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Appendix A: Methodological Challenges (Demand Side)

The summary of methodological challenges and of the heuristics of identification argument are

reproduced from Krasnokutskaya, Song, and Tang (2018). Notice that in this discussion is

restricted to the case of a single buyer group.

Recovering demand-side primitives presents several methodological challenges. To see this let

us first consider an environment without transitory sellers (or where transitory sellers differ only

in their observable attributes, x). In this setting we only need to focus on recovering the quality

levels (fixed effects) of permanent sellers. Recall that in a traditional discrete choice setting

fixed effects associated with different alternatives are identified from the observed probabilities

that a given alternative is chosen, conditional on the choice set. In our setting, choice sets are

buyer-specific since the sellers’ participation varies across auctions. Due to the large numbers of

sellers and buyers conditional choice probabilities cannot be precisely estimated. To get a sense

of the magnitudes consider that the number of permanent sellers present in the market for a

given type of work is around 300 to 500 whereas only 2 or 3 permanent sellers participate in

any given auction. This means that the number of possible choice sets is at least C3
300 = 300!

3!297!
=

300∗299∗298
3

= 8, 910, 200 which exceeds the number of projects we have in our dataset. In fact,

the highest number of projects sharing the same set of participating permanent sellers in our

data is five. One way to deal with this issue would be to consider probabilities that aggregate
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over buyers’ choice sets, such as:

Pr(j wins|j ∈ Al) =
∑

a:j∈a Pr(j wins|Al = a) Pr(Al = a, j ∈ Al), and

Pr(j wins|Bl = b, j ∈ Al) =
∑

a:j∈a Pr(j wins|Bl = b, Al = a) Pr(Al = a, j ∈ Al),

where the sum above is over the choice sets a that contain j. However, such approach has not

yet been explored in the literature and its properties are unknown. Specifically, it is unclear

whether such moments could be used to identify seller-specific fixed effects and the distribution

of buyers’ tastes.1 Further, even if this mechanism worked in theory, it is not certain that it

would perform well in practice given that the weighting probabilities used in the aggregation

above, Pr(Al = a, j ∈ Al), are very small.

Let us now return to the realistic setting where transitory sellers differ in their qualities and

these qualities are observable to buyers. In contrast to permanent sellers we cannot use transitory

sellers’ identities as proxies for their quality. Thus, the information which underlies buyer’s choice

is not observed in the data. Instead, a researcher has to deal with a mixture problem where the

probability distribution over the transitory sellers’ qualities depends on these sellers’ bids and

observable attributes. More specifically, suppose the support of a transitory seller’s quality Qh,l

is {q̄1, q̄2} and let x and b be the vectors of observable attributes and bids characterizing the

entrants in the auction respectively. Then, the probability that the buyer chooses a permanent

seller j while his choice set includes a single transitory seller h, Pr(j wins|Bl = b, x), is a mixture

of the following form:∑
s=1,2

Pr(j wins|Qh,l = q̄s, Bl = b, x) Pr(Qh,l = q̄s|Bl = b, x).

The mixing weights Pr(Qh,l = q̄s|Bl = b, x) are unknown and correlated with the conditional

choice probability through the bid vector b and attributes vector x.

One might attempt to deal with this problem by solving for Pr(Qh,l = q̄s|Bl = b, x) from the

model within the estimation routine for a given vector of parameter values. However, solving one

such bidding and participation game would take a long time and solutions can be very fragile

if the parameter values are far from the truth. Further, a large number of sellers and projects

result in a huge number of possible choice sets for which the problem would have to be solved.

These issues combined make this approach computationally infeasible. Alternatively, one may

adopt an ad hoc functional form assumption for the mixing distributions and attempt to recover

them jointly with other primitives of the model. It is doubtful that separate identification of

1The invertibility argument underlying the standard approach (the most well-known exposition can be found
in Berry, Levinsohn, and Pakes (1995)) does not apply to these moments because the probability of observing a
given choice set, Pr(Al = a, j ∈ Al), depends in the model on the qualities of potential (and, in the consequence,
actual) sellers. So further insight is necessary on how to achieve invertability in this context. For example, it is
possible that the inversion could be made to work if we use empirical probabilities of observing different choice
sets in the expression on the righthand side. It also has to be established that such moments allow us to exploit
the exogenous variation present in the data to recover the distribution of buyers’ tastes.
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these components can be established formally. In practice, such approach has been shown to

perform poorly.2,3

Because of the reasons outlined above, we adopt an identification strategy and a two-step

estimation approach proposed in Krasnokutskaya, Song, and Tang (2018). Under this method-

ology, in the first step permanent sellers characterized by a common vector of x-attributes are

classified into groups of equal quality. Such a grouping, once constructed, facilitates recovery of

the model’s primitives in several ways. First, the task of recovering permanent sellers’ qualities

is reduced since we now only need to recover the quality levels associated with different groups

rather than the quality level for every permanent seller. Further, buyers’ choice sets may now

be represented in terms of participating sellers’ (x, q)-group memberships for permanent sellers

and x-group memberships for transitory sellers, rather than in terms of their identities. Thus,

representing sellers in terms of group memberships offers a natural way for the aggregation of

buyers’ choice sets and thus facilitates recovery of the distributions of the utility coefficients and

buyers’ outside options. Finally, such representation permits imposing the restriction that the

distributions of permanent and transitory sellers qualities have the same support. The latter

feature allows us to separate identification of the payoffs associated with various bundles of (x, q)

attributes from the identification of the mixing probabilities. A formal identification argument

can be found in Krasnokutskaya, Song, and Tang (2018).

Heuristics for Identification

Classification into Quality Groups. Consider sellers i and j with xi = xj who participate in

two auctions that are ex ante identical (i.e., the project characteristics and the set of competitors

are the same, and both i and j are in the set of potential bidders) and submit equal bids. Under

such circumstances a seller with a higher value of q has a higher chance of winning. This ranking

of winning probabilities is preserved after aggregating over possible sets of competitors, as long

as the chance of encountering any given set of competitors is the same for both sellers. This

condition holds if, for example, the pool from which competitors are drawn does not include

either i or j. Specifically, for any pair of sellers i and j such that xi = xj, define:

ri,j(b) ≡ Pr(iwins | Bi,l = b, i ∈ Al, j 6∈ Al, i, j ∈ Nl) (1)

2See Heckman and Singer (1984) for details.
3A researcher may also consider an approach proposed by Kasahara and Shimotsu (2009) in the context of a

dynamic discrete choice model. However, the model considered by these authors does not readily map into our
environment so the applicability of this method, even if possible, is far from obvious.
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where Al denotes the set of entrants.4 Then

ri,j(b) > rj,i(b) if and only if qi > qj,

ri,j(b) < rj,i(b) if and only if qi < qj and

ri,j(b) = rj,i(b) if and only if qi = qj.

For a formal statement of results and conditions, see Proposition 1 in Krasnokutskaya, Song, and

Tang (2018). As long as the conditional winning probabilities defined above are identified from

data, we can use them to order sellers i and j with respect to their qualities. By implementing

such comparison for every pair of permanent sellers within x-group, the quality ranking of the

sellers within this group can be recovered.5 This identifies the quality group structure.

A Simple Example. Let us see how to identify the rest of the model primitives, given the

quality classification of the permanent sellers recovered above. Consider a simple setting with

two groups of sellers defined by observable characteristics x̄1 and x̄2. Each group is further par-

titioned into two unobservable subgroups based on quality levels q̄1(x̄1), q̄2(x̄1) and q̄1(x̄2), q̄2(x̄2)

respectively. Some sellers are permanent and others transitory. For simplicity, assume the

components in the buyers’ weights are mutually independent, which is relaxed in the formal

identification results which could be found in Krasnokutskaya, Song, and Tang (2018).

Suppose there is a large number of sellers in each observable group defined by x. The number

of choice sets defined in terms of specific identities of sellers is large. Nevertheless, this number

can be drastically reduced if choice sets are defined in terms of quality groups instead of specific

identities.6 Such a definition of choice sets is feasible only after we use the argument above to

classify sellers into groups based on unobserved quality levels.

In what follows, we discuss how to identify the payoff structure (specifically the distributions

of εl, αl, βl and quality levels associated with each quality group, q̄k(xm) where k = 1, 2 and

m = 1, 2). After that, we identify the remaining model primitives (such as FU0 and FQt|Bt
l
).

The Distribution of Payoffs. To identify components in the buyers’ payoffs, we exploit how a

buyers’ decisions vary with the choice set (defined in terms of (x, q)-groups of active permanent

4One could use an alternative, similar index conditional on i ∈ Al, j ∈ Al, Bi,l = Bj,l = b. In our data, for
many pairs of bidders, there is only a small number of auctions where both i and j participate and submit similar
bids. Hence the estimation of such an alternative index is much more problematic than that of ri,j(b) defined
above. In this paper we do not pursue such an alternative strategy.

5Intuitively, if comparisons for all pairs of permanent sellers are available, we can always split a given x-group
into two subgroups where the first subgroup consists of the sellers with the lowest quality among all the sellers
in the x-group and the second subgroup consists of the remaining sellers. Then we split this second subgroup
similarly into two further subgroups so that the first consists of the lowest quality sellers within this second
subgroup and the other consists of the rest of the sellers. By continuing this process, we can identify the quality
group structure.

6Suppose there are 100 sellers. Then the number of choice sets that consist of three sellers is C3
100 =

100!/97!3! = 100 ∗ 99 ∗ 98/6 = 161, 700. However, if we define choice sets in terms of groups, we can reduce the
number of distinct choice sets to 43 = 64.
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bidders). Let us first demonstrate how to identify the distribution of a stochastic component

εl. For this, we focus on auctions which attract at least two permanent sellers with the same

observed characteristics xi = xj and the unobserved quality qi = qj. We allow for the presence

of a transitory seller h. The payoffs from different options are:

Ui,l = αlqi + βlxi −Bi,l + εi,l ; Uj,l = αlqj + βlxj −Bj,l + εj,l;

Uh,l = αlQh,l + βlx1 −Bh,l + εh,l and U0,l.

The scale of αl and the quality levels can not be jointly identified; hence we normalize E[αl] = 1.

When Bi,l = −t2 and Bj,l = t1− t2 for some t1, t2, the buyer chooses seller i with probability

Pr(i wins in auction l|Bi,l = −t2, Bj,l = t1 − t2, Bh,l = bh)

= Pr(εj,l − εi,l ≤ t1 and Yi,l(xh)− εi,l ≤ t2|Bi,l = −t2, Bj,l = t1 − t2, Bh,l = bh)

= Pr(εj,l − εi,l ≤ t1 and Yi,l(xh)− εi,l ≤ t2|Bh,l = bh) ≡ F (t1, t2|bh),

where we let Y0,l(xh) ≡ max{αlQh,l+βlxh−Bh,l+εh,l, U0,l} and Yi,l(xh) ≡ Y0,l(xh)−αlqi(xi)−βlxi.
The last equality follows because under our model assumptions the bids are independent across

sellers and independent of buyers’ tastes, and because (εi,l, εj,l, Yi,l(xh), Bh,l) are independent of

(Bi,l, Bj,l).

The winning probability on the lefthand side is directly identifiable from the data. Hence

the joint distribution F on the righthand side is identified. Since εj,l, εi,l and (Yi,l(xh), Bh,l) are

independent, the conditional distribution of Yi,l(xh) given Bh,l = bh and the distributions of εj,l

and εi,l are identified up to a location normalization if the support of (Bi,l, Bj,l) is large enough.7

This intuition continues to hold when the conditional winning probabilities are aggregated over

distinct choice sets that include two permanent sellers from the same (x, q)-group.

The quality levels q̄1(x̄1), q̄1(x̄2), q̄1(x̄2), q̄2(x̄2) and the distributions of αl and βl are identi-

fied similarly. Specifically, we identify the distribution of αl(q̄1(x) − q̄2(x)) by applying similar

arguments to the subset of auctions with choice sets consisting of permanent sellers i and j from

the same observable group x but different quality groups, q̄1(x) and q̄2(x), a transitory seller h

and the outside option. The mean of the distribution αl(q̄1(x) − q̄2(x)) identifies q̄1(x) − q̄2(x)

under the normalization E[αl] = 1. Further, we consider the subset of auctions with choice sets

consisting of permanent sellers i and j from the lowest quality from the observable groups, x̄1

and x̄2, a transitory seller h from x̄2 and the outside option. Then we can identify the distribu-

tion of βl under an additional normalization that q̄1(x̄1) = q̄1(x̄2) = 0, i.e., the lowest quality in

each observable group is normalized to zero. This restriction on the lowest quality levels can be

relaxed if βl is a fixed constant parameter (equal to β) rather than a random variable. In this

case it is enough to normalize the lowest quality level for a single observable group, e.g., q̄1(x̄1),

7This is a consequence of the Kotlarski Theorem. See Rao (1992) for details. The formal support requirements
are stated in Section 5.2.2 and discussed in the Web Supplement to the paper.
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whereas q̄1(x̄2)− q̄1(x̄1) = q̄1(x̄2) is identified with the rest of the model.

Outside Option and Transitory Sellers’ Quality Distribution. We now explain how

to identify the distribution of payoffs from the outside option U0,l, and the conditional quality

distribution Pr(Qh,l = q̄k(xh)|Bh,l = bh, Xh = xh) for transitory sellers. The latter depends on

sellers’ bidding strategies in equilibrium.

Consider auctions with one permanent bidder and one transitory bidder, and assume that

U0,l, βl and αl are independent. (The formal results in ? allow for the correlation between U0,l

and αl.) Recall that (q̄1(x̄1), q̄1(x̄2)) and the distributions of αl and βl and that of Y1,l(xh) =

Y0,l(xh)− αlq̄1(x̄1)− βlx̄1 conditional on Bh,l = bh are identified in the previous step. Hence the

conditional distribution of Y0,l(xh), which is the maximum of the payoff from the outside option

and that from the transitory seller, is also identified.

Next, let us now argue that knowledge of the conditional distributions of Y0,l(xh) helps to

identify the distribution of the outside option and the conditional distribution of a transitory

seller’s quality. With U0,l, βl and αl independent of each other, the payoff to the outside option

(U0,l) and the payoff to the transitory seller (Uh,l) are independent. Hence, for each fixed pair of

numbers (y0, bh),

Pr(Y0,l(xh) ≤ y0|Bh,l = bh, Xh = xh) = Pr(U0,l ≤ y0) Pr(Uh,l(xh) ≤ y0|Bh,l = bh, Xh = xh). (2)

This leads to two equations, one with xh = x̄1 and the other with xh = x̄2. After rearranging

terms in these equations, we have:

g1(y0; bh) Pr(Qh,l = q̄1(x̄2)|Bh,l = bh, Xh = x̄2)

−g2(y0; bh) Pr(Qh,l = q̄1(x̄1)|Bh,l = bh, Xh = x̄1) = g3(y0; bh),

where for each bh, gs(y0; bh), s = 1, 2, 3, are known functions of y0, and Pr(Qh,l = q̄1(x̄j)|Bh,l =

bh, Xh = x̄j), j = 1, 2, are unknown probabilities to be recovered.8 These probabilities are over-

identified since we have infinitely many linear equations associated with different values of y0.

Once these probabilities are identified, the distribution of the payoff from the outside option U0,l

is identified from (2).

8Specifically, g1(y0; bh) = Pr(Y0(x̄1) ≤ y0|bh, x̄1)[J1(bh, x̄2)− J2(bh, x̄2)],
g2(y0; bh) = Pr(Y0(x̄2) ≤ y0|bh, x̄2)[J1(bh, x̄1)− J2(bh, x̄1)],
g3(y0; bh) = Pr(Y0(x̄2) ≤ y0|bh, x̄2)J2(bh, x̄1)− Pr(Y0(x̄1) ≤ y0|bh, x̄1)J2(bh, x̄2),

where Jk(b, x) denotes Pr(Uh(x) ≤ y0|Bh = bh, x,Qh = q̄k(x)) for k = 1, 2. The functions Jk, the conditional
distribution of Y0, and therefore gs(y0; b) for s = 1, 2, 3, are recovered from the previous steps. See Section B2 in
the Web Supplement to Krasnokutskaya, Song, and Tang (2018) for details.
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Appendix B: Numerical Algorithm

In this appendix we summarize the numerical algorithm used to solve for bidding strategies in

the paper. Our numerical strategy combines insights from projection methods9and the numerical

approach developed in Marshall, Meurer, Richard, and Stromquist (1994).

We maintain the following notations:

1. K is the number of different seller groups.

2. Nk;ob is the vector of numbers of potential bidders from group k; nk;ob is the number of

actual bidders from group k.

3. κ(j) is a group membership of bidder j; q̄κ(j) is the quality level corresponding to the group

of bidder j.

4. (αl, εl, U0,l) summarize buyer’s l utility components so that the utility a buyer l derives

from seller j is given by

uj,l = αlqκ(j) − bl,j + εl,j,

where bl,j is the bid seller j submits in the auction of buyer l; U0,l represents the outside

option of buyer l.

5. FC
k (.) represent the distributions of the project and entry costs for group k.

To simplify the presentation we summarize the method for the case when (a) all sellers are

permanent; (b) σε = 1; (c) α and U0 are independent.

The algorithm describes how to solve for a type-specific equilibrium bidding strategies {βk(.|ob)}k=1,...,K .

Notice that in this setting the seller observes the set of sellers, Nob , who decided to partic-

ipated in the auctions of type ob. These sellers are then randomly allocated across auctions of

type ob. Thus, the set of actual competitors that a given seller faces remains uncertain. However,

he has no control over the probability of encountering a specific set of competitors (that is the

probability of seller i being in the auction with a set of actual competitors A, Pr(A), does not

depend on seller i′s strategic choices).

1. Seller chooses a bidding strategy to maximize the following objective function:

(b− ci)
∑

A Pr(U0 ≤ αqκ(i) − b+ εi andαqκ(j) −Bj + εj ≤ αqκ(i) − b+ εi ∀ j ∈ A) Pr(A)

which can be rewritten as

(b− ci)
∑

A

∫
α

∫
εi
FU0(qκ(i) − αb+ εi)×∏

j 6=i
∫
cj
Fε(∆i,jq − α(b− βκ(j)(cj)) + εi)dFκ(j)(cj)dFε(εi)dFα(α) Pr(A).

9See, for example, Bajari (2001).
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Here summation is over all possible sets of entrants, A, and Pr(A) reflects the probability

that a given set of entrants is realized.

2. Further, for the derivation simplicity we rewrite sellers’ strategies in terms of ‘offers’,

ωi = µαqκ(i) − bi that are functions of a seller’s surplus, si = µαqκ(i) − ci. That is, the

seller’s strategy is now given by γk : Sk → R. This is just a simple re-parametrization of

the seller’s problem which now becomes

(si − ωi)
∑

A[
∫
α

∫
εi
FU0

(ωi + α0qκ(i) + εi)×∏
j

∫
sj
Fε(ωi − γκ(j)(sj) + α0(qκ(i) − qκ(j)) + εi)dFκ(j)(sj)dFεi(εi)dFα(α0)] Pr(A) with α0 = α− µα.

3. Then, the first order conditions for this problem are given by

∑
A[−

∫
α

∫
εi
FU0

(ωi + α0qκ(i) + εi)
∏
j

∫
sj
Fε(ωi − γκ(j)(sj) + α0∆i,jq + εi)dFκ(j)(sj)dFεi(εi)dFα0

(α0) +

(si − ωi)
∫
α0

∫
εi

{
fU0

(ωi + α0qκ(i) + εi)
∏
j

∫
sj
Fε(ωi − γκ(j)(sj) + α0∆ijq + εi)dFκ(j)(sj) +

FU0
(ωi + α0qκ(i) + εi)

∑L
j1=1

(∫
sj1
fε(ωi − γκ(j1)(sj1) + α0∆ijq + εi)dFκ(j1)(sj1)×

∏
j 6=j1

∫
sj1
Fε(ωi − γκ(j)(sj) + α0∆ijq + εi)dFκ(j)(sj)

)}
dFεi(εi)dFα(α0)] Pr(A) = 0.

4. Following Marshall, Meurer, Richard, and Stromquist (1994), we divide the support of Sk

into small intervals. Further, we approximate each of the γk(.) functions by a polynomial of

(sk− s̃lk) where s̃lk is a centroid of l′s interval on the support of Sk. Specifically, we assume

that γk(s) =
∑∞

p=0 a
(l)
k,p(s− s̃lk)p on interval l. We also use their technique for representation

of the nonlinear function of a bidding strategy in the form of a polynomial of (s− s̃lk) (see

the non-uniform case). We use spline approximation of the estimated densities to obtain

coefficients in the polynomial expansion of the outside functions.10

5. The polynomial expansion of first order conditions discussed in point (4) is summarized by a

set of coefficients in front of the polynomial terms. To obtain the n−th order approximation

of the offer function we set the first n coefficients of the first order conditions expansion

to zero and solve for a set of {a(l)k,p} coefficients that satisfy this restriction. This part of

our algorithm is borrowed from the projection methods. We deviate from the algorithm in

Marshall, Meurer, Richard, and Stromquist (1994) at this point because the expressions for

the coefficients in a first-order-conditions representation are non-linear functions of {a(l)k,p}

10The exact expression of the polynomial expansion of the first order conditions is 12 pages long and is available
from the authors upon request.
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and thus we were unable to obtain an iterative expression similar to that in Marshall,

Meurer, Richard, and Stromquist (1994).

6. The set of coefficients is obtained for a given set of starting points (boundary conditions).

Once the set of coefficients is obtained, we compute the approximation error associated

with a solution obtained under such starting point. Unlike a standard auction model, the

multi-attribute auction model does not have a singularity on either end because of ε and

integration over ε. On the other hand, we do not have such a precise knowledge of a

boundary conditions as we have in the standard case. For this reason we do not target an

objective function which reflects the fit of the numerical solution at the boundary. Instead,

we compute an error for each subinterval and then average it over the intervals. We

incorporate this error into an iterative mechanism which searches for an optimal boundary

conditions. The search stops once the targeted precision is reached. In this our approach

resembles the projection method.

7. We have verified that this algorithm converges to a vector of equilibrium bidding functions

in the case when all the relevant distributions are uniform.
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Appendix C: Additional Tables

Table 1: Estimated Quality Groups by Supplier Covariates

Country Average Total Number Q = L Q = M Q = H

Group Score of Suppliers

North America low 12 4 8

(6) (10)

North America medium 13 4 9

(6) (11)

North America high 17 12 5

(13) (6)

Eastern Europe low 18 6 12

(8) (14)

Eastern Europe medium 52 33 12 7

(37) (14) (9)

Eastern Europe high 83 6 65 12

(7) (69) (15)

East Asia low 91 62 18 11

(68) (22) (13)

East Asia medium 66 6 53 7

(8) (57) (9)

East Asia high 58 50 8

(53) (11)

This table is reproduced from Krasnokutskaya, Song, and Tang (2018). It shows the estimated group structure

and a consistently-selected number of groups for each cell determined by covariate values. Column 3 indicates

the total number of the suppliers in each cell. Columns 4-6 report the size of the estimated quality group. The

size of the corresponding confidence set with 90% coverage is reported in parenthesis. Note that the confidence

set with the level (1 - α) for a given quality group is defined to be a random set whose probability of containing

this quality group is ensured to be asymptotically bounded from below by (1-α).
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Table 2: Sellers’ Quality Levels

Country Score Quality Specifications
(I) (II) (III)

North America Low 1 0.173
(0.301)

-0.018
(0.31)

0.061
(0.302)

North America Low 3 0.611∗∗∗
(0.030)

0.538∗∗∗
(0.031)

0.578∗∗∗
(0.033)

North America Medium 1 0.311
(0.517)

0.116
(0.221)

0.123
(0.221)

North America Medium 3 0.729∗∗∗
(0.152)

0.575∗∗∗
(0.101)

0.604∗∗∗
(0.111)

North America High 1 0.124∗∗∗
(0.051)

0.143∗∗∗
(0.043)

0.127∗∗∗
(0.051)

North America High 3 0.606∗∗∗
(0.211)

0.619∗∗∗
(0.204)

0.636∗∗∗
(0.211)

Eastern Europe Low 1 -0.121
(0.051∗∗)

-0.097∗∗∗
(0.041)

-0.011∗∗
(0.052)

Eastern Europe Low 2 0.429∗∗∗
(0.133)

0.405∗∗∗
(0.131)

0.405∗∗∗
(0.123)

Eastern Europe Medium 1 0.121∗∗∗
(0.101)

0.162
(0.102)

0.117
(0.101)

Eastern Europe Medium 2 0.416∗∗∗
(0.022)

0.408∗∗∗
(0.021)

0.423∗∗∗
(0.021)

Eastern Europe Medium 3 0.704∗∗∗
(0.061)

0.757∗∗∗
(0.063)

0.707∗∗∗
(0.066)

Eastern Europe High 1 -0.240∗∗∗
(0.111)

-0.063
(0.090)

-0.012
(0.071∗)

Eastern Europe High 2 0.433∗∗∗
(0.011)

0.401∗∗∗
(0.010)

0.427∗∗∗
(0.021)

Eastern Europe High 3 0.753∗∗∗
(0.121)

0.782∗∗∗
(0.113)

0.745∗∗∗
(0.131)

South and East Asia Low 1 normalized to 0

South and East Asia Low 2 0.366∗∗∗
(0.211)

0.235∗∗
(0.132)

0.323∗∗∗
(0.142)

South and East Asia Low 3 0.707∗∗∗
(0.215)

0.572∗∗∗
(0.101)

0.674∗∗∗
(0.102)

South and East Asia Medium 1 -0.310
(0.221)

0.041
(0.211)

-0.054
(0.321)

South and East Asia Medium 2 0.369∗∗∗
(0.021)

0.325∗∗∗
(0.032)

0.319∗∗∗
(0.024)

South and East Asia Medium 3 0.765∗∗∗
(0.032)

0.675∗∗∗
(0.043)

0.703∗∗∗
(0.033)

South and East Asia High 2 0.293∗∗∗
(0.171)

0.282∗∗∗
(0.144)

0.307∗∗∗
(0.123)

South and East Asia High 3 0.672∗∗∗
(0.031)

0.681∗∗∗
(0.033)

0.618∗∗∗
(0.031)

This table reports the estimates of quality levels for various quality groups that correspond to the three specifi-

cations we consider.
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Table 3: Parameters of the Distribution of Buyers’ Tastes

Parameters Specifications
(I) (II) (III)

Standard Deviations of Unobservables:

log (σε)
-0.458∗∗∗

(0.021)
-0.293∗∗∗

(0.023)
-0.496∗∗∗

(0.021)

log (σv0)
-0.221∗∗∗

(0.101)
-0.245∗∗∗

(0.100)
-0.336∗∗∗

(0.111)

log (σα) -0.490∗∗∗
(0.010)

-0.368∗∗∗
(0.011)

-1.310∗∗∗
(0.010)

Mean of Price Sensitivity:
Constant 1 1 1

United Kingdom 0.188∗∗∗
(0.076)

0.177∗∗∗
(0.071)

Western Europe -0.017
(0.021)

-0.229∗∗∗
(0.043)

Southern Europe -0.220∗
(0.121)

-0.176
(0.132)

Eastern Europe -0.090∗∗∗
(0.112)

0.212∗∗
(0.111)

Australia 0.120∗∗∗
(0.030)

0.161∗∗∗
(0.044)

South and East Asia 0.307∗∗∗
(0.021)

0.299∗∗∗
(0.025)

Mean of an Outside Option:

Constant -1.221∗∗∗
(0.322)

-1.264∗∗∗
(0.432)

-1.66∗∗∗
(0.443)

United Kingdom -0.992∗∗∗
(0.341)

Western Europe -0.519∗∗∗
(0.213)

Southern Europe -1.745
(1.261)

Eastern Europe 0.576∗∗∗
(0.221)

Australia 0.321∗∗∗
(0.101)

South and East Asia 0.771∗∗∗
(0.042)

This table reports the estimated parameters of the distributions of buyers’ utility coefficients and outside options.
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Table 4: Expected Entry Costs Conditional on Participation

Sellers
Buyer North Eastern SE
Country America Europe Asia
North America 0.132 0.120 0.099
UK 0.111 0.064 0.039
Western Europe 0.105 0.071 0.031
Eastern Europe 0.130 0.063 0.020
Australia 0.129 0.073 0.046
SE Asia 0.096 0.013 0.019

This table reports the average entry costs conditional on participation for various country pairs. The numbers

reported in this table reflect equilibrium outcomes and, thus, are not directly informative about any specific

primitive. We include them here to illustrate the magnitude of entry costs incurred in this market.
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