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1 Proof of Theorem 2

Theorem 2 is implied by the following result.

Theorem. Let f be a strategy-proof, non-bossy SCF, and fix a reporting order

Λ ∈∆(Π). Suppose that at least one of the following conditions holds.

1. The prior has Cartesian support (µ ∈MCartesian) and Λ is deterministic.

2. The prior has symmetric Cartesian support (µ ∈Msymm−Cartesian) and f is

weakly anonymous.

Then equilibria are preserved under deviations to truthful behavior: for any

(σ,β ) ∈ SE〈Γ (Λ, f ),U N ,µ〉,

(i) for each i ∈N , τi is sequentially rational for i with respect toσ−i and βi ;

(ii) for each S ⊆N , there is a belief system β ′ such that

((σ−S ,τS ),β
′) ∈ SE〈β ′(Λ, f ),U N ,µ〉.

Proof. Let f be strategy-proof and non-bossy, Λ ∈ ∆(Π), and µ ∈ MCartesian.

Since the conditions of the two theorems are the same, we refer to arguments
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made in the proof of Theorem 1. In particular all numbered equations refer-

enced below appear in the paper.

Fix an equilibrium (σ,β ) ∈ SE〈Γ (Λ, f ),U N ,µ〉. The first claim of the theorem—

sequential rationality ofτi w.r.t. (σ,β )—can be derived from inequalities estab-

lished in the proof of Theorem 1. Specifically, consider the case of Condition 1

(the prior has Cartesian support and Λ is deterministic). The proof establishes

the equality of (7) and (8) (see (12)). That is, the expected payoff from a truthful

report is equal to the expected payoff from an equilibrium report, condition-

ing on the agents’ interim belief. Since the equilibrium report is sequentially

rational, so is a truthful report.

In the case of Condition 2 (µ ∈Msymm−Cartesian, weakly anonymous f ), the

analogous arguments are made via (7′), (8′), and (12′).

To prove the second claim of the theorem, it suffices to prove the single-

ton case S ≡ {i }. Repeated application of this statement proves the general

result for arbitrary S . Let σ̃≡ (σ−i ,τi ). First we construct a belief system γ and

demonstrate its consistency. Lastly we show (σ̃,γ) ∈ SE〈Γ (Λ, f ),U N ,µ〉.

Consistency. Let (ς,βς) be an assessment where ς is an arbitrary profile with

full support and βς is the unique belief system obtained by Bayesian updating

given ς, Λ, and µ. For any ε > 0, let (ς,β ε) be the assessment where σε is the

(full support) strategy profile σε ≡ (1 − ε)σ̃ + ες and β ε is the unique belief

system obtained by Bayesian updating, given σε , Λ, and µ. Clearly σε → σ̃.

More specifically, for each i ∈N , each ui ∈U , each ht ∈H i , and each vi ∈U ,

we haveσε〈ui , ht 〉(vi )→ σ̃〈ui , ht 〉(vi ) as ε→ 0.

We define γ to be the Bayesian update of σ̃ (when well defined) or equal to

β ε (otherwise). That is, fix i ∈N and any admissible ui ∈U (i.e. occurring with

positive probability under µ).

• For each ht ∈H i that occurs with positive probability given σ̃ andΛ, and

for each admissible (π, u−i ), let γi 〈ui , ht 〉(π, u−i ) be defined by Bayesian

updating given σ̃ and Λ.

• For each ht ∈H i that occurs with zero probability given σ̃ andΛ, and for

each admissible (π, u−i ), let γi 〈ui , ht 〉(π, u−i )≡βς〈ui , ht 〉(π, u−i ).

Using Bayes’ rule, one can write an explicit expression of β ε in terms of ε, σ̃, ς,

Λ, andµ. We omit this expression since it is easy to see thatβ ε→ γ; specifically,

for each i ∈N , each ui ∈U , each ht ∈H i , each π ∈ Π, and each v−i ∈U N \{i },
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β εi 〈ui , ht 〉(π, v−i ) → γi 〈ui , ht 〉(π, v−i ) as ε → 0. Thus (σ̃,γ) is a consistent as-

sessment for 〈Γ (Λ, f ),U N ,µ〉.

Sequential rationality. We use the notation—from Case 2 of the proof of The-

orem 1—where f (ht , vπ′(t+1,...,n )|π′) represents the outcome of f when the or-

dered reports in ht are made according to the agents’ order under π′. We also

refer to Equations (2′)–(13′) in order to prove various claims. For the simpler

case that Λ is deterministic, the analogous equations from Case 1 apply.

We show that σ̃ is sequentially rational for beliefs γ. That is, for each Agent

j , σ̃ j prescribes a report that maximizes j ’s expected payoff after any history

feasible for j , given σ̃− j and γ j .

Case j = i (σ̃ j = τi ). For Agent i , we show the sequential rationality of truth-

telling using (2′) which states that, regardless of the history, continuation strate-

gies underσ are welfare-equivalent to truthful ones. Since σ̃−i =σ−i the result

follows.

To formalize this, fix any t ∈ {1, . . . , n}, π ∈ supp(Λ) with π(t ) = i , ht−1 ∈
Hi , and u ∈ supp(µ), and recall that σ̃i = τi . For any v ′i ∈ supp(σ〈ht−1, ui 〉),
consider the two t -period histories (ht−1, v ′i ) and (ht−1, ui ). For any two σ-

continuations of those two histories given π, namely for any1

• v ′π(t+1,...,n ) ∈U
π(t+1,...,n ) withσ(v ′π(t+1,...,n )|(ht−1, v ′i ),π, uπ(t+1,...,n ))> 0, and

• v ′′π(t+1,...,n ) ∈U
π(t+1,...,n ) withσ(v ′′π(t+1,...,n )|(ht−1, ui ),π, uπ(t+1,...,n ))> 0,

applying (2′) to histories ht−1 and (ht−1, ui ) respectively yields

u ( f (ht−1, v ′i , v ′π(t+1,...,n )|π)) = u ( f (ht−1, uπ(t ,...,n )|π)), and

u ( f (ht−1, ui , v ′′π(t+1,...,n )|π)) = u ( f (ht−1, ui , uπ(t+1,...,n )|π)). (**)

Observe that the two RHS’s are equivalent and thus i receives the same payoff

from reporting ui as from reporting v ′i . Since reporting v ′i maximizes i ’s ex-

pected payoff after ht−1 given ui andσ−i , reporting ui maximizes i ’s expected

payoff after ht−1 given ui and σ̃−i =σ−i , proving sequential rationality. More

generally, however, all agents receive the same payoff after i ’s deviation from

σi to truthful τi . This is true ex post of any realization of π (with π(t ) = i ),

which is relevant in the next case.

1If t = n these subprofiles are null lists, and the proof simplifies.
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Case j 6= i (σ̃ j =σ j ). The intuition behind this case is that, since Equation (**)

implies that i ’s deviation to truth-telling does not change continuation pay-

offs, the incentive compatibility conditions of the original equilibrium (σ) are

preserved.

Fix any t ∈ {1, . . . , n}, π ∈ supp(Λ) with π(t ) = j , ht−1 ∈ Hi , u ∈ supp(µ),
and v j ∈ supp(σ j 〈ht−1, u j 〉). We wish to show that v j maximizes j ’s expected

payoff, given σ̃− j and γ.

We begin with the more difficult subcase that π−1(i ) > t , so i acts after j .

Denote the (possibly empty) sets of agents who act between j and i and after

i as

B = {k ∈N :π−1( j )<π−1(k )<π−1(i )}
A = {k ∈N :π−1(i )<π−1(k )}

Fix a (deviation) report v ′j ∈ U . We shall compare payoffs obtained under

four profiles of reports,

(ht−1, v j , vB , vi , vA)

(ht−1, v j , vB , ui , wA)

(ht−1, v ′j , v ′B , v ′i , v ′A)

(ht−1, v ′j , v ′B , ui , w ′A)

where the various subprofiles for B , i , and A satisfy

vB ∈ supp(σB 〈(ht−1, v j ), uB 〉)
v ′B ∈ supp(σB 〈(ht−1, v ′j ), uB 〉)

vi ∈ supp(σi 〈(ht−1, v j , vB ), ui 〉)
v ′i ∈ supp(σi 〈(ht−1, v ′j , v ′B ), u〉)

vA ∈ supp(σA〈(ht−1, v j , vB , vi ), uA〉)
wA ∈ supp(σA〈(ht−1, v j , vB , ui ), uA〉)
v ′A ∈ supp(σA〈(ht−1, v ′j , v ′B , v ′i ), uA〉)

w ′A ∈ supp(σA〈(ht−1, v ′j , v ′B , ui ), uA〉)
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Equation (**) implies the following two equalities.

u ( f (ht−1, v j , vB , vi , vA |π)) = u ( f (ht−1, v j , vB , ui , wA |π))
u ( f (ht−1, v ′j , v ′B , v ′i , v ′A |π)) = u ( f (ht−1, v ′j , v ′B , ui , w ′A |π))

Sequential rationality ofσ implies

u j ( f (ht−1, v j , vB , vi , vA |π))≥ u j ( f (ht−1, v ′j , v ′B , v ′i , v ′A |π)).

Thus

u j ( f (ht−1, v j , vB , ui , wA |π))≥ u j ( f (ht−1, v ′j , v ′B , ui , w ′A |π))

implying a report of v j is at least as good as any other v ′j , for each such π.

In case thatπ−1(i )< t , (i acts before j ), the result follows immediately from

(2′). Those equations state that, when all remaining agents are playing accord-

ing to σ, the agents receive payoffs as if each agent is acting truthfully. With

strategy-proofness of f , the result follows.

2 Forward induction

We discuss how forward induction (refinement) arguments might apply to se-

quential revelation games in a Bayesian environment, and two ways in which

the (non-truthful) equilibria of Examples 1 and 2 are robust to them.

In a sequential, direct revelation game, an agent’s report not only informs

the mechanism designer about the agent’s preferences, but also plays a “signal-

ing role,” leaking the agent’s private information to subsequent players. This

signaling role is what drives the non-truthful equilibrium outcomes we con-

struct in Examples 1 and 2. Indeed under complete information, this signaling

role disappears (e.g. when the reporting order is deterministic, backwards in-

duction precludes such equilibria in accordance with Theorem 1).

A relevant question is whether this signaling role effect—leading to non-

truthful outcomes—can be easily dismissed via forward induction arguments

that have been made in the signaling game literature. Essentially, these argu-

ments reject equilibria that are sustained through the Sender’s fear that, by de-

viating to a particular action/message, the Receiver will form beliefs that are

“unreasonable,” in the sense that the Sender’s deviation itself should serve as

evidence against those beliefs.
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We now argue that the answer to the above question is no: the equilibrium

phenomenon we construct in our two examples is robust to such forward in-

duction arguments. We make this argument in two ways, in both cases focus-

ing on the equilibrium of Example 1 for the formal arguments. First, we explain

why this equilibrium is robust to the ideas that underlie the definitions of the

intuitive criterion, D1, etc., which are typically applied to two-player sender-

receiver games. This is necessarily done informally since our model involves

more than two senders and receivers, and it is beyond our scope to extend the

classic definitions of these various refinements to our class of games. Second

and more formally, we show that the equilibrium satisfies the general forward

induction principle defined by Govindan and Wilson (2009) that applies to all

games with perfect recall. In the spirit of the classic literature mentioned ear-

lier, their concept formalizes the idea of testing the plausibility of beliefs based

on the rationality of actions.

2.1 Forward induction via standard refinement concepts

Signaling games refinements have been studied mainly for Sender-Receiver

games. Here all uncertainty is resolved for one agent, who sends a (perhaps

costly) message to an uninformed Receiver, who then takes a payoff determi-

nant action. Our games are more complex in that we allow for n ≥ 2 agents, all

possessing private information and sending messages. Despite the differences,

the structure of the sequential equilibrium constructed in Example 1 allows us

to (successfully) subject it to the same type of vetting that standard signaling

game refinements provide.

To explain, consider the sequential equilibrium (σ,β ) constructed in Ex-

ample 1, where Agents 1–4 publicly announce their peaks in order of their in-

dex. Observe that the non-truthfulness of outcomes in this equilibrium en-

tirely hinges on the beliefs of Agent 2, which are influenced by the report of

Agent 1. At the same time, Agents 3 and 4 are always truthful, which is sequen-

tially rational behavior regardless of their beliefs. Hence Agent 1 needs only

to consider his own beliefs (a Bayesian update of the prior), and the impact

of his message on Agent 2’s beliefs when choosing his message. If we imagine

fixing the (equilibrium) truthful behavior of Agents 3 and 4, we can view the

resulting game being played between Agents 1 and 2 as something closer to a

standard, 2-player Sender-Receiver game, and then evaluate their equilibrium

behavior using standard refinement concepts for Sender-Receiver games. We

6



now do this somewhat more formally, showing that the equilibrium behavior

of Agents 1 and 2 is compatible with the D1 criterion of Cho and Kreps (1987),

which is among the most prominent signaling game refinements used in the

literature.2

The idea behind the D1 criterion, as applied to Agents 1 and 2 in our exam-

ple, is to require Agent 2’s beliefs to rule out the possibility that Agent 1, having

some type p1, could make some out of equilibrium report (say a report of 3)

if some other type p ′1 would have benefitted “more often” (with respect to the

set of Agent 2’s best responses to the report) by making that report. Since the

only (relevant) out of equilibrium report for Agent 1 is indeed “3,” we restrict

attention to that one.3

Formally, for any possible type p1 ∈ {2, 2.5, 3} of Agent 1, let D (p1) denote

the set of mixed behavioral strategies of Agent 2 that are (i) best responses for

some beliefs over the other agents’ types (i.e. over {u−2, v−2, w−2}) given a report

of 3 by Agent 1, and (ii) result in a strictly higher expected payoff for Agent 1

than her expected equilibrium payoff (when her type is p1 and she reported

3).4 Similarly, let D 0(p1) be the same set, replacing strictly higher with weakly

higher.

The D1 criterion requires that if D 0(p1) ( D (p ′1), then Agent 2’s beliefs fol-

lowing Agent 1’s report of 3 must put zero weight on type p1. The only out of

equilibrium report under (σ,β ) is Agent 1’s report of 3, after which Agent 2 be-

lieves with certainty that p1 = 2. Hence the equilibrium would fail the D1 cri-

terion precisely when D 0(2)(D (p ′1) for some p ′1 ∈ {2.5, 3}.
It is easy to show that this condition is not true, i.e. the equilibrium satisfies

the D1 criterion. In fact consider Agent 2’s equilibrium response to Agent 1’s

(out of equilibrium) report of 3,σ2(3). By definition this is a best response with

respect to Agent 2’s beliefs. Imagine that Agent 2 uses this strategy. Then, when

p1 = 2 and Agent 1 reports a peak of 3, she receives a payoff identical to her

2As a consequence, our equilibrium is thus also consistent with weaker notions such as the
Intuitive Criterion, Divinity, etc.

3Note that “0” and “1” are also out of equilibrium reports for Agent 1. However, these reports
are trivial cases in that none of Agent 1’s admissible types could benefit from making such re-
ports. That is, there is no final history, following a report of “0” or “1” by Agent 1, in which she
receives more than 1 unit. Moreover, each possible type of Agent 1 weakly prefers the equilib-
rium outcome to receiving 1 or fewer units. Thus the requirements of D1, defined below, are
trivially satisfied following those two reports. Agent 1’s report of “3” is the crucial case, which
we handle below.

4See Fudenberg and Tirole’s book, Game Theory, page 452.
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equilibrium payoff (see Table 4); hence σ2(3) ∈ D 0(2). Yet when p1 ∈ {2.5, 3}
and Agent 1 reports a peak of 3, she receives a payoff strictly lower than her

equilibrium payoff (see Table 4); henceσ2(3) 6∈D (2.5)∪D (3). That is,

D 0(2) 6⊆D (2.5)∪D (3)

meaning that Agent 2’s belief that p1 = 2 passes the test of the D1 criterion.

2.2 Forward induction a là Govindan-Wilson

The arguments above were made by taking the truthful behavior of Agents 3

and 4 as given, and then extending the ideas behind 2-person signaling game

equilibrium refinements to our setting. We were able to do this in a fairly natu-

ral way because, in the specific equilibrium we consider, only Agent 2’s beliefs

are critical to the analysis, while the truthful behavior of Agents 3 and 4 is ro-

bust to any specification of beliefs. A more formal approach, well beyond the

scope of our work, would be to first establish a principle that extends the ideas

beyond these refinement concepts to a more general class of games including

ours, and that would apply to any sequential equilibrium. Fortunately for us,

Govindan and Wilson (2009) do precisely this, providing a general definition of

forward induction that applies to a general class of games with perfect recall.

In what follows we show that the equilibria in our examples also satisfy their

definition.

Govindan and Wilson (2009) formalize the idea of testing the plausibility of

beliefs based on the rationality of actions that have led to the current informa-

tion set. While their definition of sequential equilibrium is analogous to that

in Kreps and Wilson (1982), there are a few technical issues that should be clar-

ified. First, they allow for games in which a player might take multiple actions

(i.e. make multiple moves in the sequential game), while in our case a player

only moves once. For brevity, we describe the definitions in Govindan and Wil-

son (2009) under the restriction to our class of move-once games, which allows

for simpler statements.5

Second, they describe equilibria using beliefs over other agents’ strategies

rather than over others’ types; in their words, “it is only from a belief speci-

fied as a conditional distribution over strategies that one can verify whether

5In brief, we avoid reference to weakly sequential equilibrium, which applies when an agent
has an information set that can be reached only through his own earlier action.
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a player’s belief recognizes the rationality of others’ strategies.” More formally,

they define what we will henceforth call a “GW sequential equilibrium” in terms

of a strategies-beliefs pair, (σ̂, γ̂), where γ̂i represents Agent i s’ conditional be-

liefs over nature’s moves and over other agents’ pure strategies (functions map-

ping histories at which the agent acts into actions). As in Kreps and Wilson

(1982), these authors require consistency: there is a sequence of full-support

behavior strategies σk and a corresponding sequence of full-support equiva-

lent normal-form strategiesϕk , such that as k →∞,σk →σ, and γ̂ is the limit

of the conditional distributions obtained by Bayes’ rule fromϕk and the prior.

Third, Govindan and Wilson (2009) define forward induction to apply to

an “equilibrium outcome,” i.e. a distribution over terminal nodes induced by

equilibrium strategies.6 For consistency with our paper, we state equivalent

formalizations of their definitions in terms of (the outcomes of) Kreps-Wilson

(KW) sequential equilibria of the form (σ,β ). Their first definition concerns

strategies that are optimal under some expectation about others’ equilibrium

behavior.

Definition 1 (Govindan and Wilson, 2009). Fix a KW sequential equilibrium

(σ,β ). A pure strategy ζi for Agent i ∈ N is relevant for (σ,β ) if there exists

some GW sequential equilibrium (σ̂, γ̂) that (i) induces the same distribution

on terminal nodes as (σ,β ), and (ii) for which ζi is optimal at each of i ’s infor-

mation sets.

To define their forward induction concept, Govindan and Wilson, 2009 re-

strict players to believe that other agents are using relevant strategies, as long as

the current information set itself is reachable by relevant strategies. To capture

this latter clause they provide the following definition.

Definition 2 (Govindan and Wilson, 2009). An information set is relevant for a

KW sequential equilibrium (σ,β ) if it can be reached under a profile of relevant

strategies for (σ,β ).

Definition 3 (Govindan and Wilson, 2009). A KW sequential equilibrium (σ,β )
satisfies GW forward induction if there exists an outcome-equivalent GW se-

quential equilibrium (σ̂, γ̂) such that, at each relevant information set for (σ,β ),

6This formulation allows them to express forward induction as the existence of beliefs satis-
fying certain conditions that would exhibit an awkward form of circularity if they were instead
defined directly on an equilibrium.
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the beliefs γ̂i of the player acting at that information set places positive weight

only on players’ strategies that are relevant for (σ,β ).

Claim. The KW sequential equilibrium (σ,β ) defined in Example 1 satisfies

GW forward induction.

Proof. Fix the KW sequential equilibrium (σ,β ) defined in Example 1. We con-

struct GW-beliefs γ̂ such that (σ, γ̂) forms a GW sequential equilibrium with the

desired properties of Definition 3. This is done for each agent by taking a limit

of beliefs over the following full support strategies of the other agents.

For any ε ≥ 0 let ϕε1 be the mixed normal-form strategy for Agent 1 defined

as follows (where x → y denotes type x reporting y ):

(2→ 2; 2.5→ 2.5; 3→ 2.5) with probability 1−2ε− ε2;

(2→ 3; 2.5→ 2.5; 3→ 2.5) with probability ε;

(2→ 1; 2.5→ 2.5; 3→ 2.5) with probability ε;

all remaining strategies with uniform probabilities summing to ε2.

For i ∈ {2, 3, 4}, let Si denote the (possibly empty) set of Agent i ’s relevant strate-

gies for (σ,β ) that are different from σi . For any ε ≥ 0 let ϕεi be the mixed

normal-form strategy for Agent i ∈ {2, 3, 4} defined as follows:

σi with probability 1− ε− ε2;

all strategies in Si with uniform probabilities summing to ε;

all remaining strategies with uniform probabilities summing to ε2

(renormalizing probabilities if either Si = ; or if all strategies are relevant). Ob-

serve that as ε→ 0, the limit behavior strategy of Agent i ∈ {1, 2, 3, 4} obtained

from the sequence {ϕεi } isσi .

For i ∈ {1, 2, 3, 4}, define γ̂i to be the limit as ε→ 0 of the conditional proba-

bility distributions (given the history at the relevant information set) of nature’s

moves and of the other players’ strategies (i.e. a Bayesian update of the com-

posite of µ and ϕε−i , given the previous agents’ reports and the realization of

pi ). For Agent 1, γ̂1 is simply the composite of the (Bayesian update of) prior

beliefs over the other agents’ types (given p1) and strategiesσ−1; thusσ1 is se-

quentially rational.

One can easily check that γ̂2 induces beliefs over nature’s moves that co-
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incide with β2 (Table 3 in the paper).7 Thus σ2 is sequentially rational. For

reference further below, γ̂2 gives Agent 2 has degenerate beliefs over Agent 1’s

strategies as summarized in Table 1. Finally, note that the sequential rationality

of truthful strategiesσ3,σ4 follows from strategy-proofness as in the paper.8

Agent 1’s report (h2) Agent 2’s belief over Agent 1’s strategy, given h2

0 always report a peak of “0”
1 report “1” with a peak of 2, report “2.5” otherwise
2 σ1

2.5 σ1

3 report “3” with a peak of 2, report “2.5” otherwise

Table 1: Agent 2’s belief over Agent 1’s strategy, conditional on Agent 1’s report.

To complete the proof, we need to show that, at all relevant information

sets, γ̂ places positive probability only on strategies relevant for (σ,β ). Note

that since the order of play is fixed in this example, for each i , j ∈ {1, 2, 3, 4}with

i < j , γ̂i places probability one on σ j regardless of history. Since equilibrium

strategies are relevant by definition, we only need to check the condition when

j < i . In particular, Agent i = 1’s beliefs γ̂1 thus trivially satisfy the definition.

Next consider γ̂2. We first observe that the information set following Agent 1’s

report of “0” is not a relevant information set for (σ,γ), i.e. Agent 1 never makes

such a report as part of a relevant strategy. To see this, recall that agents 3 and

4 have complete information about their types. Thus, an argument mirroring

the one proving our Theorem 1 shows that following any report of agent 2, in

any arbitrary sequential equilibrium of the game, agent 1 receives the same

amount as she would receive if agents 3 and 4 were truthful. Thus, if Agent

1 with peak 2 reports 0, this agent receives 0 with probability one in each se-

quential equilibrium of this game. However, Agent 1 can guarantee herself 1

unit by reporting a peak of 1. Thus, no strategy in which agent 1 reports 0 at

information set 2 is relevant for (σ,β ). Now, if Agent 1 reports 0, she receives at

7Though it is inconsequential, we tangentially note that for ε > 0, ϕε1 induces a behavior
strategy that is different from the behavior strategy we constructed in Table 6 of the paper. For
the purpose of establishing forward induction in this Online Appendix, it is more convenient to
start from a normal-form strategy from which one can easily derive both limits of conditional
beliefs on strategies and limit behavior strategies.

8In fact due to this, we did not need to explicitly define beliefs β3,β4 in the paper. For for-
mality of our claim, we can take these “KW-beliefs” to be the limit belief for Agent i ∈ {3, 4} on
nature’s moves, induced by the sequence {ϕεi }.
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most one unit of the good. In a sequential equilibrium that produces the same

outcome as (β ,σ), agent 1 with type 2.5 or 3 has available an action that pro-

duces an outcome preferred to receiving at most one unit. Thus, no strategy

in which agent 1 reports 0 at some information set is relevant for (σ,β ). Thus,

the information set for agent 2 in which agent 1 reported 0 is not relevant for

(σ,β ).
For the other information sets of Agent 2 (i.e. following Agent 1’s report of

1, 2, 2.5, or 3), we show that Agent 2’s beliefs (see Table 1) put positive prob-

ability only on relevant strategies. Following Agent 1’s report of either “2” or

“2.5,” Agent 2 believes that Agent 1 is using the equilibrium strategyσ1, which

is (trivially) relevant.

After Agent 1 reports “1,” Agent 2 believes that Agent 1 has used the strat-

egy (2 → 1; 2.5 → 2.5; 3 → 2.5). Since this strategy coincides with σ1 for both

information sets 2.5 and 3, it prescribes an optimal continuation value at these

information sets. When p1 = 2, this strategy prescribes Agent 1 to report “1,”

which leads to Agent 1 receiving 1 unit for sure, the same outcome as that ob-

tained by the action prescribed by σ1 (see Table 4 in the paper’s Appendix).

Thus Agent 2 believes that Agent 1 is using a relevant strategy. The identical

argument (again via Table 4) can be made following Agent 1’s report of “3.”

Finally, consider γ̂i for i ∈ {3, 4}. Given a relevant information set for i , our

construction guarantees that for each j < i , γ̂i places positive probability only

on strategies in {σ j }∪Sj .
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