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Proof of Proposition 4

We begin by examining the agent’s indi↵erence conditions. We then describe

the equilibrium construction and show existence under the di↵erent parameter

conditions considered in the proposition. Finally, we prove uniqueness.

Indi↵erence conditions. We examine the agent’s indi↵erence conditions that

must be satisfied whenever the agent follows a random stopping policy. These

conditions allow us to derive an expression for the market’s belief bµ1
t .

Consider the agent’s indi↵erence condition (12) for each t 2 [t, t]. Writing

µt+dt = µt+dtµ̇t = µt�µt(1�µt)�Gdt, dividing by dt both sides of the equation,

and taking dt to zero, this condition can be rewritten as

R
�
bµ1

t � µt

�
+ x + µt�G

✓
Vt �

R

r

◆
= 0, (19)

where Vt = v + R
R1

t e�r(s�t)bµ1
sds. Since (19) holds at each t 2 [t, t], the agent

must be indi↵erent between stopping and continuing until t absent success. For

t < 1, the agent stops at t if he has not succeeded and continues forever

otherwise. Thus, for each t 2 [t, t],

µtR = (x + µt�G)
⇣
1 � e�r(t�t)

⌘
+ rR

Z t

t

e�r(s�t)bµ1
sds

+e�r(t�t)
h
µt

⇣
1 � e��G(t�t)

⌘
(x + �G + R) +

⇣
µte

��G(t�t) + 1 � µt

⌘
µtR

i
. (20)
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The left-hand side is the agent’s payo↵ from stopping at t < t; the right-hand

side is the agent’s expected payo↵ from continuing until t and stopping at t if

and only if he has not succeeded by then. Di↵erentiating this condition yields

µ̇tR = µ̇t�G

⇣
1 � e�r(t�t)

⌘
� r (x + µt�G) e�r(t�t)

� rR

"
bµ1

t � r

Z t

t

e�r(s�t)bµ1
sds

#

+re�r(t�t)
h
µt

⇣
1 � e��G(t�t)

⌘
(x + �G + R) +

⇣
µte

��G(t�t) + 1 � µt

⌘
µtR

i

+e�r(t�t)

8
<

:

h
µ̇t

⇣
1 � e��G(t�t)

⌘
� µt�Ge��G(t�t)

i
(x + �G + R)

+
h
µt�Ge��G(t�t)

� µ̇t

⇣
1 � e��G(t�t)

⌘i
µtR

9
=

; .

Substituting with equation (20) yields

µ̇tR = µ̇t�G

⇣
1 � e�r(t�t)

⌘
+ r (µtR � x � µt�G) � rRbµ1

t

+e�r(t�t)

8
<

:

h
µ̇t

⇣
1 � e��G(t�t)

⌘
� µt�Ge��G(t�t)

i
(x + �G + R)

+
h
µt�Ge��G(t�t)

� µ̇t

⇣
1 � e��G(t�t)

⌘i
µtR

9
=

; .

Substituting with µ̇t = �µt(1 � µt)�G and rearranging terms yields

bµ1
t =

1

rR

8
<

:
r [�x � µt(�G � R)] � µt(1 � µt)�G

h
�G

⇣
1 � e�r(t�t)

⌘
� R

i

�e�r(t�t)µt�G

h
1 � µt

⇣
1 � e��G(t�t)

⌘i
[x + �G + R(1 � µt)]

9
=

; .

(21)

Existence under �x < R < �x/µ0. We construct an equilibrium as de-

scribed in the proposition in which t 2 (tFB, 1) and t = 1. Equations (20)

and (21) reduce to

µtR = x + µt�G + rR

Z 1

t

e�r(s�t)bµ1
sds, (22)

bµ1
t =

1

rR

n
r [�x � µt(�G � R)] � µt(1 � µt)�G (�G � R)

o
, (23)

for each t � t. Consider an equilibrium in which the agent starts the project at

time 0, he continues with probability one at time t if he has succeeded by t or

if t < t, and otherwise he follows a random stopping policy from time t on such
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that the market’s belief bµ1
t satisfies (23). (Note that by the monotonicity and

continuity of Bayes’ rule, such a random stopping policy exists and is unique.)

Let the market’s belief at t be µ0 if the agent has not started the project or

has started and not stopped by t and t < t, bµ1
t satisfying (23) if the agent has

started and not stopped by t and t � t, and µs if the agent has started and

stopped at s 2 (0, t]. (Note that the belief upon observing that the agent stops

at a time t < t is o↵ the equilibrium path; we show existence when this belief

satisfies bµ0
t = µt for all such t.)

The market’s on-the-equilibrium-path beliefs are consistent and the o↵-the-

equilibrium-path beliefs satisfy our belief monotonicity refinement. We now

show that given the market’s beliefs, the agent’s stopping plan is optimal. By

construction, the agent is indi↵erent and thus willing to follow a mixed strategy

for t � t in the absence of success. (Note that this mixed strategy attaches a

positive probability to the agent never stopping.) Additionally, an agent who

has succeeded strictly prefers to continue with the project at time t if an agent

who has not succeeded weakly prefers to continue. Thus, all is left to be shown

is that the agent has incentives to start the project at time 0 and to continue

with the project at t < t in the absence of success.

For the start decision, note that the agent’s payo↵ if he does not start

is µ0R/r. By the martingale property of beliefs, this is also the agent’s ex-

pected reputation payo↵ if he starts the project and follows the equilibrium

strategy. Moreover, by Assumption 1, the agent receives a strictly positive ex-

pected project payo↵ from any strategy that starts the project and continues

forever upon success. Hence, the agent strictly prefers to start and follow the

equilibrium strategy compared to not starting the project.

To show that it is optimal for the agent to continue at t < t absent success, it

is su�cient to show that the left-hand side of (22) is smaller than its right-hand

side for t < t, or, equivalently,

 t := x + µt(�G � R) + rR

Z 1

t

e�r(s�t)bµ1
sds � 0. (24)

Suppose by contradiction that  t < 0 for some t < t. Note that by the previous

claims,  0 > 0, and by definition of t,  t = 0. Therefore, if  t < 0 for t < t,
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there exist t0 < t00 < t such that  t0 = 0,  ̇t0 < 0,  t00 < 0, and  ̇t00 = 0.

Di↵erentiating (24) yields that for t < t,

 ̇t = �µt(1 � µt)�G (�G � R) � rRµ0 + r2R

Z 1

t

e�r(s�t)bµ1
sds. (25)

Using (24) and (25), note that  t0 = 0,  ̇t0 < 0,  t00 < 0, and  ̇t00 = 0 imply

�µt0(1 � µt0)�G (�G � R) � rRµ0 � r[x + µt0(�G � R)] < 0, (26)

�µt00(1 � µt00)�G (�G � R) � rRµ0 � r[x + µt00(�G � R)] > 0. (27)

However, given Assumption 1 and �x < R < �x/µ0, there is a unique value

µt 2 (0, µ0) that solves (23) at t given bµ1
t = µ0, and this value is given by

µt =
�G + r �

q
�2

G(2r+�G�R)+�Gr[4(µ0R+x)+r�2R]�r2R
�G�R

2�G
. (28)

Hence, we cannot have µt0 , µt00 2 (µt, µ0). Contradiction.

Finally, we show that the equilibrium threshold time t satisfies t > tFB. Note

that t is uniquely pinned down by (9) and (28). To prove t > tFB, we verify that

µt < µFB. The latter inequality is immediate from comparing µt given in (28)

and µFB given in (11), taking into account that Assumption 1 and R < �x/µ0

imply �G > R.

Existence under R < �x. We consider an equilibrium analogous to that

above, except that the agent now stops with certainty by a finite time t if he

has not succeeded by then. Consistently, we specify beliefs for the market as

those above but with bµ1
t = 1 for all t � t. Given this, the agent’s indi↵erence

condition (19) at t implies

R(1 � µt) + x + µt�Gv = 0, (29)
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and hence26

µt =
�(x + R)r

r(�G � R) + �G(�G + x)
. (30)

The market’s on-the-equilibrium-path beliefs are consistent and the o↵-the-

equilibrium-path beliefs satisfy our belief monotonicity refinement. (Note that

the belief upon observing that the agent stops at a time t < t or t > t is o↵

the equilibrium path; we show existence when this belief satisfies bµ0
t = µt for all

such t.) We now verify that given the market’s beliefs, the agent’s stopping plan

is optimal. Since the construction is analogous to that in the previous case, all

we need to verify is that the agent has no incentives to continue beyond t absent

success. Note that µt is decreasing over time and �G > R (by Assumption 1

and R < �x). Thus, the left-hand side of (29) evaluated at t > t instead of

t is strictly negative, which implies that the agent has strict incentives not to

continue beyond time t.

Finally, we show that the above conditions pin down µt and imply t >

tFB. Since (30) uniquely pins down µt and (together with (9)) t, these can be

substituted into equation (21) at t = t (with bµ1
t = µ0) to solve for µt and t.

Combining (9), (21), and (30) yields

0 = r
⇥
x + µt�G + R(µ0 � µt)

⇤
+ µt(1 � µt)�G(�G � R)

+µt(1 � µt)�G

✓
�(x + R)r

(�G + x)(r + �G)

1 � µt

µt

◆ r
�G �G(R + x)

r + �G
. (31)

To show that t > tFB, or equivalently µt < µFB, note that µt is continuous in

R for all R � 0, and µt ! µFB as R ! 0. Moreover, in the limit as R ! �x,

µt coincides with (28), which implies µt < µFB in this limit. Thus, suppose

by contradiction that µt � µFB for some R 2 (0, �x). Then there must exist

R0 > 0 such that µt(R
0) = µFB. More precisely, let g(R) be the right-hand-side

of (31) when µt = µFB, as a function of R. Algebraic manipulations yield

g(R) :=

r

 
�x2

�
�2

G + �G(µ0 + 1)R + 2rR
�

� Rx(�G + r)(2�Gµ0 + �G + r)

��Gµ0R(�G + r)2 + �Gx(�G + x)(R + x)
�

R+x
x

�r/�G
� �Gx3

!

�G(�G + r + x)2
.

26Equation (30) can equivalently be derived from (21) at t.
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As noted, g(0) = 0, and by the contradiction assumption, there exists R0 > 0

such that g(R0) = 0. Furthermore, there must then exist 0 < R00 < R0 such that

g0(R00) = 0, where di↵erentiating g(R) gives

g0(R) =

r

 
�x2(�Gµ0 + �G + 2r) � x(�G + r)(2�Gµ0 + �G + r)

��Gµ0(�G + r)2 + x(�G + r)(�G + x)
�

R+x
x

�r/�G

!

�G(�G + r + x)2
.

Note that given a set of parameters {µ0, �G, x, r}, there is a unique value R00

for which g0(R00) = 0, and this value must satisfy g(R00) < 0. Therefore, it must

be that g0(R0) > 0. However, one can verify that g(R0) = 0 implies g0(R0) < 0,

yielding a contradiction.

Existence under R > �x/µ0. Consider an equilibrium in which the agent

starts the project and never stops. Let the market’s beliefs be bµ1
t = µ0 and

bµ0
t = µt for all t � 0. (Note that the belief upon observing that the agent

stops at a time t > 0 is o↵ the equilibrium path; we show existence when this

belief satisfies bµ0
t = µt for all such t.) The market’s on-the-equilibrium-path

beliefs are consistent and the o↵-the-equilibrium-path beliefs satisfy our belief

monotonicity refinement. We now show that given these beliefs, the agent always

has strict incentives to continue. That is, for all t � 0,

µtR < x + µt�G + µ0R.

Given R > �x/µ0, it is immediate that this condition always holds if R  �G.

Suppose instead that R > �G. Since µt is decreasing over time, it su�ces to

show in this case that this condition holds at time 0. By Assumption 1, this is

indeed true.

Uniqueness. We show that the equilibrium is unique up to o↵-the-equilibrium-

path beliefs by proving a number of claims. We first show that in any equilib-

rium, the agent starts the project at time 0 (Claim 1) and continues forever after

succeeding (Claims 2 and 3). Moreover, the agent stops with strictly positive

probability if and only if R < �x/µ0 (Claims 4 and 5) and stops with certainty
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by a finite time absent success if and only if R < �x (Claims 6 and 9). Fi-

nally, we show that the support of the agent’s strategy is an interval (Claim 10)

and that the agent’s stopping policy and the market’s on-the equilibrium-path

beliefs are uniquely pinned down (Claims 7, 8, and 11).

Claim 1: An equilibrium in which the agent does not start the project at time 0

does not exist.

Proof of Claim 1: The proof of this claim is analogous to that of Claim 1 in the

proof of Proposition 1 and thus omitted.

Claim 2: Suppose there exists an equilibrium in which an agent who succeeds at

t > 0 stops with strictly positive probability after t. Then the agent stops with

certainty at a time t0 � t.

Proof of Claim 2: The proof of this claim is analogous to that of Claim 1 in the

proof of Lemma 1 and thus omitted.

Claim 3: There exists no equilibrium in which the agent stops with certainty at

a time t0 > 0 by which he has succeeded.

Proof of Claim 3: The proof of this claim is analogous to that of Claim 2 in the

proof of Lemma 1 and thus omitted.

Claim 4: If R > �x/µ0, an equilibrium in which the agent stops with strictly

positive probability does not exist.

Proof of Claim 4: Our proof of existence under R > �x/µ0 shows that the agent

has strict incentives to continue at a time t if the market’s beliefs satisfy bµ0
t = µt

and bµ1
s = µ0 for all s � t. It follows that the agent also has strict incentives to

continue at t if bµ0
t  µt and bµ1

s � µ0 for all s � t. By Claims 2 and 3 above,

bµ1
s � µ0 for all s � 0. Hence, the agent can only be willing to stop at a time t

if bµ0
t > µt. However, by Claims 2 and 3 such a belief would not be consistent.

The claim follows.

Claim 5: If R < �x/µ0, an equilibrium in which the agent never stops does not

exist.

Proof of Claim 5: Suppose by contradiction that such an equilibrium exists.

Then the market’s belief conditional on the agent continuing is bµ1
t = µ0 for all

t � 0, and the agent must be willing to continue rather than stop at all times.
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However, since the agent’s payo↵ from stopping is weakly positive and µt ! 0

as t ! 1, this requires µ0R + x � 0. Contradiction.

Claim 6: If R < �x, an equilibrium in which the agent continues with the project

with strictly positive probability absent success in the limit as t ! 1 does not

exist.

Proof of Claim 6: Suppose by contradiction that such an equilibrium exists.

The agent must be willing to continue rather than stop absent success in the

limit as t ! 1. Since the agent’s payo↵ from stopping is weakly positive and

µt ! 0 as t ! 1, this requires that for some bµ1
1  1, bµ1

1R + x � 0. This

inequality however cannot be satisfied when R < �x.

Claim 7: In any equilibrium, the market’s belief conditional on the agent not

having stopped, bµ1
t , must be continuous.

Proof of Claim 7: Suppose by contradiction that an equilibrium in which bµ1
t

is discontinuous exists. Let t̂ be the earliest time at which this belief jumps.

By Claims 2 and 3, bµ1
t is weakly increasing and can only jump up. Suppose

the belief jumps at t̂ from bµ1
t̂� = bµ1� to bµ1

t̂+ = bµ1+ > bµ1�. This requires the

agent stopping with strictly positive probability, and by consistency of beliefs

and Claims 2 and 3, the market’s belief must satisfy bµ0
t̂ = µt̂. Observe also that

the market’s belief satisfies bµ0
t � µt for all t > 0, on and o↵ the equilibrium

path. (That is, the most pessimistic belief at t corresponds to no success having

arrived by t.)

Consider now the agent’s incentives. In the absence of success, the agent

must be willing to stop at t̂ rather than continue for an arbitrarily small amount

of time dt and stop at t̂ + dt if no success is obtained over [t̂, t̂ + dt]. Following

similar steps to those used to derive (19), taking dt to 0, this condition is

R
�
bµ1+

� µt̂

�
+ x + µt̂�G

✓
Vt̂ �

R

r

◆
 0. (32)

In the absence of success, the agent must also be willing to continue working

over [t̂ � dt, t̂] and stop at t̂ if no success is obtained over [t̂ � dt, t̂] rather than
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stop at t̂ � dt. This condition can be written as

R
�
bµ1�

� bµ0
t̂�

�
+ x + µt̂�G

✓
Vt̂ �

R

r

◆
� 0. (33)

However, bµ1+ > bµ1� and bµ0
t̂� � µt̂ imply that (32) and (33) cannot be simulta-

neously satisfied. Contradiction.

Claim 8: Suppose there exists an equilibrium in which, absent success, the agent

stops with strictly positive probability by a time t < 1 and with zero probability

at all times t > t. Then bµ1
t = 1 for all t � t.

Proof of Claim 8: Suppose the claim is not true. Then there exists an equilibrium

in which the agent quits with strictly positive probability absent success, he

ceases quitting at a time t < 1, and the market’s belief satisfies bµ1
t < 1 for

some t � t. Since the agent continues with certainty after t if he has not

stopped by then, the market’s belief bµ1
t must be constant at some value, call it

µ, for all t � t. The agent’s indi↵erence condition (19) at t yields

Rµ + x + µt

✓
�G � R + �G

�G + x

r
� �G(1 � µ)

R

r

◆
= 0. (34)

Note that µ < 1 requires that an agent who has not succeeded by t be willing

to continue beyond this time. Since µt is decreasing over time, equation (34)

implies that the agent is willing to continue after t absent success if and only

if the expression in parenthesis is negative. That is, rearranging terms, the

equilibrium requires

�G � R +
�G

r
(�G � R + x + µR)  0.

By Claim 4, the agent stopping with strictly positive probability in equilibrium

requires R < �x/µ0. Together with Assumption 1, this implies �G > R. Hence,

the above inequality can hold only if x + µR < 0. However, if the parenthesis

in (34) is negative and x + µR < 0, (34) cannot hold. Contradiction.

Claim 9: Suppose R > �x. There is no equilibrium in which, absent success,

the agent stops with strictly positive probability by a time t < 1 and with zero
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probability at all times t > t.

Proof of Claim 9: Suppose by contradiction that such an equilibrium exists.

By Claim 4, the agent stopping with strictly positive probability in equilibrium

requires R < �x/µ0. Moreover, as shown in Claim 8, if the agent’s quitting

ceases by a time t < 1, the market’s belief must be bµ1
t = 1 for all t � t, and

hence equation (30) must hold at t. However, if R > �x, this equation yields

µt < 0 (recall �G > R by Assumption 1 and R < �x/µ0), a contradiction.

Claim 10: Suppose there exists an equilibrium in which, absent success, the agent

stops with strictly positive probability over [t1, t2] and with zero probability over

[t2, t3], for some 0 < t1 < t2 < t3. Then the agent stops with zero probability at

all t � t2.

Proof of Claim 10: Suppose the claim is not true. Then there exists an equilib-

rium in which, absent success, the agent stops with strictly positive probability

over [t1, t2], with zero probability over [t2, t3], and with strictly positive prob-

ability over [t3, t4], for some 0 < t1 < t2 < t3 < t4. Let t > 0 be such that

either t < 1 and the probability of stopping absent success is zero at all t > t,

or t = 1. By construction, around both times t2 and t3, the agent must be

indi↵erent between stopping and continuing until t absent success. It follows

that equation (21) must hold at t2 and t3, where note that if t < 1, then (30)

uniquely pins down µt and (together with (9)) t. However, since the agent stops

with zero probability between t2 and t3, we must have bµ1
t2 = bµ1

t3 � µ0. Given

µt2 > µt3 , (21) cannot simultaneously hold at t2 and t3, yielding a contradiction.

Claim 11: Up to o↵-the-equilibrium-path beliefs, the equilibrium is unique.

Proof of Claim 11: This follows from the claims above, the fact that the solutions

for the threshold times and bµ1
t shown in the proofs of existence are unique, and

the fact that the random stopping policy that generates bµ1
t is also unique (as

Bayes’ rule is continuous and monotone).

Proof of Proposition 5

Preliminaries. We begin by deriving preliminary results that will be useful

to evaluate the welfare e↵ects of changes in µ0 and information that refines µ0.

10



Consider parameters with �x/µ0 > R > �x. As shown in Proposition 4, the

equilibrium features t 2 (tFB, 1) and t = 1, where t is given by (9) and (28),

and equations (22) and (23) hold at each t � t. The market’s belief conditional

on the agent not having stopped is bµ1
t = µ0 for t < t, and, by equation (23), this

belief can be written as a function of µt independent of µ0 for t � t. Note also

that the posterior belief at which the agent starts quitting, µt, is decreasing in

µ0; this can be verified using (28).

The equilibrium therefore implies that, for any � � 0, bµ1
tFB(µ0)+� is increasing

and convex in µ0. To see this, fix a prior µ0
0 and a posterior belief µ0

 µFB. For

any prior µ0 � µ0
0, consider the market’s belief that corresponds to such a poste-

rior, bµ1(µ0, µ0). The construction implies that if µ0 > µt(µ0
0), bµ

1(µ0, µ0) increases

one-for-one as µ0 increases from µ0
0. If µ0 < µt(µ0

0), then as µ0 increases from

µ0
0, the belief bµ1(µ0, µ0) is invariant to µ0 up to µ0 = bµ1(µ0, µ0

0), and increases

one-for-one with µ0 for µ0 > bµ1(µ0, µ0
0). Figure 5 provides an illustration.

45°

The agent’s indi↵erence condition is now

R
�
bµ1

t � µt

�
+ x + µt�G

✓
Vt �

R

r

◆
= 0. (1)

Since this must hold at each time at which the agent mixes, di↵erentiating this condition

yields

ḃµ
1

t R = µ̇tR � µ̇t�G

✓
Vt �

R

r

◆
� µt�GV̇t. (2)

We rewrite (2) by substituting with V̇t = �bµ1
t R + r (Vt � v), v = 1 + �G+x

r , µ̇t =

�µt(1 � µt)�G, and (1):

ḃµ
1

t R = [2�Gµt + r � �G](bµ1
t R + x) + µt (r + �G) (�G � R). (3)

Consider first the case in which R+x > 0 > µ0R+x, so that t is finite and t infinite.

The di↵erential equation has a closed-form solution:

bµ1
t =

ertKµt(1 � µt)

µ0(1 � µ0)
�

1

rR
[µt(�G � R)[r + �G(1 � µt)] + rx] , (4)

where K is a constant given by the boundary conditions. Substituting (4) into Vt =

v + R
R 1

t e�r(s�t)bp1
sds and integrating yields

Vt = v +
ertKRµt

�Gµ0(1 � µ0)
�

1

r
[x + µt(�G � R)] .

The value of t depends on µ0. Using the expression for Vt above, K and t can be

found by solving the following system:

bµ1
t = µ0, (5)

R(µ0 � µt) + x + µt�G

✓
Vt �

R

r

◆
= 0. (6)

µ0 µ0
0 µ00

0

1

The agent’s indi↵erence condition is now

R
�
bµ1

t � µt

�
+ x + µt�G

✓
Vt �

R

r

◆
= 0. (1)

Since this must hold at each time at which the agent mixes, di↵erentiating this condition

yields

ḃµ
1

t R = µ̇tR � µ̇t�G

✓
Vt �

R

r

◆
� µt�GV̇t. (2)

We rewrite (2) by substituting with V̇t = �bµ1
t R + r (Vt � v), v = 1 + �G+x
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ḃµ
1

t R = [2�Gµt + r � �G](bµ1
t R + x) + µt (r + �G) (�G � R). (3)

Consider first the case in which R+x > 0 > µ0R+x, so that t is finite and t infinite.

The di↵erential equation has a closed-form solution:

bµ1
t =

ertKµt(1 � µt)

µ0(1 � µ0)
�

1

rR
[µt(�G � R)[r + �G(1 � µt)] + rx] , (4)

where K is a constant given by the boundary conditions. Substituting (4) into Vt =

v + R
R 1

t e�r(s�t)bp1
sds and integrating yields

Vt = v +
ertKRµt

�Gµ0(1 � µ0)
�

1

r
[x + µt(�G � R)] .

The value of t depends on µ0. Using the expression for Vt above, K and t can be

found by solving the following system:

bµ1
t = µ0, (5)

R(µ0 � µt) + x + µt�G

✓
Vt �

R

r

◆
= 0. (6)

µ0 µ0
0 µ00

0

1

45°

having stopped is bµ1
t = µ0 for t < t, and, by equation (23), this belief can be written as a

function of µt independent of µ0 for t � t. Note also that the posterior belief at which the

agent starts quitting, µt, is decreasing in µ0; this can be verified using (28).

The equilibrium therefore implies that, for any � � 0, bµ1
tFB(µ0)+� is increasing and convex in

µ0. To see this, fix a prior µ0
0 and a posterior belief µ0

 µFB. For any prior µ0 � µ0
0, consider

the market’s belief that corresponds to such a posterior, bµ1(µ0, µ0). The construction implies

that if µ0 > µt(µ0
0), bµ1(µ0, µ0) increases one-for-one as µ0 increases from µ0

0. If µ0 < µt(µ0
0),

then as µ0 increases from µ0
0, the belief bµ1(µ0, µ0) is invariant to µ0 up to µ0 = bµ1(µ0, µ0

0), and

increases one-for-one with µ0 for µ0 > bµ1(µ0, µ0
0). Figure 5 provides an illustration.

45°$

The agent’s indi↵erence condition is now

R
�
bµ1

t � µt

�
+ x + µt�G

✓
Vt �

R

r

◆
= 0. (1)

Since this must hold at each time at which the agent mixes, di↵erentiating this condition

yields

ḃµ
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ḃµ
1

t R = [2�Gµt + r � �G](bµ1
t R + x) + µt (r + �G) (�G � R). (3)

Consider first the case in which R+x > 0 > µ0R+x, so that t is finite and t infinite.

The di↵erential equation has a closed-form solution:

bµ1
t =

ertKµt(1 � µt)

µ0(1 � µ0)
�

1

rR
[µt(�G � R)[r + �G(1 � µt)] + rx] , (4)

where K is a constant given by the boundary conditions. Substituting (4) into Vt =

v + R
R 1

t e�r(s�t)bp1
sds and integrating yields

Vt = v +
ertKRµt

�Gµ0(1 � µ0)
�

1

r
[x + µt(�G � R)] .

The value of t depends on µ0. Using the expression for Vt above, K and t can be

found by solving the following system:

bµ1
t = µ0, (5)

R(µ0 � µt) + x + µt�G

✓
Vt �

R

r

◆
= 0. (6)

bµ1 µ

1
45°$

Figure 5: Market’s belief conditional on the agent not having stopped, as a function of µ0 for
a fixed posterior belief µ0. The left graph corresponds to µ0 > µt(µ0

0), where µ0
0 is the lowest prior

considered in the figure. The right graph corresponds to µ0 < µt(µ0
0).

Hence, for any � � 0, we have

@bµ1
tFB(µ0)+�

@µ0

� 0,
@2bµ1

tFB(µ0)+�

@µ2
0

� 0. (35)

Let ⌘tFB(µ0)+� denote the probability that the agent has not succeeded by time tFB(µ0)+ �

conditional on the agent continuing until this time:

⌘tFB(µ0)+� =
Pr(did not succeed & cont)tFB(µ0)+�

Pr(cont)tFB(µ0)+�
.
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tFB(µ0)+� = 1 � ⌘tFB(µ0)+� + ⌘tFB(µ0)+� µtFB(µ0)+�. (36)
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ḃµ
1

t R = µ̇tR � µ̇t�G

✓
Vt �

R

r

◆
� µt�GV̇t. (2)

We rewrite (2) by substituting with V̇t = �bµ1
t R + r (Vt � v), v = 1 + �G+x

r , µ̇t =

�µt(1 � µt)�G, and (1):

ḃµ
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1
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◆
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ḃµ
1
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The value of t depends on µ0. Using the expression for Vt above, K and t can be

found by solving the following system:

bµ1
t = µ0, (5)

R(µ0 � µt) + x + µt�G

✓
Vt �

R

r

◆
= 0. (6)

µ0 µ0
0 µ00

0

1

The agent’s indi↵erence condition is now

R
�
bµ1

t � µt

�
+ x + µt�G

✓
Vt �

R

r

◆
= 0. (1)

Since this must hold at each time at which the agent mixes, di↵erentiating this condition

yields

ḃµ
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ḃµ
1

t R = [2�Gµt + r � �G](bµ1
t R + x) + µt (r + �G) (�G � R). (3)

Consider first the case in which R+x > 0 > µ0R+x, so that t is finite and t infinite.

The di↵erential equation has a closed-form solution:

bµ1
t =

ertKµt(1 � µt)

µ0(1 � µ0)
�

1

rR
[µt(�G � R)[r + �G(1 � µt)] + rx] , (4)

where K is a constant given by the boundary conditions. Substituting (4) into Vt =

v + R
R 1

t e�r(s�t)bp1
sds and integrating yields

Vt = v +
ertKRµt

�Gµ0(1 � µ0)
�

1

r
[x + µt(�G � R)] .

The value of t depends on µ0. Using the expression for Vt above, K and t can be

found by solving the following system:

bµ1
t = µ0, (5)

R(µ0 � µt) + x + µt�G

✓
Vt �

R

r

◆
= 0. (6)

bµ1 µ

1

The agent’s indi↵erence condition is now

R
�
bµ1

t � µt

�
+ x + µt�G

✓
Vt �

R

r

◆
= 0. (1)

Since this must hold at each time at which the agent mixes, di↵erentiating this condition

yields

ḃµ
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Figure 5: Market’s belief conditional on the agent not having stopped, as a function of µ0 for
a fixed posterior belief µ0. The left graph corresponds to µ0 > µt(µ0

0), where µ0
0 is the lowest prior

considered in the figure. The right graph corresponds to µ0 < µt(µ0
0).

Hence, for any � � 0, we have
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0
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Let ⌘tFB(µ0)+� denote the probability that the agent has not succeeded by
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time tFB(µ0) + � conditional on the agent continuing until this time:

⌘tFB(µ0)+� =
Pr(did not succeed & cont)tFB(µ0)+�

Pr(cont)tFB(µ0)+�
.

The market’s belief satisfies

bµ1
tFB(µ0)+� = 1 � ⌘tFB(µ0)+� + ⌘tFB(µ0)+� µtFB(µ0)+�. (36)

Since µtFB(µ0)+� is independent of µ0, di↵erentiating (36) yields

�
@bµ1

tFB(µ0)+�

@µ0

=
@⌘tFB(µ0)+�

@µ0

(1 � µtFB(µ0)+�),

�
@2bµ1

tFB(µ0)+�

@µ2
0

=
@2⌘tFB(µ0)+�

@µ2
0

(1 � µtFB(µ0)+�).

Combining this with (35), we obtain that for any � � 0,

@⌘tFB(µ0)+�

@µ0

 0,
@2⌘tFB(µ0)+�

@µ2
0

 0. (37)

E↵ects of µ0 on welfare. We show that welfare is increasing in µ0. Since

first-best welfare is increasing in µ0, it su�ces to show that flow welfare at any

time t > tFB(µ0) is increasing in µ0. For any � > 0, welfare at time tFB(µ0) + �

is

Pr(succeeded & cont)tFB(µ0)+� (�G + x)

+ Pr(did not succeed & cont)tFB(µ0)+� (µtFB(µ0)+��G + x). (38)

Suppose for the purpose of contradiction that for some � > 0, (38) is decreasing

in µ0, that is (using the fact that µtFB(µ0)+� is independent of µ0),

@ Pr(succeeded & cont)tFB(µ0)+�

@µ0

(�G + x)

+
@ Pr(did not succeed & cont)tFB(µ0)+�

@µ0

(µtFB(µ0)+��G + x) < 0. (39)
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We can rewrite (39) as

@ Pr(cont)tFB(µ0)+�

@µ0

(�G+x) <
@ Pr(did not succeed & cont)tFB(µ0)+�

@µ0

�G(1�µtFB(µ0)+�).

(40)

Note that the derivative on the left-hand side is positive.27 Moreover, Assump-

tion 1 implies (�G + x)/�G > 1 � µ0. Hence, (40) implies

@ Pr(cont)tFB(µ0)+�

@µ0

(1�µ0) <
@ Pr(did not succeed & cont)tFB(µ0)+�

@µ0

(1�µtFB(µ0)+�).

Substituting with 1�µtFB(µ0)+� = 1�µ0

µ0e��G(tFB(µ0)+�)+1�µ0

, this can be rewritten as

@ Pr(cont)tFB(µ0)+�

@µ0

⇣
µ0e

��G(tFB(µ0)+�) + 1 � µ0

⌘
<

@ Pr(did not succeed & cont)tFB(µ0)+�

@µ0

.

(41)

Finally, note that ⌘tFB(µ0)+�  µ0e
��G(tFB(µ0)+�) + 1 � µ0, as an agent who has

succeeded does not stop. Thus, (41) implies

@ Pr(cont)tFB(µ0)+�

@µ0

⌘tFB(µ0)+� <
@ Pr(did not succeed & cont)tFB(µ0)+�

@µ0

. (42)

We now show that (42) contradicts (37), namely the fact that ⌘tFB(µ0)+� is

decreasing in µ0. The derivative of ⌘tFB(µ0)+� with respect to µ0 being negative

implies

@ Pr(did not succeed & cont)tFB(µ0)+�

@µ0

Pr(cont)tFB(µ0)+�

�
@ Pr(cont)tFB(µ0)+�

@µ0

Pr(did not succeed & cont)tFB(µ0)+�  0,

27To see why, take µ0
0 > µ00

0 . It is clear that Pr(cont)tFB(µ0
0)+� � Pr(cont)tFB(µ00

0 )+� for

tFB(µ0
0) + �  t(µ0

0), as µt is decreasing in µ0. Moreover, since ⌘tFB(µ0
0)+� = ⌘tFB(µ00

0 )+� for

tFB(µ0
0) + � � t(µ0

0), the percentage change over time in Pr(cont)tFB(µ0)+� must be the same
under µ0

0 and µ00
0 at all tFB(µ0

0) + � � t(µ0
0), and hence we also obtain Pr(cont)tFB(µ0

0)+� �

Pr(cont)tFB(µ00
0 )+� for all those times.
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or, equivalently,

@ Pr(did not succeed & cont)tFB(µ0)+�

@µ0


@ Pr(cont)tFB(µ0)+�

@µ0

⌘tFB(µ0)+�.

This inequality is in contradiction with (42).

E↵ects of information on welfare. We show that the welfare e↵ects of

information are positive. Consider a public signal at time 0 that refines µ0 while

satisfying �x/µ0 > R and Assumption 1 for all of its realizations. Since first-

best welfare increases with information, it su�ces to show that flow welfare at

any time t > tFB(µ0) is convex in µ0. Note that

@⌘tFB(µ0)+�

@µ0

=

(
@ Pr(did not succeed & cont)tFB(µ0)+�

@µ0

�
@ Pr(cont)tFB(µ0)+�

@µ0

⌘tFB(µ0)+�

)
1

Pr(cont)tFB(µ0)+�
.

By (37),
@2⌘tFB(µ0)+�

@µ2
0

 0. Hence,

0 �

(
@2 Pr(did not succeed & cont)tFB(µ0)+�

@µ2
0

�
@2 Pr(cont)tFB(µ0)+�

@µ2
0

⌘tFB(µ0)+� �
@ Pr(cont)tFB(µ0)+�

@µ0

@⌘tFB(µ0)+�

@µ0

)
Pr(cont)tFB(µ0)+�

�
@ Pr(cont)tFB(µ0)+�

@µ0

@⌘tFB(µ0)+�

@µ0

Pr(cont)tFB(µ0)+�.

Equivalently,

2
@ Pr(cont)tFB(µ0)+�

@µ0

@⌘tFB(µ0)+�

@µ0

�

(
@2 Pr(did not succeed & cont)tFB(µ0)+�

@µ2
0

�
@2 Pr(cont)tFB(µ0)+�

@µ2
0

⌘tFB(µ0)+�

)
.
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Since
@ Pr(cont)tFB(µ0)+�

@µ0
� 0 and

@⌘tFB(µ0)+�

@µ0
 0, the left-hand side is negative,

which implies

@2 Pr(did not succeed & cont)tFB(µ0)+�

@µ2
0


@2 Pr(cont)tFB(µ0)+�

@µ2
0

⌘tFB(µ0)+�. (43)

If the derivative on the left-hand side of (43) is negative, the distortion

relative to first best is concave in µ0 and thus welfare is convex in µ0.

Suppose instead that the derivative on the left-hand side of (43) is strictly

positive. Then this equation implies
@2 Pr(cont)tFB(µ0)+�

@µ2
0

> 0. Suppose for the

purpose of contradiction that welfare is concave in µ0, that is:

@2 Pr(succeeded & cont)tFB(µ0)+�

@µ2
0

(�G + x)

+
@2 Pr(did not succeed & cont)tFB(µ0)+�

@µ2
0

(µtFB(µ0)+��G + x) < 0. (44)

We can rewrite (44) as

@2 Pr(cont)tFB(µ0)+�

@µ2
0

(�G+x) <
@2 Pr(did not succeed & cont)tFB(µ0)+�

@2µ0

�G(1�µtFB(µ0)+�).

(45)

Recall that we are considering the case in which the derivative on the left-hand

side is strictly positive. Hence, we can follow analogous steps to those in (40)-

(42) to show that (45) implies

@2 Pr(cont)tFB(µ0)+�

@µ2
0

⌘tFB(µ0)+� <
@2 Pr(did not succeed & cont)tFB(µ0)+�

@µ2
0

. (46)

This inequality is in contradiction with (43).

Finally, consider a fully informative signal that reveals at time 0 whether the

project is good or bad. Arguments analogous to those in the proof of Proposi-

tion 3 imply that this signal eliminates distortions and increases welfare.

E↵ects of µ0 and information on distortion relative to first best. We

show by example that an increase in the prior µ0 and imperfect information

that refines µ0 can reduce the distortion relative to first best. To do this, we
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compute numerically the equilibrium for di↵erent prior beliefs.

We approximate the continuous time outcome by taking a discrete time

model with periods of small length. Specifically, discretize time in periods of dt

length, so t 2 {0, dt, 2dt, ...}, and assume tFB and t are on the grid (i.e., tFB/dt

and t/dt are integers). The probability that a good project succeeds over a

period of length dt is �Gdt. The probability that a good project succeeds before

time t is 1 � (1 � �Gdt)
t
dt .

Recall that the agent continues with certainty until time t, and we can com-

pute the market’s belief bµ1
t for each time t � t using equation (23). Using bµ1

t ,

we can then solve for the probability with which the agent continues at each

time. Call �tdt the probability that the agent stops over [t, t+dt] absent success.

Then

bµ1
t+dt =

µ0

h
1 � (1 � �Gdt)

t
dt

i
+ µ0(1 � �Gdt)

t
dt (1 � �tdt)

µ0

h
1 � (1 � �Gdt)

t
dt

i
+ (µ0(1 � �Gdt)

t
dt + 1 � µ0)(1 � �tdt)

.

Similarly, call �t+dtdt the probability that the agent stops over [t+dt, t+2dt]

absent success. The probability that an agent who has a bad project will stay

until time t + 2dt is (1 � �tdt)(1 � �t+dtdt). The probability that an agent who

has a good project and had not succeeded by time t will stay until t + 2dt is

(1 � �tdt)[�Gdt + (1 � �Gdt)(1 � �t+dtdt)]. Thus,

bµ1
t+2dt =

µ0

h
1 � (1 � �Gdt)

t
dt

i
+ µ0(1 � �Gdt)

t
dt (1 � �tdt)[�Gdt + (1 � �Gdt)(1 � �t+dtdt)]

"
µ0

h
1 � (1 � �Gdt)

t
dt

i
+ µ0(1 � �Gdt)

t
dt (1 � �1dt)[�Gdt + (1 � �Gdt)(1 � �t+dtdt)]

+(1 � µ0)(1 � �tdt)(1 � �t+dtdt)

# .

We perform analogous computations for t + 3dt, t + 4dt, and so on. Equilib-
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rium welfare can then be written as

µ0

t�dtX

t=0

(1 � rdt)
t
dt (1 � �Gdt)

t
dt (xdt + �Gdt v) + (1 � µ0)

t�dtX

t=0

(1 � rdt)
t
dt xdt

+µ0

1X

t=t

(1 � rdt)
t
dt (1 � �Gdt)

t
dt⇧t

s=t(1 � �sdt)(xdt + �Gdt v)

+(1 � µ0)
1X

t=t

(1 � rdt)
t
dt⇧t

s=t(1 � �sdt)xdt,

where ⇧t
s=t(1 � �sdt) = (1 � �tdt)(1 � �t+dtdt)(1 � �t+2dtdt) . . . (1 � �t+ndtdt) for

t + ndt = t. We take a large time T (on the grid) such that �t is virtually zero

for t > T and approximate welfare by computing

S = µ0

t�dtX

t=0

(1 � rdt)
t
dt (1 � �Gdt)

t
dt (xdt + �Gdt v) + (1 � µ0)

t�dtX

t=0

(1 � rdt)
t
dt xdt

+µ0

T�dtX

t=t

(1 � rdt)
t
dt (1 � �Gdt)

t
dt⇧t

s=t(1 � �sdt)(xdt + �Gdt v)

+(1 � µ0)
T�dtX

t=t

(1 � rdt)
t
dt⇧t

s=t(1 � �sdt)xdt

+(1 � rdt)
T
dt⇧T

s=t(1 � �sdt)


µ0(1 � �Gdt)

T
dt

(x + �Gv)

r + �G � r�Gdt
+ (1 � µ0)

x

r

�
.

Finally, we compute first-best welfare,

SFB = µ0

tFBX

t=0

(1 � rdt)
t
dt (1 � �Gdt)

t
dt (xdt + �Gdt v) + (1 � µ0)

tFBX

t=0

(1 � rdt)
t
dt xdt,

where v = 1 + x+�G
r , and we compute the distortion, D = SFB

� S.

Consider the parameters reported in the example of Figure 3, with a prior

µ0 = 0.5, and take periods of length dt = 0.001. We verify that �t becomes

virtually zero after a large enough number of periods; accordingly, we compute

equilibrium welfare S above for T = 3, 000. Let µ0
0 = 0.75 and µ00

0 = 0.25, and

denote by D(µ0) the distortion given a prior belief µ0. We obtain D(µ0) =
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0.0426, D(µ0
0) = 0.0409, and D(µ00

0) = 0.0286. Hence, an increase in the prior

from µ0 to µ0
0 reduces the distortion relative to first best. Furthermore, take a

binary public signal that increases the prior to µ0
0 when the realization is high

and decreases the prior to µ00
0 when the realization is low, with each realization

occurring with equal probability. Since D(µ0) > 0.5D(µ0
0)+ 0.5D(µ00

0), releasing

this public signal at time 0 reduces the distortion relative to first best.
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