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Online Appendix

A Extensions

In this section, we detail the various extensions discussed in Sections II.c and III.

A.1 Acquisition Game

This subsection considers an acquisition game when the initial market structure is non-
integration. The game proceeds as follows.

In Stage 1, the customer makes sequential take-it-or-leave-it offers ti to the indepen-
dent suppliers i = 1, .., n. The sequence in which offers are made is pre-determined but
since suppliers are symmetric ex ante this is arbitrary. Without loss of generality, we
assume that supplier i receives the i-th offer. If i accepts, the acquisition stage (i.e.
Stage 1) ends and the Stage 2 subgame with vertical integration analyzed above ensues.
If firm i < n rejects, the customer makes the offer ti+1 to firm i+1. If supplier n receives
an offer but rejects it, the Stage 2 subgame with non-integration analyzed above ensues.

The equilibrium behavior in Stage 1 is readily determined. Suppose first that Φ(n, µ) <
0. That is, vertical integration is jointly profitable. Then the subgame perfect equilib-
rium offers are ti = Π∗

I for i < n and tn = Π∗
N . On and off the equilibrium path, these

offers are accepted. Notice that in order for supplier n to accept the offer he receives,
he must be offered tn ≥ Π∗

N because the alternative to his accepting is that the game
with the non-integrated market structure ensues, in which case he nets Π∗

N . Anticipating
that the last supplier would accept the offer if and only if he is offered Π∗

N , the alter-
native for any supplier i < n when rejecting is that the ensuing market structure will
be non-integration if Φ < 0 and integration, with i as an independent supplier netting
Π∗

I otherwise. Therefore, it suffices to offer ti = Π∗
I to i with i = 1, .., n − 1, provided

tn = Π∗
N . But as the latter is only a credible threat if Φ(n, µ) ≤ 0, it follows that vertical

integration is more profitable than the necessary (and sufficient) condition for it to be
an equilibrium outcome suggests: Φ(n, µ) ≤ 0 must be the case for integration to occur
on the equilibrium path, but if Φ(n, µ) ≤ 0, the profit of integration to the customer
is actually strictly larger than −Φ(n, µ) because she has to pay less than Π∗

N on the
equilibrium path.

Lastly, if Φ(n, µ) > 0, vertical integration is not jointly profitable and the customer
will only make offers that will be rejected (e.g. ti ≤ 0 for all i would be a sequence of
such offers).

A.2 Alternative Cost Distributions

Uniform Model We first consider the model with uniformly distributed costs, that
is, for investment x the costs are distributed according to G(c + x) = c − (β − x) for
c ∈ [β − x, 1 + β − x], and assume Ψ(x) = ax2/2. For n > 2, this requires solving
numerically for the equilibrium bidding under integration as mentioned in the main
text.
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Figure 2 plots the benefits from non-integration minus the payoff from vertical inte-
gration, Φ(n), as a function of n for a = 1.75.
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Figure 2: Φ(n) for Uniformly Distributed Costs.

An intuitive conjecture is that vertical integration has the advantage of squeezing
(rather than just avoiding) markups. Analysis of the exponential case has already shown
this intuition is not correct in general.22 For the uniform case, equilibrium bid markups
indeed decrease with vertical integration seemingly in line with the intuition. However,
closer analysis reveals that the reason for this is the effect of vertical structure on equi-
librium investments because, keeping investments fixed, vertical integration does not
affect equilibrium bidding.23 Figure 3 depicts the equilibrium bids given equilibrium
investments.

Fixed-Support Exponential Model In the fixed-support exponential model, the
distribution of the costs c given investment x is G(c; x) = 1 − e−µx(c−β). We assume
quadratic costs of effort and set a = 1 = µ. This is without loss of generality by

22For the case of a fixed cost distribution with a convex decreasing inverse hazard rate, Burguet
and Perry (2009) argue that a right of first refusal granted to a preferred supplier is profitable in part
because it causes independent suppliers to bid more aggressively. The exponential cost distribution is a
limiting case, in which the hazard rate is constant and the bid distribution does not change with vertical
integration, consistent with a more basic markup avoidance motive for granting a right of first refusal.

23To see this, notice that in a standard first-price procurement auction with n bidders and costs
independently drawn from the uniform distribution with support [c, c] the equilibrium bidding function
is β(c) = c/n + (n − 1)c/n. With one integrated supplier whose bid is equal to his realized cost c1
and n − 2 competing independent suppliers who all bid according to βI(c) = α0 + α1c, satisfying the
boundary condition βI(c) = c (which implies α0 = c(1 − α1)), the optimal bid of a representative

independent bidder i, bi, solves the problem of maximizing (1/α1)
n−2 (1/(c− c))n−1 (c− bi)n−1(bi− ci),

yielding bi = c/n + (n − 1)ci/n. The second-order condition is readily seen to be satisfied. This
invariance is due to the linearity of equilibrium bidding strategies with uniformly distributed costs on
identical supports. It reflects the fact that the equilibrium bidding strategy β(c) is the best response
to any collection of linear bidding strategies of the form bi(c) = α0,i + α1,ic that satisfy the boundary
condition, i.e. αi,0 = c(1 − αi,1). The integrated supplier has a particularly simple linear bidding
strategy with α1,0 = 0 and α1,1 = 1.
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Figure 3: Equilibrium bidding with uniformly distributed costs.

appropriately choosing units of measurement for c and x. We also set β = 0 to simplify
derivations.

Equilibrium bids by independent suppliers are again a constant markup on cost.
The difference from the baseline model is that the markups depend endogenously on
investments. In the case of non-integration the bid function is

bN (c;n) = c+
1

(n− 1)xN
,

where xN is the symmetric investment of n independent suppliers. In the case of vertical
integration, the bid function is

bI(c;n) = c+
1

x1 + (n− 2)x2
,

where x1 is the investment of the integrated supplier and x2 the symmetric investment
of the n− 1 independent suppliers.

Equilibrium investments are derived from first-order conditions as before. In a sym-
metric equilibrium of the non-integrated environment, each of the suppliers invests an
amount equal to 1 over the cube root on n2, that is, xN = 1

3
√
n2 . For the integrated

environment, let z = x2

x1
. The symmetric best response investments can be written as

functions of z, x1 = x1(z) and x2 = x2(z), respectively. Equilibrium investments are
then given by x1 = x1(z(n)) and x2 = x2(z(n)), where z(n) is the unique fixed point to
the equation

z =
x2(z)

x1(z)
.

For a given z > 0, the integrated supplier optimally invests

x1(z) =
3

√

1− (n− 1)z[3 + z(2z − 6) + 2n(4 + (n− 3)z)]e−
1

1+(n−2)z

[1 + (n− 2)z][1 + (n− 1)z]2
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and the independent suppliers symmetrically invest

x2(z) =
3

√

z2e−
1

1+(n−2)z

[1 + (n− 1)z]2
.

Dividing x2(z) by x1(z) and simplifying yields the fixed point

z = 3

√
√
√
√

z2

[1 + (n− 1)z]2e
1

1+(n−2)z − (n−1){3z+z2[(2z−6)+4n+n(n−3)z]}
1+(n−2)z

.

A simple graphical analysis shows that z(n) is increasing in n.
Under non-integration, the equilibrium (expected) procurement cost of the buyer as

a function of symmetric supplier investments xN is

PCN =

∫ ∞

0

bN (c;n)dG(c;nxN) =
2n− 1

n(n− 1)xN

and the (expected) profit of a supplier is

ΠN =

∫ ∞

0

[bN(c;n)− c][1−G(c; (n− 1)xN)]dG(c; xN)−
1

2
x2N =

1

n(n− 1)xN
− 1

2
x2N .

Substituting xN (n) into these expressions yields equilibrium values of procurement cost
and profits as functions of the number of suppliers

PCN(n) =
2n− 1

(n− 1) 3
√
n

and ΠN(n) =
n+ 1

2n(n− 1) 3
√
n
.

Procurement cost under vertical integration can be expressed as a function of x1 and z:

PCI =

∫ x1

0

cdG(c; x1) +
1

2
x21

−
∫ ∞

1
x1+(n−2)x2

∫ c1− 1
x1+(n−2)x2

0

[c− bI(c;n)]dG(c; (n− 1)x1z)dG(c1; x1)

=
1

x1
+

1

2
x21 −

(n− 1)ze
− 1

1+(n−2)z

1 + (n− 1)z
.

Substituting x1 = x1(z(n)) and z = z(n) yields procurement cost PCI(n) as a function
of n. Since z(n) lacks a closed form solution, so does PCI(n).

Divestiture is more profitable than vertical integration if

Φ(n) ≡ PCI(n) + ΠN(n)− PCN(n)

is positive. Figure 4 shows that Φ(n) < 0 if and only if n < 10. Thus, as in the baseline
model, non-integration and a complete reliance on outsourcing is more profitable than
vertical integration if the upstream market is sufficiently competitive.
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Figure 4: The benefit from divestiture, Φ(n) for the fixed-support exponential model.

It is also interesting to compare the independent bid functions under integration and
non-integration. The difference in markups is

∆b(n) =
1

x1(z(n)) + (n− 2)x2(z(n))
− 1

(n− 1)xN(n)
.

Figure 5 shows that ∆b(n) < 0 if and only if n < 6. That is, the equilibrium markup
is lower under vertical integration if and only if upstream competition is limited. Sur-
prisingly, vertical integration fails to reduce markups for more competitive upstream
market structures. The reason is an additional negative consequence of the investment
discouragement effect: reduced investment by independent suppliers increases cost het-
erogeneity, causing the independent firms to bid more aggressively.
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Figure 5: The function ∆b(n).

Furthermore, it can be shown that in this case vertical integration always decreases
total investment, i.e. x1(z(n)) + (n− 1)x2(z(n)) < nxN (n).
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A.3 Elastic Demand

Setup To model elastic demand, we assume that the customer (or buyer, indicated
with subscript B) has value v for the input, drawn from an exponential probability
distribution GB(v) = 1 − e−λ(v−α) with support [α,∞). The mean of the exponential
distribution is α+ 1

λ
and can be interpreted to indicate the expected profitability of the

downstream market. The variance, which is 1
λ2 , can be interpreted to indicate uncertainty

about product differentiation. This model converges to the inelastic case as λ→ 0. The
customer learns the realization of v before making the purchase (or production) decision.

Under vertical integration, the investment x1 in cost reduction is made before the
customer learns the realized v. Independent suppliers know GB but not v. All other
assumptions regarding timing are as in Section 2. The cost of exerting effort x is a

2
x2

and given investment xi supplier i’s cost is drawn from the exponential distribution
1 − e−µ(c+xi−β) with support [β − xi,∞) for all i = 1, .., n and with µ ≤ a. To simplify
the equilibrium analysis, we impose the parameter restriction

β − α ≥ µ

a(λ+ nµ)
− 1

λ+ (n− 1)µ
, (17)

which makes sure that under non-integration (and therefore also under integration) the
lowest equilibrium bid is always larger than the lowest possible draw of v. Observe that
the right-hand side in (17) is negative, so that β ≥ α is sufficient for the condition.24

Bidding As in the inelastic demand case, the bidding function is the same with or
without vertical integration. The bidding function with elastic demand is denoted by
bE(c;n) and given by

bE(c;n) = c+
1

λ+ µ(n− 1)
(18)

for all c ≥ β − µ

a(λ+nµ)
as shown next.

We begin with non-integration. Given symmetric investments x, a symmetric equi-
librium bidding strategy b(c) is such that

c = argmax
z

{
[b(z)− c] [1−GB(b(z))] [1−G(c+ x)]n−1} .

For GB and G exponential, a representative supplier’s problem becomes

max
z

(b(z)− c)e−λ(b(z)−α)−µ(n−1)(z+x−β).

24To see where (17) comes from, notice that supplier i’s expected profit when investing xi ≤
x while all rivals invest x and when all suppliers bid according to (18) is

∫∞

β−xi
(1/(λ + (n −

1)µ))µe−λ(c+1/(λ+(n−1)µ)−α)−µ(n−1)(c+x−β)−µ(c+xi−β)dc − ax2i /2. The first-order condition at xi = x
is

µ

λ+ µn
eλ(x+α−β− 1

λ+(n−1)µ ) = ax.

If x+ α− β − 1/(λ + (n− 1)µ) < 0, the first-order condition implies x < µ
a(λ+nµ) . Plugging this back

into the preceding inequality gives (17).
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Taking the derivative with respect to z and imposing the boundary condition limc→∞(b(c)−
c)/c = 0 yields the unique solution

b(c) = c +
1

λ+ (n− 1)µ
,

as claimed.
With integration, GB and G exponential and x1 ≥ x2, a representative non-integrated

supplier’s problem is

max
z

(b(z)− c)e−λ(b(z)−α)−µ(b(z)+x1−β)−µ(n−2)(z+x2−β).

Taking the derivative with respect to z yields the first-order condition

b′(c)− [(λ+ µ)b′(c) + (n− 2)µ][b(c)− c] = 0.

Imposing the boundary condition limc→∞(b(c)− c)/c = 0 then gives the unique solution

b(c) = c +
1

λ+ (n− 1)µ
,

which is the same as bE defined in (18).

Profits Consider first non-integration when the symmetric investments of the indepen-
dent suppliers are x. The profit ΠB

EN(x) accruing to the buyer is

ΠB
EN(x) = n

∫ ∞

bE(β−x;n)

∫ y(v)

β−x

[v − bE(c;n)][1−G(c+ x)]n−1dG(c+ x)dGB(v),

where y(v) = v − 1
λ+µ(n−1)

denotes the inverse of the bidding function bE(c;n) with
respect to c.

The expected profit ΠEN(xi, x) of an independent supplier under non-integration who
invests xi while each of the other suppliers is expected to invest x with xi ≤ x is25

ΠEN(xi, x) =

∫ ∞

bE(β−xi;n)

∫ y(v)

β−xi

[bE(c;n)− c][1 −G(c+ x)]n−1dG(c+ xi)dGB(v)−
a

2
x2i .

With integration, the buyer’s profit is ΠB
EI(x1, x2) =

∫ ∞

α

∫ max{v,β−x1}

β−x1

[v − c1]dG(c1 + x1)dGB(v)

+

∫ ∞

β−x1

(1−GB(c1))

∫ max{y(c1),β−x2}

β−x2

[c1 − bE(c2;n)]dL(c2 + x2;n− 1)dG(c1 + x1)

+

∫ ∞

α

(1−G(v + x1))

∫ max{y(v),β−x2}

β−x2

[v − bE(c2;n)]dL(c2 + x2;n− 1)dGB(v)−
a

2
x21.

25For xi = x + ε with ε > 0 small, the expected profit function has a different functional form.
However, the profit function ΠEN (xi, x) is continuously differentiable at xi = x.
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This profit is computed by deriving the expected profit from internal sourcing, which is
done in the first line in the above expression, then adding the cost savings from sourcing
from the independent supplier with the lowest bid, which is captured in the second line,
and finally adding in the third line the expansion effect of external sourcing that arises
whenever c1 > v and bE(min{c−1}) < v, where c−1 = (c2, .., cn).

Given its own investment xi, investments x2 ≥ xi by all other non-integrated suppliers
and x1 by the integrated supplier, the expected profit ΠEI(xi, x1, x2) of an independent
supplier under vertical integration is ΠEI(xi, x1, x2) =

∫ ∞

β−xi

[bE(c;n)− c][1−GB(bE(c;n))][1−G(bE(c;n) + x1)][1−G(c+ x2)]
n−2dG(c+ xi)−

a

2
x2i .

Equilibrium Investments Under non-integration, the necessary first-order condi-
tions for the symmetric equilibrium investment x is

x =
1

a

µ

λ+ nµ
e−λ[ 1

λ+(n−1)µ
+β−α−x]. (19)

With vertical integration, the vertically integrated supplier invests x1 and all n − 1
independent suppliers invest x2 satisfying

x1 = x2 +
1

a

µ

λ+ µ
e−µ(x1−x2)

[

eµ(β−α−x2) − e−λ(β−α−x2)− λ+µ

λ+(n−1)µ

]

(20)

and

x2 =
1

a

µ

λ+ nµ
e−λ(β−α−x2)−µ(x1−x2)− λ+µ

λ+(n−1)µ (21)

according to the necessary first-order conditions for equilibrium. We proceed by pre-
suming that these conditions are also sufficient. (For the parameters underlying Figure
6 this can be verified numerically.)

Profitability of Non-Integration Evaluating (19), (20) and (21) numerically we
can determine the buyer’s and the independent suppliers’ equilibrium profits under non-
integration and vertical integration. Denoting these equilibrium payoffs with an asterisk,
the analogue for the case of elastic demand to the function Φ(n, µ) defined in (16) is

ΦE(n, µ, α, λ, β) := ΠB∗
EN +Π∗

EN − ΠB∗
EI .

Figure 6 contains contour sets of ΦE(n, µ, α, λ) = 0 for different values of n in (α, λ)-
space with µ = 1 and β = 0. Non-integration is profitable for a given n for values of α
and λ below the corresponding curve.

Social Welfare Effects In the model with inelastic demand, non-integration is always
socially optimal because it minimizes the sum of expected production and investment
costs although it is not always an equilibrium outcome. In contrast, with elastic demand
vertical integration has an additional, socially beneficial effect because it increases the
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Figure 6: ΦE(n, µ, α, λ) = 0 for selected parameters.

market demand by inducing production for realizations of costs and values for which
there is no production under non-integration, (and because it decreases the lowest cost
of production by increasing investment by the integrated supplier).

The numerical analysis for the shifting support exponential model with elastic de-
mand, displayed in Figure 7, reveals that vertical integration is better than non-integration
when n is small. As before Φ is the private benefit from divestiture while ∆W is the
difference between social welfare under divestiture and under vertical integration. The
figure plots Φ and ∆W for β = 0 and a = 1. The figure illustrates a substantial range
of upstream market structures for which vertical integration is privately optimal but
socially inefficient.
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Elastic Demand without Reserve Prices

Figure 7: Φ and ∆W as functions of n (without any reserve prices).

A.4 Reserve Prices

We perform the analysis of the effect of reserve prices within the exponential-quadratic
model with inelastic demand, setting a = 1. Suppose that the vertically integrated
customer commits to a reserve price r after learning the cost of internal supply c1. Given
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the symmetric equilibrium investment of independent firms x2, the optimal reserve price
satisfies

c1 = r +
G(r + x2)

g(r + x2)
≡ Γx2(r)

while the symmetric bidding function b(c, r) depends on the reserve price r according
to26

b(c, r) = c+
1

µ(n− 1)

[
1− e−µ(n−1)(r−c)

]

where we drop its dependence on n for notational ease.
In equilibrium, the vertically integrated firm chooses its own investment x1 to min-

imize expected procurement cost given x2, and each independent supplier invests to
maximize expected profit given x1 and x2. The optimal reserve given c1 ≥ β − x2 then
satisfies

r(c1) := Γ−1
x2
(c1). (22)

Total equilibrium procurement cost (net of investment cost) is equal to the expected cost
of internal supply, denoted Ex1 [c1] = β − x1 +

1
µ
, minus the expected cost savings from

sourcing externally:

Ex1 [c1]−
∫ ∞

β−x2

∫ r(c1)

β−x2

[c1 − b(c, r(c1)]dL(c + x2;n− 1)dG(c1 + x1). (23)

Assuming x1 > x2, the expected profit of a representative independent firm choosing
x in the neighborhood of x2 is equal to the expected value of the markup times the
probability of winning the auction:

∫ ∞

β−x2

∫ r(c1)

β−x

[b(c, r(c1))− c][1− L(c + x2;n− 2)]dG(c+ x)dG(c1 + x1)

In equilibrium each independent supplier chooses x = x2. We compute the equilibrium
investments levels (x1, x2) solving the necessary first-order conditions, presuming the
appropriate second-order conditions are satisfied.

The condition for non-integration to be preferred to vertical integration is similar to
before. Figure 8 graphs Φ as a function of n for µ = 1 and compares it to the case
without reserves, depicted also in Figure 1. The curve is shifted to the right compared
to the base model in which there is no reserve price. Although an optimal reserve price
does lower procurement costs under vertical integration, non-integration nevertheless is
preferred for n sufficiently large.

Elastic Demand with Reserve The analysis with elastic demand can also be ex-
tended to account for optimal reserves. Under non-integration, the optimal reserve is
r(v), where the function r(.) is defined in (22). With vertical integration, the optimal

26In the exponential case, the virtual cost function Γx2(r) is strictly increasing in r for given x2, and
therefore invertible. We denote its inverse by Γ−1

x2
(c1). The bid function b(c, r) solves the usual necessary

differential equation for optimal bidding with the boundary condition b(r, r) = r.
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Figure 8: The function Φ with and without reserve prices for µ = 1.

reserve will be given by the same function r(.), evaluated at v̂ := min{c1, v}. Because of
continuity, it is intuitive that, with elastic demand and optimal reserves, non-integration
will be profitable in the neighborhood of the parameter region for which it is profitable
with perfectly inelastic demand and a reserve, that is, for values of λ close to zero. This
intuition is corroborated by numerical analysis. Figure 9 plots the buyer’s gain from
non-integration with reserves, denoted ΦER, and her gain from non-integration without
reserves, ΦE , as a function of λ for n = 16 and α = β = 0.
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0.0020
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Figure 9: ΦER and ΦE as functions of λ.

Figure 10 plots the social welfare effects of and the private incentives for divestiture
for elastic demand when the customer can set a reserve price. Comparing Figure 7 to
Figure 10 reveals that the ability to set a reserve hardly matters for the social welfare
effects but increases the private benefits from vertical integration, thereby increasing the
range in which vertical integration is an equilibrium outcome but not socially desirable.
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Figure 10: Φ and ∆W as functions of n with reserves.

B Proofs

Proof of Corollary 1: The necessary conditions have been derived in the main text.
We are now going to show that the profit function is ΠN(xi, x) is quasiconcave in xi (and
continuously differentiable).

For xi ≥ x, the first derivative of ΠN(xi, x) with respect to xi is

∂ΠN (xi, x)

∂xi
= 1− n− 1

n
e−µ(x−xi) − axi.

Observe that this partial is decreasing in xi. It is thus largest at xi = x, at which point
it is 1

n
− axi.

For xi < x, the first partial of ΠN (xi, x) with respect to xi is

∂ΠN (xi, x)

∂xi
=

1

n
e−µ(n−1)(x−xi) − axi. (24)

Because 1
n
e−µ(n−1)(x−xi) is increasing and convex in xi while axi is increasing and linear in

xi, the functions
1
n
e−µ(n−1)(x−xi) and axi have either (i) no point of intersection on [0,∞)

or, generically, (ii) two points of intersection. If (i) is the case, we have ∂ΠN (xi,x)
∂xi

> 0 for

all xi ≤ x. In case (ii), for µ < n
n−1

a and x = 1
an
, the smallest point of intersection is

xi = x. To see this, evaluate the second left-hand partial at xi = x to obtain

∂2ΠN(xi, x)

∂x2i
|xi=x = µ

n− 1

n
− a,

which is negative if and only if µ < n
n−1

a. This means that at xi = x, 1
n
e−µ(n−1)(x−xi) is

less steep than axi. Evaluated at xi = x, the first-order condition ∂ΠN (xi,x)
∂xi

= 0 implies

x = 1
an
. Thus, xi = x = 1

an
is the smallest point of intersection under the conditions

stated. (The non-generic case occurs if µ = n
n−1

a, in which case xi = x = 1
an

is the
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unique point of intersection.) Consequently, the profit function is quasiconcave and the
second-order condition is satisfied if and only if µ

a
< n

n−1
.

To see that PC∗
N decreases in n, observe that

∂PC∗
N

∂n
=

(µ− a)(n− 1)2 − an2

µan2(n− 1)2
,

which is negative if and only if µ

a
< 1+ n2

(n−1)2
. The derivative of Π∗

N with respect to n is

∂Π∗
N

∂n
=
µ(n− 1)2 − an(2n− 1)

µan3(n− 1)2
,

which has the same sign as µ(n − 1) − an
(
1 + n

n−1

)
. This is negative if and only if

µ

a
< n

n−1

(
1 + n

n−1

)
. Both inequalities are satisfied if µ < a n

n−1
. �

Proof of Proposition 2: Part (a): Equations (9) and (10) are the necessary first-order
conditions as shown in the text.

Part (b): Denote by x12(x1) and x
2
2(x1), respectively, the solutions to (9) and (10) in

x2. Invoking the implicit function theorem, we have

dx22(x1)

dx1
= − s1(x1, x

2
2(x1))

s2(x1, x
2
2(x1))− ψ′(x22(x1))

< 0 (25)

and
dx12(x1)

dx1
= −

s1(x1, x
1
2(x1)) +

1
n−1

ψ′(x1)

s2(x1, x12(x1))
< 0, (26)

where the inequalities hold by second-order conditions and assumption (ii).
Assume that there is a point of intersection of x12(x1) and x

2
2(x1), that is, there is at

least one value of x1, denoted x
′
1, such that x12(x

′
1) = x22(x

′
1). Under assumptions (i) and

(ii), we have
dx12(x1)

dx1
|x1=x′

1
<
dx22(x1)

dx1
|x1=x′

1
< 0, (27)

which proves uniqueness of such a point of intersection. Next, we establish that such a
point exists, is an equilibrium, and satisfies x′1 = x∗1 > x∗2 = x22(x

′
1).

Let x be the smallest number such that 1 − (n − 1)s(x, x) = ψ(x) and let x̂ be the
smallest number such that s(x̂, x̂) = ψ(x̂). Because s(x, x) < 1/n as noted in Section
II.B, it follows that x > ψ−1(1/n) > x̂. This implies that x22(x̂) = x̂ < x = x12(x).

Next, let x1 be such that 1 − (n − 1)s(x1, 0) = ψ(x1). Notice that x1 > x. Because
of assumptions (ii) and (iii), we know that x1 < ψ−1(1). Therefore, s(x1, 0) > 0. Con-
sequently, x22(x1) > 0. Lastly, let x̃1 be such that s(x̃1, 0) = 0. Notice that x̃1 may be
infinity. Because s1 < 0, x̃1 > x1 follows.

Taken together we have thus shown that x22(x1) is a continuously decreasing function
in x1 on [x̂, x̃1] satisfying x

2
2(x1) > 0 and x22(x) < x22(x̃) < x12(x). Moreover, on [x, x1],

13



x12(x1) is a continuous function satisfying x12(x) > x22(x) and x
1
2(x1) = 0 < x22(x1). Thus,

the functions x12(x1) and x
2
2(x1) have a point of intersection on [x, x1].

Quasi-concavity and quasi-convexity imply that this point of intersection is an equi-
librium. For all x1 ∈ (x̂, x1], we have x22(x1) < x1, which proves that x∗1 := x′1 > x∗2 :=
x22(x

′
1). Finally, x∗1 > x∗ and x∗ > x∗2 then follows from the first-order condition under

non-integration, 1/n = ψ(x∗), and s(x∗1, x
∗
2) < 1/n, which holds because s(x, x) < 1/n,

x∗1 > x∗2 as just shown, and s1 < 0 < s2 by assumption (ii). �

Proof of Corollary 2: Under non-integration, equilibrium effort is given by ψ(x∗) =
1
n
. On the other hand, rewriting the consolidated equilibrium condition with vertical

integration, (11), as n−1
n
ψ(x2) +

1
n
ψ(x1) = 1

n
, it follows from Jensen’s inequality that

(n−1)x2+x1 = nx∗ if ψ′′ = 0 and (n−1)x2+x1 > nx∗ if ψ′′ < 0 and (n−1)x2+x1 < nx∗

if ψ′′ > 0. �

Proof of Corollary 3: The arguments in the main text imply that PC∗
I and Π∗

I are the
equilibrium payoffs of the integrated firm and the independent suppliers with x1 and x2
given by (14).

Having already argued in the main text why assumptions (ii) and (iii) are satisfied,
we are thus left to show that assumption (i) is satisfied.

We begin by establishing quasi-concavity of ΠI(xi, x1, x2).

Case 1: xi < x2. We first look at a downward deviation xi < x2 by a non-integrated
supplier. Applying the exponential-quadratic model to the definition of ΠI(xi, x1, x2)
given in Section II.B, we have that the first and second partials of ΠI(xi, x1, x2) with
respect to xi are

∂ΠI(xi, x1, x2)

∂xi
=

1

n
e−µ∆− 1

n−1
+µ(n−1)(xi−x2) − axi

and
∂2ΠI(xi, x1, x2)

∂x2i
=
µ(n− 1)

n
e−µ∆− 1

n−1
+µ(n−1)(xi−x2) − a,

where ∆ ≡ x1 − x2. The profit function is thus concave on [0, x2] if and only if
µ(n−1)

n
e−µ∆− 1

n−1
+µ(n−1)(xi−x2) − a ≤ 0. As the term µ(n−1)

n
e−µ∆− 1

n−1
+µ(n−1)(xi−x2) increases

in xi, this second-order condition is thus satisfied for all xi ∈ [0, x2] if and only if

µ

a
≤ n

(n− 1)(1− a∆)
,

where 1 − a∆ = e−µ∆− 1
n−1 has been used. Since a∆ < 1, this second-order condition

is always satisfied if the necessary condition for a symmetric equilibrium under non-
integration holds.

Let ˆ̂x = x2 +
n−2

µ(n−1)
.

14



Case 2: xi ∈ [x2, ˆ̂x]. Next we consider deviations by i such that ci ∈
[

β − x2 − 1
µ
n−2
n−1

, β − x2

]

occur with positive probability, and no lower ci can occur. From Lemma 2 we know
that for cost realizations in this interval, the optimal bid by i will be the constant bid
β − x2 +

1
µ(n−1)

.

For xi ∈ [x2, ˆ̂x] the profit function for the deviating supplier i is

ΠI(xi, x1, x2) =
1

n− 1

∫ ∞

β−x2

e−µ[n(ci−β)+x1+(n−2)x2+xi+
1

µ(n−1)
]dci

+

∫ β−x2

β−xi

µ

(

β − x2 +
1

µ(n− 1)
− ci

)

e−µ∆− 1
n−1

−µ(ci+xi−β)dci −
a

2
x2i

= e−µ∆− 1
n−1

[

xi − x2 −
n− 2

µ(n− 1)
+ e−µ(xi−x2)

n− 1

µn

]

− a

2
x2i .

The first and second partial derivatives are

∂ΠI(xi, x1, x2)

∂xi
= e−µ∆− 1

n−1

[

1− n− 1

n
e−µ(xi−x2)

]

− axi

∂2ΠI(xi, x1, x2)

∂x2i
= e−µ∆− 1

n−1

[

µ
n− 1

n
e−µ(xi−x2)

]

− a.

Therefore, on [x2, ˆ̂x], the deviator’s profit function is concave in xi, and maximized at
xi = x2 if and only if

µ

a
<

n

(n− 1)(1− a∆)
,

which is the same condition derived in Case 1.

Case 3: xi ∈ [ˆ̂x, x1 +
1
µ
]. We next consider investments xi ∈ [ˆ̂x, x1 +

1
µ
]. This implies

that there is a range of cost realizations such that i is effectively a monopoly supplier
facing downward sloping demand. The expected profit of the deviating supplier is

ΠI(xi, x1, x2) =
1

n− 1

∫ ∞

β−x2

e−µ[n(ci−β)+x1+(n−2)x2+xi+
1

µ(n−1)
]dci

+

∫ β−x2

β−x2− n−2
µ(n−1)

µ

(

β − x2 +
1

µ(n− 1)
− ci

)

e−µ∆− 1
n−1

−µ(ci+xi−β)dci

+

∫ β−x2− n−2
µ(n−1)

β−xi

e−µ[2(c−β)+x1+xi]−1dci −
a

2
x2i

= e−µ∆− 1
n−1

−µ(xi−x2) 1

µ

n− 1

n
− 1

2µ
e−µ∆− 1

n−1

[

e−µ(xi−x2)+
n−2
n−1 − eµ(xi−x2)−n−2

n−1

]

− a

2
x2i

as the profit function for a deviating independent supplier choosing investment xi ∈
[ˆ̂x, x1 +

1
µ
]. Using the facts that 1 − a∆ = e−µ∆− 1

n−1 and x2 =
1
an
(1 − a∆) and defining

y := µ(xi − x2)− n−2
n−1

, we can express the deviator’s profit equivalently as

Π̂I(y, x1, x2) =
1− a∆

µ

[

e−y−n−2
n−1

n− 1

n
+

1

2

[
ey − e−y

]
]

− a

2

(
1

µ

[

y +
n− 2

n− 1

]

+
1

an
(1− a∆)

)2

,
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for y ∈ [0, µ∆+ 1
n−1

].

We are now going to show that Π̂I(y, x1, x2) is decreasing in y for all y ∈ [0, µ∆+ 1
n−1

].

We do so by first establishing that ∂Π̂I(y,x1,x2)
∂y

|y=0 < 0. Second, we show that the third
derivative with respect to y is positive. This implies that the second derivative is largest
over this interval at y = µ∆+ 1

n−1
. The final step in the argument is then to show that

∂2Π̂I(y,x1,x2)
∂y2

|y=µ∆+ 1
n−1

< 0, which then implies that Π̂I(y, x1, x2) is decreasing over the

interval in question.
Step 1 :

∂Π̂I(y, x1, x2)

∂y
=

1− a∆

µ

[

−e−y−n−2
n−1

n− 1

n
+

1

2

(
ey + e−y

)
]

− a

µ

[
1

µ
(y +

n− 2

n− 1
) +

1

an
(1− a∆)

]

.

At y = 0, we get

∂Π̂I(y, x1, x2)

∂y
|y=0 =

1

µ

{
n− 1

n
(1− a∆)

[

1− e
n−2
n−1

]

− a

µ

n− 2

n− 1

}

.

Since (1 − a∆) < 1 and a
µ
≥ n−1

n
under the necessary and sufficient condition for the

existence of a symmetric equilibrium under non-integration, we have

∂Π̂I(y, x1, x2)

∂y
|y=0 <

1

µ

n− 1

n

{

1− e
n−2
n−1 − n− 2

n− 1

}

.

The term in brackets is decreasing in n and equal to 0 at n = 2. Thus, ∂Π̂I(y,x1,x2)
∂y

|y=0 < 0
holds for all n.
Step 2 : Differentiating further we get

∂2Π̂I(y, x1, x2)

∂y2
=

1− a∆

µ

[

e−y−n−2
n−1

n− 1

n
+

1

2

(
ey − e−y

)
]

− a

µ2

=
1− a∆

µ

[
1

2
ey +

(
n− 1

n
e−

n−2
n−1 − 1

2

)

e−y

]

− a

µ2
,

where n−1
n
e−

n−2
n−1 − 1

2
≤ 0 for all n ≥ 2 with strict inequality for n > 2 (at n = 2, it is

equal to 0; differentiating with respect to n yields − e
−

n−2
n−1

n2(n−1)
, which is negative), and

∂3Π̂I(y, x1, x2)

∂y3
=

1− a∆

µ

[
1

2
ey −

(
n− 1

n
e−

n−2
n−1 − 1

2

)

e−y

]

> 0.

Thus, ∂2Π̂I(y,x1,x2)
∂y2

is an increasing function of y and hence largest at y = µ∆+ 1
n−1

.

Step 3 : Evaluating ∂2Π̂I(y,x1,x2)
∂y2

at y = µ∆+ 1
n−1

one gets

∂2Π̂I(y, x1, x2)

∂y2
|y=µ∆+ 1

n−1
=

1− a∆

µ

[
1

2
eµ∆+ 1

n−1 +

(
n− 1

n
e−

n−2
n−1 − 1

2

)

e−µ∆− 1
n−1

]

− a

µ2
.
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Replacing e−µ∆− 1
n−1 by 1− a∆ and eµ∆+ 1

n−1 by 1
1−a∆

and collecting terms yields

∂2Π̂I(y, x1, x2)

∂y2
|y=µ∆+ 1

n−1
=
µ− 2a

2µ2
+

(
n− 1

n
e−

n−2
n−1 − 1

2

)
(1− a∆)2

µ
.

As just noticed, the last term on the right-hand side is not positive. Therefore,

∂2Π̂I(y, x1, x2)

∂y2
|y=µ∆+ 1

n−1
< 0

if µ

a
< 2, which is certainly the case if µ

a
< n

n−1
, which is the necessary and sufficient

condition for the existence of a symmetric equilibrium under non-integration.

Case 4: xi > x1 +
1
µ
. Finally, consider investments xi > x1 +

1
µ
. This implies that, in

addition to the range of cost realizations covered by Case 3, there is now also a range of
low cost realizations such that the optimal bid is β − x1 for all these costs. This bid is
always accepted. For such investments, the expected profit of a deviating non-integrated
supplier is

ΠI(xi, x1, x2) =
1

n− 1

∫ ∞

β−x2

e−µ[n(ci−β)+x1+(n−2)x2+xi+
1

µ(n−1)
]dci

+

∫ β−x2

β−x2− n−2
µ(n−1)

µ

(

β − x2 +
1

µ(n− 1)
− ci

)

e−µ∆− 1
n−1

−µ(ci+xi−β)dci

+

∫ β−x2− n−2
µ(n−1)

β−x1− 1
µ

e−µ[2(c−β)+x1+xi]−1dci

+

∫ β−x1− 1
µ

β−xi

(β − x1 − ci)µe
−µ(ci+xi−βdci −

a

2
x2i

=
1

µ

n− 1

n
e−µ∆− 1

n−1
−µ(xi−x2)

+
1

2µ
e−µ(xi−xi)+1

[

1− e−2(µ∆+ 1
n−1

)
]

+ xi − x1 −
1

µ
− a

2
x2i .

The key observation is that the terms in the third to last and second to last lines decrease
in xi. The derivative of the last line with respect to xi is 1 − axi. Since xi ≥ x1 +

1
µ
≥

1
an

+ 1
µ
, we have

1− axi ≤
n− 1

n
− a

µ
≤ 0,

where the inequality follows because it is equivalent to µ

a
≤ n

n−1
.

We now turn to establishing quasi-convexity of PCI(x1, x2) over the relevant range.
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For the exponential model with x1 ≥ x2 − 1
µ(n−1)

, PCI(x1, x2) is as defined in (8)

because b∗I(β − x2) = β − x2 +
1

µ(n−1)
≥ β − x1 under this condition. With quadratic

costs of effort, we have for any x1 ≥ x2 − 1
µ(n−1)

,

∂PCI(x1, x2)

∂x1
= −(1 − (n− 1)s(x1, x2)− ax1).

Noticing that s1(x1, x2) = −µs(x1, x2), the second-order condition is

∂2PCI(x1, x2)

∂x21
= −(n− 1)µs(x1, x2) + a ≥ 0.

Observe that for all x1 ≥ x2− 1
µ(n−1)

, s(x1, x2) ≤ 1
n
, with equality only if x1 = x2− 1

µ(n−1)
.

Thus, −(n−1)µs(x1, x2)+a ≥ a−(n−1)µ/n ≥ 0, where the last inequality holds because
of the assumption µ

a
≤ n

n−1
. Thus, on [x2 − 1

µ(n−1)
,∞), PCI(x1, x2) is convex in x1.

For x1 ≤ x2 − 1
µ(n−1)

, the procurement cost of the integrated supplier can be written
as

PCI(x1, x2) = Ψ(x1) +

∫ ∞

β−x2

b∗I(c;x, n)dL(c+ x2;n− 1) (28)

+

∫ ∞

β−x1

∫ ∞

b−1
I

(c)

(c− b∗I(y;x, n))dL(y + x2;n− 1)dG(c+ x1),

where b−1
I (c) is the inverse of b∗I(y;x, n), i.e. b

∗
I(b

−1
I (c);x, n) = c (for example, for the

exponential b−1
I (c) = c− 1

µ(n−1)
). Here the first line captures cost of effort plus the cost

of always procuring the good from the independent suppliers. The second line represents
the cost savings from avoiding the markup by producing internally. Observe that the
integral in the first line does not depend on x1 if x1 is a deviation from equilibrium
(only the equilibrium level of x1 affects b∗I(c;x, n) with x = (x1, x2)). Therefore, for the
purpose of cost minimization, it can be treated as a constant, denoted K.

Making use of the exponential-quadratic assumptions, we obtain

PCI(x1, x2) = ax21/2 +K − 1

µ(n− 1)

eµ(n−1)(x1−x2)+1

n
,

whose derivatives are

∂PCI(x1, x2)

∂x1
= −e

µ(n−1)(x1−x2)+1

n
+ ax1

and
∂2PCI(x1, x2)

∂x21
= −µ(n− 1)

eµ(n−1)(x1−x2)+1

n
+ a.

Thus, the function is (twice) continuously differentiable.
Notice also that because x2 ≤ 1

a(n−1)
, x1 ≤ x2 − 1

µ(n−1)
is not possible if µ ≤ a as

µ ≤ a implies 1
a(n−1)

− 1
µ(n−1)

≤ 0, which would thus require x1 ≤ 0. In the following

analysis, we can thus assume 1 ≤ µ

a
≤ n

n−1
.
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For a fixed x2 > 0, let x1(x2) denote the smallest non-negative value of x1 such that
∂PCI(x1,x2)

∂x1
= 0, that is, x1(x2) is such that:

eµ(x1(x2)−x2)+1

n
= ax1(x2).

(If no such value exists, we set x1(x2) = ∞). Because h(x1) :=
eµ(x1−x2)+1

n
is increasing

and convex in x1, satisfying
eµ(−x2)+1

n
> 0, while ax1 is increasing linearly in x1 and equal

to 0 at x1 = 0, it follows that x1(x2) > 0 and ∂PCI(x1, x2)/∂x1 < 0 for all x1 < x1(x2).
We are now going to show that x1(x2) > x2 − 1

µ(n−1)
. This then completes the proof

of quasiconvexity. Observe that h
(

x2 − 1
µ(n−1)

)

= 1
n
. This is larger than a

(

x2 − 1
µ(n−1)

)

if and only if
1

n
> ax2 −

a

µ(n− 1)
.

Because x2 ≤ 1
a(n−1)

, the right-hand side is not more than 1
n−1

(

1− a
µ

)

and because
µ

a
≤ n

n−1
, we have in turn

1

n− 1

(

1− a

µ

)

≤ 1

n− 1

1

n
.

But this is less than 1
n
, which thereby completes the proof. �

Proof of Corollary 4: Inserting the expressions obtained in Corollaries 1 and 3, one
obtains

β +
a− µ

µ
x1 +

a

2
x21 +

1

n

[
1

µ(n− 1)
− 1

2an

]

for PC∗
I +Π∗

N . As PC
∗
N = β− 1

an
+ 1

µ
2n−1
n(n−1)

, vertical divestiture is thus jointly profitable
if and only if

β +
a− µ

µ
x1 +

a

2
x21 +

1

n

[
1

µ(n− 1)
− 1

2an

]

> β − 1

an
+

1

µ

2n− 1

n(n− 1)
,

which is equivalent to the inequality in the corollary. �

Proof of Proposition 4: The proof uses symmetry and quasiconvexity of the function
TC(x).

The function TC(x) is symmetric in the sense that, for xi = x and xj = x′ with
i 6= j, we have

TC(x, x′,x−i−j) = TC(x′, x,x−i−j),

where x−i−j = (xk)k 6=i,j.
The rest of the proof is by contradiction. That is, suppose to the contrary that

min
x
TC(x) = TC(x̂), where x̂ is not symmetric, i.e. x̂i 6= x̂j for some i 6= j, and

that there is no symmetric investment, denoted xS such that TC(xS) = min
x
TC(x).
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Without loss of generality, let i = 1 and j = 2. Let ˆ̂x = (x̂2, x̂1, x̂3, .., x̂n). That is, ˆ̂x is
a permutation of x̂. By symmetry, we have

TC(ˆ̂x) = TC(x̂).

But by quasiconvexity, we have, for any t ∈ (0, 1),

TC(tˆ̂x+ (1− t)x̂) ≤ TC(x̂),

which is a contradiction to the hypothesis that TC is minimized at x̂ and not at a
symmetric investment xS.

The last part of the statement follows by noting that at symmetry, i.e. xi = x for all
i, total cost, denoted TCS(x) is

TCS(x) =

∫ ∞

β−x

cl(c+ x;n)dc+ nΨ(x),

Noting ∂l(c + x;n)/∂x = ∂l(c + x;n)/∂c, we can write the derivative TC ′
S(x) using

integration by parts as

TC ′
S(x) = −

∫ ∞

β−x

l(c+ x;n)dc

︸ ︷︷ ︸

=1

+nψ(x).

Setting TC ′
S(x) = 0, we thus get x = ψ−1(1/n). Moreover, TC ′′

S(x) = nψ′(x) > 0, so
this is indeed a minimum. �

Proof of Corollary 5: We first show that TC(x) is quasiconvex if µ ≤ a by showing
that there is a unique solution to the system of first-order conditions. Second, we show
that for µ > a, the symmetric solution to the first-order conditions is not socially optimal.
Although this is not required to prove the corollary, we state it here because we referred
to this result in the text.

Substituting the expressions for the exponential case gives us the following expression
for the expected production cost:

EC(x) = µ

n∑

j=1

je−µXj

∫ β−xj+1

β−xj

ce−jµ(c−β)dc,

where Xj :=
∑j

i=1 xi, xn+1 := −∞, and TC(x) = EC(x) +
∑

i Ψ(xi). Letting

Sj := e−µ(Xj−jxj)

[

β − xj +
1

jµ
−

(

β − xj+1 +
1

jµ

)

e−jµ(xj−xj+1)

]

,

it then follows that

∂EC(x)

∂xj
= µe−µ(Xj−jxj)(β − xj)− µ

n∑

i=j

Si
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for all j = 1, .., n and

∂EC(x)

∂xj
− ∂EC(x)

∂xj+1

= −1

j
e−µ(Xj−jxj)(−1 + e−µ(xj−xj+1))

for all j < n.
Finally,

∂Sn

∂xn
= µ(n− 1)e−µ(Xn−nxn)

(

β − xn +
1

nµ

)

and the derivative of EC(x) with respect to xn is

∂EC(x)

∂xn
=
∂Sn

∂xn
+
∂Sn−1

∂xn
= −1

n
e−µ(Xn−nxn).

Observe that
∂TC(x)/∂xi = ∂EC(x)/∂xi + ψ(xi).

Using the first-order condition ∂TC(x)/∂xn = 0, we obtain the boundary condition

1

n
e−µ(Xn−nxn) = axn. (29)

Subtracting ∂TC(x)
∂xi

from ∂TC(x)
∂xi+1

and simplifying yields for i = 1, .., n − 2 with n > 2 a

system of first-order difference equations

1

i
e−µXi

[
eiµxi+1 − eiµxi

]
= a(xi+1 − xi) (30)

with the boundary condition (29) and the constraints xi ≥ xi+1. Notice that the sym-
metric solution xi =

1
an

for all i = 1, .., n is always a solution of this system. We are now
going to show that for a ≥ µ it is the unique solution.

Notice first that the right-hand side of (30) is linear in xi+1 with slope a. The left-
hand side of (30) is increasing and convex in xi+1 with slope µ at symmetry. Fix then
an arbitrary x1. Provided µ ≤ a, x2 = x1 is the unique solution to (30). Iterating the
argument, we get that xi = x1 is the unique solution to (30) for all i = 1, .., n−1. Notice
then that the left-hand side of (29) is convex and increasing in xn with slope µn−1

n
at

symmetry. Since µ ≤ a implies µn−1
n

< a, where a is the slope of the right-hand side
of (29), it follows that xn = x1 is the unique solution to (29). But at symmetry, (29)
implies xn = 1

an
. Thus, for µ ≤ a, xi =

1
an

for all i = 1, .., n is the unique solution. This
completes the proof of the claim in to corollary.

The remainder of the proof shows that the symmetric solution is not a minimizer of
TC(x) if µ > a by showing that x = (x1, x2, ..., x2) with x1 > x2 optimally chosen does
strictly better. The second own and cross partial of TC(x1, x2) are

∂2TC(x1, x2)

∂x21
= a− µ

n− 1

n
e−µ(x1−x2) =

∂2TC(x1, x2)

∂x22
∂2TC(x1, x2)

∂x1∂x2
= µ

n− 1

n
e−µ(x1−x2).
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At x1 = x2, the Hessian matrix H can be shown to positive semi-definite if and only if
µ ≤ a. This can be shown by noting that the product z · H · z with z = (z1, z2) 6= 0

is quasiconvex (quasiconcave) in z2 if µ ≤ an (µ > an) and minimized (maximized) at
z2 = −z1/(n− 1). Evaluated at z2 = −z1/(n− 1), we have

z ·H · z =
anz21(a− µ)

an− µ
.

For a < µ < an, z ·H · z > 0, which proves that H is positive semi-definite. Because of
our restriction µ ≤ n

n−1
a, we know that µ < an. (For completeness, if µ > an, we know

that z ·H · z is maximized at z2 = −z1/(n−1) and negative at this point. Consequently,
z ·H · z < 0 for all z 6= 0 if µ > an.) �
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