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A Proofs of results in Section II

Proof of Lemma 1

Proof. Let pa ≡ sup{p ∈ [0, 1] : a(p) > 0}, pc ≡ sup{p ∈ [0, 1] : d(p,H) = 1}, τa ≡ inf{t >
0 : pt = pa, p0 = 1}, and τc ≡ inf{t > 0 : pt = pc, p0 = 1}.

First, we show that in any equilibrium pa ≤ pc. Looking for a contradiction, suppose

that pa > pc. Let’s consider the behavior of beliefs at the threshold pa. If a(pa) ≥ pa

then λ(a(pa) − pa) ≥ 0 so beliefs never cross the threshold pa. On the other hand, if

a(pa) < pa then beliefs cross the threshold pa however if this is the case, we have that

k/λ = D(pa) = e−(r+λ)(τc−τa)D(pc) < e−(r+λ)(τc−t)D(pc) = D(pt) for all t ∈ (τa, τc]. This

means that a(pa− ε) = 1 but if this is the case then beliefs can never cross the threshold pa.

This in turn implies that τc = ∞, so that D(pt) = e−(r+λ)(τc−t)D(pc) = 0. This contradicts

the hypothesis that pa > pc ≥ 0 which requires that λD(pa) ≥ k.

Second, we analyze the certification strategy. By definition we have that d(p, θ) = 0 for

p > pc and d(pc, H) = 1. If the firm fails to certify at time τc beliefs drop to zero so pτ+c = 0.

The next step is to specify the certification strategy when p0 = 0. We consider two cases:

VH(1)− c > 0 and VH(1)− c = 0 (VH(1)− c < 0 is trivial because in this case certification

is suboptimal so dt = 0). Let’s consider the case with VH(1) − c > 0 first. Suppose that

p̃ = inf{p : d(p,H) = 1} > 0 and let τ̃ = inf{t : pt = p̃, p0 = 0}. Using the incentives

equation we have

D(0) = e−(r+λ)τ̃D(p̃).

By construction we have that VH(p̃) = VH(1) − c = VH(pc) = VH(0) (Note that it cannot

be the case that VH(pc) 6= VH(0) as this would contradict the optimality of the certification
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strategy). Similarly, we also have VL(p̃) = VL(0) because the market infers that the firm has

low quality if it fails to certify when pt = p̃. Thus, D(p̃) = VH(p̃)−VL(p̃) = VH(0)−VL(0) =

D(0) = D(pc). Replacing this in the equation (7) we get

D(0) = e−(r+λ)τ̃D(0)⇒ D(0) = 0.

If this is the case then we have that a(p) = 0 for all p ∈ [0, p̃] and in particular a(0) = 0 so

(p0 = 0, θ0 = L) is an absorbing state and VL(0) = 0. This, together with D(0) = 0, implies

that VH(0) = 0 , which contradicts the hypothesis VH(1)− c > 0. Hence, it must be the case

that p̃ ≤ 0.

Next, we consider the case with VH(1) − c = 0. In this case, by a similar argument as

the one used before, we have that D(0) = 0, so a(0) = 0 and (pt = 0, θt = L) is an absorbing

state. This means that for any strategy d̃t in which the low quality firm never certifies there

is some threshold pc such that Pr(d̃t = 1{pt≤pc,θt=H}|θ0) = 1 for all t ≥ 0. Moreover, the

restriction to strategies in which the low type never certifies is without loss of generality as

in equilibrium the low type would never find optimal to certify low quality.

Proof of Proposition 1

Proof. We need to analyze several cases depending on the cost of certification and whether

we have investment in equilibrium or not. In absence of investment we have that quality

starts at θ = H, it depreciates at a rate λ and θ = L is an absorbing state. The first set of

results characterizes the value function when this is the case.

Equilibria with No Investment

In absence of investment, the only decision for the firm is when to disclose. If the value

function is increasing in beliefs, then the certification strategy is characterized by a certifica-

tion threshold pc. Let τ be the first time beliefs reach the certification threshold pc. Direct

computation yields the value function which is given by

VL(pt) =

∫ τ

t

e−r(s−t)psds (1)

VH(pt) =

∫ τ

t

e−r(s−t)psds+ e−(r+λ)(τ−t)
(
VH(p0)− c

)
. (2)
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The certification threshold pc is an equilibrium if and only if VH(p) ≥ VH(p0)− c for all

p ≥ pc so the firm does not want to accelerate certification, and VH(pc) ≥ c so the firm’s

benefit of certification is higher than the cost.

Step 1: VH(pc) ≥ c. Using (2) and pt = e−λtp0 = e−λt we get

VH(p0) =

∫ τ
0
e−rspsds

1− e−(r+λ)τ
− e−(r+λ)τ

1− e−(r+λ)τ
c

=
1

r + λ
− e−(r+λ)τ

1− e−(r+λ)τ
c,

which is an increasing function τ and so a decreasing function of pc (τ is decreasing in

the threshold). Moreover, VH(p0) → −∞ as τ → 0; hence, there is a threshold p+c such

that VH(p0) = c. This means that pc can be an equilibrium certification threshold only if

pc ≤ p+c . Moreover, p+c > 0 if and only if c < 1
r+λ

; otherwise, the unique equilibrium has no

certification.

Step 2: VH(p) ≥ VH(p0)− c for all p ≥ pc. A necessary condition for this to be the case

is that V ′H(pc) ≥ 0; otherwise, there is ε such that VH(pc+ ε) < VH(p0)−c. If we differentiate

(2) with respect to time we get

d

dt
VH(pt) = −pt + r

∫ τ

t

e−r(s−t)psds+ (r + λ)e−(r+λ)(τ−t)
(
VH(p0)− c

)
= −pt + r

∫ τ

t

e−(r+λ)(s−t)ptds+ (r + λ)e−(r+λ)(τ−t)
(

1

r + λ
− c

1− e−(r+λ)τ

)
= e−(r+λ)(τ−t)

(
1− r

r + λ
pt

)
− λ

r + λ
pt −

c(r + λ)e−(r+λ)(τ−t)

1− e−(r+λ)τ
.

Because pt is decreasing in t we have that V ′H(pt) ≥ 0 if and only if d
dt
VH(pt) ≤ 0. This is

true at time τ if and only if

d

dt
VH(pt)

∣∣∣
t=τ

= 1− pτ −
c(r + λ)

1− e−(r+λ)τ
≤ 0.

Using pτ = pc and τ = − log(pc)/λ we get the condition

1− pc −
c(r + λ)

1− p
r+λ
λ

c

≤ 0 (3)

The left hand side of equation (3) is decreasing in pc. Hence, there is p−c such that (3) holds
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with equality if and only if c ≤ 1/(r + λ). Moreover, if this is the case, then condition (3)

holds for any pc ≥ p−c . Hence, p−c is a lower bound for the certification threshold.

This is only a necessary condition; we still have to verify that VH(p) ≥ VH(p0) − c for

p > pc. Taking the second derivative of VH(pt) we get

d2

dt2
VH(pt) = (r + λ)e−(r+λ)(τ−t)

(
1− r

r + λ
pt −

c(r + λ)

1− e−(r+λ)τ

)
−
(
e−(r+λ)(τ−t)

r

r + λ
+

λ

r + λ

)
ṗt

= (r + λ)

(
d

dt
VH(pt) +

λ

r + λ
pt

)
−
(
e−(r+λ)(τ−t)

r

r + λ
+

λ

r + λ

)
ṗt

Hence, we have that d
dt
VH(pt) = 0 implies d2

dt2
VH(pt) > 0. This means that if at time τ we

have d
dt
VH(pt) ≤ 0 then it must be true that d

dt
VH(pt) ≤ 0 for all t < τ . Thus, we have that

VH(pτ )− VH(pt) =

∫ τ

t

d

dt
VH(ps)ds ≤ 0,

so VH(pt) ≥ VH(pτ ) = VH(p0)− c. The final step is to see in which situations the equilibrium

has no investment.

Step 3: Investment Incentives

We can compute the incentives to invest using equations (1) and (2)

D(pt) = e−(r+λ)(τ−t)
(
VH(p0)− c

)
= e−(r+λ)(τ−t)

(
1

r + λ
− c

1− e−(r+λ)τ

)
.

Hence, D(pt) <
k
λ

for all t ≤ τ if and only if

1

r + λ
− c

1− e−(r+λ)τ
<
k

λ
.

This condition is true for any τ if and only if 1
r+λ
− c < k

λ
. Otherwise, this is true if and only

if

τ < − 1

r + λ
log

(
1− c

1
r+λ
− k

λ

)
,

which corresponds to the certification time τ consistent with the threshold pc in the first

part of Proposition 1.

4



Equilibria with Investment

We have already characterized the equilibria that have no investment. The final step is to

look at those equilibria in which there is positive investment. The boundary conditions at

pc are given by

VH (pc) = VH(0) = VH (1)− c

VL (pc) = VL(0) =
λa(VH(1)− c)− ak

r + λa
(4)

Equation (4) can be rewritten

VH(0) =
( r

λa
+ 1
)
VL(0) +

k

λ
,

hence

D(0) =
rVL(0)

λa
+
k

λ
.

On the other hand, t→ D(pt) is a continuous function so in equilibrium we must have that

D (pc) = D(0) =
k

λ
.

Otherwise, the firm would invest when beliefs are just above pc. We can thus conclude that

VL(0) = VL(pc) = 0.

This in turn implies that

VH (1) =
k

λ
+ c.

Let τ = inf{pt : pτ = pc}. In equilibrium, a(pt) = 0 implies that for pt > pc we have

τ = − log pc
λ

.

The value function for the high type is given by

VH(pt) =

∫ τ

t

e−r(s−t)ps + e−(r+λ)(τ−t)
(
VH(1)− c

)
ds.
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Using ps = e−λ(s−t)pt and VH(1)− c = k/λ we get

VH(pt) =
pt

r + λ

[
1−

(
pc
pt

) r+λ
λ

]
+
k

λ

(
pc
pt

) r+λ
λ

.

Similarly,

VL(pt) =
pt

r + λ

[
1−

(
pc
pt

) r+λ
λ

]
.

Now, we can compute pc using the condition VH(1) = c+ k/λ which gives us(
1

r + λ
− k

λ

)[
1− p

r+λ
λ

c

]
= c,

so

pc =

[
1− c

1
r+λ
− k

λ

] λ
r+λ

.

Intuitively, pc decreases in c and k. An equilibrium with certification and investment exists

iff
1

r + λ
− k

λ
> c

Finally, no certification and no investment is an equilibrium if and only if

V nc
H (0) > V nc

H (1)− c,

which means that

c >
1

r + λ
.

B Proofs of results in Section III

Proof of Lemma 2

Proof. For further reference, x ≡ e−rτ , y ≡ e−rτa , α ≡ (r + λ)/r and q ≡ 1 − β (and we

simplify notation by not pointing out which θ0 they correspond to since this is implied by

the two cases we solve in sequence).

We start considering the case θ0 = H. The payoff of the high quality firm given an
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arbitrary tuple (x, y, q) is

UH(x, y, q) =
1

r + λ
+
y − x
r
− xα

r + λ
+
xαy1−α − y
r + λ

− (y − x)
k

r
+ x

(
1−

(
x

y

)α−1
+ xα−1

)
(UH − c)

+ x

((
x

y

)α−1
− xα−1

)
qUL.

and the incentive compatibility constraint in terms of x, y, q is

yα = xα
(
λ(UH − c− qUL)

k

)
.

For a fixed investment threshold τa, pinned down by y, we look for the optimal combination

(x, q) that implements this y. Using the binding incentive compatibility constraint we get

that for the fixed y

q′(x) =
α

x

UH − c− qUL

UL

.

The first derivative of UH(x, y, q(x)) with respect to x

∂UH(x, y, q(x))

∂x
= −

[
1− k
r
− (UH − c)

]
− 1

r + λ

[
y − αxα−1(y1−α − 1)

]
.

so the second derivative is

∂2UH(x, y, q(x))

∂x2
=

1

r + λ
α(α− 1)xα−2(y1−α − 1) > 0.

so UH(x, y, q(x)) is convex (by definition y < 1 and α > 1) in x. This means that for an

arbitrary y, the best pair (x, β) implementing y is an extreme point which, since q(x) is

increasing, means that we only need to consider q = 0 and q = 1.

The proof for the case θ0 = L is analogous, with the minor difference that we can focus

on y = 0 since we know it is optimal (as we argued in the text in a way independent of this

lemma). The expected payoff of the firm is

UL(x, q) =
(1− x)(1− k)

r
+
xα − 1

r + λ
+ x

[
1− xα−1

]
(UH − c) + xαqUL.

In the best equilibrium, the incentive compatibility constraint binds at t = 0 (since otherwise
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we could increase τ to save certification costs), so

1 = xα
(
λ(UH − c− qUL)

k

)
,

or:

xαqUL = xα(UH − c)−
k

λ
.

Therefore, a q that satisfies the incentive compatibility constraint at t = 0 is increasing

in x (intuitively, larger x means smaller τ so less time till certification, so the equilibrium

can be more lenient without removing incentives for investment). Substituting q from this

condition into UL(x, q) we get:

UL(x, q(x)) =
1− k
r
− 1

r + λ
− k

λ
− x

(
1− k
r
− (UH − c)

)
+

xα

r + λ
(5)

The second derivative is

d2

dx2
U(x, q(x)) =

α(α− 1)xα−2

r + λ
> 0,

this means that the expected payoff is convex in x so the optimal q is again either zero or

one.

Proof of Proposition 2

The proof of Proposition 2 follows the following steps:

• For θ0 = H

(i) First, we show that if UH ≥ 1/(r+λ)− c then the best equilibrium given βH = 1

has full investment (Lemma 1) and τ ∗H = τFIH .

(ii) Then we show that if c is small then the best equilibrium given βH = 1 dominates

the best equilibrium with βH = 0 (Lemma 2),

(iii) and a solution to the equation e−(r+λ)τ
FI
H (UFI

H (τFIH )− c) = k/λ

satisfying UFI
H (τFIH )− c ≥ 1/(r + λ) exists (Lemma 3).

(iv) We conclude from the previous steps that for small c, τ ∗H = τFIH and UH =

UFI
H (τFIH ).

8



• For θ0 = L

(i) First, we show that a solution Û0
L to equation (19) exists (Lemma 4),

(ii) and then show that βL = 0 is optimal when c is small (Lemma 5).

• Next, we show that a high quality firm has incentives to certify at time τ ∗θ (Lemma 6).

• Finally, we show that β∗L is non-decreasing in c (Lemma 7).

For reference, throughout the proofs we use notation x ≡ e−rτ and y ≡ e−rτa , q ≡ 1− β
and α ≡ (r + λ)/r, and we omit the reference to θ0 since it is implied by the case described

in each step.

Lemma 1. Suppose UH − c ≥ 1/(r+ λ) and β∗H = 1. Then in the equilibrium that achieves

UH , τ ∗H = τFIH and τa = 0.

Proof. Consider θ0 = H, p0 = 1.

The incentive compatibility constraint that determines optimal investment policy can be

written as:

τa(τ) = inf

{
ta ∈ [0, τ ] : e−(r+λ)(τ−ta)

(
UH − c

)
≥ k

λ

}
= max

{
0, τ − 1

r + λ
log

(
λ
(
UH − c

)
k

)}
.

Let

UH(τ, τa(τ), 1) =

∫ τ

0

e−rt(pt − 1t≥τa(τ)k)dt+ e−rτpτ (UH − c)

denote the equilibrium payoff for a given τ and for βH = 1.

The best equilibrium for βH = 1 implements full investment if

τFIH ∈ arg max
τ
UH(τ, τa(τ), 1)

Computing each individual term we get

UH(τ, τa, 1) =
1

r + λ
+
e−rτa − e−rτ

r
− e−(r+λ)τ

r + λ
+ e−rτa

e−(r+λ)(τ−τa) − 1

r + λ
−
(
e−rτa − e−rτ

)k
r

+ e−rτ
(
1− e−λ(τ−τa)(1− e−λτa)

)
(UH − c)

This expression is not convex in (τ, τa); for this reason, it is convenient to work with the

transformed variables x ≡ e−rτ and y ≡ e−rτa . Letting α ≡ (r + λ)/r, we can write the
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payoff UH(τ, τa, 1) as a function of the new variables (abusing notation for U) as:

UH(x, y) =
1

r + λ
+
y − x
r
− xα

r + λ
+
xαy1−α − y
r + λ

− (y − x)
k

r
+ x

(
1−

(
x

y

)α−1
+ xα−1

)
(UH − c).

Let x∗ ≡ e−rτ
FI
H . For x ∈ [x∗, 1] we argued in the text that τa = 0 and x = x∗ in this

range is optimal. For any larger x, we do not get full investment, so τa > 0 and the incentive

compatibility constraint can be written in terms of x and y as

y = x

(
λ(UH − c)

k

) 1
α

︸ ︷︷ ︸
M

.

Hence, for x ≥ x∗, letting UH(x) ≡ UH(x, y(x)), where y(x) = Mx, we get:

UH(x) =
1

r + λ
+

(M − 1)(x− k)

r
+

(M1−α −M)x

r + λ
+ x(1−M1−α)(UH − c) + xα

(
UH − c−

1

r + λ

)
From here we get,

U ′′H(x) = α(α− 1)xα−2
(
UH − c−

1

r + λ

)
So if UH − c > 1

r+λ
, then UH(x) is convex. It implies that the maximum of UH(x) is attained

at an extreme point belonging to {0, x∗}. Finally, since

UH(0) =
1

r + λ

UH(x∗) = (1− x∗)1− k
r

+ x∗
(
UH − c

)
we get that, if UH − c > 1

r+λ
, then x = x∗ = e−rτ

FI
H is optimal. As a corollary, since

UH ≥ UFI
H (τFIH ), full investment is optimal for βH = 1 whenever UFI

H (τFIH )− c > 1
r+λ

.

Lemma 2. There is c̃1 > 0 such that for any c ≤ c̃1 the payoff in the best equilibrium with

βH = 1 is higher than the highest payoff when βH = 0.

Proof. We can write the firm payoff as a function of (x, y, q) as (again abusing notation for

U):

10



UH(x, y, q) =
1

r + λ
+
y − x
r
− xα

r + λ
+
xαy1−α − y
r + λ

− (y − x)
k

r
+ x

(
1−

(
x

y

)α−1
+ xα−1

)
(UH − c)

+ x

((
x

y

)α−1
− xα−1

)
qUL.

From the incentive compatibility constraint we have that

qUL = (UH − c)−
k

λ

(y
x

)α
.

which can be replaced in the firm’s payoff to get

UH(x, y) =
1

r + λ
+
y − x
r
− xα

r + λ
+
xαy1−α − y
r + λ

− (y − x)
k

r
+ x(UH − c)

− x

((
x

y

)α−1
− xα−1

)(y
x

)α k
λ
.

Writing the incentive compatibility constraint for q = 1 as

y = x

(
λ(UH − c− UL)

k

) 1
α

= xM

and substituting y(x) = xM to UH(x) ≡ UH(x, y(x)) we get:

UH(x) =
1

r + λ
+

(M − 1)(1− k)x

r
− xα

r + λ
+ x

M1−α −M
r + λ

+ x(UH − c)− x
(
M1−α − xα−1

)
Mα k

λ

Differentiating with respect to x we get that

U ′H(x) =
(M − 1)(1− k)

r
− αxα−1

r + λ
+
M1−α −M
r + λ

+ (UH − c)

−
(
M1−α − αxα−1

)
Mα k

λ

U ′′H(x) = (α− 1)αxα−2
(
UH − c− UL −

1

r + λ

)
We need to consider two cases: UH − c − UL − 1

r+λ
> 0 and UH − c − UL − 1

r+λ
≤ 0. In

the first case, the payoff (given q = 1) is convex and so full investment is optimal (by the
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same reasoning as in the proof of Lemma 1). Moreover, with full investment it is optimal

to set q = 0 as because this minimizes the certification cost. Let’s assume then that that

UH − c − UL − 1
r+λ
≤ 0. Let x1 be the optimal x when q = 1. It must be the case that

x ∈ [0,M−1] as any x > M−1 implements the same investment as M−1 but at a higher

certification cost. Under the assumption that UH − c− UL − 1
r+λ
≤ 0 the function UH(x) is

concave and so a necessary and sufficient condition for x1 = M−1 (so there is full investment,

y1 = 1) is that U ′H(M−1) ≥ 0. We can compute:

U ′H(M−1) =
(M − 1)(1− k)

r
− M

r + λ
+ (UH − c)− (α− 1)

(
M1−α 1

r + λ
−M k

λ

)
=

(M − 1)(1− k)

r
+ (UH − c)−

M

r + λ
− M

r

(
k

UH − c− UL

1

r + λ
− k
)
.

We want to show that U ′(M−1) ≥ 0 when c → 0. With this objective in mind, we look for

a lower bound for UH − c− UL. Note that

UH − c ≥ UFI
H (τFIH )− c

UL ≤ UFB
L ≡ λ

r + λ

1

r
− k

r
,

where UFB
L is the first best payoff. From here, we get that

UH − c− UL ≥ UFI
H (τFIH )− c+

k

r
− λ

r + λ

1

r
.

In the limit, when c → 0 we have that UFI
H (τFIH ) − c → (1 − k)/r = UFB

H . Accordingly,

limc→0 (UH − c− UL) ≥ 1/(r + λ). Replacing in U ′H(M−1) we get that

lim
c→0
U ′H(M−1) ≥ (M − 1)(1− k)

r
+ (UH − c)−

M

r + λ

= (M − 1)

(
1− k
r
− (UH − c)

)
+M

(
UH − c−

1

r + λ

)
> 0.

This means that for c small enough, x = M−1 is optimal and so we have full investment and

q = 1− βH = 0 being optimal.

Lemma 3. There is c̃2 > 0 such that for any c ≤ c̃2 a solution to equation (16) satisfying

UFI
H (τFIH )− c ≥ 1/(r + λ) exists.

Proof. First, we use the inequality UFI
H (τFIH )− c ≥ 1/(r + λ) to find a lower bound for τFIH .
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Using equation (15) we get that UFI
H (τFIH )− c ≥ 1/(r + λ) if and only if

τFIH ≥ τ ≡ 1

r
log

(
λ/(r + λ)− k

λ/(r + λ)− k − rc

)
. (6)

For future reference, remember that τFIH solves

e−(r+λ)τ (UFI
H (τ)− c) =

k

λ

Let

f(τ) ≡ e−(r+λ)τ (UFI
H (τ)− c)− k

λ
= e−(r+λ)τ

(
1− k
r
− 1

1− e−rτ
c

)
− k

λ
,

so that by definition f(τFIH ) = 0. An equilibrium with full investment satisfying the required

properties exists if we can find τ ∈ [τ ,∞) such that f(τ) = 0. The limit of f(τ) when τ

goes to infinity is limτ→∞ f(τ) = −k/λ < 0, which means that it is enough to show that

f(τ) ≥ 0. If we evaluate f(τ) at the lower bound τ we get

f(τ) =

(
λ/(r + λ)− k − rc
λ/(r + λ)− k

) r+λ
r 1

r + λ
− k

λ
.

Given the parametric assumption 1/(r+λ) > k/λ, the denominator in the last expression is

positive, so the expression is decreasing in c and strictly positive for c = 0. Hence, f(τ) > 0

if c ≤ c̃2 where c̃2 > 0 is chosen such f(τ) = 0.

Lemma 4. Suppose that UH − c ≥ 1/(r+ λ) then there is Û0
L ∈ (0, UH − c− k/λ) such that

Û0
L =

∫ τ0L

0

e−rt(pLt − k)dt+ e−rτ
0
L
(
pLτ0L

(UH − c) + (1− pLτ0L)Û0
L

)
τ 0L =

1

r + λ
log

(
λ(UH − c− Û0

L)

k

)
.

Proof. Let’s define the function

G(u) =

∫ τ(u)

0

e−rt(pLt − k)dt+ e−rτ(u)
(
pLτ(u)(UH − c) + (1− pLτ(u))u

)
− u

where

τ(u) =
1

r + λ
log

(
λ(UH − c− u)

k

)

13



We need to show that a solution G(u) = 0 exists on the open interval (0, UH − c− k/λ) (the

restriction that UL is strictly lower than UH − c− k/λ is required to guarantee that τ > 0).

Noting that G(UH − c − k/λ) = 0 and G(0) = Û1
L > 0 we conclude that it is enough to

show that G(UH − c− k/λ− ε) < 0 for some small ε > 0. Because G(u) is continuous, it is

sufficient to show that G′(UH− c−k/λ) > 0. For convenience, we use the change of variable

x(u) ≡ e−rτ(u) and write

G(u) =
(1− x)(1− k)

r
+
xα − 1

r + λ
+ x

[
1− xα−1

]
(UH − c) + xαu− u

where as usual α ≡ (r + λ)/r. Using the incentive compatibility constraint we can verify

that

x′(u) =
x(u)

α(UH − c− u)
.

Differentiating G(u) we get

G′(u) = x′(u)

[
UH − c−

(1− k)

r
+
xα−1

r

]
+ 2xα − 1

Evaluating at û = UH − c− k
λ

we get

G′(û) = x′(û)

[
UH − c+

k

r

]
+ 1 > 0

As G(û) = 0 and G(0) = Û1
L > 0 there is Û0

L ∈ (0, û) such that G(Û0
L) = 0.

Lemma 5. There is c̃3 > 0 such that βL = 0 is optimal for all c ≤ c̃3.

Proof. Fix θ0 = L.

We want to show that when c→ 0, q = 1− β = 1 is optimal. Consider the firm’s payoff

after replacing the binding incentive compatibility constraint (recall that in case θ0 = L in

the best equilibrium τa = 0, so this expression uses y = 1.)

UL(x) ≡ UL(x, q(x)) =
1− k
r
− 1

r + λ
− k

λ
− x

(
1− k
r
− (UH − c)

)
+

xα

r + λ
.

Note it is convex and the derivative is

U ′L(x) = −
(

1− k
r
− (UH − c)

)
+
αxα−1

r + λ

14



Let x0 = x(q = 0) and x1 = x(q = 1) and recall that x1 > x0. If we replace x0 and α we get

U ′L(x0) = −
(

1− k
r
− (UH − c)

)
+

1

r

[
k

λ
(UH − c)

]α−1
α

.

It is straightforward to show that UFI
H (τFIH ) converges to the first best payoff 1−k

r
as c goes

to zero because the frequency of certification remains bounded:

lim
c→0

τFIH =
1

r + λ
log

(
1− k
r

λ

k

)
> 0.

Therefore limc→0(UH − c − (1 − k)/r) = 0 which means that limc→0 U ′L(x0) > 0. The

optimality of x1 follows from the convexity of UL(x).

Lemma 6. It is never optimal for a high quality firm to delay certification at time τ ∗θ

Proof. In the case of τ ∗H it is straightforward that the firm would not deviate as the deviation

payoff is zero (the reputation drops to p = 0 and even if the firm certifies later, it has to pay

c and receive continuation payoff UH = c for a net payoff 0). The same reasoning applies

if τ ∗L and β = 1, i.e. if the equilibrium is harsh. The case of τ ∗L is a bit different when the

equilibrium is lenient, β = 0 because the high quality firm can then deviate to certification at

some other on-path time, for example 2τ ∗L (the previous reasoning applies if the firm deviates

to off-path time). It is sufficient to consider a single-step deviation in which the firm that

does not certify at time τ ∗L certifies for sure at time 2τ ∗L. The payoff of such a deviation is

ŨH =

∫ τ∗L

0

e−rt(pLt − k)dt+ e−rτ (UH − c)

Adding and subtracting (1− pLτ∗L)UL we can write

ŨH =

∫ τ∗L

0

e−rt(pLt − k)dt+ e−rτ
∗
L

(
pLτ∗L(UH − c)) + ((1− pLτ∗L)UL)

)
+ e−rτ

∗
L(1− pLτ∗L)(UH − c− UL)

= UL + e−rτ
∗
L(1− pLτ∗L)(UH − c− UL)

=
(

1− e−rτ∗L(1− pLτ∗L)
)
UL + e−rτ

∗
L(1− pLτ∗L)(UH − c)

< UH − c,

which means that a high quality firm never has incentives to delay certification at t = τ ∗L.
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Lemma 7. β∗L is non-decreasing in c

Proof. We show that q = 1−βL is non-increasing in c. Replacing the binding IC constraint,

we get that the payoff of a low quality firm given (x, q) (recall x = e−rτ ) is

UL(x, q(x)) =
1− k
r
− 1

r + λ
− k

λ
− x

(
1− k
r
− (UH − c)

)
+

xα

r + λ
.

We show that q is non-increasing by using monotone comparative static. Let UL(x, q(x), c)

be the payoff of the low quality firm given by equation (5) as a function of c. The cross

derivative with respect to c and x is

∂2

∂x∂c
UL(x, q(x), c) =

∂

∂c
(UH(c)− c) = U

′
H(c)− 1 < 0.

Thus, UL(x, q(x), c) satisfies the single crossing property. Using monotone comparative stat-

ics we conclude that x is non-increasing in c. Combining the fact that x = e−rτ and that

τ is higher when q = 0 we verify that τ is non-decreasing in c. But then the incentive

compatibility constraint immediately implies that q is non-increasing in c.

C Time-Contingent Certification

As Section II demonstrates, all MPE exhibit poor efficiency properties. On the other hand the

best equilibrium analyzed in Section III is very efficient but requires significant coordination

between firms and the market. For completeness, here we discuss another class of equilibria,

referred to as Time-Contingent Equilibria (TCE): TCE exhibit a simple stationary structure

that seems consistent with the way in which many certification programs are organized.

In a TCE, the firm’s certification strategy depends on time since last certification rather

than reputation. A time-contingent equilibrium is characterized by two numbers: τ, which

represents the market belief about the duration of the certificate, and τa which represents

the time at which the firm starts investing, with τa < τ . That is, we consider an equilibrium

in which after the firm certifies at time t0, the equilibrium prescribes no certification before

time t0 + τ , and certification with probability one at time t0+τ, if the firm still has high

quality. If the firm has low quality, the equilibrium certification strategy is to certify (after

t0+τ) as soon as the quality improves. On the other hand, the firm invests, regardless of

quality, from time t0 + τa till the time it certifies again.
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Define τc as the largest τ consistent with an MPE as characterized in section II:

τc ≡
− log

([
1− c

1
r+λ
− k
λ

] λ
r+λ

)
λ

. (7)

Proposition 1. Define two functions of τ and τa by:

v(τ, τa) ≡
∫ τ
0
e−rtptdt−

(
e−rτa − e−rτ

)
k
r

+
(
e−(r+λ)τa − e−rτa

)
k
λ
− c

1− e−rτ
(8)

g(τ, τa) ≡
k

λ

r + λ

r
e(r+λ)(τ−τa) − k

r
. (9)

Let τa ∈ (0, τ) be a solution of v(τ, τa) = g(τ, τa).

If such solution exists, then there is a (time-contingent) equilibrium (TCE) with at =

1{t>τa}. In addition, if v(τ, 0) ≥ g(τ, 0) there exists a TCE with τa = 0. For every τ > τc

there exists at least one TCE; and for any equilibrium there is positive investment before τ .

.

In all TCEs characterized in this proposition the ex-ante equilibrium payoff of the H

type firm is UH(0)− c = v(τ, τa).

Unlike MPE, if τa ∈ (0, τ), the equilibrium reputation is non-monotone in time between

two certification times. The market rationally expects that the firm is shirking right after

certification, so reputation goes down right after t = 0. Yet, as the expiration date of the

certificate approaches, the firm starts investing again. The market rationally foresees that

and reputation starts going up. Hence, certification happens not when the firm reputation

is lowest, but after it rebounds. Generally, our model predicts the following pattern of

reputation and certification. If the firm reaches τ having high quality, certification happens

either at the highest reputation (if it started with low quality) or after reputation has recently

improved (if it started with high quality). If the firm reaches τ with low quality, it fails to

certify, reputation discontinuously drops, and the firm certifies again after it regains high

quality.

For a fixed certificate duration τ , there are sometimes multiple τa that are consistent with

an equilibrium. This multiplicity is caused by strategic complementarity of reputation and

investment: pessimistic beliefs about the firm’s investment policy reduce the payoffs from

certification and that in turn reduces incentives to invest (and vice-versa). By reducing the

return to investment low investment levels may then become a self-fulfilling prophecy. We
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define

E(τ) ≡ {ta ∈ [0, τ ] : v(τ, ta) ≥ g(τ, ta) and (v(τ, ta)− g(τ, ta))ta = 0},

as the set of equilibrium investment thresholds τa, given duration τ, and we let τa = inf E(τ)

and τa = sup E(τ) be the lower and higher investment thresholds that can be supported in

equilibrium. With this definition, we can further characterize time-contingent equilibria.

Proposition 2. Let UH(0|τ, τa) be the high-quality firm’s ex-ante expected (time-contingent)

equilibrium payoff when the certification duration is τ and the equilibrium investment thresh-

old is τa. Then

(i) There is some finite τ > τc such that UH(0|τ, τa) > V nc
H (1) for all τa ∈ E(τ) where

V nc
H (1) is the payoff of a firm with reputation p = 1 from committing to no certification

forever.

(ii) τa and τa are monotone nondecreasing in c and k.

(iii) For any τ < 1
r+λ

log
(

λ
r+λ

1
k

)
there is c̄ > 0 such that τa = 0 for all c ≤ c̄.

(iv) Let UH(0|τ) := UH(0|τ, τa) and UH(0|τ) := UH(0|τ, τa) be the ex-ante expected payoff

in the equilibrium with minimum and maximum investment threshold, respectively.

Then, maxτ≥τc UH(0|τ) and maxτ≥τc UH(0|τ) are decreasing in c and k.

Under MPE the high-quality firm would be better off by committing to no-certification

(for the proof, see working paper version). By contrast, Proposition 2 shows that there exists

a duration of certificates τ that generates better payoffs than a commitment to no certifi-

cation, no matter what equilibrium τa the firm and the market coordinate on. Therefore, if

the duration is chosen optimally, we can overcome the paradoxical result that certification

does not promote investment and hurts the firm, under MPE.

The optimal duration τ is determined by the following trade off. As τ changes there are

two equilibrium effects: First, a longer τ reduces expected certification costs, which increases

the firm payoffs and incentives to invest in quality, close to τ . Second, longer τ means that

the firm has to wait a long time till recertification hence the firm may choose to shirk right

after certification. This trade off is such that the optimum is always interior: neither no

certification nor highly frequent recertification –as under MPE– are optimal.

A lower c, holding the frequency of certification constant, increases the payoffs of the high

quality firm, increasing incentives to invest in quality, which means the firm starts investing
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sooner (and rational expectations by the market reinforce this effect). Finally, Proposition

2 states that firms with high quality benefit from lower certification costs in time-contingent

equilibria with optimal τ . That resolves another paradox of the belief-contingent equilibria

discussed in Section II.1

Overall, the best TCE leads to better outcomes than any MPE. Recall that MPE can only

trigger certification when the firm’s reputation has decreased sufficiently. Hence, some spells

of shirking must always be part of an MPE. This is not always true for TCE: by disconnecting

certification times from the firm’s reputation, TCE are often able to implement higher levels

of investment and lower frequency of certification. It is important to note here that in a

different model where, where even under full effort high quality is not an absorbing state,

reputation would drift even under full effort. In that case, the best MPE and TCE would

exhibit similar properties. To see this, consider the case when TCE implements full effort at

all times. Since reputation is a deterministic function of time within certification cycles, if a

TCE prescribed certification at time τ , we could construct an MPE prescribing certification

when reputation reaches pτ .

We conclude by contrasting TCE with the best equilibrium. In what sense is TCE

restrictive relative to the best equilibrium? Relative to TCE, the best equilibrium reduces

the ability of low reputation firms to certify quality as soon as quality improves, thereby

reducing expected certification expenses – without affecting the firm’s expected reputation.

Indeed, TCE prescribes that a low quality firm that failed to certify its quality during the

last scheduled review will certify it as soon as it improves; this possibility leads to excessive

certification expenses. Second, the best equilibrium improves incentives because it’s able

to make stronger threats against non-certifying firms: when the best equilibrium is harsh,

a firm that fails to certify at time τ is essentially shut down, because it loses its ability to

certify in the future. Under TCE, by contrast, a low reputation firm that failed to certify can

always restart afresh when quality improves. This access to “forgiveness” that characterizes

TCE sometimes weakens the firm’s investment incentives.

1This last comparison is somewhat complicated since even for the optimal τ there may be multiple time-
contingent equilibria with different τa, so we compare equilibria with the lowest and the highest selections
of the equilibrium investment.
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D Proofs of results in Appendix C on Time-Contingent

Equilibria

Because between certifications the firm reputation is a deterministic function of time, then

for every Markov perfect equilibrium we characterized in the previous section, in which the

high quality firm certifies in intervals of length τc, there exists an outcome-equivalent time-

contingent equilibrium where τ = τc. To focus on equilibria with more investment than in

the previous section, we restrict attention to equilibria with τ larger than τc, where we define

τc ≡ − log p−c
λ

as the amount of time that elapses before reputation reaches the certification

threshold p−c in the most-efficient belief-contingent equilibrium characterized in Proposition

1. Moreover, we focus on equilibria in which the low-quality invests when reputation is at

the lowest and maintain the assumption that c < 1
r+λ
− k

λ
.

Proof of Proposition 1

Proof. To analyze these time-contingent equilibria, we first consider the firm’s investment

incentives for a fixed τ . Since the equilibrium is stationary (on path), without loss of general-

ity we reset the time clock to t0 = 0 when the firm certifies high quality. To avoid confusion,

since the state variable is different in this section than in the previous one, we introduce new

notation: we denote the value function and value of quality as Uθ(t) and D̄(t), where t is the

time since last certification and we write the investment strategy as at.

On the equilibrium path, the continuation value satisfies a HJB equation similar to the

one in the Markov case

0 = max
a∈[0,1]

pt − ak + U̇L(t) + λaD̄(t)− rUL(t) (10)

0 = max
{

max
a∈[0,1]

pt − ak + U̇H(t)− λ(1− a)D̄(t)− rUH(t), (11)

Ud
H − c− UH(t)

}
,

where Ud
H is the continuation value if the firm certifies early. As we mentioned before, we

can consider the punishment continuation equilibrium with Ud
H − c = 0; this means, that no

early certification is incentive compatible as long as UH(t) ≥ 0. Looking at the investment

strategy, analogously to our reasoning in the previous section, at time t < τ the firm’s
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investment incentives depend on

D̄(t) = e−(r+λ)(τ−t)D̄(τ). (12)

In any (time-contingent) equilibrium, the firm invests at time t if and only if λD̄(t) ≥ k,

so the optimal investment strategy is also time-contingent. Equation (12) implies that D̄(t)

is increasing, so that investment must be a non-decreasing function of time. In other words,

the firm’s investment strategy defined as a function of time must take the form at = 1t>τa

for some threshold τa ≤ τ , where τa = τ indicates that the firm never invests.2

We compute the firm’s continuation value Uθ in several steps: first, we compute the

continuation value at expiration, namely at t = τ , then we determine τa as a function of

continuation payoffs, then work backwards to obtain the continuation value for t < τ , and

finally solve a fixed-point problem to determine τa and the continuation payoffs.

Since we are looking at equilibria in which the low-quality firm invests at time t = τ (and

thereafter until the realization of the first positive shock) its continuation value is

UL(τ) =
λ(UH(0)− c)− k

r + λ
,

which means that the value of quality at time t is

D̄(t) = e−(r+λ)(τ−t)D̄(τ) = e−(r+λ)(τ−t)
r(UH(0)− c) + k

r + λ
. (13)

This allows us to pin down the firm’s investment strategy, namely the time τa at which the

firm starts investing. The firm is indifferent between investing and not at t = τa if the return

to investment is zero, i.e., if τa satisfies:

e−(r+λ)(τ−τa)
r(UH(0)− c) + k

r + λ
=
k

λ
. (14)

Solving for τa yields

τa = τ +
1

r + λ
log

(
r + λ

λ

k

r(UH(0)− c) + k

)
. (15)

2Optimal investment strategy at t = τa is not uniquely determined, but since the firm reaches τa over a
zero measure of all the times, this has no impact on total payoffs. Hence, when we describe equilibria, we
ignore this indeterminacy.
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Of course, equation (15) is valid for τa ∈ [0, τ ]. A straightforward computation shows that

τa > 0 if and only if the return to investment is negative at t = 0, namely D̄(0) < k/λ. If

this condition does not hold, then the equilibrium entails first-best investment, τa = 0. On

the other hand, τa ≤ τ if and only if the return to investment at time τ is strictly positive

or, λ(UH(0) − c) − k > 0. In words, the firm is willing to invest prior to τ if the return to

investment at time τ is strictly positive.

The next step is to compute the firm value during the investment interval, t ∈ [τa, τ).

Because there is no certification during this interval, the firm value consists of two compo-

nents: the present value of the cash flows earned through [t, τ) and the value of the firm at

time τ net of the certification cost that will be incurred at that time:

UH(t) =

∫ τ

t

e−r(s−t)(ps − k)ds+ e−r(τ−t)(UH(0)− c), (16)

where pt evolves according to ṗt = λ(1− pt), (since at = 1 in that interval). Using pa as the

initial belief in the interval [τa,τ), we obtain

pt = 1− e−λ(t−τa)(1− pa).

Using the definition of D̄(·) and equation (13), we get that the low-quality firm value for

t ∈ [τa, τ) is

UL(t) = UH(t)− e−(r+λ)(τ−t)D̄(τ). (17)

The final step in the construction of the value functions requires that we consider the

interval t ∈ [0, τa], when the firm is not investing. Given that there is no investment during

this interval, reputation is pt = e−λt so the continuation values are

UL(t) =

∫ τa

t

e−r(s−t)psds+ e−r(τa−t)UL(τa) (18)

UH(t) =

∫ τa

t

e−r(s−t)psds+ e−r(τa−t)UL(τa) + e−(r+λ)(τa−t)D̄(τa). (19)

Notice the asymmetry between the two states: because in this interval the firm is not in-

vesting, it can experience a negative shock in the high state but no shocks in the low state.

We can now pin down the investment threshold τa using equation (18), along with (15)

and the optimality condition D̄(τa) = k/λ. At the same time we can pin down the equilibrium

payoffs as a solution to a fixed-point problem and establish existence of equilibria.
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Using equation (18), together with the optimality condition D̄(τa) = k/λ we get

UH(0) =

∫ τa

t

e−r(s−t)psds+ e−r(τa−t)
[
UH(τa)− D̄(τa)

]
+ e−(r+λ)(τa−t)

k

λ

=

∫ τa

t

e−r(s−t)psds+ e−r(τa−t)UH(τa) +
(
e−(r+λ)(τa−t) − e−r(τa−t)

)k
λ
.

Replacing UH(τa) and evaluation at t = t0 we get

UH(0) =

∫ τa

0

e−rspsds+

∫ τ

τa

e−rs(ps − k)ds+ e−rτ (UH(0)− c) +
(
e−(r+λ)τa − e−rτa

)k
λ
. (20)

Computing the integral of the price in equation (20) yields

h(τ, τa) ≡
∫ τ

0

e−rspsds =
1

r + λ
− e−(r+λ)τa

r + λ
+
e−rτa − e−rτ

r

e−(r+λ)τa − e−(r+λ)τ

r + λ
+
e−(r+λ)τ+λτa − e−rτa

r + λ

=
1

r + λ
+
e−rτa − e−rτ

r
− e−(r+λ)τ

r + λ
+ e−rτa

e−(r+λ)(τ−τa) − 1

r + λ

Replacing in and (20) and defining v ≡ UH(0)− c we get (8). Computing g as the inverse

of (15) we get

g(τ, τa) ≡
k

λ

r + λ

r
e(r+λ)(τ−τa) − k

r

In equilibrium, if τa > 0, it must be the case that

g(τ, τa) = v(τ, τa).

Finally, suppose that v(τ, 0) ≥ g(τ, 0). By definition, this means

D̄(0) = e−(r+λ)τ
rv + k

r + λ
≥ k

λ
,

so τa = 0 is optimal for the seller.

The next step is to show that for any τ > τc an equilibrium exists and τa < τ . By

continuity, it suffices to show that v(τ, τ) > g(τ, τ). First, we have that g(τ, τ) is

g(τ, τ) =
k

λ

r + λ

r
− k

r
=
k

λ
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Evaluating the RHS at τa = τ we get

v(τ, τ) =
1

r+λ
− e−(r+λ)τ

r+λ
+
(
e−(r+λ)τ − e−rτ

)
k
λ
− c

1− e−rτ

If c < 1
r+λ
− k

λ
then limτ→∞ v(τ, τ) > k

λ
. Next, evaluating the limit at τc we obtain

v(τc, τc) =
k

λ

As
d

dτ
v(τ, τ) =

re−rτ

1− e−rτ

(
k

λ
− v(τ, τ)

)
+

(r + λ)e−(r+λ)τ

1− e−rτ

(
1

r + λ
− k

λ

)
,

we get that v(τ, τ) = k/λ implies d
dτ
v(τ, τ) > 0. Hence, v(τc, τc) = k

λ
implies that v(τ, τ) > k

λ

for all τ > τc.

The only step left is to show that UH(t) ≥ 0, all t ∈ [0, τ ], so UH(t) ≥ Ud
H − c (where Ud

H

is the worst equilibrium in Proposition 1). Looking for a proof by contradiction, suppose

that there is t̂ ∈ [τa, τ ] such that UL(t̂) < 0. Because UL(τ) > 0, by continuity, there is t̃ > t̂

such that UL(t̃) = 0. Using the HJB equation for UL we get that

U̇L(t̃) = −pt̃ − (λD̄(t̃)− k) < 0,

which means that UL(t̃+ε) < 0; hence, UL(t) can never cross zero and UL(τ) < 0, which give

us the desired contradiction. Using the fact that UH(t) ≥ UL(t) we conclude that UH(t) ≥ 0

for all t ∈ [τa, τ ]. The final step is to look at the interval [0, τa]. For any t ≤ τa, the low type

continuation value satisfies

UL(t) =

∫ τa

t

e−r(s−t)psds+ e−r(τa−t)UL(τa).

We have already shown that UL(τa) ≥ 0, which means that UL(t) above is greater then zero.

Hence, we conclude that UH(t) ≥ 0, all t ∈ [0, τa].
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Proof of Proposition 2

Proposition 2(i)

First we note that for any τ 0a , τ
1
a ∈ E(τ) it is the case that τ 1a > τ 0a implies U(0|τ, τ 0a ) >

U(0|τ, τ 1a ). This follows from the fact that for any τa > 0

U(0|τ, τa) = g(τ, τa) + c

is decreasing in τa and when τa = 0 we have U(0|τ, 0) > g(τ, 0) + c. Hence, it is sufficient

to show that there is τ such that U(0|τ, τa) > V nc(p0). We complete the proof with two

lemmas. In Lemma 8 we show that there is a benefit setting τ > τc, while in Lemma 9 we

show that τ =∞ is not optimal.

Lemma 8. Suppose that 1
r+λ
− k

λ
> c then d

dτ
v(τ, τa(τ))

∣∣
τ=τc

> 0.

Proof. Suppose that τa > 0. In this case, we have that

d

dτ
v(τ, τa(τ)) = vτ (τ, τa) + vτa(τ, τa)τ

′
a(τ)

τ ′a(τ) = − vτ (τ, τa)− gτ (τ, τa)
vτa(τ, τa)− gτa(τ, τa)

(21)

Where,

gτ (τ, τa) =
k

λ

(r + λ)2

r
e(r+λ)(τ−τa) = (r + λ)g(τ, τa) + (r + λ)

k

r
(22)

gτa(τ, τa) = −k
λ

(r + λ)2

r
e(r+λ)(τ−τa) = −gτ (τ, τa) (23)

vτ (τ, τa) =
e−rτ

1− e−rτ

(
1− k
r
− v
)

+
e−(r+λ)τ − e−rτ−λ(τ−τa)

1− e−rτ
(24)

vτa(τ, τa) =
e−rτa

(
k
(
1− e−λτa

)
(r + λ)2 + λ2

(
e−(r+λ)(τ−τa) − 1

))
λ(r + λ) (1− e−rτ )

(25)
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Evaluating at τ = τa = τc and using v(τc, τc) = g(τc, τc) = k/λ we get

gτ (τc, τc) = (r + λ)
k

λ
+ (r + λ)

k

r
> 0

gτa(τc, τc) = −(r + λ)
k

λ
− (r + λ)

k

r
< 0

vτ (τc, τc) =
(r + λ)e−rτc

1− e−rτc

(
pc

r + λ
− k

λ

)
vτa(τc, τc) =

k

λ

(
1− e−λτc

)
(r + λ)

erτc − 1
=

(r + λ)e−rτc

1− e−rτc
k

λ
(1− pc) > 0

Noting that we can write

vτ (τc, τc) =
(r + λ)pce

−rτc

1− e−rτc

(
1

r + λ
− k

λ

)
− vτa(τc, τc).

Replacing in the equation for d
dτ
v(τ, τa(τ))

d

dτ
v(τ, τa(τ))

∣∣
τ=τc

=
(r + λ)pce

−rτc

1− e−rτc

(
1

r + λ
− k

λ

)
+ vτa(τc, τc)(τ

′
a(τc)− 1).

Moreover, we have

τ ′a(τc)− 1 = − vτ (τc, τc) + vτa(τc, τc)

vτa(τc, τc)− gτa(τc, τc)

= −
(r+λ)pce−rτc

1−e−rτc
(

1
r+λ
− k

λ

)
vτa(τc, τc)− gτa(τc, τc)

,

which means that

d

dτ
v(τ, τa(τ))

∣∣
τ=τc

=
(r + λ)pce

−rτc

1− e−rτc

(
1− vτa(τc, τc)

vτa(τc, τc)− gτa(τc, τc)

)
> 0

Finally, suppose that τa = 0. In this case, we have that

d

dτ
v(τ, τa(τ)) = vτ (τ, τa) =

e−rτ

1− e−rτ

(
1− k
r
− v
)
> 0.

Where the last inequality follows from the fact that (1− k)/r is the payoff in the first best

and so it is necessarily grater than v.

Lemma 9. Suppose that 1
r+λ
− k

λ
> c then there is τ such that UH(0|τ, τa) > V nc

H (p0).
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Proof. We start showing that limτ→∞ (τa (τ)− τ) = 0 and limτ→∞ τ
′
a (τ) = 1. This implies

that

lim
τ→∞

d

dτ
v(τ, τa) = lim

τ→∞
vτ (τ, τa) + vτa(τ, τa)τ

′
a (τ) = vτ (τ, τa) + vτa(τ, τa) = lim

τ→∞

d

dτ
v(τ, τ).

The final step is to show that d
dτ
v(τ, τ) < 0 for τ arbitrarily large.

Step 1: limτ→∞ (τa (τ)− τ) = 0 and limτ→∞ τ
′
a (τ) = 1.

Given that v(τ, τa) is bounded above and g(τ, 0) → ∞ as τ → ∞ it must be the case

that τa > 0 for τ sufficiently large. Defining x ≡ exp (−rτ) and y ≡ exp (−rτa) we can write

the equilibrium condition for τa in terms of x and y as

k

λ

r + λ

r
y1+

λ
r = x1+

λ
r

kr +

(
1−x1+

λ
r

r+λ
+ y−x

r
+ yr

(xy )
1+λr −1
r+λ

)
− (y−x)k

r
+

(
y1+

λ
r −y

)
k

λ
− c

1− x

 .

By direct inspection of the above equation we conclude that the limit when τ → ∞ which

corresponds to the limit when x→ 0 is given by

lim
x→0

(y − x) = 0.

Moreover, replacing x and y into equation (21)

τ ′a = −
x

1−x

(
1−k
r
− v
)

+
x1+

λ
r −(xy )

1+λr y

(1−x) − k
λ
(r+λ)2

r

(
y
x

)1+λ
r

y

(
k
(
1−y

λ
r

)
(r+λ)2+λ2

(
(xy )

1+λr
−1
))

λ(r+λ)(1−x) + k
λ
(r+λ)2

r

(
y
x

)(1+λ
r
)

.

and taking the limit when x→ 0 we get

lim
x→0

τ ′a = −
− k
λ
(r+λ)2

r

− k
λ
(r+λ)2

r

= 1.

Step 2: We show that limx→0
dv(τ(x),τ(x))

dx
> 0. This, along with Step 1, implies that the
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optimal τ is interior. Substituting x = e−rτ into v (τ, τ) yields

v (τ (x) , τ (x)) =

1
r+λ
− x1+

λ
r

r+λ
+
(
x1+

λ
r − x

)
k
λ
− c

1− x
.

Differentiating v (τ (x) , τ (x))

dv (τ (x) , τ (x))

dx
=
−x

λ
r

r
+
(
r+λ
r
x
λ
r − 1

)
k
λ

1− x
+

1
r+λ
− x1+

λ
r

r+λ
+
(
x1+

λ
r − x

)
k
λ
− c

(1− x)2
,

and evaluating at x = 0 we get

dv (τ (x) , τ (x))

dx

∣∣∣
x=0

=
1

r + λ
− k

λ
− c > 0.

By Step 1 we have that

lim
x→0

dv (τ (x) , τ (x))

dx
= lim

x→0

d

dx
v (τ (x) , τa (τ (x))) .

Hence, we have that for τ arbitrarily large

dv (τ, τa (τ))

dτ
=
dv (τ(x), τa (τ(x)))

dx

dx

dτ
= −re−rτ dv (τ(x), τa (τ(x)))

dx
< 0

so the τ that maximizes v (τ, τa (τ)) is interior.

Proposition 2(ii)

Let’s define f(ta, c) := g(τ, ta) − v(τ, ta). The derivative of f(·, c) with respect to c is
1

1−e−rτ > 0 so we have that f(ta, c1) ≥ f(ta, c0) for any c1 > c0. Accordingly, Lemma 1 in ?

implies that τa(c1) = inf{ta ∈ [0, τ ] : f(ta, c1) ≤ 0} ≥ inf{ta ∈ [0, τ ] : f(ta, c0) ≤ 0} = τa(c0)

and τa(c1) = sup{ta ∈ [0, τ ] : f(ta, c1) ≥ 0} ≥ sup{ta ∈ [0, τ ] : f(ta, c0) ≥ 0} = τa(c0).

Similarly, differentiating g and v with respect to k we get that g(τ, ta)− v(τ, ta) is increasing

in k, which means that τa and τa are decreasing in k as well.

Proposition 2(iii)

Evaluating v(τ, τa) and g(τ, τa) at τa = 0 we get the sufficient condition for full effort
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(r + λ)
(
1− e−rτ

)( 1

r + λ
− k

λ
e(r+λ)τ

)
≥ rc.

Clearly, for any fixed τ we can find c̄ > 0 such that the previous condition is satisfied for all

c ≤ c̄ if and only if
1

r + λ
− k

λ
e(r+λ)τ > 0

for some τ > 0. Te LHS is decreasing in τ and by assumption 1
r+λ

> k
λ
; hence, the previous

inequality is satisfied for all τ < 1
r+λ

log
(

λ
r+λ

1
k

)
.

Proposition 2(iv)

We prove the result only for supτ≥τc UH(0|τ) as the proof for supτ≥τc UH(0|τ) is analogous.

Let’s consider c1 > c0; from Proposition 2(ii) we have that τa(c1) ≥ τa(c0); which means

that it suffices to show that UH(1|τ, τa, c) is decreasing in τa. Fix τ and consider the case

with τa(c0) > 0. Using equation (9), we have that

UH(0|τ, τa(τ, c), c)− c = g(τ, τa(τ, c)). (26)

Hence, the firm’s ex-ante profit given an investment threshold ta is

UH(0|τ, ta, c) = h(τ, ta)− (e−rta − e−rτ )k
r
− e−rτ (1− pτ )

k

r + λ
(27)

+ e−rτ
(

λ

r + λ
+

r

r + λ
pτ

)(
UH(0|τ, ta, c0)− c0

)
= h(τ, ta)− (e−rta − e−rτ )k

r
− e−rτ (1− pτ )

k

r + λ
(28)

+ e−rτ
(

λ

r + λ
+

r

r + λ
pτ

)
g(τ, ta),

where the function h is defined in Proposition 2 and in the second equation we have replaced

equation (26). The derivative with respect to ta is

e−(r+λ)ta
(
r (kr(r + λ)− λ2) eλta − k(r + λ)3eλτ − kr(λ+ r)2 + λ2re−(r+λ)(τ−ta)

)
λr(λ+ r)

The sign of the previous expression is determined by the sign of the denominator which is

−k(r + λ)
(
(r + λ)2eλτ − r2eλta + r(λ+ r)

)
− λ2r

(
eλta − e−(r+λ)(τ−ta)

)
< 0.
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Hence, we have that ∂
∂ta
UH(0|τ, ta, c) < 0. Next, we consider the case with τa(c0) = 0. If

τa(c1) > 0 then UH(0|τ, τa(c0), c0) is strictly greater than (28) so the previous argument for

the case with τa(c0) applies and UH(0|τ, τa(c0), c0) > UH(0|τ, τa(c1), c1). Finally, the case

with τa(c0) = τa(c1) = 0 is trivial as both policies have the same investment, the same

certification and one has a lower cost. Repeating the same argument in the case of k we get

that UH(0|τ, τa) is also decreasing in k.
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