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Online Appendix

This appendix proves the results on divergence, imitation, pilots, and longer planning horizons.

1 Long-Run Performance

Proof of Proposition 4: We can interpret our model as one in which, instead of a sequence

of short-lived agents, there is a single, infinitely long-lived but myopic agent. For expositional

convenience, we use this interpretation in this proof. We can then denote the agent in charge of

Field  =  and Agent .

Suppose that Agent  engages in optimal experimentation. This is going to generate some

outcome ∗
1 in the first period, ∗

2 in the second, and so on. Now take any period  and let

 denote the largest  ∈ [1  ] in which Agent  engaged in experimentation. Note that since


0  b, Agent  engages in experimentation in the first period and thus  ∈ [1  ]. We can now

write the outcome Agent  realized each period as

∗
 =

⎧⎨⎩ ∗
−1 + ∆

¡
∗

−1
¢
+ 

q
∆
¡
∗

−1
¢
 for  = 1  

∗
+1

for  =  + 1   ,

where  is the realization of a random variable  that is drawn from a standard normal distribution

and where we streamline our notation by defining ∗
0 ≡ 

0 

Consider now Agent . Since 
0  b this agent also engages in experimentation in the first

period. Suppose now that if Agent  engages in experimentation in a period  = 1   he happens

to realize the same  that Agent  realized. We will show that it must then be the case that

E+1
£
∗

+1 −∗
+1

¤ ≥ 
0 −

0 , (26)

where the inequality is strict for some values of 1,..., . Since this result holds for any  and any

’s, it implies (9).
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To show (26), we first need to introduce two definitions. For the first definition, consider some

period  in which both agents find it optimal to engage in experimentation. We know from above

that each agent’s outcome is given by

∗
 = ∗

−1 + ∆
³
∗

−1
´
+ 

q
∆
¡
∗

−1
¢
 for  = 

We then define b ¡∗
−1

∗
−1
¢ ≡ − 

¡
∆
¡
∗

−1
¢−∆ ¡∗

−1
¢¢


³q
∆
¡
∗

−1
¢−q∆ ¡∗

−1
¢´ (27)

as the value of  such that 
∗
 − ∗

 = ∗
−1 − ∗

−1. For the second definition, recall that

an agent engages in experimentation in period  + 1 if and only if ∗  e (), where  =

max
£
0

∗
1 

∗
−1
¤
. We then define

e ¡∗
−1




¢ ≡ −∗
−1 + ∆

¡
∗

−1
¢− e ¡



¢

q
∆
¡
∗

−1
¢ (28)

as the value of  such that 
∗
 = ∗

−1 + ∆
¡
∗

−1
¢
+ 

q
∆
¡
∗

−1
¢
 = e ¡



¢
.

Since Agent  engages in experimentation in periods 2   it must be that

  e ¡∗
−1




¢
for all  = 1   − 1. (29)

In Lemma A2 below we show that if (29) holds then it must be that

e ¡∗
−1




¢
 max[e ¡∗

−1



¢
 b ¡∗

−1
∗
−1
¢
] for all  = 1   . (30)

To see the implications of this result, suppose first that  =  , in which case Agent  is experiment-

ing in all periods up to and including period  . Since   e ¡∗
−1




¢
for all  = 1   − 1, it

follows from (30) that

  e ¡∗
−1




¢
and   b ¡∗

−1
∗
−1
¢
for all  = 1   − 1.

Together with the fact that 
0  b, the first inequality implies that Agent  also engages in

experimentation in all periods up to and including period  . And the second inequality implies

that

∗
−1 −∗

−1  ∗
−2 −∗

−2    
0 −

0 . (31)

Finally, since (30) holds for  =  it must be that either (i.)   e ¡∗
 



¢
, (ii.)  e ¡∗

 


¢
, or (iii.)  ∈

¡e ¡∗
 



¢
 e ¡∗

 


¢¢
. We will show next that (26) holds

in any one of those three cases.
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Case (i.): If   e ¡∗
 



¢
both agents experiment in period  + 1. We then have

E+1
£
∗

+1 −∗
+1

¤
= ∗

 + ∆
¡
∗



¢−∗
 − ∆

¡
∗



¢
(32)

 ∗
 −∗



 
0 −

0 ,

where the first inequality follows from the fact that the optimal experiment is strictly increasing

in the outcome. To derive the second inequality, notice that since   b ¡∗
−1

∗
−1

¢
we have

∗
 −∗

  ∗
−1 −∗

−1. The second inequality then follows from (29).

Case (ii.): If   e ¡∗
 



¢
neither agent experiments in period  . We then have

E+1
£
∗

+1 −∗
+1

¤
= 

 −
  

0 −
0 .

To see the inequality, let  ∈ {0 1   − 1} denote the period in which the outcome of Agent
 =  peaked, that is, in which ∗


= ∗

 (where  = 0 is the case in which the outcome was

below status quo outcome in  = 1 2   − 1). Suppose first that  = . Then


 −

 = ∗

−∗


= 

0 −
0 if 

 = 0.

and


 −

 = ∗

−∗


 

0 −
0 if 

  0,

where the inequality follows from (31). Suppose next that  6= . Then


 −

  ∗

−∗


 

0 −
0 ,

where the first inequality follows from
  ∗


and 

 = ∗

and the second inequality follows

from (31)

Case (iii.): If  ∈
¡e ¡∗

 


¢
 e ¡∗

 


¢¢
Agent  engages in experimentation in

period  +1 but Agent  does not. Since Agent  prefers engaging in experimentation to realizing

his previous peak 
 it must be that E+1

£
∗

+1

¤
 

 . We therefore have

E+1
£
∗

+1 −∗
+1

¤
 

 −
 ≥ 

0 −
0 ,

where the second inequality follows from our discussion in Case (ii.) above.

To complete the proof, suppose that    . Since  is the last period in which Agent 

engaged in experimentation, we have ∗
 = 

 for all  ≥  + 1. Since   e ¡∗
−1




¢
for all

 = 1   − 1, it follows from (29) that

  e ¡∗
−1




¢
and   b ¡∗

−1
∗
−1
¢
for all  = 1   − 1.

3



Together with the fact that 
0  b, the first inequality implies that Agent  also engages in

experimentation in all periods up to and including period  . And the second inequality implies

that

∗
−1 −∗

−1  ∗
−2 −∗

−2    
0 −

0 . (33)

Finally, since (30) holds for  =  it must be that either (a.)   e ¡∗
 



¢
or (b.)  ∈¡e ¡∗

 


¢
 e ¡∗

 


¢¢
. We will show next that (26) holds in either of those cases:

Case (a.): If   e ¡∗
 



¢
then Agent  also does not experiment in periods  =

 + 1   . We then have

E+1
£
∗

+1 −∗
+1

¤
= 

 −
 ≥ 

0 −
0 ,

where the inequality follows from our discussion in Case (ii.) above.

Case (b.): If  ∈
¡e ¡∗

 


¢
 e ¡∗

 


¢¢
then Agent  does engage in experimentation

in period  + 1 and, possibly, in period  + 1. Since, in period  + 1, Agent  can guarantee

himself 
 it must be that E+1

£
∗

+1

¤ ≥ 
 . We therefore have

E+1
£
∗

+1 −∗
+1

¤ ≥ 
 −

 ≥ 
0 −

0 ,

where, once again, the second inequality follows from our discussion in Case (ii.) above. ¥

LEMMA A2. If

  e ¡∗
−1




¢
for all  = 1   − 1. (34)

then e ¡∗
−1




¢
 max[e ¡∗

−1



¢
 b ¡∗

−1
∗
−1
¢
] for all  = 1   . (35)

Proof of Lemma A2: To prove this lemma, we first show that (35) holds for  = 1. We then

show that if (35) holds for 1  , where 1   ≤  − 1, then it also holds for  = + 1. Together

these facts imply that (35) holds for  = 1   as claimed in the lemma.

Suppose first then that  = 1. From the definitions of b (·) and e (·) in (27) and (28) we have
e1 ¡

0 

0

¢− b1 ¡
0 


0

¢
=
e ¡

0

¢
+ 

q
∆
¡

0

¢q
∆
¡

0

¢−
0


q
∆
¡

0

¢ . (36)
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and

e1 ¡
0 


0

¢− e1 ¡
0 


0

¢
=


0 −

0 + e ¡
0

¢− e ¡
0

¢

q
∆
¡

0

¢ (37)

+

q
∆
¡

0

¢−q∆ ¡
0

¢

q
∆
¡

0

¢q
∆
¡

0

¢ µe ¡
0

¢
+ 

q
∆
¡

0

¢q
∆
¡

0

¢−
0

¶
.

To see that (36) is strictly positive notice that

e ¡
0

¢
+ 

q
∆
¡

0

¢q
∆
¡

0

¢−
0 (38)

 e ¡
0

¢
+ ∆

¡

0

¢−
0

 e ¡
0

¢
+ ∆

¡ e ¡
0

¢¢−
0

 0,

where the first inequality follows from ∆
¡

0

¢
 ∆

¡

0

¢
and the second follows from 

0 e ¡
0

¢
. To see the third inequality, recall that e ¡

0

¢
is defined as the outcome at which the

agent is indifferent between receiving 
0 and a normally distributed gamble that pays e ¡

0

¢
+

∆
¡ e ¡

0

¢¢
on average and has a strictly positive variance ∆

¡ e ¡
0

¢¢
2. Since the agent is

risk averse, it must then be that e ¡
0

¢
+ ∆

¡ e ¡
0

¢¢
 

0 .

To show that (37) is also strictly positive, consider first the second term on the RHS of (37).

Since ∆
¡

0

¢
 ∆

¡

0

¢
it follows from (38) that this term is strictly positive. Consider next

the first term on the RHS of (37). This term has to be weakly positive since 
0  

0 and

de () d ∈ (0 1]. We therefore have e1 ¡
0 


0

¢
 max[e1 ¡

0 

0

¢
 b ¡

0 

0

¢
].

Suppose now that (35) holds for  = 1  , where 1   ≤  − 1. We will show that (35) then
also holds for  =  + 1. For this purpose, notice first that if (35) holds for  = 1  , then it

follows from (34) that (i.) both agents are engaging in experimentation in periods  = 1   + 1

and (ii.) it must be that

∗
+1 −∗

+1  ∗
 −∗

    
0 −

0 . (39)

Furthermore, we know from the definitions of b (·) and e (·) in (27) and (28) that
e+1 ¡∗

 
+1

¢− b+1 ¡∗
 ∗



¢
=
e ¡

+1

¢
+ 

p
∆ (∗

 )
p
∆ (∗

 )−∗



p
∆ (∗

 )
.

5



To see that this expression is strictly positive, notice that

e ¡
+1

¢
+ 

q
∆ (∗

 )

q
∆ (∗

 )−∗
 (40)

≥ e ¡


¢
+ 

q
∆ (∗

 )

q
∆ (∗

 )−∗


 e ¡


¢
+ ∆

¡
∗



¢−∗


 e ¡


¢
+ ∆

¡ e ¡


¢¢−∗


 0,

where the first inequality follows from 
+1 ≥ 

 , the second from ∆
¡
∗



¢
 ∆

¡
∗



¢
, and

the third from ∗
  e ¡



¢
. To derive the last inequality, recall that e ¡



¢
is defined as the

outcome at which the agent is indifferent between receiving 
 and a normally distributed gamble

that pays e ¡


¢
+ ∆

¡ e ¡


¢¢
on average and has a strictly positive variance ∆

¡ e ¡


¢¢
2.

Since the agent is risk averse, it must then be that e ¡


¢
+ ∆

¡ e ¡


¢¢ −∗
 . We therefore

have that if (35) holds for  = 1  , then e+1 ¡∗
 

+1

¢
 b+1 ¡∗

 ∗


¢
.

Next, we know from the definition of e (·) in (28) that
e+1 ¡∗

 ∗


¢− e+1 ¡∗
 ∗



¢
=

∗
 −∗

 + e ¡∗
+1

¢− e ¡∗
+1

¢

p
∆ (∗

 )
(41)

+

p
∆ (∗

 )−
p
∆ (∗

 )


p
∆ (∗

 )
p
∆ (∗

 )

µe ¡∗
+1

¢
+ 

q
∆ (∗

 )

q
∆ (∗

 )−∗


¶


We know from (40) that the first term on the RHS is strictly positive. To show that the second

term is weakly positive, we first show that

∗
 −∗

 ≥ ∗
+1 −∗

+1.

For this purpose, let  ∈ {0 1  }denote the period in which the outcome of Agent  = 

peaked, that is, in which ∗

= ∗

+1 (where 
 = 0 is the case in which the outcome was below

the status quo outcome in  = 1 2  ). Suppose now that  = . Then

∗
 −∗

 ≥ ∗

−∗


= ∗

+1 −∗
+1,

where the inequality follows from (39) and the equality follows from the definition of  and .

Suppose next that  6= . Then

∗
 −∗

 ≥ ∗

−∗


 ∗


−∗


= ∗

+1 −∗
+1

where the first inequality follows from (39), the second follows from ∗


 ∗

, and the equality

follows from the definition of  and . We therefore have ∗
 −∗

 ≥ ∗
+1−∗

+1 as claimed

above.
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Finally, notice that

∗
+1 −∗

+1 ≥ e ¡∗
+1

¢− e ¡∗
+1

¢
,

where the inequality follows from ∗
  ∗

 and de () d ∈ (0 1]. We therefore have
∗

 −∗
 ≥ ∗

+1 −∗
+1 ≥ e ¡∗

+1

¢− e ¡∗
+1

¢
which implies that the second term on the RHS of (41) is weakly positive. ¥

Proof of Proposition 5: The logic of escape is easiest to see for the example utility function of

Section 4.4. We prove the result in this special case. The key property in the argument is that

the experiment step size increases without bound in . As this property holds generally, it is

straightforward to extend the argument to the full model.

We establish the result by proving a stronger result: That the probability agents achieve at

least half of the expected gain in performance in every period is strictly bounded away from zero.

Beginning at 0  ̂, this critical threshold we denote 
#
1 , is 0 +

1
2
(0 − ̂) , where   0 is

a constant. The probability of success is 1−
³

#
1

´
= 1

2

h
1− erf

³

#
1

´i
= 1− 1

2


³
−#

1

´
,

where erf and  are the error function and complementary error function, respectively, and using

the identities erf () = − erf (−) and  () = 1− erf (). From Chang, Cosman, and Milstein

(2011) we have  () ≤ −
2
, and thus the success probability satisfies:

Pr

(1) ≥ 1− 1

2

−


1
2
(0−̂)


√
2(0−̂)

2

Take 
#
1 as the realized outcome and iterate. The same set of calculations give:

Pr

(2) ≥ 1− 1

2


−
 1

2 (0−̂)(
1
2 +1)




2(0−̂)( 12 +1)

2
= 1− 1

2

−

2

82


(0−̂)( 12 +1)

And this generalizes to:

Pr

() ≥ 1− 1

2

−

2

82


(0−̂)( 12 +1)

−1


The escape probability is:

Pr

≥

∞Y
=1

Pr

() =

∞Y
=1

∙
1− 1

2
−

−1
¸

where   0 and   1 are constants.

As 0  1− −
−1

 1,
Y
=1

µ
1− 1

2
−

−1
¶
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converges as  →∞. Taking the logarithm of this product, we get that the product converges to

a positive value if
X
=1

ln

µ
1− 1

2
−

−1
¶

converges as  →∞. To prove that, we first note the classical inequality11

ln(1− ) ≥ −3
2


for 0 ≤  ≤ 12. We also note that since   1,  → ∞ and so there exists 0 such that if

 ≥ 0, 
−1  . Hence, for any   0, we have the inequality

X
=0

ln

µ
1− 1

2
−

−1
¶
≥

X
=0

ln

µ
1− 1

2
−

¶
≥ −3

2

X
=0

1

2
− ≥ −3

4

∞X
=0

− = −3
4


1

1− −

as each term ln
³
1− −

−1
´
is negative. This establishes the necessary convergence.

2 Longer Planning Horizons

We assume that   2 
2
, which ensures that the crossing condition is satisfied, and that 0  b,

which ensures that the first agent engages in experimentation.

PROPOSITION 6. In the second period of their lives, agents behave as in the main model. An

optimal action therefore exists and is given by

∗ =

(
 if  () ≤ e ( ())
 +∆ ( ()) if  () ≥ e ( ()) 

where

∆ ( ()) = max

⎧⎨⎩0 2  ()− b2
³
 − 2

2

´
⎫⎬⎭  (42)

b = − 1

ln

"
2

2
¡
 − 2 

2

¢#  (43)

and e ( ()) = b+
 − 2

2


( ( ())−  (b)) .

The agent’s expected utility from taking the best action is given by


¡
 () +  (∗ − )  (

∗
 − )

2
¢
=

⎧⎨⎩  ( ()) if  () ≤ e ( ())
 (b) + ( ()− b) 

− 2

2

 if  () ≥ e ( ()) 
(44)

11For example, see http://functions.wolfram.com/ElementaryFunctions/Log/29/
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Proof: In the second period of their lives, the agents only care about expected utility from that

period. They therefore behave just like agents in the main model. Given the exponential utility

function, expected utility from taking action  +∆ is given by


¡
 () + ∆∆

2
¢
=  ( () + ∆)− exp

µ
− ( () + ∆) +

1

2
2∆

2

¶
. (45)

The expressions in the proposition then follow from Propositions 1-3. ¥

PROPOSITION 8. In period  = 1 an optimal action exists. If, as we assume, 0  b, any
optimal action is strictly to the right of 0 and increasing in the discount factor , where b is

defined in (43). If, instead, 0 were weakly smaller than b, the agent would take the status quo
action 0.

Proof: In the first period it can never be optimal for the agent to take an action strictly to the left

of 0. If it exists, the optimal first period action is therefore weakly to the right of 0. The problem

of characterizing the optimal first period actions that are weakly to the right of 0 is a special case

of the problem of characterizing the optimal actions in any period  in which a agent is in the first

period of his life and is constrained to taking an action weakly to the right of the right-most action

. Since this more general problem is relevant for the proof of the next proposition, we examine

it here.

Consider then any period  in which a agent is in the first period of his life and suppose that

he has to take an action  ≥ . We know from the previous proposition that in  + 1 the agent

will then experiment to the right of  if and only if

 () ≥ e (+1)  (46)

This optimal learning rule is equivalent to the agent experimenting to the right if and only if

 () ≥ e ()  (47)

To see this, notice that the two inequalities are only different if

 ()  max {0 −1} . (48)

Since

 () ≥ e ( ())
and

max {0 −1}  e (max {0 −1}) .
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inequality (48) implies (46) and (47) which, in turn, implies that the two learning rules are equiv-

alent.

Next, we can write  () as

 () =  () + ∆ + 
p
∆.

Substituting this expression into (47) and rearranging, we have that in period  + 1 the agent

experiments to the right if and only if

 ≥ e
where

 () + ∆ + 
p
∆e = e ()

or equivalently e = µ− ()− e () + ∆


√
∆

¶
. (49)

We can therefore write the agent’s problem as

max
∆≥0



where

 =  ( () + ∆)− exp
µ
− ( () + ∆) +

1

2
2∆

2

¶
(50)

+

⎡⎣Z 
−∞

 () d () +

Z ∞

  (b) + ³ () + ∆ + 
p
∆ − b´ ³

 − 2
2

´d ()
⎤⎦

and the subscript ‘’ stands for ‘to the right of .’ Differentiating  we get

d

d∆
= − 1

2
2

µ
 − 2

2

¶
exp

µ
− ( () + ∆) +

1

2
2∆

2

¶
+

³
 − 2

2

´ µ (1−  (e)) + 
1

2
√
∆

 (e)¶ 

Taking limits we further have that

lim
∆→0

d

d∆
=

⎧⎪⎪⎨⎪⎪⎩
 0 if  ()  b
= 0 if  () = b
 0 if  ()  b (51)

and

lim
∆→∞

d

d∆
= −∞.
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This implies that if  ()  b there exists an optimal ∆  0 that maximizes the agent’s expected

utility. Moreover, since

d2

d∆d
=

³
 − 2

2

´ µ (1−  (e)) + 
1

2
√
∆

 (e)¶ ≥ 0
the optimal action is increasing in .

To establish the agent’s optimal action if  () ≤ b notice that

d2

d∆d ()
=

1

2
22

µ
 − 2

2

¶
exp

µ
− ( () + ∆) +

1

2
2∆

2

¶
+

³
 − 2

2

´ (∆ + e ()− ())
1

2
√
∆∆

 (e)
which is strictly positive for all ∆ ≥ 0 if  () ≤ e (). Since b  e () it then follows from

(51) that if  () ≤ b the agent’s optimal action to the right of  is given by .

PROPOSITION 9. Consider any period  = 3 5  in which one of the agents that follows the first

agent is in the first period of his life. In any such period, an optimal action exists. Any optimal

action is strictly to the right of  if  () ≥  and it is an unknown action to the left of 

if  () ≤ , where  and  ≥  are defined in the proof. Moreover, there exists a   0

such that  =  for all  ≤ .

Proof: In the proof of the previous proposition we characterized the solution to the problem that

an agent in the first period of his life faces if he has to take an action to the right of . Consider

now an alternative constrained problem in which the agent has to take an action between two

neighboring actions  and  with    ≤  and  () ≥  (). The agent’s expected utility

is then given by

 = E
h

³
E [ ()] +

p
Var ( ())

´i
+ 

∞Z


³
E [ ()] +

p
Var ( ())

´
d ()(52)

+

Z
−∞

max
n
 ( ()) E

h

³
 () + ∆ () + 

p
∆ ()+1

´io
d () 

where

E [ ()] =
 − 

 − 
 () +

 − 

 − 
 () 

Var ( ()) =
( − ) ( − )

 − 
2
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E [ ()] +
p
Var ( ())e = 


¡

¢
= max

n
 ( ()) E

h

³
 () + ∆ () + 

p
∆ ()+1

´io


and where the subscript ‘’ stands for ‘to the left of .’ Differentiating  and taking limits we get

lim
→

d

d
=

⎧⎨⎩ ∞ if  () = 

1
2
20 ()

³
− 2

2
()−()
(−) −  ( ())

´
 0 if  ()  ,

(53)

where  (·) is the coefficient of absolute risk aversion. If  () = , therefore, there exists an

action strictly between  and  that the agent strictly prefers to both  and .

Suppose now that  () ≤ b. We have established in the proof of the previous proposition
that a young agent then prefers  to any action to the right of . Moreover, if  () ≤ b, it must
be that  () = , in which case there exists an unknown action between  and its neighboring

actions that the agent prefers to  and thus all all other known actions. For any () ≤  ≡ b,
it is therefore optimal for the agent to take an unknown action to the left of .

Next, it is immediate that if  is the best known action, there always exists an action to the

right of  that the agent prefers to any action to the left of . For any  () ≥  ≡ −1, it

is therefore optimal for the agent to take an unknown action to the right of .

Suppose next that  () ∈ (b e (−1)). The agent’s expected utility from taking the best

action to the left of  is bounded from below by  ( ()). Suppose now that  = 0. The agent’s

optimal action to the right of  is then given by ∆ ( ()) and his expected utility from taking

this action is given by 
¡
 () + ∆ ( ()) ∆ ( ())

2
¢
  ( ()), where ∆ ( ()) and

 (· ·) are given by (42) and (45). Moreover, it follows from (50) that at  = 0, the derivative of

the agent’s expected utility from experimenting to the right of  is given by

d

d
=

Z 
−∞

 () d ()+

Z ∞

  (b)+³ () + ∆ ( ()) + 
p
∆ ( ()) − b´ ³

 − 2
2

´d () 
where e is defined in (49). Since this derivative is finite, it follows that there exists a   0 such

that for all  ≤  the expected utility from taking the best action to the left of  is strictly larger

than the expected utility from taking the best action to the right of .

Finally, suppose that  () ∈ (e (−1) −1), in which case  ()  . As we observed

above, there then exists a   0 such that for all  ≤  the agent never finds it optimal to

take an action strictly in between two known actions. For any such , the best action to the

left of  is therefore given by . The expected utility from taking the best action to the

right of  is bounded from below by 
¡
 () + ∆ ( ()) ∆ ( ())

2
¢
, where ∆ ( ())

12



is the best myopic action to the right of . Since  () ∈ (e (−1) −1), we know that


¡
 () + ∆ ( ()) ∆ ( ())

2
¢
  ( ()), which implies that for all  ≤  the expected

utility from experimenting to the right of  is strictly larger than that from experimenting to the

left of .

There therefore exists a   0 such that for all  ≤ ,  =  = e (−1). ¥

3 Pilots

PROPOSITION 7. In any period  ≥ 1 there exists a unique, optimal action for the agent. If

 () ≤ e (), the agent puts all his income into the best known action , where e () is

defined in the proof. If  ()  e (), the agent puts a fraction (1− ) of his income into the

best known action  and the rest into action  +∆ ( ()), where ∆ ( ())  0 is defined in

the proof. The optimal step size ∆ ( ()) is increasing in  and  and decreasing in 2 and

the agent’s risk aversion. The threshold e () is decreasing in , increasing 2 and the agent’s

risk aversion, and can be increasing or decreasing in . Moreover, an increase in the minimum

feasible scale of a pilot  leads to an increase in the e () and a reduction in ∆ ( ()).

Proof: Notice first that the agent will never take a known action other than the best known action,

that he will never take an unknown action to the left of the right-most action , and that the agent

will also never take two unknown action to the left of . The first two claims are immediate. To

prove the last claim, suppose that in some period  the agent puts (1− ) of his income into an

action 0   and the rest into another action   0, where  ∈ (0 1). Let ∆0 = 0 −  and

∆ = − 0. The agent’s expected outcome and its variance are then given by

E [] =  () + 
¡
∆0 + ∆

¢
and

Var () = 2
¡
∆0 + 2∆

¢
,

where we are using (13) and the fact that Cov ( (0)  ()) = Var ( (0)). The agent can then

ensure himself the same expected outcome at a strictly lower variance by reducing∆0 and increasing

∆ appropriately. This proves that the agent will never take two unknown actions to the left of .

We already observed in the text that if the agent does put some income into an unknown action,

he will never put in more than . In any period , the agent will therefore put all his income into

the best known action or he will put a fraction (1− ) into the best known action and the rest into

an unknown action to the right of . Consider first the constrained problem in which the agent

13



has to experiment to the right of , which is given by

max
∆∈[0∞)

E
h

³
(1− ) () +  () + ∆ + 

p
∆

´i
.

This is exactly the same problem as the constrained problem in the main model if the drift and

the variance of the Brownian motion were given by  and 22 and the outcome generated by

the right-most action were (1− ) ()+  (). Moreover, the agent’s unconstrained problem—

which involves comparing the agent’s expected utility from taking the constrained optimal action

with his utility from taking the best action—is also the same as appropriately specified version of

the main model. Except for the comparative statics with respect to  and , all the claims in the

proposition therefore follow from Propositions 1-3.

For the comparative static with respect to , suppose that the ∆ that maximizes the agent’s

constrained problem is strictly positive and denote it by ∆∗. If the agent does experiment, his

expected outcome is then given by E [] =  ()+∆∗ and the variance is given by Var () =

22∆∗. Suppose now that the minimum feasible scale  is reduced to   . The agent can then

achieve the same expected outcome with a lower variance by reducing the fraction of income he

invests in the unknown action to  and increasing the step size. This has two implications. First,

since expected utility is concave in the step size, the new optimal step size is strictly larger than

∆∗. This proves that reduction in  increases the optimal step size. Second, the above observation

implies that a reduction in  increases the agent’s expected utility from taking the optimal action.

It then follows from the proof of Proposition 3 that a reduction in  reduces e ().

Finally, consider the comparative statics with respect to . The result that the optimal step

size ∆ ( ()) is increasing in  follows immediately from the fact that in the main model the

optimal step size is increasing in  (). To see that the threshold e () can now be decreasing

in , suppose that the utility function is given by (10). It then follows from Section 4.4 that

e (−1) =
1


b− (1− )


−1 +

³
 − 2

2

´


( (−1)−  (b)) 
Differentiating this expression we get

de (−1)
d−1

= −(1− )


+

³
 − 2

2

´


(+  exp (−)) .

This expression will be negative ifµ
 − 2

2

¶
 exp (−)  

µ
2

2
− 

¶

14



which, in turn, will be the case if
2

22
  

2

2

and  is sufficiently large. ¥

4 Stochastic Processes

In this section we analyze the case in which the underlying environment is the realized path of a

geometric Brownian motion. Recall that the agent’s problem is

max
∆

 [ ( (∆))]

where  (∆) is now given by

 (∆) = 0 exp (∆+  (∆))

and  (∆) is a standard Brownian motion.

Now let  denote a random variable with a standard lognormal distribution. We can then write

(∆) =(∆) +

s
 (∆)

 ()
( − []) 

which allows us to rewrite the problem as

max
∆



"


Ã
(∆) +

s
 (∆)

 ()
( − [])

!#

The first derivative is

 [ ()]

∆
= 0(∆)

£
0 ()

¤
+
1

2

s
 ()

 (∆)
 0(∆)

£
0() ( − [])

¤
.

We wish to examine the derivative at ∆ = 0. For this purpose, rewrite the derivative as

 [ ()]

∆
= 0(∆)

£
0 ()

¤
+
1

2

p
 () 0(∆)

"
 [0() ( − [])]p

 (∆)

#
.

At ∆ = 0, both the numerator and the denominator of the term in squared brackets are zero.

Applying l’Hopital to the second term on the RHS we getp
 (∆)

p
 ()

 00(∆)
 0(∆)


£
0() ( − [])

¤
+
p
 ()

µp
 (∆) 0(∆)

£
00() ( − [])

¤
+
1

2

p
 () 0(∆)

h
00() ( − [])2

i¶
15



At ∆ = 0 this becomes

 ()2
1

2
 0(0)00(0)

So at ∆ = 0 we have

 [ ()]

∆
=  0(0)0(0) +  ()2

1

2
 0(0)00(0)

=
1

2
 0(0)0(0)

∙
2 0(0)
 0(0)

−
µ
−

00(0)

0(0)

¶
 ()2

¸
Note that this expression is exactly the same as for the Brownian motion in which case  is

distributed normally and  () = 1.

From the properties of the geometric Brownian motion we know that

 0(0) = 0

µ
+

1

2
2
¶

and

 0(0) = 2
0
2

And so we have

 [ ()]

∆
=  0(0)0(0) +  ()2

1

2
 0(0)00(0)

=
1

2
 0(0)0(0)

"
2
¡
+ 1

2
2
¢

02
−
µ
−

00(0)

0(0)

¶
 ()2

#
The key difference to the Brownian motion case is that the risk adjusted return is now decreasing in

0 (the first expression in the brackets). The richer you are, the worse therefore the opportunity

for innovation. The sign of the derivative, however, depends on how this compares to declining

absolute risk aversion, given by the second term in the brackets. The technological opportunities

for innovation would dominate if the coefficient of absolute risk aversion were constant, that is, if

we had a regular exponential utility function () = − exp(−). In this case, the above becomes

 [ ()]

∆
=
1

2
 0(0)0(0)

"
2
¡
+ 1

2
2
¢

02
−  ()2

#
.

and a threshold value of 0 exists such that the first derivative is negative at ∆ = 0 for starting

performance above this threshold.

To capture both declining innovation opportunities and declining risk aversion, apply instead

the linex utility function used in Section 4.4 Setting () = − exp (−), the above becomes

 [ ()]

∆
=
1

2
 0(0)0(0)

"
2
¡
+ 1

2
2
¢

02
−
µ

2 exp (−0)

+  exp (−0)

¶
 ()2

#

16



or

 [ ()]

∆
=
1

2
 0(0)0(0)0 ()

2

"
2
¡
+ 1

2
2
¢

2 ()2
−
µ
0

2 exp (−0)

+  exp (−0)

¶#
Numerical calculations show that the second expression in the brackets is single peaked, reaching a

maximum for moderate levels of performance. Thus, if the first expression is large–the innovation

opportunities are good–then all agents have a marginal incentive to experiment. For less appealing

technological opportunities (lower drift or higher variance of the stochastic process), it will be the

moderate performers who first experience a disincentive for initial experimentation.

How agents trade-off the attractiveness of innovation opportunities and risk varies, therefore,

in the agent’s tolerance for risk. Take the following utility function that is the sum of two standard

utility functions that are frequently used when outcomes are lognormally distributed.

 () =  log− 1



=  log− exp (− log)

Straightforward calculations show that the coefficient of risk aversion and prudence are given by

 =
+  + 2

 (+ )

 =
2+ 2 + 32 + 3

 (+  + 2)

As both are decreasing, and DARA and DAP imply standardness, this utility function satisfies

standard risk aversion and the requirements of our model.

Looking again at the first derivative at ∆ = 0,

 [ ()]

∆
=

1

2
 0(0)0(0)

"
2
¡
+ 1

2
2
¢

02
−
Ã
+ 

0 + 2

0

¡
+ 

0

¢! ()2

#

=
1

20
 0(0)0(0)

"
2
¡
+ 1

2
2
¢

2
−
Ã
+ 

0 + 2¡
+ 

0

¢ !
 ()2

#


which reveals that, for this utility function, the declining innovation opportunities of the geometric

Brownian motion are dominated by declining risk aversion. Thus, within our model, there exists

preferences such that the comparative static remains, even with a geometric Brownian motion, that

if any agents do not have the incentive to experiment, it is the lowest performing agents only. This,

unfortunately, is not a complete analysis of behavior, and we must leave that task for future work.
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