Online Appendix

Term Limits and Bargaining Power in Electoral Competition

Germán Gieczewski

September 2021

Proof of Lemma 1. Consider a challenger i who first runs in period t against an incumbent of type (θ, k). Let $R\left(\theta^{\prime}\right)$ be i 's expected lifetime rents from office, conditional on winning in period t and on her ability being θ^{\prime}. Let $\gamma Q\left(\theta^{\prime}\right)$ be i 's expected lifetime policy payoffs excluding period t, again conditional on winning in period t and her ability being θ^{\prime}. Let $\gamma S_{k}\left(\theta, \theta^{\prime}\right)$ be i 's policy payoff in period t, conditional on her ability being θ^{\prime} and the incumbent being type (θ, k). (Note that $R\left(\theta^{\prime}\right), Q\left(\theta^{\prime}\right)$ are independent of θ and k, and R, Q and S are not functions of γ.) Then

$$
T_{k}(\theta)=\int_{0}^{1}\left[R\left(\theta^{\prime}\right)+\gamma Q\left(\theta^{\prime}\right)+\gamma S_{k}\left(\theta, \theta^{\prime}\right)\right] r_{k}\left(\theta, \theta^{\prime}\right) f\left(\theta^{\prime}\right) d \theta^{\prime}
$$

By Proposition 1, if the challenger wins and her ability is θ^{\prime}, then with probability $1-\mu$ she is unbiased, her policy is 0 , and her policy payoff is 0 ; with probability μ she is biased, her policy is $\pm \sqrt{\frac{U_{0}\left(\theta^{\prime}\right)-U_{k}(\theta)}{\lambda}}$, and her policy payoff is $-\left(I-\sqrt{\frac{U_{0}\left(\theta^{\prime}\right)-U_{k}(\theta)}{\lambda}}\right)^{2}$. In other words, $S_{k}\left(\theta, \theta^{\prime}\right)=-\mu\left(I-\sqrt{\frac{U_{0}\left(\theta^{\prime}\right)-U_{k}(\theta)}{\lambda}}\right)^{2}$, which is a strictly decreasing function of $U_{k}(\theta)$. Furthermore, $r_{k}\left(\theta, \theta^{\prime}\right)$ is weakly decreasing as a function of $U_{k}(\theta)$ for each θ^{\prime} : if $U_{k}(\theta)<U_{\tilde{k}}(\tilde{\theta})$, then either $U_{k}(\theta)<U_{0}\left(\theta^{\prime}\right)$, implying $r_{k}\left(\theta, \theta^{\prime}\right)=1 \geq$ $r_{\tilde{k}}\left(\tilde{\theta}, \theta^{\prime}\right)$, or $U_{0}\left(\theta^{\prime}\right)<U_{\tilde{k}}(\tilde{\theta})$, implying $r_{k}\left(\theta, \theta^{\prime}\right) \geq r_{\tilde{k}}\left(\tilde{\theta}, \theta^{\prime}\right)=0$. The result follows.

Proof of Proposition 5-Pinning down θ_{0}. Under stationary limits, the expressions for
R and Q simplify to

$$
\begin{aligned}
& R(\theta)=\frac{b}{1-\delta p(1-q(\theta) \kappa(\theta))}=\frac{b}{1-\delta p+\delta p q(\theta) \kappa(\theta)} \\
& Q(\theta)=\left[q(\theta) y_{1}+(1-q(\theta)) y_{0}\right] \frac{\delta p}{1-\delta p+\delta p q(\theta) \kappa(\theta)}
\end{aligned}
$$

where $\kappa(\theta)=\int_{0}^{1} r\left(\theta, \theta^{\prime}\right) f\left(\theta^{\prime}\right) d \theta^{\prime}$ is the probability that an incumbent of ability θ loses an election, conditional on the challenger running; and y_{1}, y_{0} are the expected flow policy payoffs of an incumbent of ability θ if the challenger runs or does not run, respectively. Remember also that

$$
\bar{T}_{\theta_{0}}=\int_{0}^{1}\left(R(\theta)+\gamma Q(\theta)+\gamma S\left(\theta_{0}, \theta\right)\right) r\left(\theta_{0}, \theta\right) f(\theta) d \theta
$$

Suppose first that the equilibrium is of type 2, and let $\theta_{1}=\theta_{1}\left(\theta_{0}\right)$. Then $r\left(\theta_{0}, \theta\right)=$ 0 for $\theta<\theta_{0}, r\left(\theta_{0}, \theta\right)=\frac{1}{2}$ for $\theta \in\left[\theta_{0}, \theta_{1}\right]$ and $r\left(\theta_{0}, \theta\right)=1$ for $\theta>\theta_{1}$:
$\bar{T}_{\theta_{0}}=\frac{1}{2} \int_{\theta_{0}}^{\theta_{1}}\left(R(\theta)+\gamma Q(\theta)+\gamma S\left(\theta_{0}, \theta\right)\right) f(\theta) d \theta+\int_{\theta_{1}}^{1}\left(R(\theta)+\gamma Q(\theta)+\gamma S\left(\theta_{0}, \theta\right)\right) f(\theta) d \theta$.

Letting $R_{*}=\frac{\partial R}{\partial \theta_{0}}$ and so on, we then want to show that $\frac{\partial \bar{T}_{\theta_{0}}}{\partial \theta_{0}}<0$ for all θ_{0}, where

$$
\begin{aligned}
\frac{\partial \bar{T}_{\theta_{0}}}{\partial \theta_{0}} & =\frac{1}{2} \int_{\theta_{0}}^{\theta_{1}}\left(R_{*}(\theta)+\gamma Q_{*}(\theta)+\gamma S_{*}\left(\theta_{0}, \theta\right)\right) f(\theta) d \theta+\int_{\theta_{1}}^{1}\left(R_{*}(\theta)+\gamma Q_{*}(\theta)+\gamma S_{*}\left(\theta_{0}, \theta\right)\right) f(\theta) d \theta \\
& -\frac{1}{2}\left(R\left(\theta_{0}\right)+\gamma Q\left(\theta_{0}\right)+\gamma S\left(\theta_{0}, \theta_{0}\right)\right) f\left(\theta_{0}\right)-\frac{1}{2} \theta_{1}^{\prime}\left(\theta_{0}\right)\left(R\left(\theta_{1}\right)+\gamma Q\left(\theta_{1}\right)+\gamma S\left(\theta_{0}, \theta_{1}\right)\right) f\left(\theta_{1}\right)
\end{aligned}
$$

Note that $R_{*}(\theta)=0$ for $\theta>\theta_{1}$ (because $q(\theta) \kappa(\theta) \equiv 0$), and $S\left(\theta_{0}, \theta\right)=S_{*}\left(\theta_{0}, \theta\right)=0$ for $\theta \in\left[\theta_{0}, \theta_{1}\right]$. Then we need to show

$$
\begin{aligned}
& \frac{1}{2} \int_{\theta_{0}}^{\theta_{1}}\left(R_{*}(\theta)+\gamma Q_{*}(\theta)\right) f(\theta) d \theta+\int_{\theta_{1}}^{1}\left(\gamma Q_{*}(\theta)+\gamma S_{*}\left(\theta_{0}, \theta\right)\right) f(\theta) d \theta \\
& -\frac{1}{2}\left(R\left(\theta_{0}\right)+\gamma Q\left(\theta_{0}\right)\right) f\left(\theta_{0}\right)-\frac{1}{2} \theta_{1}^{\prime}\left(\theta_{0}\right)\left(R\left(\theta_{1}\right)+\gamma Q\left(\theta_{1}\right)\right) f\left(\theta_{1}\right)<0
\end{aligned}
$$

Because we want to show this holds for γ low enough, it is necessary and sufficient
to prove that

$$
\begin{equation*}
\int_{\theta_{0}}^{\theta_{1}} R_{*}(\theta) f(\theta) d \theta<R\left(\theta_{0}\right) f\left(\theta_{0}\right)+R\left(\theta_{1}\right) f\left(\theta_{1}\right) \theta_{1}^{\prime}\left(\theta_{0}\right) \tag{B1}
\end{equation*}
$$

and that $Q_{*}(\theta), Q(\theta)$, and $S_{*}\left(\theta_{0}, \theta\right)\left(\theta>\theta_{1}\right)$ are bounded. ${ }^{1}$ Before proceeding further, note that R_{*}, Q_{*} and S_{*} (hence also q_{*} and κ_{*}) must be well defined for our approach to be valid. This boils down to showing that $\theta_{1}^{\prime}\left(\theta_{0}\right)$ exists, which follows from applying the Implicit Function Theorem to the characterization of θ_{1} in Lemma B1.

We will first deal with office rents. We can calculate

$$
R_{*}(\theta)=\frac{b \delta p q(\theta) \kappa(\theta)}{(1-\delta p+\delta p q(\theta) \kappa(\theta))^{2}}\left(-\frac{q_{*}(\theta)}{q(\theta)}-\frac{\kappa_{*}(\theta)}{\kappa(\theta)}\right) .
$$

Here $\kappa(\theta)=1-\frac{F\left(\theta_{0}\right)+F\left(\theta_{1}\right)}{2}$, so $\kappa_{*}(\theta)=-\frac{f\left(\theta_{0}\right)+f\left(\theta_{1}\right) \theta_{1}^{\prime}\left(\theta_{0}\right)}{2}$, and $q(\theta)=\frac{\theta_{1}-\theta}{\theta_{1}-\theta_{0}}$, so $q_{*}(\theta)=$ $\frac{\theta_{1}^{\prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)+\theta_{1}-\theta}{\left(\theta_{1}-\theta_{0}\right)^{2}}$. A digression here will be necessary. Using our characterization of q^{\prime} and θ_{1} (Proposition 5-pinning down θ_{1}), we can show that $\theta_{1}-\theta_{0}$ is bounded away from zero and θ_{1}^{\prime} is bounded and bounded away from zero:

Lemma B1. There are $m, m^{\prime}, M>0$ dependent only on μ, δ, p and F such that $\theta_{1}\left(\theta_{0}\right)-\theta_{0} \geq m^{\prime}$ and $\theta_{1}^{\prime}\left(\theta_{0}\right) \in[m, M]$.

Proof. Note that if $\theta_{1}\left(\theta_{0 k}\right)-\theta_{0 k} \xrightarrow[k \rightarrow \infty]{ } 0$ for some sequence $\left(\theta_{0 k}\right)_{k}$, then in the limit we would have $\left|q^{\prime}\right| \leq \frac{1}{\delta p \min (\mu, 1-\mu) \int_{0}^{1} \min \left(\frac{1-F(\theta)}{1-\delta p[\mu+(1-2 \mu) F(\theta)]}, \frac{1-F(\theta)}{1-\delta p(1-\mu)}\right) d \theta}<\infty$, so $q^{\prime}\left(\theta_{1}-\theta_{0}\right) \rightarrow 0$, a contradiction. If $1 \geq \theta_{1}-\theta_{0} \geq m^{\prime}$, then $1 \leq q^{\prime} \leq \frac{1}{m^{\prime}}$. θ_{1}^{\prime} must solve $q^{\prime}\left(\theta_{1}^{\prime}-\right.$ $1)+\left(\frac{\partial q^{\prime}}{\partial \theta_{1}} \theta_{1}^{\prime}+\frac{\partial q^{\prime}}{\partial \theta_{0}}\right)\left(\theta_{1}-\theta_{0}\right)=0$, or $\theta_{1}^{\prime}=\frac{q^{\prime}-\frac{\partial q^{\prime}}{\partial \theta_{0}}}{q^{\prime}+\frac{\partial q^{\prime}}{\partial \theta_{1}}}$. Here $-\frac{\partial q^{\prime}}{\partial \theta_{0}}=q^{\prime 2} \frac{\delta p \mu\left(1-F\left(\theta_{0}\right)\right)}{1-\delta p\left[\mu+(1-2 \mu) F\left(\theta_{0}\right)\right]} \leq$ $\frac{\delta p \mu}{(1-\delta p) m^{\prime 2}}$ and $\frac{\partial q^{\prime}}{\partial \theta_{1}}=q^{\prime 2} \frac{\delta p(1-\mu)\left(1-F\left(\theta_{1}\right)\right)}{1-\delta p+\delta p \mu} \leq \frac{\delta p(1-\mu)}{(1-\delta p) m^{\prime 2}}$. This yields the result.

Using Lemma B1 and previous results, and denoting $\underline{m}=\min (m, 1)$,

$$
\begin{aligned}
-\frac{q_{*}(\theta)}{q(\theta)} & =-\frac{1}{q(\theta)} \frac{\theta_{1}^{\prime}\left(\theta_{0}\right)\left(\theta-\theta_{0}\right)+\theta_{1}-\theta}{\left(\theta_{1}-\theta_{0}\right)^{2}} \leq-\frac{1}{q(\theta)} \frac{m\left(\theta-\theta_{0}\right)+\left(\theta_{1}-\theta\right)}{\theta_{1}-\theta_{0}}= \\
& =-\frac{\underline{m}}{q(\theta)\left(\theta_{1}-\theta_{0}\right)}-\frac{1-\underline{m}}{\theta_{1}-\theta_{0}} \leq-\frac{1}{1-\theta_{0}}\left(\frac{m}{q(\theta)}+1-\underline{m}\right) \\
-\frac{\kappa_{*}(\theta)}{\kappa(\theta)} & =\frac{f\left(\theta_{0}\right)+f\left(\theta_{1}\right) \theta_{1}^{\prime}\left(\theta_{0}\right)}{2-F\left(\theta_{0}\right)-F\left(\theta_{1}\right)} \leq \frac{f\left(\theta_{0}\right)+f\left(\theta_{1}\right) \theta_{1}^{\prime}\left(\theta_{0}\right)}{1-F\left(\theta_{0}\right)}
\end{aligned}
$$

[^0]Then we can deal with the terms involving $f\left(\theta_{1}\right)$ as follows:

$$
\int_{\theta_{0}}^{\theta_{1}} \frac{b \delta p q(\theta) \kappa(\theta)}{(1-\delta p+\delta p q(\theta) \kappa(\theta))^{2}} \frac{f\left(\theta_{1}\right) \theta_{1}^{\prime}\left(\theta_{0}\right)}{\left(1-F\left(\theta_{0}\right)\right)} f(\theta) d \theta<R\left(\theta_{1}\right) f\left(\theta_{1}\right) \theta_{1}^{\prime}\left(\theta_{0}\right)
$$

because $\frac{\delta p q(\theta) \kappa(\theta)}{(1-\delta p+\delta p q(\theta) \kappa(\theta))^{2}}<\frac{1}{1-\delta p}$ and $\int_{\theta_{0}}^{\theta_{1}} f(\theta) d \theta \leq 1-F\left(\theta_{0}\right)$. So it is enough to show

$$
\int_{\theta_{0}}^{\theta_{1}} \frac{b \delta p q(\theta) \kappa(\theta)}{(1-\delta p+\delta p q(\theta) \kappa(\theta))^{2}}\left(-\frac{\frac{m}{q(\theta)}+1-\underline{m}}{1-\theta_{0}}+\frac{f\left(\theta_{0}\right)}{1-F\left(\theta_{0}\right)}\right) f(\theta) d \theta<R\left(\theta_{0}\right) f\left(\theta_{0}\right)
$$

Using that $\frac{f\left(\theta_{0}\right)}{1-F\left(\theta_{0}\right)} \leq \frac{\phi}{1-\theta_{0}}$, it is enough to show that for any $0 \leq q \leq 1$

$$
\begin{aligned}
\left(\frac{b \delta p q \kappa}{(1-\delta p+\delta p q \kappa)^{2}}\left(1-\frac{\underline{m}}{\phi q}-\frac{1-\underline{m}}{\phi}\right) \frac{f\left(\theta_{0}\right)}{1-F\left(\theta_{0}\right)}\right)\left(F\left(\theta_{1}\right)-F\left(\theta_{0}\right)\right) & <\frac{b f\left(\theta_{0}\right)}{1-\delta p+\delta p \kappa} \\
\frac{\delta p q \kappa}{(1-\delta p+\delta p q \kappa)^{2}}\left(1-\frac{\underline{m}}{\phi q}-\frac{1-\underline{m}}{\phi}\right) & <\frac{1}{1-\delta p+\delta p \kappa}
\end{aligned}
$$

The left-hand side is single-peaked in q with a maximum at $q^{*}=\frac{1-\delta p}{\delta p k}+\frac{2 \underline{\underline{m}}}{\phi-1+\underline{\underline{m}}}$. If this q^{*} is greater than 1 , then we need

$$
\frac{\delta p \kappa}{(1-\delta p+\delta p \kappa)^{2}}\left(1-\frac{1}{\phi}\right)<\frac{1}{1-\delta p+\delta p \kappa}
$$

which always holds. If $0<q^{*}<1$, then the maximized value of the left-hand side is $\frac{1}{\frac{4 \phi}{\phi-1+\underline{\underline{m}}}(1-\delta p)+\frac{4 m \phi}{(\phi-1+\underline{m})^{2}} \delta p \kappa}$. Since $\underline{m} \leq 1, \frac{4 \phi}{\phi-1+\underline{m}} \geq 4>1$, so the required inequality is guaranteed to hold if $\frac{4 \underline{m} \phi}{(\phi-1+\underline{m})^{2}}$ is at least 1. This expression is decreasing in ϕ (again given $\underline{m} \leq 1$) and equals $\frac{4}{\underline{m}}>1$ if $\phi=1$, so there is $\phi^{*}(\underline{m})>1$ such that the inequality holds whenever $\phi \leq \phi^{*}(\underline{m})$.

We now turn to policy payoffs. For $\theta \in\left[\theta_{0}, \theta_{1}\right]$,

$$
\begin{aligned}
Q(\theta) & =\left[q(\theta) y_{1}+(1-q(\theta)) y_{0}\right] \frac{\delta p}{1-\delta p+\delta p q(\theta) \kappa(\theta)} \\
\Longrightarrow Q_{*}(\theta)=- & \frac{q(\theta) y_{1}+(1-q(\theta)) y_{0}}{(1-\delta p+\delta p q(\theta) \kappa(\theta))^{2}} \delta^{2} p^{2} q(\theta) \kappa(\theta)\left(\frac{q_{*}(\theta)}{q(\theta)}+\frac{\kappa_{*}(\theta)}{\kappa(\theta)}\right) \\
& -\delta p \frac{q_{*}(\theta)\left(y_{0}-y_{1}\right)}{1-\delta p+\delta p q(\theta) \kappa(\theta)}+\delta p \frac{q(\theta) y_{1 *}+(1-q(\theta)) y_{0 *}}{1-\delta p+\delta p q(\theta) \kappa(\theta)} .
\end{aligned}
$$

f is bounded by assumption and $q, \kappa \leq 1$. Also $|Q(\theta)|,\left|y_{0}\right|,\left|y_{1}\right| \leq \frac{I^{2}}{1-\delta p}$. It remains to bound $y_{0 *}$ and $y_{1 *}$. Using that $y_{0}=S(0, \theta), y_{1}=\int_{0}^{1} S\left(\theta^{\prime}, \theta\right) f\left(\theta^{\prime}\right) d \theta$, and $S\left(\theta^{\prime}, \theta\right)=$ $\mu\left(-\frac{U(\theta)-U\left(\theta^{\prime}\right)}{\lambda}+2 \sqrt{\frac{U(\theta)-U\left(\theta^{\prime}\right)}{\lambda}} I-I^{2}\right)$ for any $\theta^{\prime} \leq \theta$ (see Lemma 1), we obtain:

$$
\begin{gathered}
y_{0}=\mu\left(-I^{2}+2 I \sqrt{\frac{\tilde{U}\left(\theta_{0}\right)}{\lambda}}-\frac{\tilde{U}\left(\theta_{0}\right)}{\lambda}\right), y_{0 *}=\mu U^{\prime}\left(\theta_{0}\right)\left[I \sqrt{\frac{1}{\tilde{U}\left(\theta_{0}\right) \lambda}}-\frac{1}{\lambda}\right], \\
y_{1}=\mu \int_{0}^{\theta_{0}}\left(-I^{2}+2 I \sqrt{\frac{\tilde{U}\left(\theta_{0}\right)-\tilde{U}(\theta)}{\lambda}}-\frac{\tilde{U}\left(\theta_{0}\right)-\tilde{U}(\theta)}{\lambda}\right) f(\theta) d \theta \\
y_{1 *}=\mu U^{\prime}\left(\theta_{0}\right) \int_{0}^{\theta_{0}}\left(I \sqrt{\frac{1}{\left(\tilde{U}\left(\theta_{0}\right)-\tilde{U}(\theta)\right) \lambda}}-\frac{1}{\lambda}\right) f(\theta) d \theta
\end{gathered}
$$

Now, using that $1 \leq U^{\prime}(\theta) \leq \frac{1}{1-\delta p}$ for $\theta<\theta_{0}$, and denoting max $f=\bar{f}$,

$$
\begin{gathered}
-\frac{\mu}{\lambda(1-\delta p)} \leq y_{1 *} \leq \frac{\mu}{1-\delta p} \int_{0}^{\theta_{0}} I \sqrt{\frac{1}{\left(\theta_{0}-\theta\right) \lambda}} \bar{f} d \theta=\frac{\mu}{1-\delta p} \frac{2 I \bar{f} \sqrt{\theta_{0}}}{\sqrt{\lambda}} \leq \frac{\mu}{1-\delta p} \frac{2 I \bar{f}}{\sqrt{\lambda}} \\
-\frac{\mu}{\lambda(1-\delta p)} \leq y_{0 *} \leq \frac{\mu}{1-\delta p} \frac{I}{\sqrt{\theta_{0}} \sqrt{\lambda}} .
\end{gathered}
$$

$Q_{*}(\theta)$ for $\theta>\theta_{1}$ and $S_{*}\left(\theta_{0}, \theta\right)$ for $\theta>\theta_{1}$ can be bounded with similar arguments. All of our bounds are uniform in θ_{0} except for the upper bound on $y_{0 *}$, which is proportional to $\frac{1}{\sqrt{\theta_{0}}}$ and explodes as $\theta_{0} \rightarrow 0$.

We finish our proof of equilibrium uniqueness in this region with the following argument. If $\gamma=0$, given values of all other parameters, there is a unique equilibrium whenever $\phi<\phi^{*}(\underline{m})$. Let θ^{*} be the value of θ_{0} in this equilibrium. If $\theta^{*}>0$, the marginal policy payoffs that show up in $\frac{\partial \bar{T}}{\partial \theta_{0}}$ are bounded in a neighborhood of θ^{*}, and the total policy payoffs in $\bar{T}(\theta)$ are bounded everywhere (i.e., \bar{T} may be nonmonotonic near 0 , but this is far from θ^{*}, where \bar{T} crosses c). If $\theta^{*}=0$, then $\bar{T}\left(\theta^{*}\right)<c$ for any $\gamma>0$ (because policy payoffs are negative), so the equilibrium is type 3 , which does not have these issues.

Next, suppose the equilibrium is type 1. Then

$$
\begin{aligned}
\bar{T}_{\theta_{0}} & =\frac{1}{2} \int_{\theta_{0}}^{1}\left(R(\theta)+\gamma Q(\theta)+\gamma S\left(\theta_{0}, \theta\right)\right) f(\theta) d \theta \\
\frac{\partial \bar{T}_{\theta_{0}}}{\partial \theta_{0}} & =\frac{1}{2} \int_{\theta_{0}}^{1}\left(R_{*}(\theta)+\gamma Q_{*}(\theta)+\gamma S_{*}\left(\theta_{0}, \theta\right)\right) f(\theta) d \theta-\frac{1}{2}\left(R\left(\theta_{0}\right)+\gamma Q\left(\theta_{0}\right)+\gamma S\left(\theta_{0}, \theta_{0}\right)\right) f\left(\theta_{0}\right)
\end{aligned}
$$

Bounding the policy payoffs in this case is not hard (the issues that arise as θ_{0} approaches zero do not apply here). We then have to show

$$
\int_{\theta_{0}}^{1} R_{*}(\theta) f(\theta) d \theta<R\left(\theta_{0}\right) f\left(\theta_{0}\right)
$$

We now have

$$
q_{*}(\theta) \geq \frac{1-q(1)}{1-\theta_{0}}, \kappa(\theta)=\frac{1-F\left(\theta_{0}\right)}{2} \Longrightarrow \kappa_{*}(\theta)=-\frac{1}{2} f\left(\theta_{0}\right),-\frac{\kappa_{*}(\theta)}{\kappa(\theta)} \leq \frac{f\left(\theta_{0}\right)}{1-F\left(\theta_{0}\right)}
$$

(The bound on $q_{*}(\theta)$ uses the fact that, when $\theta_{1}=1,\left|q^{\prime}(\theta)\right|$ is decreasing in θ_{0}-see Proposition 5.) Arguing as before, it is enough to show

$$
\begin{aligned}
\frac{b \delta p q \kappa}{(1-\delta p+\delta p q \kappa)^{2}} & \left(1-\frac{1-q(1)}{\phi q}\right) \frac{f\left(\theta_{0}\right)}{1-F\left(\theta_{0}\right)}\left(1-F\left(\theta_{0}\right)\right)<\frac{b f\left(\theta_{0}\right)}{1-\delta p+\delta p \kappa} \\
& \Longleftrightarrow \frac{\delta p q \kappa}{(1-\delta p+\delta p q \kappa)^{2}}\left(1-\frac{1-q(1)}{\phi q}\right)<\frac{1}{1-\delta p+\delta p \kappa}
\end{aligned}
$$

subject to $q \geq q(1)$.
Again $\frac{\delta p q \kappa}{(1-\delta p+\delta p q \kappa)^{2}}\left(1-\frac{1-q(1)}{\phi q}\right)$ is single peaked in q with a maximum at $q^{*}=$ $\frac{1-\delta p}{\delta p k}+\frac{2(1-q(1))}{\phi}$. There are three cases. If $q^{*}>1$, then we need

$$
\frac{\delta p \kappa}{(1-\delta p+\delta p \kappa)^{2}}\left(1-\frac{1-q(1)}{\phi}\right)<\frac{1}{1-\delta p+\delta p \kappa}
$$

which always holds. If $1>q^{*}>q(1)$, then $q^{*}>\frac{\frac{1-\delta p}{\delta p k}+\frac{2}{\phi}}{1+\frac{2}{\phi}}>q(1)$, and

$$
\begin{aligned}
& \frac{\delta p q^{*} \kappa}{\left(1-\delta p+\delta p q^{*} \kappa\right)^{2}}\left(1-\frac{1-q(1)}{\phi}\right)= \\
= & \frac{1}{4\left(1-\delta p+\frac{\delta p \kappa}{\phi}(1-q(1))\right)}<\frac{1}{4\left(1-\delta p+\frac{\delta p \kappa}{\phi}\left(1-\frac{\frac{1-\delta p}{\delta p k}+\frac{2}{\phi}}{1+\frac{2}{\phi}}\right)\right)}= \\
= & \frac{1}{4\left((1-\delta p)\left(1-\frac{1}{\phi+2}\right)+\delta p \kappa \frac{1}{\phi+2}\right)}
\end{aligned}
$$

which is always smaller than $\frac{1}{1-\delta p+\delta p \kappa}$ if $\phi<2$.
Finally, if $q(1)>q^{*}$, then we need

$$
\begin{aligned}
\frac{\delta p q(1) \kappa}{(1-\delta p+\delta p q(1) \kappa)^{2}}\left(1-\frac{1-q(1)}{\phi q(1)}\right) & <\frac{1}{1-\delta p+\delta p \kappa} \\
\Longleftrightarrow \frac{\delta p q(1) \kappa}{(1-\delta p+\delta p q(1) \kappa)^{2}} \frac{\phi+1}{\phi}\left(1-\frac{1}{(\phi+1) q(1)}\right) & <\frac{1}{1-\delta p+\delta p \kappa}
\end{aligned}
$$

The value of $q(1)$ that maximizes the left-hand side is $\frac{1-\delta p}{\delta p \kappa}+\frac{2}{\phi+1}$, and the maximized value of the left-hand side is $\frac{\phi+1}{\phi} \frac{1}{4(1-\delta p)+\frac{4}{\phi+1} \delta \rho \kappa}$. This expression is decreasing in ϕ and always less than $\frac{1}{1-\delta p+\delta p \kappa}$ for $\phi=1$, so there is again a threshold $\phi^{*}>1$ such that the inequality holds if $\phi<\phi^{*}$.

The case of a type 3 equilibrium is the simplest one. The policy payoffs can be handled as before. For office rents, we need to show that

$$
\int_{0}^{\theta_{1}} R_{*}(\theta) f(\theta) d \theta<R\left(\theta_{1}\right) f\left(\theta_{1}\right)
$$

where $R_{*}(\theta)$ now represents $\frac{\partial R(\theta)}{\partial \theta_{1}}$. (We can't use θ_{0} as the parameter since it is 0 , and θ_{1} is more convenient than $q(0)$.) We can, as before, show that $q_{*}(\theta)>0$, and $\kappa(\theta)=1-\frac{F\left(\theta_{1}\right)}{2}$, so $\kappa_{*}(\theta)=-\frac{f\left(\theta_{1}\right)}{2}$ and $-\frac{\kappa_{*}(\theta)}{\kappa(\theta)}=\frac{f\left(\theta_{1}\right)}{2-F\left(\theta_{1}\right)}<f\left(\theta_{1}\right)$. Then

$$
\begin{aligned}
R_{*}(\theta)=\frac{b \delta p q(\theta) \kappa(\theta)}{(1-\delta p+\delta p q(\theta) \kappa(\theta))^{2}}\left(-\frac{q_{*}(\theta)}{q(\theta)}-\frac{\kappa_{*}(\theta)}{\kappa(\theta)}\right)<\frac{b}{1-\delta p} f\left(\theta_{1}\right) \\
\Longrightarrow \int_{0}^{\theta_{1}} R_{*}(\theta) f(\theta) d \theta<\frac{b}{1-\delta p} f\left(\theta_{1}\right) F\left(\theta_{1}\right)<\frac{b}{1-\delta p} f\left(\theta_{1}\right)=R\left(\theta_{1}\right) f\left(\theta_{1}\right) .
\end{aligned}
$$

Proof of Corollary 1. Parts (i) and (ii) are immediate consequences of Proposition 6. For part (iii), note that $U_{1}(\theta)=\theta+\delta V$ and $U_{0}(\theta)=\theta+\delta V_{1}(\theta)$, so $U_{1}^{\prime}(\theta)=1$ and $U_{0}^{\prime}(\theta)=1+\delta V_{1}^{\prime}(\theta)$. For $\theta<\theta_{0}, V_{1}(\theta)=\mu E\left(\min \left(U_{1}(\theta), U_{0}\left(\theta^{\prime}\right)\right) \mid \theta^{\prime} \sim F\right)+(1-$ ر) $E\left(\max \left(U_{1}(\theta), U_{0}\left(\theta^{\prime}\right)\right) \mid \theta^{\prime} \sim F\right)$. $U_{1}^{\prime}(\theta)=1$ then implies $V_{1}^{\prime}(\theta)$, so $U_{0}^{\prime}(\theta)>U_{1}^{\prime}(\theta)$. For $\theta>\theta_{0}, V_{1}(\theta)=\mu \min \left(U_{1}(\theta), U_{0}(0)\right)+(1-\mu) \max \left(U_{1}(\theta), U_{0}(0)\right) . \quad U_{1}^{\prime}(\theta)=1$ again implies $V_{1}^{\prime}(\theta)>0$ and $U_{0}^{\prime}(\theta)>U_{1}^{\prime}(\theta)$ unless $\mu=1$, in which case $V_{1}(\theta)=U_{0}(0)$ and $U_{0}^{\prime}(\theta)=1=U_{1}^{\prime}(\theta)$.

For part (iv), if $\mu=1$, we will argue that $U_{0}(0)<U_{1}(\theta)$ for all θ. This follows since $U_{0}(0)=\delta V_{1}(0) \leq V_{1}(0)=V_{1}(0)=E\left(\min \left(U_{1}(0), U_{0}\left(\theta^{\prime}\right) \mid \theta^{\prime} \sim F\right) \leq U_{1}(0)\right.$, and U_{1} is increasing. (Note that $V, U_{0}, U_{1}, V_{1} \geq 0$, since electing the weaker candidate always gives a nonnegative flow payoff.) Hence $V_{1}(\theta)=U_{0}(0)$ for $\theta>\theta_{0}$. It also follows that $U_{0}(0) \leq V$, as $U_{0}(0) \leq U_{1}(0)=\delta V$. Hence $U_{1}(\theta) \geq U_{0}(\theta)$ for $\theta>\theta_{0}$, as $V \geq V_{1}(\theta)=U_{0}(0)$ for $\theta>\theta_{0}$. Both inequalities are strict unless $V=0$, which happens iff $q_{0}=0$. This argument also goes through for μ in a neighborhood of 1 .

There are two degenerate cases. If U^{*} is above $U_{1}(1)$, there always is competition. This is possible in under classic limits if c is low enough, since in an open election there is always a positive probability of winning, and in a closed election the challenger can always defeat the incumbent with non-negligible probability, since $U_{0}(1)>U_{1}(1)$ (see part (iv) of Proposition 2). If U^{*} is below $U_{1}(0)$, there never is competition in a closed election. This is possible if c is high enough.

[^0]: ${ }^{1}$ Because both sides of (B1) are continuous in θ_{0}, if the inequality holds strictly for all θ_{0}, the difference between the two sides is bounded away from zero.

