSID wave) per individual only moderately affects our goodness-of-fit and
cost of living results.

Table 4—Critical Cost Efficiency Index (CCEI); 4 waves

N-GARP(3) GARP

CCEI=1 376 (54.26%) 632 (91.20%)
CCEI ≥ 0.99 495 (71.43%) 666 (96.10%)
mean 0.9789 0.9975
std. dev. 0.0492 0.0160
min 0.6235 0.7456
25% 0.9849 1.0000
50% 1.0000 1.0000
75% 1.0000 1.0000
max 1.0000 1.0000

Who is affected by the crisis ?. — Generally, our cost of living estimates reveal
quite some heterogeneity across individuals. In what follows, we investigate this
further by relating the N-GARP(3)-based cost of living estimates to observable
individual characteristics. This can provide additional insight into which types
of individuals (on the intensive margin of labor supply) were particularly hit by
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Table 5—Bounds on c2011,2007; 4 waves

N-GARP(3) GARP

min max ∆n min max ∆g
∆g−∆n

∆g

mean -0.071 0.016 0.087 -0.073 0.084 0.156 0.458
std. dev. 0.519 0.279 0.404 0.519 0.302 0.441 0.379
min -9.450 -2.514 0.000 -9.450 -2.489 0.000 0.000
25% -0.126 -0.065 0.008 -0.126 -0.008 0.036 0.054
50% -0.010 0.001 0.029 -0.012 0.005 0.084 0.458
75% 0.081 0.122 0.076 0.078 0.226 0.196 0.832
max 0.831 0.838 8.735 0.830 0.900 9.371 1.000

Table 6—Worse-off and better-off individuals; 4 waves

classification by bounds of: N-GARP(3) GARP

UB ≤ 0 Worse off in 2011 38.59 27.47
LB ≥ 0 Better off in 2011 46.67 45.66
LB ≤ 0 and 0 ≤ UB Cannot-say 14.75 26.87

the crisis. We conduct three regression exercises: our first exercise uses interval
regression and explicitly takes the (difference between) lower and upper bounds
into account, our second exercise is a simple OLS regression that uses the average
of the lower and upper bounds as the dependent variable, and our last exercise is
a logit regression that explains the probability of being better-off (versus worse-
off) after the 2008 crisis (using our N-GARP(3)-based classification as worse-off
or better-off to define the dependent variable). Further, to distinguish between
short-run and longer-run effects of the crisis, we ran our regressions for two cost of
living indices: c2009,2007 (capturing the short run effect) and c2011,2007 (capturing
the longer run effect). We use the N-GARP(3)-based bound estimates for the
702 individuals with a CCEI-value at least equal to 0.99 (with c2011,2007-values
summarized in Table 5).

Table 7 summarizes our findings. We see that individuals with higher labor
incomes (i.e., wages) and nonlabor incomes are generally associated with lower
cost of living indices, and are less likely to be better off in both the short run
and the longer run when compared to their pre-crisis utility level. Next, while
we find no significant short run effect related to region of residence (captured by
the dummy variables North Central, South and West, using North East as the
reference category) or industry (captured by the dummy variables construction
and services), we do see that individuals residing in the West region are generally
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worse off in the longer run, while the opposite holds true for individuals working
in the service sector.

Next, we observe that many individual characteristics that are statistically sig-
nificant in the short run become insignificant in the longer run. For example,
homeowners and single parents are better off than non-home owners and child-
less singles in the short run. However, these effects fade out in the longer run.
Similarly, being a single male parent corresponds to a significantly negative crisis
effect in the short run, but this effect disappears in the longer run.

Table 7—Welfare effects and individual characteristics

interval simple OLS logit

c2009,2007 c2011,07 c2009,2007 c2011,2007 c2009,2007 c2011,2007

full potential income -0.0001*** -0.0001*** -0.0001*** -0.0001*** -0.0011*** -0.0013***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

nonlabor income -0.0004*** -0.0004*** -0.0004*** -0.0004*** -0.0039*** -0.0045***
(0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

years of education 0.0030 0.0024 0.0027 0.0029 0.0524 0.0182
(0.004) (0.004) (0.004) (0.005) (0.058) (0.064)

North Central -0.0247 -0.0341 -0.0215 -0.0334 -0.5653 -0.8655*
(0.027) (0.022) (0.028) (0.023) (0.409) (0.419)

South -0.0091 -0.0080 -0.0095 -0.0086 -0.2440 -0.5950
(0.025) (0.021) (0.026) (0.022) (0.379) (0.398)

West -0.0322 -0.0663* -0.0301 -0.0616* -0.7972 -1.0248*
(0.029) (0.027) (0.030) (0.027) (0.426) (0.445)

home owner 0.0312* 0.0153 0.0324* 0.0193 0.3120 0.2324
(0.015) (0.016) (0.016) (0.017) (0.243) (0.245)

male 0.0153 0.0003 0.0155 0.0006 0.0422 -0.2751
(0.017) (0.017) (0.018) (0.018) (0.261) (0.263)

with children 0.0647*** 0.0367 0.0665*** 0.0327 0.6361* 0.2555
(0.018) (0.020) (0.018) (0.021) (0.279) (0.279)

male × with children -0.1448** -0.0004 -0.1454** 0.0075 -1.5709 0.0422
(0.045) (0.061) (0.046) (0.062) (0.867) (0.885)

age 0.0008 -0.0006 0.0009 -0.0006 0.0107 -0.0137
(0.001) (0.001) (0.001) (0.001) (0.009) (0.008)

worked in construction industry -0.0039 -0.0130 -0.0003 -0.0049 -0.1187 -0.1568
(0.023) (0.029) (0.024) (0.031) (0.392) (0.378)

worked in service industry 0.0227 0.0294 0.0251 0.0355* 0.1404 0.1542
(0.015) (0.015) (0.016) (0.018) (0.228) (0.233)

Constant 0.0416 0.1149 0.0412 0.1041 0.7332 2.7100**
(0.065) (0.069) (0.067) (0.074) (0.963) (0.957)

Observations 628 628 628 628 510 501
R2 0.415 0.437

Note: All variables are observations in year 2007. Robust standard errors in parentheses. *** p<0.01,
** p<0.05, * p<0.1

Table 8 shows pairwise correlation coefficients between wages in 2007 and rela-
tive changes in wages, leisure hours, expenditures on leisure, expenditures on food,
housing expenditures and other expenditures (measuring the relative change in
variable y as y11−y07

y07
). We see that people with higher initial wages (in 2007)

generally experienced larger wage drops (and thus income drops) than people
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Table 8—Pairwise correlation coefficients

a b c d e f g

wage in 2007 a 1

relative increase in wage b -0.2296 1
0

relative increase in leisure hours c -0.0298 0.0782 1
0.4303 0.0383

relative increase in leisure expenditures d -0.1761 0.9002 0.3932 1
0 0 0

relative increase in food expenditures e -0.0556 0.0487 0.0159 0.0376 1
0.144 0.2008 0.6765 0.3232

relative increase in house expenditures f -0.0429 0.0205 0.0357 0.0182 0.0195 1
0.2572 0.5883 0.3457 0.6301 0.609

relative increase in other expenditures g -0.0669 0.0146 0.0236 0.0147 0.0553 0.0129 1
0.0789 0.7016 0.5352 0.7003 0.149 0.7356

Note: Bold represents significant correlation (at 10%)

with lower initial wages. This explains the negative regression coefficient for the
initial full income in Table 7: if a higher initial potential income corresponds to a
greater loss in total income, it is also associated with a more pronounced utility
loss.
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