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For Online Publication: Proofs

A1. Proof of Proposition 1

Define d0 = 0 and dt = d1 for all t > 1. This proof involves two steps. First, we
show that under the conditions of the result, any surplus-maximizing equilibrium
entails promoting agent 2 with positive probability. Second, we characterize the
optimal promotion policy by maximizing the probability that agent 1 is promoted,
subject to the constraints that both agents are willing to exert effort in t = 0.

Lemma 1 identifies necessary and sufficient conditions for a recursive equilib-
rium. In particular, efforts, participation decisions, and promotion decisions are
consistent with recursive equilibrium if and only if there exists a reward scheme
Bi(·) : Ht0 × {0, 1, 2} × R2 such that for each i ∈ {1, 2} and on-path ht0,
(A1)
(ai,t, ei,t) ∈ arg max

ãi,t,ẽi,t

{
Ey
[
Bi(h

t
0, dt, wi,t, yi,t)|ht0, dt, wi,t, ãi,t, ẽi,t

]
− (1− δ)cãi,tẽi,t

}
and

(A2) 0 ≤ Bi(ht0, dt, wi,t, yi,t) ≤ δE[Si,t+1|ht0, dt, wi,t, yi,t]

for each yi,t ∈ R.15

Define SB = E[yi|ei = 1]−c and S = E[yi|ei = 0]. Let y∗ be the unique output
for which l(y∗) = 1. Then it is straightforward to show that agent i has the
strongest incentive to choose ei,t = 1 if the lower bound of (A2) binds following
yi,t < y∗, and the upper bound binds otherwise. Consequently, an equilibrium
exists in which agent i exerts effort in periods t ≥ 1 if and only if

(A3) c ≤ δ

1− δ

∫ ∞
y∗

(SB + 1i,tγi)(p(yi|1)− p(yi|0))dyi.

15Unlike the model in Section II, the principal cannot send messages to her agents when wages are
paid in this example. In the proof of Lemma 1, (A1) and (A2) are necessary conditions for equilibrium,
regardless of whether messages are available or not. The proof that these conditions are sufficient, uses
messages to inform agents about (i) the history at the start of that period, (ii) that agent’s equilibrium
participation and effort decisions, and (iii) the equilibrium penalty schedule that that agent is supposed
to pay after output is realized. In all the constructions used here, agents can infer this information from
what they observe, and so messages are not needed for these constructions to be recursive equilibria.
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Let δ̄ satisfy (A3) with equality for 1i,t = 0. If δ ∈ (0, δ̄), then ei,t = 0 in t ≥ 1
if 1i,t = 0. For any such δ, define γ so that (A3) holds with equality for 1i,t = 1

2 .
For any γ1 > γ2 > γ, both agents can be motivated to work hard in t = 0 if each

is promoted with probability 1
2 , independent of realized output. Finally, define

∆̄ ≡ 1−δ
δ SB. Then for any γ1− γ2 < ∆̄, setting e1,0 = e2,0 = 1 and allocating the

promotion at random generates more surplus than setting e1,0 = 1, e2,0 = 0, and
always promoting agent 1.

Now, suppose δ < δ̄, γ2 > γ, and γ1 − γ2 < ∆̄. By the argument above, no
surplus-maximizing equilibrium entails d1 = 1 with probability 1. So it suffices
to find the surplus-maximizing promotion tournament that induces both agents
to work hard in t = 0. Following output y0 ∈ R2 in t = 0, let ρ(y0) denote the
probability that d1 = 1. Then the surplus-maximizing equilibrium must maximize
the expected probability that d1 = 1, conditional on motivating both agents to
work hard.

max
ρ:R2→[0,1]

∫ ∞
−∞

∫ ∞
−∞

ρ(y)p(y1|1)p(y2|1)dy1dy2

subject to both agents choosing ei,0 = 1:

c ≤ δ
1−δ

∫∞
−∞

∫∞
y∗

(
S + ρ(y)

[
SB − S + γ1

])
[p(y1|1)− p(y1|0)] p(y2|1)dy1dy2

c ≤ δ
1−δ

∫∞
−∞

∫∞
y∗

(
S + (1− ρ(y))

[
SB − S + γ2

])
[p(y2|1)− p(y2|0)] p(y1|1)dy2dy1

for agents 1 and 2, respectively.
This constrained maximization problem in linear in ρ(y) for each y, and its

Lagrangian can be solved pointwise. If l(y2) < 1, then clearly ρ(y) = 1. If
l(y2) ≥ 1 and l(y1) < 1, then ρ(y) = 1 whenever

1 > λ2
δ

1− δ
(
SB − S + γ2

)(
1− 1

l(y2)

)
.

If l(y2) ≥ 1 and l(y1) ≥ 1, then ρ(y) = 1 whenever

1 + λ1
δ

1− δ
(
SB − S + γ1

)(
1− 1

l(y1)

)
> λ2

δ

1− δ
(
SB − S + γ2

)(
1− 1

l(y2)

)
.

Defining βi = λi
δ

1−δ (SB − S + γi), we can combine these conditions inequalities
to yield (1). �

A2. Proof of Lemma 1

Part 1. — Given RE σ∗, define Bi : Htd × Ξ× R→ R by

Bi(h
t
d, ξi,t, yi,t) = Eσ∗

[
(1− δ)τi,t + δUi,t+1|htd, ξi,t, yi,t

]
.
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Following on-path history ht0, σ∗|ht0 is a Perfect Bayesian Equilibrium. So for any
successor htd, ξt, agent i is willing to choose ai,t, ei,t only if (IC) holds.

SupposeBi(h
t
d, ξi,t, yi,t) < δEσ∗

[
Ūi(h

t+1
0 )|htd

]
. Then τi,t < 0 because E

[
Ui,t+1|ht+1

0

]
≥

Ūi(h
t+1
0 ), so agent i may profitably deviate by choosing τi,t = 0, which implies

(DE). Suppose Bi(h
t
d, ξi,t, yi,t) > δEσ∗

[
Si,t+1|htd, ξi,t, yi,t

]
. Then there exists some

history hty consistent with (htd, ξi,t, yi,t) such that this inequality holds. Suppose
the principal deviates by paying τi,t′ = wi,t′ = 0 for all t′ ≥ t but otherwise playing

according to the distribution σ∗|∪j 6=iφj(ht+1
0 ). Agent i detects this deviation but

can punish the principal no more harshly than yi,t′ = wi,t′ = τi,t′ = 0 in all future
periods. The other agents do not detect this deviation and so do not condition
their play on it. Outputs and transfers do not affect the continuation game, so
this deviation is feasible. The principal’s payoff following it is bounded below by

δEσ∗

[
Πt+1 −

∞∑
t′=t+1

(1− δ)δt′−t−1(yi,t′ − wi,t′ − τi,t′)|hty

]
.

Therefore, the principal is willing to pay τi,t only if

(1− δ)Eσ∗
[
τi,t|hty

]
≤ Eσ∗

[ ∞∑
t′=t+1

(1− δ)δt′−t(yi,t′ − wi,t′ − τi,t′)|hty

]
.

Adding δUi,t+1 to both sides of this expression and taking expectations conditional
on htd, ξi,t, yi,t yields the right-hand inequality in (DE). �

Part 2. — We construct a RE σ∗ from σ. Recursively define σ∗ as follows:

1) Begin with ht0, h
t,∗
0 ∈ Ht0 that induce identical continuation games. If t = 0,

then ht,∗0 = ht0 = ∅, the unique null history.

2) At history ht,∗0 , after θ∗t and D∗t are realized, the principal draw hte ∈ Hte
from the distribution σ|{ht0, θ∗t , D∗t }. The principal chooses d∗t as in hte.

3) For each i ∈ {1, ..., N}, the principal pays

w∗i,t = Eσ

[
yi,t −

1

1− δ
(Bi(h

t
d, ξi,t, yi,t)− δSi,t+1)|htd, ξi,t, ai,t, ei,t

]
.

Note that w∗i,t ≥ 0, because Eσ
[
yi,t|htd, ξi,t

]
≥ 0 by assumption and (DE)

holds. The principal sends messages

m∗i,t =
{
ht,∗0 , ai,t, ei,t,

{
Bi(h

t
d, ξi,t, yi,t)− δEσ

[
Si,t+1|htd, ξi,t, yi,t

]}
yi,t∈R

}
.
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4) Agent i chooses a∗i,t = ai,t, e
∗
i,t = ei,t, where (ai,t, ei,t) are inferred from m∗i,t.

5) Following output y∗t , for each agent i ∈ {1, ..., N},

(1− δ)τ∗i,t = Bi(h
t
d, ξi,t, y

∗
i,t)− δEσ

[
Si,t+1|htd, ξi,t, y∗i,t

]
where agent i infers the right-hand side from m∗i,t. Note τ∗i,t ≤ 0 by (DE).

6) Let ht+1,∗
0 be the realized history at the start of t+ 1. The principal draws

ht+1
0 ∈ Ht+1

0 from σ|{hte, yt}. Then ht+1,∗
0 and ht+1

0 induce identical contin-

uation games. Repeat this construction with ht+1
0 , ht+1,∗

0 .

7) Following a deviation: if agent i observes a deviation (except in ei,t), he
takes his outside option and pays no transfers in this and every subsequent
period. If the principal observes the deviation, then mj,t′ = wj,t′ = τj,t′ = 0
for each j ∈ {1, ..., N} in each future period. If agent i deviates, the principal
chooses dt to min-max agent i. Otherwise, dt is chosen uniformly at random.

By construction, ht0 and ht,∗0 induce the same continuation game in each period
on the equilibrium path. Therefore, total continuation surplus and i-dyad surplus
for each i ∈ {1, ..., N} are identical in σ∗|ht,∗0 and σ|ht0 by construction.

Deviations by the Principal. — For any on-path ht,∗d and agent i ∈ {1, ..., N},
the distribution over y∗i,t is identical to σ|htd. So

Eσ∗
[
y∗i,t − w∗i,t − τ∗i,t|h

t,∗
d

]
= 0

and hence Eσ∗
[
Πi,t|ht,∗d

]
= 0. If the principal deviates in d∗t , w

∗
i,t, or m∗i,t, then

each agent i either observes this deviation or not. If agent i observes the deviation,
then the principal earns 0 from that agent. If agent i does not observe the
deviation, then m∗i,t must include a history h̃t,∗d such that Eσ∗ [yi,t−w̃i,t−τi,t|h̃t,∗d ] =
0 given the wage w̃i,t included in m∗i,t. But agent i determines the distribution
over yi,t and τi,t, so the principal must earn 0 following such a deviation. A nearly
identical argument applies off the equilibrium path. The principal takes no other
costly actions, so we conclude she has no profitable deviation.

Deviations by Agent i. — If agent i deviates in period t, then the principal min-

maxes him, so he earns continuation surplus Eσ∗
[
Ui,t+1|ht+1,∗

0

]
= Ūi(h

t+1,∗
0 ) =

Ūi(h
t+1
0 ). Off-path, i has no profitable deviation, because ūi(dt, θt) ≥ 0.

At each on-path ht,∗0 , we must show that agent i has no profitable devia-
tion in e∗i,t or τ∗i,t (agent i can never profitably deviate from w∗i,t ≥ 0). In σ∗,
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Eσ∗
[
Ui,t|ht,∗0

]
= Eσ∗

[
Si,t|ht,∗0

]
. So agent i chooses a∗i,t, e

∗
i,t to maximize

Eσ∗
[
(1− δ)τ∗i,t + δSi,t+1|ht,∗d , ξ

∗
i,t, ai,t, ei,t

]
− c(ei,t),

because he infers ht,∗d from D∗t , θ
∗
t , d
∗
t , and m∗i,t. Plugging in τ∗i,t yields

Eσ∗
[
Bi(h

t
d, ξi,t, y

∗
i,t)− δEσ

[
Si,t+1|htd, ξi,t, ei,t

]
+ δSi,t+1|ht,∗d , ξ

∗
i,t, ai,t, ei,t

]
− c(ei,t).

Now, Eσ∗
[
Bi(h

t
d, ξi,t, yi,t)|h

t,∗
d , ξ

∗
i,t, ai,t, ei,t

]
= Eσ

[
Bi(h

t
d, ξi,t, yi,t)|htd, ξi,t, ai,t, ei,t

]
because the distribution over yi,t is identical in σ|htd and σ∗|ht,∗d . By construction,

σ∗|ht,∗e and σ|hte generate the same distributions over i-dyad surplus in period t+1

onward, so Eσ∗
[
Si,t+1|ht,∗d , ξ

∗
i,t, ai,t, ei,t

]
= Eσ

[
Si,t+1|htd, ξi,t, ai,t, ei,t

]
. Therefore,

(IC) implies that agent i has no profitable deviation from e∗i,t.

Agent i is willing to pay τ∗i,t < 0 if

−(1− δ)τ∗i,t ≤ δEσ∗
[
Si,t+1 − Ūi(ht+1

0 )|ht,∗d , ξ
∗
i,t, y

∗
i,t

]
.

As above, Eσ∗
[
Si,t+1|ht,∗d , ξ

∗
i,t, y

∗
i,t

]
= Eσ

[
Si,t+1|htd, ξi,t, y∗i,t

]
by construction. Fur-

ther, Eσ∗
[
Ūi(h

t+1
0 )|ht,∗d , ξ

∗
i,t, y

∗
i,t

]
= Eσ∗

[
Ūi(h

t+1
0 )|htd

]
, because ht,∗0 and ht0 induce

the same continuation game, and (θt, dt) are the same in htd and ht,∗d . Agent i is
willing to pay τ∗i,t if

−
(
Bi(h

t
d, ξi,t, y

∗
i,t)− δEσ

[
Si,t+1|htd, ξi,t, y∗i,t

])
≤ δEσ

[
Si,t+1|htd, ξi,t, y∗i,t

]
− δEσ

[
Ūi(h

t+1
0 )|htd

]
,

which is implied by the left-hand inequality in (DE).

We conclude that σ∗ is an RE with the desired properties. �

A3. Proof of Proposition 3

This proof builds on Proposition 5, which covers a more general class of games
and may be found in Appendix B.

Suppose continuation equilibrium σ∗|ht0 is surplus-maximizing at ht0. Claim 6
of Proposition 5 implies that decisions in period t must satisfy

∂γi
∂di

(θ, d∗i,t) =
∂γj
∂dj

(θ, d∗j,t)
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for all i, j ∈ {1, ..., N} and every θt. There exists a unique d∗t that satisfies this
condition because each γi(θ, ·) is strictly concave.

Suppose σ∗ is sequentially surplus-maximizing. Then by the above argument,
d∗t depends only on θt in each t ≥ 0. Because on-path decisions are independent
of observed play, it is straightforward to argue that equilibrium play in any se-
quentially surplus-maximizing equilibrium entails ei,t = e∗i for each t ≥ 0 and
some e∗i ∈ [0, eFBi ]. For i ∈ {1, ..., N}, define x∗i as the unique value satisfying
p̃Hi (xi)

p̃Li (xi)
= 1. From (B3), e∗i is defined implicitly by

c′(e∗i ) =

∫ x∗i

−∞
Ūi(θt)

[
p̃Hi (xi)− p̃Li (xi)

]
dxi +

∫ ∞
x∗i

S∗i
[
p̃Hi (xi)− p̃Li (xi)

]
dxi,

where S∗i = E[yi−c(e∗i )|e∗i ] is a strictly concave function of e∗i . Because c′(0) = 0,
eFBi > 0 and so there exist δ < δ̄ such that e∗i ∈ (0, eFBi ) for δ ∈ (δ, δ̄). It
immediately follows that e∗i is a differentiable function of δ on this interval.

For ei,t = e∗i , xi,t > x∗i with positive probability in each t. Similarly, xj,t′ < x∗j
for all t′ ≤ t with positive probability in each t. Therefore, the conditions of
Proposition 5, part 1, hold for a set of histories Zt that occur with positive prob-
ability in each t > 0 in any sequentially surplus-maximizing equilibrium. Propo-
sition 5 then implies that continuation play at these histories cannot be surplus-
maximizing. This contradicts our assumption that σ∗ is surplus-maximizing. �

A4. Proof of Proposition 4

Define SR2 = αR− c, SR1 = R− c, and SWj = (1− δ)(W − c) + δ(ρSRj + (1−
ρ)SWj) for j ∈ {1, 2}. Note that SW2 < SW1 < SR2 < SR1 by assumption.

Suppose θ0 = R. Define δ ∈ (0, 1) by c = δ
1−δS

R2. Then for δ ≥ δ, Lemma 1

implies that there exists an equilibrium with dt = 2 and ei,t = 1 ∀i ∈ {1, 2} in
each period. Any surplus-maximizing equilibrium therefore attains first-best.

If θ0 = W , then d0 = 1 in any surplus-maximizing equilibrium. Suppose
d0 = 2: then either ei,0 = 0 for i ∈ {1, 2}, in which case d0 = 1 generates
the same surplus, or ei,0 = 1 for at least one i, in which case d0 = 1 generates
strictly higher surplus. Similarly, in any period t ≥ 0 with θt = W , dt = 1
both maximizes total continuation surplus and relaxes all prior binding dynamic
enforcement constraints.

Define δ̄ as the solution to

c =
δ̄

1− δ̄
SW2.

Suppose δ ∈ [δ, δ̄). Then in any equilibrium with dt = 2 whenever θt = R,
e1,t = 0 whenever θt = W . Consider a relational contract of the form specified in
Proposition 4, where χ > 0 is chosen so that agent 1’s constraint (DE) holds with
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equality for θt = W . For δ close to δ̄, it is straightforward to show that χ ≈ 0 and
so this alternative dominates any equilibrium in which dt = 2 whenever θt = R.

It remains to show that an equilibrium of this form is surplus-maximizing. In
any surplus-maximizing relational contract, agents work hard whenever they are
hired. Therefore, once θt = R, 1-dyad and total continuation surplus are linear
functions of Pr{dt′ = 1} and Pr{dt′ = 2}:

E[S1,t|θt = R] =
∞∑
t′=t

δt
′−t(1− δ) (Pr{dt′ = 1}(R− c) + Pr{dt′ = 2}(αR− c))

and

E[S1,t+S2,t|θt = R] =

∞∑
t′=t

δt
′−t(1−δ) (Pr{dt′ = 1}(R− c) + 2Pr{dt′ = 2}(αR− c))

For any surplus-maximizing relational contract, construct a relational contract of
the form described above by letting χ =

∑∞
t′=t δ

t′−t(1− δ)Pr{dt′ = 1}. It is clear
that total surplus is maximized if χ is chosen so that (DE) binds, proving the
claim.

For Online Publication: Smooth Games that are not Mean-Shifting

B1. Statement of Result

This appendix extends the analysis in Section II.C to a broader class of smooth
games. The key difference is that the principal’s decision potentially affects the
informativeness of output as a function of effort in smooth games that are not
mean-shifting. This added generality substantially complicates both the state-
ment of the result and the proof. In particular, since each agent’s weight di,t
potentially affects their equilibrium efforts in period t, we must ensure that a
higher weight di,t actually leads to a higher i-dyad surplus in period t.

DEFINITION 5: A game is smooth if:

1. In each t ≥ 0, Dt =
{

(d1, ..., dN )|di ∈ R+,
∑N

i=1 di ≤ 1
}

. The distribution

of θt depends only on {θt′}t−1
t′=0.

2. Outside options depend only on θt. For every i ∈ {1, ..., N}, Ei is an interval
and ci(·) is smooth, strictly increasing, and strictly convex.
3. Pi depends only on di, θ, and ei. For each {θ, di}, Pi is smooth in all

arguments with density pi, is strictly MLRP-increasing in ei, has interval support,
and satisfies CDFC. E[yi|θ, di, ei] is strictly increasing, strictly concave in di, and
weakly concave in ei.
4. Higher di lead to weakly more informative Pi: for any θ, x ∈ R, and di ≥ d̃i,
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there exists a conditional distribution Ri(·|x) ≥ 0 such that for any ei, yi,

(B1) pi(yi|θ, d̃i, ei) =

∫ ∞
−∞

Ri(yi|x)pi(x|θ, di, ei)dx.

Our main result gives conditions under which every surplus-maximizing relational
contract in a smooth game entails a backward-looking policy. These conditions are
phrased in terms of endogenous objects—decisions, effort, and outputs. Proposi-
tion 3 is a straightforward implication of this result.

PROPOSITION 5: Let σ∗ be a surplus-maximizing recursive equilibrium of a
smooth game. Then:
1. Backward-looking policies: For any agents i and j, let Zt+1 be the

set of on-path histories ht+1
0 such that: (i) ei,t ∈ (0, eFBi (di,t, θt)), (ii) yi,t >

y∗i (di,t, θt, ei,t), (iii) yj,t′ < y∗j (dj,t′ , θt′ , ej,t′) for all t′ ≤ t, and (iv) d∗i,t+1, d
∗
j,t+1 ∈

(0, 1) with positive probability. For almost every ht+1
0 ∈ Zt+1, σ∗|ht+1

0 is not
surplus-maximizing.

2. For all t ≥ 0, Eσ∗
[∑N

i=1 di,t

]
= 1.

B2. Proof of Proposition 5

A Guide for the Reader. — The first statement is the complicated part of the
proof. Broadly, this proof proceeds by contradiction and includes three elements.

Suppose that continuation play at ht+1
0 ∈ Zt+1 is surplus-maximizing. First,

we show that we can perturb the equilibrium to smoothly increase E[Si,t+1|ht+1
0 ]

as E[Sj,t+1|ht+1
0 ] decreases. This step involves increasing di,t+1, decreasing dj,t+1,

and showing that these changes affect period t+ 1 effort in a smooth way holding
continuation play fixed. Second, we show that if i-dyad surplus E[Si,t+1|ht+1

0 ] for
ht+1

0 ∈ Zt+1 increases, then we can smoothly increase agent i’s equilibrium effort
in period t holding all other agents’ efforts fixed. This step involves constructing
a perturbation such that each agent j 6= i faces the same mapping from j’s output
to j-dyad surplus, even as i’s effort changes. Finally, we argue that increasing
i-dyad surplus and decreasing j-dyad surplus leads to a second-order loss in total
surplus for periods t+1 onward, but allows for a first-order gain in agent i’s effort
(holding all other efforts fixed). Hence, such a perturbation increases total ex ante
expected surplus, and so no surplus-maximizing equilibrium can be sequentially
surplus-maximizing if Pr{Zt+1} > 0 for any t+ 1 > 0.

We outline the six steps involved in this proof below. The parenthetical com-
ments at the start of each step roughly link that step to the corresponding ele-
ments described above.

1) (Sets up elements 1 and 2) We define a function Gi(yi|θ, di, d̃i, ei, ẽi) that
takes as input the state of the world θ, an “original” weight and effort pair
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for agent i (di, ei), a “new” weight and effort pair (d̃i, ẽi), and a realized
output yi. If yi is drawn from the “new” distribution Pi(·|θ, d̃i, ẽi), then
Gi(yi|θ, di, d̃i, ei, ẽi) is distributed according to the “original” distribution
Pi(·|θ, di, ei).

2) (Sets up elements 1 and 2) We define êi, one of the key functions for the
argument. Given a reference (θ, di, e) and a new decision d̃i, êi gives one
feasible effort that can be induced in equilibrium, holding the distribution
over continuation play fixed at the distribution under (θ, di, e). To imple-
ment êi, transform the realized output yi by Gi(yi|θ, di, d̃i, ei, êi) and then
reward agent i according to a “one step” reward scheme that punishes the
agent if yi < y∗i (θ, di, ei) and otherwise rewards the agent. Claim 2 gives

conditions under which êi is differentiable in d̃i.

3) (Used in elements 1 and 2) Claim 3 rearranges (IC) and (DE) to give a
single necessary and sufficient condition for effort e∗i,t to be induced in equi-
librium, holding the mapping from output to i-dyad surplus fixed. Since
Pi satisfies MLRP and CDFC, we can replace (IC) with its first-order con-
dition. To maximize i’s effort, the lower bound of (DE) should bind for
yi < y∗i (θ, di, ei), and the upper bound should bind otherwise.

4) (Used in elements 1 and 2) Claim 4 serves two purposes. First, it confirms a
condition required by Claim 2. Second, if the inequality identified in Claim
3 holds with equality, then e∗i,t = êi(θt, d

∗
i,t, d

∗
i,t, e

∗
i,t).

5) (Completes element 1, sets up element 3) Claim 5 gives a necessary condi-
tion for a continuation equilibrium σ∗|ht0 to be surplus-maximizing. For any
i, j ∈ {1, ..., N}, if increasing di,t and decreasing dj,t is feasible, doing so can-
not increase total continuation surplus. To prove this result, we use Claim 4
to show that either (i) the necessary and sufficient condition from Claim 3 is
slack, or (ii) ei,t = êi(θt, di,t, di,t, ei,t). If (i), we perturb di,t to d̃i,t, transform

yi,t by Gi(yi,t|θt, di,t, d̃i,t, ei,t, ei,t), and map this perturbed output to contin-
uation play as in the original equilibrium. For a small enough perturbation,
ei,t continues to satisfy the condition from Claim 3, so it can be induced in
equilibrium. If (ii), then ei,t might violate the condition from Claim 3 un-

der d̃i,t. However, in that case ei,t = êi(θt, di,t, di,t, ei,t), and Claim 2 implies
that êi is differentiable in its third argument. So we can implement effort
êi(θt, di,t, d̃i,t, ei,t), transform output by Gi(yi,t|θt, di,t, d̃i,t, ei,t, êi), and pre-
serve the same distribution over continuation play from period t+2 onward.

6) (Completes elements 2 and 3) We consider ht+1
0 ∈ Zt+1. If σ∗|ht+1

0 is surplus-
maximizing, Claim 5 implies that increasing di,t+1 and decreasing dj,t+1 has
a second-order effect on total continuation surplus. Condition 4 of Defini-
tion 5 implies that the most efficient ei satisfying (IC) and (DE), holding
the distribution over continuation play fixed, is more efficient if di is larger.
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Because E[yi|θi, di, ei] is strictly increasing in di, a small increase in di,t+1 in-
creases E[Si,t+1|ht+1

0 ]. Because e∗i,t < eFBi (θt, d
∗
i,t), increasing E[Si,t+1|ht+1

0 ]
following a realization yi,t > y∗i (θt, d

∗
i,t, e

∗
i,t) allows for strictly higher effort

for agent i in period t, even if we otherwise hold the distribution over con-
tinuation play fixed. Agent j’s effort in period t is unchanged because the
upper bound of (DE) is not binding for j. Consequently, perturbing σ∗|ht+1

0
in this way leads to a first-order increase in period-t surplus, which is strictly
larger than the second-order loss in period t+ 1 surplus from the perturba-
tion of dt+1. So in a surplus-maximizing relational contract, continuation
play at ht+1

0 cannot be surplus-maximizing.

Proof of Statement 1. — The inverse distribution P−1
i is continuously differ-

entiable because Pi is strictly increasing and continuously differentiable. Because
Ūi(h

t
d) depends only on θt, we abuse notation to write these punishment payoffs

Ūi(θt).

DEFINITION 6: Define Gi by

Gi(yi|θ, di, d̃i, ei, ẽi) = P−1
i

(
Pi(yi|θ, ẽi, d̃i)|θ, di, ei

)
.

When unambiguous, we will suppress the conditioning variables in Gi.

Claim 1. — If yi has distribution Pi(yi|θ, d̃i, ẽi), then xi ≡ Gi(yi|θ, di, d̃i, ei, ẽi)
has distribution Pi(xi|θ, di, ei).

Proof of Claim 1. — It suffices to show that

Pi(yi|θ, d̃i, ẽi) = Pi

(
Gi(yi|θ, di, d̃i, ei, ẽi)|θ, di,ei

)
which is true by definition of Gi. �

DEFINITION 7: For monotonically increasing Si : R→ R, define êi(θ, di, d̃i, ei|Si)
implicitly by

(B2) 0 =

∫ y∗i (θ,di,ei)
−∞ Ūi(θ)

∂pi
∂ei

(yi|θ, d̃i, êi)dyi+∫∞
y∗i (θ,di,ei)

Si

(
Gi(yi|θ, di, d̃i, ei, êi)

)
∂pi
∂ei

(yi|θ, d̃i, êi)dyi − c′(êi)
.

Claim 2. — Suppose (θ, di, d̃i, ei) satisfies di = d̃i and êi(θ,di, d̃i, ei|Si) = ei.
Then êi is differentiable in d̃i on a neighborhood about that point.
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Proof of Claim 2. — Let Si be a monotonically increasing function. Denote the
right-hand side of (B2) by H. Then H is continuously differentiable in d̃i and êi,
so ∂êi

∂d̃i
exists about (θ, di, d̃i, ei) by the Implicit Function Theorem if ∂H

∂êi
6= 0.16

To show that ∂H
∂êi
6= 0, we bound H from above by a function H̄ satisfying

H = H̄ at (θ, di, di, ei), with ∂H̄
∂êi

< 0 on a neighborhood about that point. For
ε > 0, let

H̄ =

∫ y∗i (θ,di,ei)
−∞ Ūi(θ)

∂pi
∂ei

(yi|θ, di, êi)dyi+∫ y∗i (θ,di,ei)+ε

y∗i (θ,di,ei)
Si (Gi(yi|θ, di, di, ei, êi)) ∂pi∂ei

(yi|θ, di, êi)dyi+∫∞
y∗i (θ,di,ei)+ε

Si(yi)
∂pi
∂ei

(yi|θ, di, êi)− c′(êi)
.

At êi = ei, Gi(yi) = yi and so H̄ = H. For êi > ei sufficiently close, we claim
that H̄ ≥ H. Note that Gi(yi) ≤ yi if êi ≥ ei because Pi is FOSD increasing in ei.
Since Si is monotonically increasing, we must have Si(Gi(yi)) ≤ Si(yi). Further,

for êi sufficiently close to ei,
∂pi
∂ei

(yi|θ, di, êi) ≥ 0 for yi ≥ y∗i (θ, di, ei) + ε because
∂pi
∂ei

(·|θ, di, ei) is strictly increasing in yi and equals 0 at y∗i (θ, di, ei). This proves

that H̄ ≥ H.

If ε = 0, then ∂H̄
∂êi

< 0 by CDFC. It can be shown that ∂H̄
∂êi

is continuous in ε,

so ∂H̄
∂êi

< 0 for ε > 0 sufficiently small. So H̄ satisfies the desired properties, and

hence ∂H
∂êi

< 0. �

Claim 3. — Consider an equilibrium σ∗. Fix (htd, ξ
∗
i,t) on the equilibrium path.

For each agent i and on-path effort e∗i,t, there exists a reward scheme Bi that
satisfies (IC) and (DE) if and only if either (i) e∗i,t = min Ei, or (ii)

(B3) c′(e∗i,t) ≤
∫ y∗i (θt,di,t,e

∗
i,t)

−∞ Ūi(θt)
∂pi
∂ei

(yi|θt, d∗i,t, e∗i,t)dyi+∫∞
y∗i (θt,di,t,e∗i,t)

Eσ∗ [Si|htd, ξ∗i,t, yi]
∂pi
∂ei

(yi|θt, d∗i,t, e∗i,t)dyi
.

Proof of Claim 3. — Suppose e∗i,t > min Ei does not satisfy (B3). Because pi
satisfies MLRP and CDFC, we can replace (IC) with its first-order condition as
in Rogerson (1985):

(B4) c′(e∗i,t) =

∫ ∞
−∞

Bi(h
t
d, ξ
∗
i,t, yi)

∂pi
∂ei

(yi|θt, d∗i,t, e∗i,t)dyi.

16The first term in H is continuously differentiable in d̃i and êi because pi and y∗i are both con-
tinuously differentiable. To show that the second term is differentiable, apply the change of variable

x = Gi(yi|θ, di, d̃i, ei, êi).
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Consider choosing Bi to maximize the right-hand side of this equality, subject to
the constraint (DE). We can solve this problem for each yi: if ∂pi∂ei

(yi|θt, d∗i,t, e∗i,t) <
0, then Bi(h

t
d, ξ
∗
i,t, yi) = Ūi(θt), and otherwise Bi(h

t
d, ξ
∗
i,t, yi) = Eσ∗ [Si|htd, ξ∗i,t, yi].

But this is exactly the Bi implemented in (B3). Contradiction.
If e∗i,t = min Ei, then the reward scheme Bi(h

t
d, ξ
∗
i,t, yi) = Ūi(θt) induces e∗i,t

because c(ei,t) is monotonically increasing. Suppose e∗i,t > min Ei satisfies (B3).
Clearly, the right-hand side of (B4) is strictly smaller than the left-hand side if
Bi(h

t
d, ξ
∗
i,t, yi) = Ūi(θt). The right-hand side of (B4) is continuous in Bi, so we

can apply the Intermediate Value Theorem to conclude that there exists some
reward scheme Bi such that (B4) is satisfied. �

Claim 4. — Let σ∗ be a surplus-maximizing equilibrium, and fix some (htd, ξ
∗
i,t)

on the equilibrium path. Define Si(yi,t) = Eσ∗
[
Si,t+1|htd, ξ∗i,t, yi,t

]
. Without loss,

Si(yi,t) is increasing in yi,t. Moreover, if (B3) holds with equality at e∗i,t, then
e∗i,t = êi(θt, d

∗
i,t, d

∗
i,t, e

∗
i,t|Si).

Proof of Claim 4. — Suppose there exists yi < ỹi such that Si(yi) > Si(ỹi).
Consider the following alternative: with probability ε > 0, outcome ỹi is treated as

yi. With probability
pi(ỹi|θt,di,t,e∗i,t)
pi(yi|θt,di,t,e∗i,t)

ε, outcome yi is treated as outcome ỹi. Agents

j 6= i face identical distributions over continuation play and so exert the same
effort in each period. For agent i, this perturbation relaxes (B3) if and only if

[Si(yi)− Si(ỹi)]
[

(∂pi/∂ei)(ỹi)

pi(ỹi)
− (∂pi/∂ei)(yi)

pi(yi)

]
≥ 0.

Both terms on the left-hand side are strictly positive: the first by assumption,
the second by strict MLRP. So this perturbation strictly relaxes (B3) for agent i
without affecting it for j 6= i. So we can assume Si is increasing without loss.

Suppose (B3) holds with equality. Note that Gi(yi|θt, d∗i,t, d∗i,t, e∗i,t, e∗i,t) = yi for
all yi. Therefore, êi(θt, d

∗
i,t, d

∗
i,t, e

∗
i,t|Si) and e∗i,t are both defined implicitly by (B3)

holding with equality. �

Claim 5. — Define

si(θt, di,t, ei,t) = E [yi,t|θt, di,t, ei,t]− c(ei,t).

For any ht0 ∈ Ht0, suppose σ∗|ht0 is surplus-maximizing with di,t, dj,t ∈ (0, 1).
Define Ii,t = 1 if (B3) holds with equality at a successor history htd, and Ii,t = 0
otherwise. Define êi = êi(θt, di,t, di,t, ei,t). Then for any i, j ∈ {1, ..., N},

(B5)
∂si
∂di

+ Ii,t
∂si
∂ei

∂êi

∂d̃i
=
∂sj
∂dj

+ Ij,t
∂sj
∂ej

∂êj

∂d̃j
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with probability 1 following ht0.

Proof of Claim 5. — Suppose towards contradiction that the left-hand side of
(B5) is strictly larger than the right-hand side. Consider the following perturba-
tion (denoted by tildes): d̃i,t = di,t + ε, d̃j,t = dj,t − ε, ẽi,t = êi(θt, di,t, d̃i,t, ei,t)

if Ii,t = 1 and ẽi,t = ei,t otherwise, and ẽj,t = êj(θt, dj,t, d̃j,t, ej,t) if Ij,t = 1 and

ẽj,t = ej,t otherwise. For all agents k /∈ {i, j}, d̃k,t = dk,t and ẽk,t = ek,t. Contin-

uation play is as in σ∗, except yi,t is transformed by Gi(·|θ, di,t, d̃i,t, ei,t, ẽi,t), and
similarly with yj,t and Gj .

We claim that there exists a credible reward scheme for each agent in this
perturbation, and hence this perturbation is also a continuation equilibrium. By
Claim 3, it suffices to show that this alternative satisfies (B3). For each agent
k ∈ {1, ..., N}, this perturbation induces an identical marginal distribution over
continuation play from t+ 1 onward. So for agents k /∈ {i, j}, the credible reward
scheme in the original equilibrium remains credible in this perturbation.

Consider agent k ∈ {i, j}. If Ik,t = 0, then (B3) was slack in the original
equilibrium. But (B3) and Gi are continuous in dk,t, so ek,t continues to satisfy
it in the perturbed equilibrium if ε is sufficiently small. If Ik,t = 1, the reward
scheme

B̃k(yk,t) =

{
Ūk(θt) yk,t ≤ y∗k(θt, dk,t, ek,t)
Sk(Gk(yk,t)) yk,t > y∗k(θt, dk,t, ek,t)

is credible. These reward schemes satisfy (B4) at êk by definition.
Finally, we argue that this perturbation yields strictly higher total surplus than

σ∗|ht0, which contradicts the claim that σ∗|ht0 is surplus-maximizing. Because
total surplus in period t + 1 onward is identical in the original and perturbed
equilibrium. It suffices to consider total surplus in period t. Agents k /∈ {i, j}
produce identical period-t surplus in both equilibria. Consider the difference in
surplus for agents i and j. The perturbed equilibrium generates no more total
surplus than the original equilibrium only if

(B6) si(θt, di,t+ε, ẽi,t)+sj(θt, dj,t−ε, ẽj,t)−(si(θt, di,t, ei,t) + sj(θt, dj,t, ej,t)) ≤ 0

Dividing by ε > 0, and taking the limit as ε → 0 results in (B5) with a weak
inequality ≤. Contradiction; we assumed >. �

Completing the proof of Statement 1. — Let ht+1
0 ∈ Zt+1. If σ∗|ht+1

0 is
surplus-maximizing, then (B5) holds by Claim 5. Let htd ∈ Htd be a predecessor

to ht+1
0 , and consider the following perturbation at σ∗|htd: ẽi,t = e∗i,t + η for

some η > 0 determined below, while ẽk,t = e∗k,t for all k 6= i. At the end of

period t, agent i’s output is transformed by Gi(yi,t|θt, d∗i,t, d∗i,t, e∗i,t, ẽi,t), and this
transformed output is henceforth treated as the realized output.
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If yi,t ≥ y∗i,t(θt, d̃i,t) and yj,t < y∗j,t(θt, d̃j,t), then d̃i,t+1 = d∗i,t+1 + ε, d̃j,t+1 =

d∗j,t+1 − ε, and d̃k,t+1 = d∗k,t+1 for k /∈ {i, j}. Agent i’s effort equals the more

efficient of e∗i,t+1 and êi(θt+1, d
∗
i,t+1, d̃i,t+1, e

∗
i,t+1), while agent j’s effort is ẽj,t+1 =

e∗j,t+1 if Ij,t+1 = 0 and ẽj,t+1 = êj(θt+1, d
∗
j,t+1, d̃j,t+1, e

∗
j,t+1) if Ij,t+1 = 1. For

k /∈ {i, j}, ẽk,t+1 = e∗k,t+1. Otherwise, play is as in σ∗|ht+1
0 . At the end of period

t+1, agent j’s output is transformed byGj(yj |θt+1, d
∗
j,t+1, d̃j,t+1, e

∗
j,t+1, ẽj,t+1), and

similarly for agent i if ẽi,t+1 = êi. If ẽi,t+1 = e∗i,t+1, then output is transformed by
the distribution Ri given in Condition 4 of Definition 5. Continuation play then
proceeds as in σ∗.

We claim this perturbed strategy is an equilibrium, and that if ε > 0 is suf-
ficiently small, it generates strictly higher total surplus than σ∗. Because RE
are recursive, play from t + 2 onward is an equilibrium. The distribution over
continuation play in t+ 2 is constructed to be identical to σ∗. In period t+ 1, a
credible reward scheme for ẽj,t+1 exists by the argument made in Claim 5. Sim-
ilarly, a credible reward scheme exists for ẽi,t+1 = êi. If ẽi,t+1 = e∗i,t+1, agent
i’s transformed distribution over output is identical to the output distribution in
the original equilibrium for any ei,t+1. Therefore, e∗i,t+1 satisfies (B3) under d̃i,t+1

because it satisfied this inequality under d∗i,t+1. We conclude that continuation
play from period t+ 1 onward is an equilibrium.

The change in total surplus in period t+ 1 from this perturbation equals

0 ≥ K(ε) =
si(θt+1, d̃i,t+1, ẽi,t+1) + sj(θt+1, d̃j,t+1, ẽj,t+1)−(
si(θt+1, d

∗
i,t+1, e

∗
i,t+1) + sj(θt+1, d

∗
j,t+1, e

∗
j,t+1)

) .

This is the “direct cost” of backward-looking policies, which comes from the biased
decision in period t+ 1. Importantly, ẽj,t+1 equals the perturbed effort from the
proof of Claim 5, while ẽi,t+1 is weakly more efficient than the perturbed effort
from Claim 5. Therefore, K(ε) is bounded from below by the left-hand side of

(B6). But then (B5) implies that limε→0
K(ε)
ε = 0.

Now consider period t. Because y∗j,t′ ≤ y∗j (θt′ , dj,t′ , ej,t′) for all t′ ≤ t, (B3)

implies that it is without loss to assume that the upper bound of (DE) does not
bind for agent j. The perturbation does not affect j’s punishment payoff Ūj(h

t′
0 )

for t′ ≤ t, so agent j is willing to exert the same effort as in σ∗. Agents k /∈ {i, j}
face the same distribution over Sk,t+1 and so are willing to choose the same efforts
as well.

We claim that Eσ̃
[
Si,t+1|htd, ξi,t, yi,t

]
is strictly larger in the perturbed equilib-

rium relative to the original equilibrium. Holding ei,t+1 fixed, Eσ̃
[
Si,t+1|htd, ξi,t, yi,t

]
is increasing in di,t+1 by Condition 3 of Definition 5. Furthermore, ẽi,t+1 is
weakly more efficient than e∗i,t+1 by construction. Hence, Eσ̃

[
Si,t+1|htd, ξi,t, yi,t

]
>

Eσ∗
[
Si,t+1|htd, ξi,t, yi,t

]
as desired.

By assumption, e∗i,t < eFBi (θt, d
∗
i,t). Consequently, (B3) must hold with equality
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for agent i in period t; otherwise, we could increase e∗i,t, transform output by the
appropriate Gi, and increase i-dyad surplus in period t while continuing to satisfy
(B3). As a result, agent i is willing to exert strictly more effort in the perturbed
equilibrium: ẽi,t > e∗i,t. Moreover, a straightforward but tedious application of
the Implicit Function Theorem—similar to the proof of Claim 2—shows that the

effort ẽi,t in the perturbed equilibrium is a function of ε, with
∂ẽi,t
∂ε |ε=0 > 0.

Consider the change in total surplus from period t onward. As ε → 0, this
change equals

lim
ε→0

(
si(θt, d

∗
i,t, ẽi,t)− si(θt, d∗i,t, e∗i,t)

ε
+
δK(ε)

ε

)
=
∂si
∂ei

∂ẽi
∂ε
|ε=0 > 0.

The first term in this product is positive because limε→0 ẽi,t−1 = e∗i,t−1 < eFBi (θt−1, di,t−1).
The second term is positive by the argument above. Hence, this perturbation in-
creases total continuation surplus in period t− 1 onward. It also increases i-dyad
surplus, so there exists a credible reward scheme to support agent i’s actions in
periods t′ < t − 1 as well. We conclude that this perturbation is a self-enforcing
relational contract that generates strictly higher total surplus than σ∗. �

Proof of Statement 2. — If
∑N

i=1 di,t < 1 at htd, consider an alternative decision

d̃t with
∑N

i=1 d̃i,t = 1 and d̃i,t ≥ di,t for all i ∈ {1, ..., N}. As in the proof of
Statement 1, all agents can be induced to choose the same efforts given these
decisions. Therefore, this alternative generates higher total surplus and relaxes
(DE) in all previous periods. But σ∗ is surplus-maximizing; contradiction. �

For Online Publication: Biased Decisions in PBE

This appendix shows that an analogue of Proposition 3 holds for the full set of
PBE in smooth mean-shifting games. The central difficulty in extending Propo-
sition 3 is that different players potentially form different beliefs about the true
history in each period. In particular, in a recursive equilibrium, both (IC) and
(DE) condition on the true history at the start of period t, ht0. In a PBE, how-
ever, these constraints would condition only on agent i’s information set, φi(h

t
0).

Consequently, play at a given history is not necessarily an equilibrium of the
continuation game.

This complication means that our definition of sequentially surplus-maximizing
equilibria does not immediately extend to PBE, since the set of expected contin-
uation payoffs might vary with the history and so not be easily comparable to
equilibrium payoffs in the first period. However, it turns out that the set of ex
ante expected continuation payoffs attainable in a PBE is stationary over time.
That is, define

V̄ = max
σ∗∈PBE

Eσ∗

[
N∑
i=1

Si,0

]
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as the maximum ex ante total surplus attainable in a PBE. We show that If
(θt, Dt) is i.i.d., then ex ante expected continuation payoffs from any period t
onward in a PBE cannot exceed V̄ .

LEMMA 2: Assume that (θt, Dt) are i.i.d.. Then for any t ≥ 0, there exists a

PBE σ∗ such that Eσ∗
[∑N

i=1 Si,t

]
= V if and only if there exists a PBE σ̃ such

that Eσ̃

[∑N
i=1 Si,0

]
= V .

PROOF:
See Appendix C.C1.

Lemma 2 shows that equilibrium ex ante expected continuation payoffs are re-
cursive in t, even if continuation play is not. The proof of this result has two
steps. First, establishes appropriate analogues of (IC) and (DE) for the full set
of PBE. This argument is similar to that of Lemma 1, though care must be taken
to track each agent’s beliefs in each history. As in Lemma 1, the principal earns
0 continuation surplus on the equilibrium path in our construction.

Second, we use the PBE σ∗ satisfying Eσ∗
[∑N

i=1 Si,t

]
= V to construct a PBE

σ̃ with Eσ̃

[∑N
i=1 Si,0

]
= V . At the start of the game in σ̃, the principal chooses

ht0 ∈ Ht0 according to the distribution over such histories induced by σ∗. She uses
her private messages in t = 0 to report φi(h

t
0) to each agent i. Play then proceeds

as in σ∗|ht0. In this construction, each agent has exactly the same information
that he would have in σ∗|ht0, so he is willing to play according to σ∗|ht0. The
principal is willing to randomize over her initial choice of ht0, because she earns 0
at every history on the equilibrium path. Therefore, σ̃ is a PBE that replicates
in period 0 the distribution over period-t continuation play induced by σ∗.

With Lemma 2 in hand, we can define what it means for a PBE to be sequen-
tially surplus-maximizing. Say a PBE is PBE-sequentially surplus-maximizing

if in each t ≥ 0, Eσ∗
[∑N

i=1 Si,t

]
= V̄ . Lemma 2 implies that a PBE-sequentially

surplus-maximizing equilibrium maximizes ex ante expected continuation surplus
in each period.

Lemma 2 shows that PBE-sequentially surplus-maximizing do indeed attain
the maximum ex ante expected continuation surplus in every period. Given this
result, we can prove that in smooth mean-shifting games, there exists a range
of discount factors for which no surplus-maximizing PBE is PBE-sequentially
surplus-maximizing.

PROPOSITION 6: Consider a smooth mean-shifting game such that θt is i.i.d.
and limdi→0

∂γi
∂di

=∞ for every i ∈ {1, ..., N}. Let δ ∈ (δ, δ̄), where δ and δ̄ are the
bounds from Proposition 3. Then no surplus-maximizing PBE is PBE-sequentially
surplus-maximizing.

PROOF:
See Appendix C.C2.
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As in Proposition 3, backward-looking policies are surplus-maximizing in Proposi-
tion 6 because they make strong effort incentives credible. In any PBE-sequentially
surplus-maximizing equilibrium, the decision dt is chosen to maximize total sur-
plus in period t, so

∂γi
∂di

(θt, d
∗
i,t) =

∂γj
∂dj

(θt, d
∗
j,t)

must hold for any agents i, j. This condition uniquely pins down d∗t in any se-
quentially surplus-maximizing PBE as a function of θt, which implies that on-path
decisions depend only on the public history. As a result, any PBE-sequentially
surplus-maximizing equilibrium generates the same total surplus as a sequen-
tially surplus-maximizing RE. But such equilibria cannot be surplus-maximizing
under the conditions of Proposition 3. Hence, backward-looking policies remain
surplus-maximizing, even in the full set of PBE.

C1. Proof of Lemma 2

We first prove an extension of Lemma 1 to PBE.

DEFINITION 8: A reward scheme Bi : φi(Htd)× Ξi ×R→ R is PBE-credible
in σ if:
PBE Incentive Constraint: For each htd, ξi,t, and (ai,t, ei,t) on the equilib-

rium path,

(C1) (ai,t, ei,t) ∈ arg max
ai,ei

Eσ
[
Bi(φi(h

t
d), ξi,t, yi,t)|φi(htd), ξi,t, ai, ei

]
− (1− δ)Ci.

PBE Dynamic Enforcement: For each on-path hty,

(C2) δEσ
[
Ūi(h

t+1
0 )|φi(htd)

]
≤ Bi(φi(htd), ξi,t, yi,t) ≤ δEσ

[
Si,t+1|φi(htd), ξi,t, yi,t

]
.

Claim 1. —

1) If σ∗ is a PBE in which no player conditions on past effort choices, then for
each agent i, there exists a PBE-credible reward scheme for σ∗.17

2) Suppose σ is a strategy with a PBE-credible reward scheme Bi for i ∈
{1, ..., N}. Then ∃ PBE σ∗ with the same joint distribution over θt, dt, et,
and yt as σ.

Proof of Claim 1. — This proof is extended from Andrews and Barron (2016),
who provide more detail.

17Every PBE in this game is payoff-equivalent to a PBE in which players do not condition on past
effort choices. The proof of this result is similar to Fudenberg and Levine (1994), who prove a similar
result for games with imperfect public monitoring and a product monitoring structure.
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Part 1:

This argument is nearly identical to Lemma 1, part 1. Suppose σ∗ is a PBE
and define Bi by

Bi(φi(h
t
d), ξi,t, yi,t) = Eσ∗

[
(1− δ)τi,t + δUi,t+1|φi(htd), ξi,t, yi,t

]
.

Then Bi must satisfy (C1) and the first inequality of (C2) or else the agent would
deviate from (ai,t, ei,t) or τi,t, respectively. The second inequality of (C2) must
hold history-by-history or else the principal would deviate from τi,t, so a fortiori
must hold in expectation. �

Part 2:

Consider the construction identical to Lemma 1, part 2, except that

w∗i,t = Eσ

[
yi,t −

1

1− δ
(Bi(φi(h

t
d), ξi,t, yi,t)− δSi,t+1)|φi(htd), ξi,t, ai,t, ei,t

]
,

m∗i,t =
{
φi(h

t
0), ai,t, ei,t,

{
Bi(φi(h

t
d), ξi,t, yi,t)− δEσ

[
Si,t+1|φi(htd), ξi,t, yi,t

]}
y∈R

}
,

and the transfer after output y∗t equals

(1− δ)τ∗i,t = Bi(φi(h
t
d), ξi,t, y

∗
i,t)− δEσ

[
Si,t+1|φi(htd), ξi,t, y∗i,t

]
.

By construction, σ∗ implements the same joint distribution over θt, dt, et, and
yt as σ. We claim σ∗ is a PBE. As in the proof of Lemma 1, the principal earns
0 from each agent i at each history ht0 on and off the equilibrium path. So the
principal has no deviation from σ∗.

Consider the possible deviations by agent i. Agent i earns Ūi(h
t+1
0 ) if he deviates

in period t. Agent i is willing to choose (ai,t, ei,t) if

(ai,t, ei,t) ∈ arg max
ai,ei

Eσ∗
[
(1− δ)τ∗i,t + δUi,t+1|φi(ht,∗d ), ai, ei

]
− (1− δ)Ci.

As in Lemma 1, Eσ∗
[
Ui,t+1|φi(ht,∗d ), ai,t, ei,t

]
= Eσ∗

[
Si,t+1|φi(ht,∗d ), ai,t, ei,t

]
. Fur-

thermore, it can be shown that for every agent i, σ∗ induces a coarser information
partition over histories than σ: if ht0, ht,∗0 and h̃t0, h̃

t,∗
0 are two pairs of histories

from the construction of σ∗, then φi(h
t,∗
0 ) = φi(h̃

t,∗
0 ) whenever φi(h

t
0) = φi(h̃

t
0).

Therefore, Eσ∗
[
Si,t+1|φi(ht,∗d ), ai,t, ei,t

]
= Eσ

[
Si,t+1|φi(htd), ai,t, ei,t

]
. Plugging

these expressions into agent i’s IC constraint yields (C1).

Agent i is willing to pay τ∗i,t if

−(1− δ)τ∗i,t ≤ δEσ∗
[
Si,t+1 − Ūi(ht+1

0 )|φi(ht+1,∗
0 )

]
.
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This constraint is satisfied because (C2) holds. So σ∗ is the desired PBE. �

Completing Proof of Lemma 2. — (→) If Eσ∗
[∑∞

t′=t δ
t′−t(1− δ)(πt′ +

∑N
i=1 ui,t′)

]
=

V̄ , consider the strategy σ̃ in which the principal chooses ht0 from the distribution
over Ht0 induced by σ∗, then play continues as in σ∗|ht0. By construction, players
have the same beliefs in σ̃ and σ∗|ht0, so σ̃ is an equilibrium that generates total
surplus V .

(←) Suppose σ∗ satisfies Eσ∗
[∑∞

t′=0 δ
t′(1− δ)(πt′ +

∑N
i=1 ui,t′)

]
= V̄ . Consider

strategy σ̃ in which the static equilibrium is played in all periods t′ < t, then play
σ∗ from period t onward. This is clearly an equilibrium that attains continuation
surplus V̄ from period t > 0 onward. �

C2. Proof of Proposition 6

Let σ∗ be a PBE-sequentially surplus-maximizing equilibrium. By definition,
for any t ≥ 0,

Eσ∗

[
N∑
i=1

Si,t

]
= V̄ .

Suppose htθ ∈ Htθ is a history that occurs on the equilibrium path such that there
exist i, j ∈ {1, ..., N} with

Eσ∗

[
∂γi
∂di

(θ, di,t)|htθ
]
> Eσ∗

[
∂γj
∂dj

(θ, dj,t)|htθ
]
.

Define σ̃ as the following strategy: at the start of the game, the principal chooses
a history ht0 from the distribution over Ht0 induced by σ∗, and play continues as
in σ∗|ht0. As argued in the proof of Lemma 2, the strategy σ̃ can be made a PBE.

Now, consider a strategy profile that is identical to σ̃, except in the first period.
In that period, after θ0 ∈ Θ is observed, the principal chooses d0 so that

Eσ∗

[
∂γi
∂di

(θ, di,t)|htθ
]

= Eσ∗

[
∂γj
∂dj

(θ, dj,t)|htθ
]

for all i, j ∈ {1, ..., N}. The principal then privately draws a d̃0 according to σ̃,
and play continues as if the principal chose d̃0 in σ̃. The decision d0 only affects
the terms (γi)

N
i=1 in period 0, so this strategy can also be made a PBE using

techniques very similar to those in Lemma 2. But this PBE generates strictly

larger surplus than σ̃ by construction. So Eσ̃

[∑N
i=1 Si,t

]
< V̄ , which contradicts

the assumption that σ∗ is PBE-sequentially surplus-maximizing.
The previous argument proves that if σ∗ is PBE-sequentially surplus-maximizing
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equilibrium, then for any t ≥ 0 and htθ that occurs on the equilibrium path,

Eσ∗

[
∂γi
∂di

(θ, di,t)|htθ
]

= Eσ∗

[
∂γj
∂dj

(θ, dj,t)|htθ
]
.

In particular, the decision dt depends only on the payoff-relevant history. In other
words, the principal’s relationship with each agent is independent of the choices
made by other agents, so the problem reduces to a set of N bilateral relational
contracts between the principal and each agent. Consequently, efforts in a PBE-
sequentially surplus-maximizing equilibrium depend only on the payoff-relevant
history.

But this history is publicly observed, so any PBE-sequentially surplus-maximizing
PBE must be payoff-equivalent to an RE. It is straightforward to show that in
that case, the surplus-maximizing RE is sequentially surplus-maximizing. So if
no surplus-maximizing RE is sequentially surplus-maximizing, then no surplus-
maximizing PBE is PBE-sequentially surplus-maximizing. �

For Online Publication: Public Monitoring and Communication

D1. Statement of Result

This Appendix shows that biased decisions are never surplus-maximizing if
monitoring is imperfect but public. We also show that we can replicate equi-
librium outcomes from the game with public monitoring in the baseline model,
provided that agents can costlessly and immediately communicate with one an-
other.

The game with public monitoring is identical to the game in Section II
with one exception: all variables except et are publicly observed, while et remains
private.18 Under this monitoring structure, all agents can punish any deviation
by the principal, who is therefore willing to pay rewards only if the sum of those
rewards is smaller than total continuation surplus. Biased decisions decrease total
continuation surplus and so undermine the principal’s ability to credibly promise
rewards. This logic, familiar from Levin (2003), implies that backward-looking
policies are never surplus-maximizing in the game with public monitoring.

PROPOSITION 7: In the game with public monitoring, every surplus-maximizing
recursive equilibrium is sequentially surplus-maximizing.

PROOF:
See Appendix D.D2.

The proof of Proposition 7 is a straightforward adaptation of techniques used by
Levin (2003) and Goldlucke and Kranz (2012). The principal’s most tempting
deviation in the game with public monitoring is to simultaneously renege on all

18Recursive equilibria are equivalent to Perfect Public Equilibria if monitoring is public.
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agents, since she can be held to her min-max payoff following any deviation. The
severity of this punishment depends on total continuation surplus rather than
i-dyad surplus. Biased decisions decrease total continuation surplus and make
the punishment for a deviation less severe, so they have no place in a surplus-
maximizing equilibrium.

Finally, we show that public monitoring outcomes can be replicated in the game
with bilateral monitoring so long as agents can communicate with one another.
Define the game with communication as identical to the model from Section
II, except that agents simultaneously send costless public messages at the end of
each period (chosen from a large message space). Then we prove the following
result.

COROLLARY 1: For any surplus-maximizing equilibrium of the game with pub-
lic monitoring, there exists a recursive equilibrium of the game with communica-
tion that implements the same policy and efforts and generates the same ex ante
total expected surplus.

The equilibrium construction in Proposition 7 holds agents to their punishment
payoff both on the equilibrium path and after that agent deviates. Therefore,
agents are willing to truthfully report what they observe in each period. The col-
lection of these reports reveals the true history, which can then be used to jointly
punish the principal following a deviation. Consequently, surplus-maximizing
equilibria in the game with communication can be no worse than those in the
game with public monitoring. Indeed, they might be even better, since the true
history is automatically revealed in the game with public monitoring but not
necessarily in the game with communication.

D2. Proof of Proposition 7

We begin the proof with a result that gives necessary and sufficient conditions
for a strategy to be an equilibrium of the game with public monitoring.

Statement of Claim 1. — If σ∗ is a RE, then ∀i ∈ {1, ..., N} there exists a
function Bi : φ0(Hty)→ R satisfying:

1) Public Effort IC: for any i ∈ {1, ..., N} and hte,

(D1) (ai,t, ei,t) ∈ arg max
ai,ei

Eσ∗
[
Bi(φ0(hty))− (1− δ)Ci|hta, ei

]
.

2) Public Dynamic Enforcement: for any I ⊆ {1, ..., N} and hty,
(D2)

δ
∑
i∈I

Eσ∗
[
Ūi(h

t+1
0 )|hty

]
≤
∑
i∈I

Bi(φ0(hty)) ≤ δEσ∗
[∑
i∈I

Ui,t+1 + Πt+1|hty

]
.
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3) Individual Rationality: for any htd ∈ Htd and every agent j ∈ {1, ..., N},

(D3) Eσ∗ [Uj,t+1|htd] ≥ Ūj(htd).

For every subset of agents I ⊆ {1, ..., N},
(D4)

Eσ∗
[
Πt+1|htd

]
≥
∑
i∈I

(
Eσ∗

[
Bi(φ0(hty))− (1− δ)Ci,t|htd

]
− Eσ∗

[
Ui,t|htd

])
.

Proof of Claim 1:. — Suppose σ∗ is a RE. Define Bi by

Bi(φ0(hty)) = Eσ∗
[
(1− δ)τi,t + δUi,t+1|φ0(hty)

]
.

Analogous to Lemma 1, agent i chooses ei,t to solve (D1). Agent i’s continuation
surplus is bounded below by Ūi(h

t+1
0 ) in ht+1

0 , so Bi(φ0(hty)) ≥ E
[
Ūi(h

t+1
0 )|hty

]
.

If ∃I ⊆ {1, ..., N} such that∑
i∈I

Eσ∗
[
τi,t|φ0(hty)

]
> δEσ∗

[
Πi,t+1|φ0(hty)

]
then the principal may profitably deviate by choosing τi,t = 0 for all i ∈ I, earning
no less than 0 in the continuation game. These arguments imply (D2).

If wi,t < 0, then agent i is willing to pay only if E[Ui,t|htd] ≥ Ūi(h
t
d). Let

I = {i|Eσ∗ [wi,t|htd] ≤ 0}. Then the principal is willing to pay
∑

i/∈I wi,t > 0 only
if

Eσ∗

[
(1− δ)

(
N∑
i=1

yi,t −
∑
i/∈I

wi,t

)
−

N∑
i=1

(
Bi(φ0(hty))− δUi,t+1

)
+ δΠt+1|htd

]
≥ 0.

Rewriting this expression in terms of Ui,t and Πt yields

Eσ∗
[
Πt|htd

]
≥
∑
i∈I

Eσ∗
[
Bi(φ0(hty))− (1− δ)Ci,t − δUi,t|htd

]
.

This expression holds a fortiori for any other set of agents. These arguments
together imply (D3) and (D4). �

Completing Proof of Proposition 7. — Suppose σ is a surplus-maximizing RE
that is not sequentially surplus-maximizing. Consider a strategy profile σ̃ that is
identical to σ except for wages, which are chosen so that E[Ui,t|htd] = Ūi(h

t
d) at

every htd on the equilibrium path. Then it is easy to show that σ̃ satisfies (D1)
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for the same Bi as σ. σ̃ satisfies (D4) because Eσ̃
[
Πt+1 +

∑
i∈I Ūi(h

t
d)|φ0(hty)

]
≥

Eσ
[
Πt+1 +

∑
i∈I Ui,t+1|φ0(hty)

]
.

The strategies σ and σ̃ generate the same ex ante total surplus, and moreover
there exists some history ht0 such that σ̃|ht0 is not surplus-maximizing. Consider an
alternative strategy σ̃∗ that is identical to σ̃, except σ̃∗|ht0 is surplus-maximizing
and satisfies E[Ui,t|htd] = Ūi(h

t
d) for every htd that succeeds ht0. It is easy to see

that σ̃∗ satisfies (D1)-(D4) because σ̃ does, and σ̃∗ generates strictly higher total
continuation surplus than σ̃. Thus, it suffices to show that the policy and efforts
in σ̃∗ are part of an equilibrium.

Consider the following strategies σ∗, defined recursively from σ̃∗. For histories
h̃t0, h

t,∗
0 ∈ Ht0, use the public randomization device to choose h̃td ∈ Htd accord-

ing to σ̃∗|{h̃t0, θt, Dt}. The principal chooses dt ∈ Dt as in h̃td. For each agent

i, the wage is wi,t = Eσ̃∗
[
−τ∗i,t + Ci,t + 1

1−δ Ūi(h̃
t
d)−

δ
1−δ Ūi(h̃

t+1
d )|h̃td

]
, with τ∗i,t

defined below. The public randomization device chooses h̃te ∈ Hte as in σ̃∗|h̃td.
Agent i chooses ai,t, ei,t as in h̃te. Following output yt, agent i’s bonus equals

τ∗i,t = 1
1−δEσ̃∗

[
Bi(φ0(h̃ty))− Ūi(ht+1

0 )|h̃te, yt
]
. History h̃t+1

0 is drawn by the public

randomization device according to σ̃∗|(h̃te, yt). This process is repeated with h̃t+1
0 .

Following a deviation by agent j, aj,t′ = 0 and wj,t′ = τj,t′ = 0 in all t′ ≥ t, and
the principal chooses dt′ to hold agent i at Ūi(h

t
0). Following any other deviation,

play as if agent 1 deviated.
We claim σ∗ is a recursive equilibrium. Indeed, it is straightforward to show

that agent i earns Ūi(h
t
0) at each ht0. The principal is willing to pay wi,t ≥ 0, or

the agent is willing to pay wi,t ≤ 0, because σ̃∗ satisfies (D3) and (D4). Each agent
i is willing to choose ai,t and ei,t because σ̃∗ satisfies (D1). And the principal is
willing to pay τ∗i,t because σ̃∗ satisfies (D2). Furthermore, σ∗ generates the same
total ex ante expected surplus as σ̃∗, and so generates strictly higher ex ante
expected surplus than σ. So σ∗ cannot be surplus-maximizing. �

D3. Proof of Corollary 1

Consider augmenting the strategy profile σ∗ constructed at the end of the proof
of Proposition 7 with the following messages: at the end of each period, each agent
reports the outcomes that he observed in that period, except for effort. Collec-
tively, those messages identify a unique history ht0. If ht0 is on the equilibrium
path, then the continuation equilibrium is σ∗|ht0. If ht0 is not on the equilibrium
path, then wi,t′ = τi,t′ = ai,t′ = 0 for every i ∈ {1, ..., N} in all t′ ≥ t, which is
a continuation equilibrium because it is an equilibrium of the one-shot game. If
exactly one agent lies, the principal can identify that agent because she observes
the full history. So the principal chooses dt′ to min-max that agent in all t′ ≥ t;
if multiple agents lie, then she chooses dt′ uniformly at random.

Each agent i earns Ūi(h
t
0) by reporting truthfully at ht0. Suppose agent i lies. If

the resulting history h̃t0 is on the equilibrium path, then players have the incentive
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to follow σ∗|h̃t0 because ht0 and h̃t0 induce the same continuation game and σ∗|h̃t0
is an equilibrium of that game. So the agent earns Ūi(h

t
0): he would earn contin-

uation utility Ūi(h̃
t
0) at h̃t0, and Ūi(h̃

t
0) = Ūi(h

t
0) because h̃t0 and ht0 have the same

public history. If h̃t0 is off the equilibrium path, then agent i earns Ūi(h
t
0) because

ai,t′ = 0 in t′ ≥ t and the principal chooses dt′ to min-max him. So i’s payoff
is independent of his message and so he has no profitable deviation. Therefore,
these messages along with the other actions in σ∗ form a recursive equilibrium of
the game with communication. �

For Online Publication: Imperfectly Coordinated Punishments

E1. Statement of Result

In Appendix D, agents immediately and perfectly coordinate to punish the
principal. We believe that these perfectly coordinated punishments are unrealistic
in many settings: for instance, they would imply that an employer loses her entire
workforce if she withheld a bonus from even a single deserving worker. This
section allows imperfect coordination among agents in the hiring example from
Section III to argue that biased decisions might remain surplus-maximizing.

In the hiring game, suppose that deviations are ε−uncoordinated: the first
time a given agent chooses ai,t = 0, all agents observe this choice with probability
1−ε and otherwise only the principal observes it. Subsequent ai,t = 0 are observed
only by the principal. In any surplus-maximizing equilibrium of this game, ai,t = 0
only following a deviation. Therefore, this monitoring structure gives agents a
“once and for all” chance to coordinate their punishments after the principal
deviates.

So long as ε > 0, Proposition 8 shows that there exist parameter values for
which any surplus-maximizing relational contract has a backward-looking policy.

PROPOSITION 8: Consider the hiring game with ε-uncoordinated monitoring.
If ε > 0, then there exists an open set of other parameters (not including ε)
such that for those parameters, no surplus-maximizing recursive equilibrium is
sequentially surplus-maximizing.

PROOF:
See Appendix E.E2.

Proposition 8 illustrates that, in our hiring example, backward-looking policies
might remain surplus-maximizing so long as coordination among agents is not
perfect. The intuition for this result is fairly straightforward. If the principal
reneges on a payment to agent i, then all agents observe i’s subsequent rejection
with probability 1− ε. If ε > 0, then agent i’s future production is always lost if
the principal reneges on i but not if she reneges on agent j 6= i. So as in Section
III, the principal can make larger rewards to i credible by biasing future hiring
decisions towards i.
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This basic intuition masks considerable complexity that arises from the fact
that, unlike Lemma 1, the principal may not be willing to implement some poli-
cies in equilibrium. However, in the hiring game, the surplus-maximizing policy
depends only on the public history. Therefore, deviations from this policy can be
jointly punished by all agents.

E2. Proof of Proposition 8

Given equilibrium σ∗, defineBi(h
t
d, ξi,t, yi,t) = Eσ∗

[
(1− δ)τi,t + δUi,t+1|htd, ξi,t, yi,t

]
as in Lemma 1. Then Bi(h

t
d, ξi,t, yi,t) ≥ 0. Consider a deviation in the principal’s

relationship with agent i. If agent i chooses his outside option, the principal earns
her minimum payoff 0 in that period. This choice is publicly observed with prob-
ability 1− ε, in which case the principal earns 0 continuation surplus. Otherwise,
the principal loses Πi ≡

∑∞
t′=1 δ

t′(1− δ)(yi,t+t′ −wi,t+t′ − τi,t+t′) by an argument
similar to Lemma 1. So in any equilibrium,

Bi(h
t
d, ξi,t, yi,t) ≤

δ

1− δ
E

(1− ε)
∑
j 6=i

Sj + Si|htd, ξi,t, yi,t

 .
Define S̃R1 = R− c, S̃R2 = (2− ε)(αR− c), S̃W1 = (1− δ)(W − c) + δ(ρS̃R1 +

(1 − ρ)S̃W1), and S̃W2 = (1 − δ)(W − c) + δ(ρS̃R2 + (1 − ρ)S̃W2). Suppose the
principal deviates in period t, when θt = θ. Then S̃θd equals the expected surplus
destroyed following a deviation if dt = d whenever θt = R on the equilibrium
path. We make assumptions such that (i) the principal cannot motivate agent
1 while θt = W if dt = 2 whenever θt = R, but can motivate agent 1 if dt = 1
whenever θt = R; and (ii) conditional on high effort, dt = 2 is surplus-maximizing
if θt = R, dt = 1 is surplus-maximizing if θt = W , and more surplus is lost
following a deviation if dt = 1 in every subsequent period than if dt = 2.

S̃W2 < 1−δ
δ c ≤ min

{
αR− c, S̃W1

}
,

2(αR− c) > S̃R1 > S̃R2 > W − c > 2(αW − c).

For ε > 0, there exists an open set of parameters that simultaneously satisfy these
conditions.

Suppose that the only constraints in equilibrium are (IC) and that agent i’s
reward scheme must satisfy

0 ≤ Bi(htd, ξi,t, yi,t) ≤
δ

1− δ
E

(1− ε)
∑
j 6=i

Sj + Si|htd, ξi,t, yi,t

 .
By the first assumption, there exists a reward scheme such that e1,t = e2,t = 1 if
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θt = R and dt = 2. Therefore, any sequentially surplus-maximizing equilibrium
must have dt = 2 whenever θt = R. But the first assumption also implies that
e1,t = 0 whenever θt = W if dt = 2 whenever θt = R. So agent 1 does not exert
effort while θt = W in any sequentially surplus-maximizing equilibrium.

Consider the alternative strategy described in the proof of Proposition 4, with
χ ∈ (0, 1) chosen to solve c = δ

1−δ (χS̃W1 +(1−χ)S̃W2). By construction, all hired
agents can be motivated to choose ei,t = 1 in each t under this strategy. So surplus
in this alternative is W − c in each period with θt = W . Once θt = R, surplus
equals 2(αR − c) with probability χ and otherwise equals R − c. We can choose
parameters such that χ is arbitrarily close to 0, in which case this alternative
generates strictly higher total surplus than any sequentially surplus-maximizing
equilibrium.

The final step is to prove that this alternative strategy is in fact an equilib-
rium. Both θt and the public randomization device are publicly observed, and
the proposed dt conditions only on these variable. Hence, both agents detect any
deviation in dt and so the principal earns 0 following such a deviation. Therefore,
the principal has no profitable deviation in dt. Each agent is paid wi,t = 0. The
principal pays τi,t = c if she hires agent i and otherwise pays τi,t = 0. Following a
deviation in τi,t, the principal earns 0 with probability 1−ε or loses i-dyad surplus
with probability ε. By choice of χ, the principal is indifferent between paying τi,t
or not. Agents have no profitable deviation from ei,t or ai,t, so this is an equilib-
rium. Moreover, this equilibrium dominates any sequentially surplus-maximizing
equilibrium for an open set of parameters. �

For Online Publication: Strict Principal Preferences over Decisions

F1. Statement of Result and Discussion

Our equilibrium construction in Lemma 1 makes the principal indifferent to her
on-path decisions. Consequently, (IC) and (DE) are not only necessary conditions
for equilibrium, but sufficient as well. This appendix uses the promotions applica-
tion from Section I to show that biased promotions can still be surplus-maximizing
even if the principal is required to strictly prefer her equilibrium decision.

Consider the set of recursive equilibria with strict decisions, which are
recursive equilibria that require the principal to strictly prefer not to deviate
from her equilibrium choice of d1 on the equilibrium path.19 This additional
requirement limits the types of policies that can be implemented in equilibrium.
In particular, promotion policies that depend on the entire vector of realized
outputs are more difficult to implement, since no single agent can observe whether
the principal deviates from such a policy. Nevertheless, we prove that a backward-
looking policy can be surplus-maximizing in this class of equilibria.

19In general, this constraint means that a surplus-maximizing equilibrium might not exist. To sidestep
this problem, Proposition 9 instead states that a recursive equilibrium with strict decisions can strictly
improve upon any sequentially surplus-maximizing equilibrium.
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PROPOSITION 9: In the promotion game in Section I, suppose E[yi|ei = 0] >
0, and define δ̄ < 1 and γ(·) as in Proposition 1. There exists a ∆̃ : R+ → R++

such that if δ ∈ (0, δ̄), γ2 > γ(δ), and γ1 − γ2 < ∆̃(δ), then there exists a
recursive equilibrium with strict decisions that generates strictly higher ex ante
total expected surplus than any sequentially surplus-maximizing equilibrium.

PROOF:

See Appendix F.F2.

As in Proposition 1, any sequentially surplus-maximizing equilibrium entails d1 =
1 on the equilibrium path. Both (IC) and (DE) are necessary conditions for
equilibrium, so if players are not too patient, then an agent who is never promoted
cannot be motivated to work hard in equilibrium. In that case, only agent 1 works
hard in any sequentially surplus-maximizing equilibrium.

The proof of Proposition 9 constructs a recursive equilibrium with strict deci-
sions that dominates any sequentially surplus-maximizing equilibrium under the
conditions in the statement. The promotion policy in this equilibrium depends
only on agent 2’s output: agent 2 is promoted if and only if y2 exceeds some
threshold. Therefore, agent 2 can observe whether or not the principal follows
the equilibrium decision. Since E[yi|ei = 0] > 0, agent 2 can punish the principal
for promoting the wrong agent by rejecting future production. So long as the
principal earns strictly positive continuation surplus following her promotion de-
cision, this threat of punishment is enough to give the principal a strict incentive
to follow the equilibrium decision. This promotion policy motivates agent 2 to
exert effort in t = 0, since she is promoted following sufficiently high output. If
γ1 − γ2 is not too large, then the resulting equilibrium strictly dominates any
sequential surplus-maximizing equilibrium.

We draw two conclusions from this analysis. First, requiring the principal to
have strict preferences over her decision constrains the kinds of promotion poli-
cies that can be implemented in equilibrium. Second, and importantly, biased
promotion decisions can remain surplus-maximizing even within this more con-
strained set of equilibria. Though the details of the surplus-maximizing policy
might change, the basic logic of our argument remains the same because (IC) and
(DE) are still necessary conditions for equilibrium.

F2. Proof of Proposition 9

Define S = E[yi|ei = 0] and SB = E[yi|ei = 1]−c. By assumption, SB > S > 0.
Define ∆̃(δ) = min {S,∆(δ)}, where ∆(δ) is the function from Proposition 1.

Lemma 1 says that (IC) and (DE) are necessary conditions for equilibrium.
Consequently, if δ < δ̄, then the proof of Proposition 1 immediately implies that
for any t ≥ 1, ei,t = 0 if d1 6= i, and moreover ei,0 = 0 if agent i is never
promoted on-path. The requirement that decisions be strict does not constrain
continuation equilibria after the principal chooses d1. Since γ2 > γ(δ), whichever
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agent is promoted can be motivated to exert effort in t ≥ 1, so the surplus-
maximizing continuation equilibrium in t = 1 must entail d1 = 1 because γ1 >
γ2. Consequently, any sequentially surplus-maximizing equilibrium must satisfy
e2,t = 0 for all t ≥ 0 and so can generate no more surplus than SB + S + δγ1.

To prove the result, it suffices to construct an equilibrium with total surplus
strictly larger than SB + S + δγ1. Fix some q ∈ (0, 1) and ỹ satisfying l(ỹ) > 1.
Consider the following strategy profile:

1) In t = 0, wi,0 = 0 and ai,0 = ei,0 = 1 for i ∈ {1, 2}.

2) Let P (ỹ) = Pr{y2,0 > ỹ|e2,0 = 1}. Bonuses τi,0 equal:

(1− δ)τ2,0 =

{
−δ(1− q)S l(y2,0) ≤ 1

0 l(y2,0) > 1

and

(1− δ)τ1,0 =

{
−δ(1− q)

(
P (ỹ)S + (1− P (ỹ))(SB + γ1)

)
l(y1,0) ≤ 1

0 l(y1,0) > 1

3) d1 = 1 if l(y2,0) ≤ l(ỹ) and d1 = 2 otherwise.

4) Suppose d1 = i. Then in all t ≥ 1, play is stationary and satisfies:

a) ai,t = ei,t = 1, τi,t = − δ
1−δ (1 − q)(SB + γi) if l(yi,t) ≤ 1, and τi,t =

δ
1−δ q(S

B+γi) if l(yi,t) > 1, while wi,t = E[yi,t−τi,t|ei,t = 1]−q(SB+γi).

b) a−i,t = 1, e−i,t = 0, and τ−i,t = 0, while w−i,t = E[y−i,t − τ−i,t|e−i,t =
0]− qS.

5) If the principal and agent i observe a deviation in period t ≥ 0, then ai,t′ =
ei,t′ = wi,t′ = τi,t′ = 0 in t′ ≥ t. If agent 1 observes a deviation in t = 0, then
the principal follows the equilibrium d1. If agent 2 or both agents observe
a deviation in t = 0, then d1 = 1.

For appropriate q and ỹ, we argue that this strategy is a recursive equilibrium
with strict decisions. Consider t ≥ 1, after d1 = i is chosen. The principal’s
continuation payoff from her relationship with agents i and −i equal q(SB + γi)
and qS, respectively, while i’s payoff is (1−q)(SB+γi) and −i’s payoff is (1−q)S.
Therefore, the principal and agent i prefer to pay their respective τi,t than renege
and earn 0 from the continuation relationship. Since γ2 > γ(δ),

c ≤ δ

1− δ

∫ ∞
y∗

(SB + γi)(p(yi|1)− p(yi|0))dyi
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and so agent i is willing to choose ei,t = 1. For q ∈ (0, 1), the principal and agent
j both earn strictly positive payoffs from their relationship if they follow wj,t and
0 otherwise. Therefore, players have no profitable deviation following the choice
of d1.

Now, consider the principal’s choice of d1. On the equilibrium path: suppose
y2 ≤ ỹ, so the equilibrium specifies d1 = 1. If the principal deviates to d1 = 2,
then agent 2 observes that deviation, so the principal earns no more than qS in
the continuation game. If y2 > ỹ and the principal deviates to d1 = 1, then she
earns no more than q(SB + γ1) in the continuation game. So this deviation is
strictly unprofitable for γ1 − γ2 < ∆̃(δ) ≤ S. Under this condition, the principal
has a strict incentive to follow the equilibrium decision for any q > 0.

Suppose agent 1 observed a deviation in t = 0. Agent 2 will observe if the
principal deviates from d1, so the principal earns 0 if she deviates in d1 and no
less than δqS if she does not. Therefore, the principal cannot profitably deviate
in d1.

If instead agent 2 observed a deviation in t = 0, then the principal earns
δq(SB + γ1) from choosing d1 = 1 and δS from choosing d1 = 2, so she has no
incentive to deviate from d1 = 1. If both agents observed a deviation in t = 0,
then the principal earns 0 regardless of d1, so again has no incentive to deviate
from d1.

Finally, consider actions in t = 0. Since τ1,0, τ2,0 ≤ 0, the principal cannot prof-
itably deviate from either. If l(y2,0) ≤ 1, then agent 2 earns 0 by paying τ2,0 and no
more than 0 from a deviation, so has no profitable deviation from τ2,0. Similarly,
agent 1’s expected continuation surplus is δ(1−q)

(
P (ỹ)S + (1− P (ỹ))(SB + γ1)

)
following any y1, so he is willing to pay τ1,0 rather than earn 0.

Let y∗ satisfy l(y∗) = 1. Agent 1 is willing to work hard if

c ≤ δ

1− δ

∫ ∞
y∗

(1− q)
(
P (ỹ)S + (1− P (ỹ))(SB + γ1)

)
(p(yi|1)− p(yi|0))dyi.

Since γ1 > γ(δ), this incentive constraint is slack for q = 0 and P (ỹ) ≤ 1
2 . Agent

2 is willing to work hard if

c ≤ δ

1− δ

(∫ ỹ

y∗
(1− q)S(p(y2|1)− p(y2|0))dy2 +

∫ ∞
ỹ

(1− q)(SB + γ2)(p(y2|1)− p(y2|0))

)
dy2.

Since p(·|e) is strictly MLRP-increasing in e and γ2 > γ(δ), this incentive con-

straint is slack for q = 0 and some ỹ such that P (ỹ) < 1
2 . Therefore, for this ỹ and

q > 0 sufficiently small, both agents are willing to choose ei,0 = 1. Under those
conditions, this strategy profile is a recursive equilibrium with strict decisions.

It remains to show that this recursive equilibrium dominates any sequentially
surplus-maximizing equilibrium. Since γ1 − γ2 < ∆(δ), the recursive equilibrium
with a 50-50 coin flip dominates the sequentially surplus-maximizing equilibrium.
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But P (ỹ) < 1
2 , so this equilibrium induces the same effort as the coin flip recursive

equilibrium while promoting agent 2 strictly less often. A fortiori, this equilibrium
dominates any sequentially surplus-maximizing equilibrium. �


