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Online Appendix

Examples of Equilibria

For the following analysis, it is useful to introduce some additional notation.
In parallel with v = minV , let v̄ = supV , β = minB, and β̄ = supB.

A1. Semi-Separating Equilibrium

Impose Assumption 1 and assume there exists a β ∈ B with βΓ(v) > v. The
semi-separating equilibrium is characterized by a discount factor for the marginal
buyer, β̂ ∈ B, which is determined in equation (A1) below. For now, fix β̂ and

assume, as we verify below, that β̂Γ(v) > v.

We next define two critical prices. The lowest price with trade is p ≡ β̂Γ(v),
the value that the marginal buyer places on an asset sold by the seller with the
lowest continuation value. Note that, given our assumption, p > v, so a seller
with the lowest continuation value strictly prefers selling his asset for p rather
than retaining it. The second critical price is the highest one with trade. Let p̄
be the smallest price satisfying p̄ = β̂Γ(p̄), or p̄ = ∞ if there is no such price.

That is, β̂Γ(v) > v whenever v < p̄.
In the semi-separating equilibrium, the equilibrium buyer-seller ratio satisfies

Θ(p) =


∞ p < p

exp
(
−
∫ p
p

1
p′−Γ−1(p′/β̂)

dp′
)

if p ∈ [p, p̄]

0 p > p̄.

Facing this market tightness, the first part of the definition of equilibrium im-
plies that any seller (β, δ) with continuation value βδ < p̄ maximizes his profit

by setting the sale price ps(β, δ) = β̂Γ(βδ). A seller (β, δ) with a higher contin-
uation value cannot sell his asset at any price satisfying p ≥ βδ and Θ(p) > 0.
Although such a seller is indifferent between all sale prices at which he can-
not sell his asset, i.e. with Θ(p) = 0, his behavior still matters in equilibrium
since it influences buyers’ beliefs. We assume that such an investor sets price
ps(β, δ) = max{βδ, β̂Γ(βδ)}.

Turn next to the buyers’ belief about the quality of asset offered at each price.
At prices p < p, buyers are unable to find sellers, Θ(p) = ∞, and so beliefs
are undefined. Intermediate prices, p ∈ [p, p̄], are offered only by investors with

continuation value v = Γ−1(p/β̂). Since the average quality asset held by these
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sellers is Γ(v) = p/β̂, part 3(a) of the definition of equilibrium imposes ∆(p) = p/β̂

when p ∈ [p, p̄]. Finally, at still higher prices, ∆(p) ≤ p/β̂. Such beliefs are
rational, since by construction an investor with continuation value v > p̄ always
sets a price at least equal to β̂Γ(βδ).15

Given these beliefs, we now use part 2 of the definition of equilibrium. An
investor with discount factor β > β̂ maximizes his profit by buying at any price
p ∈ [p, p̄], weakly prefers buying at those prices rather than any higher price, and
strictly prefers buying at these prices rather than a lower price where there are
no sellers. An investor with discount factor β < β̂ prefers to offer a price p < p,
which ensures that he fails to buy in equilibrium.

The last piece of equilibrium is the determination of the marginal discount
factor. In order to ensure that the supply of assets is equal to the demand, we
require

(A1)

∫
β>β̂

gb(β)dβ =

∫∫
βδ<p̄

ps(β, δ)Θ(ps(β, δ))gs(β, δ) dβdδ

The left hand side is the total supply of the period 1 consumption good brought to
the market by investors with discount factors greater than β̂. The right hand side
is the total cost of purchasing up the assets brought to the market by investors
with continuation values βδ < p̄. We prove in the proof of Proposition 3 that
there is a unique solution to this equation. Finally, we allocate buyers with β > β̂
to markets so as to equate supply and demand at each price, in accordance with
part 4 of the definition of equilibrium.

A2. One-Price Equilibrium

Assume that the support of the buyer’s type distribution is an interval B and
the support of the seller type distribution is a rectangle S = B × D for some
interval D. Under these restrictions, we prove the existence of a one-price equi-
librium characterized by two numbers, the trading price p∗ and the identity of
the marginal buyer β̂ ∈ B.

In a one-price equilibrium, an investor can purchase an asset at any price greater
than or equal to p∗ and can sell an asset at any price less than or equal to p∗:

Θ(p) =


∞
1

0

⇔ p Q p∗.

Part 1 of the definition of equilibrium implies that, taking Θ(p) as given, an
investor (β, δ) with a continuation value βδ ≤ p∗ will choose to sell for ps(β, δ) =

15Part 3(a) of the definition of equilibrium, together with the assumption that ps(β, δ) =

max{βδ, β̂Γ(βδ)} imposes additional restrictions on ∆(p), but these are unimportant for our analysis.
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p∗. Investors with a higher continuation value, βδ > p∗, set a higher sale price.
To support the equilibrium, we choose one such price, ps(β, δ) = β̄δ if βδ > p∗.

Turn next to buyers’ beliefs. At prices p < p∗, buyers cannot find any seller so
beliefs are undefined. At p = p∗, Part 3(a) of the definition of equilibrium implies
that buyers expect

∆(p∗) =

∫∫
βδ≤p∗ δgs(β, δ) dδ dβ∫∫
βδ≤p∗ gs(β, δ) dδ dβ

,

the average quality asset held by investors with a continuation value below p∗. At
p > p∗, beliefs are also pinned down by condition 3(a): ∆(p) = max{p/β̄,minD}
whenever p ∈ (p∗, v̄]. This is the worst quality asset held by an investor with
continuation value p. Finally, we assume ∆(p) = maxD when p > v̄, consistent
with condition 3(b).

Now turn to part 2 of the definition of equilibrium. Let β̂ = p∗/∆(p∗). Given

the beliefs we just constructed, buyers with discount factor β > β̂ find it strictly
optimal to buy at price p∗, while buyers with lower discount factors find it better
to offer a price p < p∗ at which they cannot buy.

Finally, we close the model using the market clearing condition, part 4 of the
definition of equilibrium:

(A2)

∫
β>β̂

gb(β)dβ = p∗
∫∫

βδ<p∗
gs(β, δ) dβdδ.

The left hand side is the amount of the period 1 consumption good held by
investors with discount factors greater than β̂ and the right hand side is the cost
of buying the assets held by investors with continuation value less than p∗.

A one-price equilibrium is a pair (β̂, p∗) solving β̂∆(p∗) = p∗ and equation (A2).
Depending on functional forms, one or more one-price equilibrium may exist.

A3. Other Equilibria

We illustrate the full multiplicity of equilibria through a parametric example.
Assume Gs(β, δ) = βδ2 on [0, 1]2, so v = 0, v̄ = 1, Γ(v) = 1+v

2 , and H(v) =
v(2− v).

Other Semi-Separating Equilibria. — We start by showing there is a continuum
of semi-separating equilibria. These equilibria are indexed by the identity of the
seller with the highest continuation value, p̄ ∈ [0.456, 1]. Given p̄, let p = p̄/(1+p̄),

β̂ = 2p, and

(A3) θ̂ =
(1− p̄)(2 + p̄)(3 + p̄)

4p̄2(6− p̄)
.
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The restriction on the range of p̄ ensures that θ̂ ∈ [0, 1]. In such an equilibrium,
the buyer-seller ratio is

Θ(p) =


∞ if p < θ̂p

θ̂p/p if p ∈ [θ̂p, p)

θ̂
( p̄−p
pp̄

)p̄
if p ∈ [p, p̄]

0 if p > p̄,

while the expected quality of assets offered for sale at prices above θ̂p is ∆(p) ≤
p/β̂, with equality if p ∈ [p, p̄].

To prove this is an equilibrium, we need to discuss buying and selling behavior.
Start with selling. For any investor (β, δ) with continuation value with βδ ∈ (0, p̄),

the unique optimal selling price is ps(β, δ) = β̂Γ(βδ). For investors with the

lowest continuation value, βδ = 0, any ps(β, δ) ∈ [θ̂p, p] is optimal; we assume
ps(β, δ) = p. For investors with higher continuation values, βδ ≥ p̄, any ps ≥ βδ
is optimal; we assume ps(βδ) = βδ.

Given these beliefs,

∆(p) =


0 if p ∈ [θ̂p, p)

p/β̂ if p ∈ [p, p̄]

(1 + p)/2 if p > p̄.

Note that we are free to assign any beliefs at prices p ∈ [θ̂p, p), since all investors
with β = 0 find such prices optimal. We choose to assign beliefs that only those
investors who have δ = 0 set these prices. Given these beliefs, optimal buying
behavior sets any price pb(β) ∈ [p, p̄] if β ≥ β̂ and any prices pb(β) < θ̂p if β < β̂.

Finally, we can verify that equation (A3) ensures that the goods market clears.

Building on this logic, we can construct a continuum of semi-separating equi-
libria whenever the lowest asset quality held by investors with the lowest contin-
uation value is smaller than the average asset quality held by investors with the
lowest continuation value. If the support of (β, δ) is a rectangle, this requires that
the lowest continuation value is zero, but otherwise it may hold more generally.

Other One-Price Equilibria. — The same logic supports a continuum of one-
price equilibria with rationing at the equilibrium trading price. Equilibria are now
characterized by three numbers, the equilibrium trading price p∗, the probability
of trade at that price θ1 ∈ [0, 1], and the discount factor of the marginal buyer

β̂, but only two equations. First, the marginal buyer must be indifferent about
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buying all the assets offered for sale at p∗:

p∗ = β̂
3− p∗2

3(2− p∗)
,

where (3 − p∗2)/3(2 − p∗) is the average quality of assets held by investors with
continuation value v < p∗. Second, the goods market must clear:

1− β̂ = θ1p
∗2(2− p∗),

where p∗(2 − p∗) is the fraction of sellers at the price p∗. There is a solution to
these equations with θ1 ∈ [0, 1] if p∗ ∈ [0.426, 0.634], giving

θ1 =
3− 6p∗ + 2p∗2

p∗2(2− p∗)(3− p∗2)

and

β̂ =
3p∗(2− p∗)

3− p∗2
.

In such an equilibrium, the buyer-seller ratio satisfies

Θ(p) =


∞ if p < θ1p

∗

θ1p
∗/p if p ∈ [θ1p

∗, p∗]

0 if p > p∗,

while the expected quality of assets for sale relative to the price is maximized at
p∗.

To construct an equilibrium of this sort, we again discuss buying and selling
behavior. All investors (β, δ) with continuation value βδ < p∗ set price p∗ in
equilibrium, while those with higher continuation values set price ps(β, δ) = δ.
This pins down buyers’ beliefs at prices above p∗. At prices between θ1p

∗ and
p∗, rational beliefs requires that investors anticipate meeting sellers with zero
continuation value. To support the equilibrium, we assume that they anticipate
meeting sellers with zero-quality assets:

∆(p) =


0 if p < p∗

3−p∗2
3(2−p∗) if p = p∗

p if p > p∗

One can verify that ∆(p)/p is maximized at p∗ for all p∗ ≤ 0.634, so buyers with

β ≥ β̂ in fact prefer to pay this single price: pb(β) = p∗ if β ≥ β̂ and pb(β) = 0
otherwise. Finally, one can verify that the goods market clears.
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Again, this logic shows how to construct a continuum of one-price equilibria
whenever the lowest asset quality held by investors with the lowest continuation
value is smaller than the average asset quality held by investors with the lowest
continuation value.

n-Price Equilibria. — Our model also admits an n-dimensional set of n-price
equilibria. Denote the prices by p1 < · · · < pn; in equilibrium all trade occurs at
these prices. Also let θ1 > · · · > θn denote the buyer-seller ratios at these prices,
with θ1 ∈ (0, 1]. Let v1 < · · · < vn denote the n critical continuation values who
are indifferent between neighboring prices (so vi is indifferent between setting
prices pi and pi+1 and vn is indifferent between setting price pn and setting a
higher price at which she cannot sell). Finally, let β̂ denote the discount factor of
the marginal buyer. This gives us a total of 3n+ 1 variables. These must satisfy
2n+ 1 equations. The first n equations come from the indifference conditions of
the marginal sellers:

θi(pi − vi) = θi+1(pi+1 − vi) for i ∈ {1, . . . , n− 1}

and pn = vn. The next n equations come from the marginal buyer’s indifference
about buying at any price. With our functional forms, this gives

pi = β̂
3− v2

i−1 − vi−1vi − v2
i

3(2− vi−1 − vi)
,

where v0 = 0. The fraction is the average value of the assets held by investors
with continuation value v ∈ [vi−1, vi]. Finally, the goods market must clear:

1− β̂ =

n∑
i=1

θipi(vi(2− vi)− vi−1(2− vi−1),

where vi(2−vi)−vi−1(2−vi−1) is the measure of investors who set price pi, those
with continuation values v ∈ [vi−1, vi].

In equilibrium, the buyer-seller ratio satisfies

Θ(p) =


∞ p < p0
θi(pi−vi)
p−vi if p ∈ [pi, pi+1], i ∈ {0, . . . , n− 1}

0 p > pn,

where p0 = θ1p1 and θ0 = 1. Given this structure, only sellers with continuation
value vi find prices p ∈ (pi, pi+1) optimal for i ∈ {0, . . . , n − 1}. To support the
equilibrium, we assume buyers anticipate that investors (β, δ) with β = 1 and
δ = vi set these prices. Finally, investors with βδ > pn and δ = p set price
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p > pn. This pins down buyers’ beliefs. The remainder of the construction of
equilibrium is now standard.

In our parametric example, first suppose θ1 = 1. We find that for any value
of θ2 ∈ [0, 0.832], it is possible to construct an equilibrium with trade at two
prices. Higher values of θ2 are associated with lower values of p1 (falling from
0.426 to 0.371), lower values of p2 = v2 (falling from 0.527 to 0.446), lower values

of v1 (falling from 0.426 to 0), and higher values of β̂ (rising from 0.714 to 0.743).
It does not seem possible to construct equilibria with θ2 > 0.832, because the
system of equations would imply v1 < 0. For lower values of θ1, there is a smaller
interval of θ2 corresponding to an equilibrium, but the interval always exists.

The possibility that θ1 < 1 again hinges on the assumption that the lowest asset
quality held by investors with the lowest continuation value is smaller than the
average asset quality held by these investors. However, the remaining construction
does not rely on this restriction and so appears to be completely general. For
example, there are many n-price equilibria in the independent Pareto example
that we use throughout the text.

Qualitatively an n-price equilibrium looks very similar to the semi-separating
equilibrium. Investors with higher continuation values set weakly higher sale
prices and sell with a weakly lower probability. Indeed, we conjecture that in
the limit as n converges to infinity, the functions Θ(p) and ∆(p) in any n price
equilibrium will be close to their values in some semi-separating equilibrium in
the sense of the sup-norm.

A4. Mixed Equilibria

Equilibria may also feature a mix of mass points and continuous distributions.
We discuss how to construct such equilibria here; it will be useful later in our
analysis, so we break it into a separate section.

Take a set of points v1 < · · · < vn, and construct pools of positive radius ε1, . . . ,
εn around those points with v1− ε1 > v and vi− εi > vi−1 + εi for all i ∈ 2, . . . , n.
We look for an equilibrium where any two sellers with continuation values in the
same pool set the same price. That is, for all (β, δ) and (β′, δ′), ps(β, δ) = ps(β

′, δ′)
if and only if there exists an i ∈ {1, . . . , n} with βδ ∈ (vi − εi, vi + εi) and
β′δ′ ∈ (vi − εi, vi + εi).

Within each pool, the equilibrium price reflects the quality of the pool:

(A4) pi = β̂

∫ vi+εi
vi−εi Γ(v)dH(v)

H(vi + εi)−H(vi − εi)

Using the known functional forms, it is possible to simplify this and the subsequent
expressions. Outside of these pools, the price is the fair one, ps(β, δ) = β̂Γ(βδ).

We turn next to the sale probability. For sellers (β, δ) with the lowest continu-

ation value, βδ ∈ [v, v1 − ε1], the sale price is β̂Γ(βδ) and the sale probability is
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as in the semi-separating equilibrium with the same value of the marginal buyer
β̂,

Θ(β̂Γ(βδ)) = exp

(
−
∫ β̂Γ(βδ)

p

1

p′ − Γ−1(p′/β̂)
dp′

)
We then proceed recursively. Assume for some i ∈ {1, . . . , n}, we have already

found Θ(β̂Γ(vi − εi)), the trading probability at the bottom of the pool. A seller
with this continuation value must be indifferent about charging the separating
price β̂Γ(vi − εi) or charging the pooling price pi:

(A5) Θ(β̂Γ(vi − εi))
(
β̂Γ(vi − εi)− (vi − εi)

)
= Θ(pi)

(
pi − (vi − εi)

)
.

This pins down the trading probability in the pool, Θ(pi). Next, we turn to the
seller with continuation value vi + εi. He must be indifferent between separating
and pooling as well,

(A6) Θ(β̂Γ(vi + εi))
(
β̂Γ(vi + εi)− (vi + εi)

)
= Θ(pi)

(
pi − (vi + εi)

)
,

which we solve for Θ(β̂Γ(vi + εi)). Finally, sellers (β, δ) with βδ ∈ [vi + εi, vi+1 −
εi+1] must find the price β̂Γ(βδ) optimal. It is straightforward to prove that this
price is locally optimal if and only if the sale probability is proportional to its
level in the semi-separating equilibrium. The value of Θ(β̂Γ(vi + εi)) pins down
the constant of proportionality:

(A7) Θ(β̂Γ(βδ)) = Θ(β̂Γ(vi + εi)) exp

(
−
∫ β̂Γ(βδ)

β̂Γ(vi+εi)

1

p′ − Γ−1(p′/β̂)
dp′

)
.

This completes the recursion.

All that remains is pinning down the beliefs of a buyer at prices without trade.
We make those as pessimistic as possible. In our example, this means that a
buyer believes that if a price p is weakly optimal for a seller with continuation
value v but no such seller sets the price, ∆(p) = v (and so the seller’s discount
factor is β = 1). Such beliefs always support the mixed equilibrium.

Omitted Proofs

PROOF OF PROPOSITION 1:

Fix (β1, δ1) ∈ S and (β2, δ2) ∈ S with β1δ1 < β2δ2. Part 1 of the definition of
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equilibrium implies

min{Θ(ps(β1, δ1)), 1}(ps(β1, δ1)− β1δ1) ≥ min{Θ(ps(β2, δ2)), 1}(ps(β2, δ2)− β1δ1)
(B1)

min{Θ(ps(β2, δ2)), 1}(ps(β2, δ2)− β2δ2) ≥ min{Θ(ps(β1, δ1)), 1}(ps(β1, δ1)− β2δ2).
(B2)

Add the inequalities and simplify to get

(min{Θ(ps(β1, δ1)), 1} −min{Θ(ps(β2, δ2)), 1}) (β2δ2 − β1δ1) ≥ 0

or min{Θ(ps(β1, δ1)), 1} ≥ min{Θ(ps(β2, δ2)), 1}.
Now assume the seller with the higher continuation value sells with a posi-

tive probability, Θ(ps(β2, δ2)) > 0. Divide the left hand side of inequality (B2) by
min{Θ(ps(β2, δ2)), 1} and the right hand side by the larger quantity min{Θ(ps(β1, δ1)), 1}
to prove ps(β2, δ2) ≥ ps(β1, δ1).

Finally, suppose to find a contradiction that Θ(ps(β1, δ1)) < Θ(ps(β2, δ2)).
If Θ(ps(β1, δ1)) < 1, this contradicts the first step. On the other hand, if
Θ(ps(β1, δ1)) ≥ 1, min{Θ(ps(β2, δ2)), 1} = 1 as well. But then inequality (B1)
implies ps(β1, δ1) ≥ ps(β2, δ2), a contradiction.

PROOF OF PROPOSITION 2:

Let β̂ be the infimal value of p/∆(p) among p with Θ(p) <∞. This means that

for all β > β̂, there exists a p with Θ(p) <∞ such that β > p/∆(p), or equivalent
β∆(p)/p > 1. Part 2 of the definition of equilibrium implies that buyers with that

discount factor buy at some such price. If β < β̂, then for any p with Θ(p) <∞,
β∆(p)/p < 1. Buyers with this discount factor are better off not buying, i.e.
setting a price such that Θ(pb(β)) =∞.

Now suppose there is a seller (β, δ) ∈ S with 0 < Θ(ps(β, δ)) < ∞. The

definition of β̂ implies β̂ ≤ ps(β, δ)/∆(ps(β, δ)). If the inequality were strict,
part 2 of the definition of equilibrium implies there is there is no buyer who finds
the price ps(β, δ) optimal, contradicting part 4 of the definition of equilibrium.

Therefore β̂ = ps(β, δ)/∆(ps(β, δ)). It follows immediately that all buyers with

β ≥ β̂ are indifferent about buying any of the assets sold in equilibrium.

We turn next to the proof of Proposition 3. To prove this, we first state and
prove four preliminary Lemmas.

LEMMA 1: Consider an equilibrium with multidimensional private information.
Let V : R+ ⇒ V denote the set of sellers’ continuation values v for which the
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price p is weakly optimal:

v ∈ V(p)⇔ p ∈ arg max
p′≥v

(
min{Θ(p′), 1}(p′ − v)

)
.

If Θ(p) <∞, the set V(p) is nonempty. In addition, for any p1 < p2 with V(p1)
nonempty, Θ(p2) < 1. For any p1 < p2 with Θ(p1) = 0, Θ(p2) = 0 as well.

PROOF OF LEMMA 1:

First observe that part 3(b) of the definition of equilibrium with multidimen-
sional private information implies that the set V(p) is nonempty when Θ(p) is
finite.

Now take any p1 < p2 with v ∈ V(p1). For an invester with continuation value
v, p1 gives weakly higher profit than p2:

(B3) min{Θ(p1), 1}(p1 − v) ≥ min{Θ(p2), 1}(p2 − v).

Notice p2 > p1 ≥ v. If p1 = v, (B3) implies Θ(p2) = 0. If p1 > v, (B3) implies
min{Θ(p2), 1} < min{Θ(p1), 1} ≤ 1, so Θ(p2) < 1. Therefore, Θ(p2) < 1 as long
as V(p1) is not empty.

Moreover, if Θ(p1) = 0, (B3) implies Θ(p2) = 0.

LEMMA 2: Consider an equilibrium with multidimensional private information.
Take any p1 < p2 with v1 ∈ V(p1) and v2 ∈ V(p2). If Θ(p1) > 0 then v1 ≤ v2.
Moreover, V(p) is convex and closed.

PROOF OF LEMMA 2:

A seller with continuation value v2 either finds the price p1 suboptimal because
p1 < v2 or prefers p2 to p1. First suppose p1 < v2. Since v1 ∈ V(p1), v1 ≤ p1,
proving v1 < v2. Second suppose v2 prefers p2 to p1 and p1 ≥ v2:

(B4) min{Θ(p2), 1}(p2 − v2) ≥ min{Θ(p1), 1}(p1 − v2).

Similarly, a seller with continuation value v1 weakly prefers p1 to p2, as in (B3).
If Θ(p2) = 0, Θ(p1) > 0 implies p1 = v2 so again v1 ≤ v2. If instead Θ(p2) > 0,
multiply inequalities (B3) and (B4) and simplify to get (p2 − p1)(v2 − v1) ≥ 0,
which proves that v2 ≥ v1.

To prove V(p) is convex, take any p and v1 < v2 with v1, v2 ∈ V(p). Fix any
ṽ = αv1 + (1− α)v2, α ∈ (0, 1), so p ≥ v2 > ṽ. We can find p̃ such that ṽ ∈ V(p̃)
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by setting p̃ = ps(β, δ) for some βδ = ṽ. Then

min{Θ(p̃), 1}(p̃− ṽ) = αmin{Θ(p̃), 1}(p̃− v1) + (1− α) min{Θ(p̃), 1}(p̃− v2)

≤ αmin{Θ(p), 1}(p− v1) + (1− α) min{Θ(p), 1}(p− v2)

= min{Θ(p), 1}(p− ṽ)

where the inequality comes from the fact that sellers with continuation value v1

or v2 weakly prefer p to any p̃ ≥ 0. Therefore ṽ ∈ V(p) for all ṽ ∈ (v1, v2).
To prove V(p) is closed, suppose there exists a sequence {vn} → v with vn ∈

V(p) for all n but v 6∈ V(p). Since p ≥ vn for all n, p ≥ v as well. The definition
of V then implies that there exists a p̃ ≥ v with

min{Θ(p̃), 1}(p̃− v)−min{Θ(p), 1}(p− v) ≡ ε > 0

But since {vn} → v, there exists an N such that for all n > N ,(
min{Θ(p̃), 1} −min{Θ(p), 1}

)
(vn − v) < ε.

Using the definition of ε, this implies min{Θ(p̃), 1}(p̃ − vn) > min{Θ(p), 1}(p −
vn) ≥ 0, and in particular p̃ > vn, which contradicts vn ∈ V(p).

LEMMA 3: Impose Assumption 1 and consider an equilibrium with unidimen-
sional private information. Let T = {p : 0 < Θ(p) <∞}. There exists a function
V : T→ V such that V(p) = {V(p)} for all p ∈ T. Moreover, V is continuous and
non-decreasing.

PROOF OF LEMMA 3:
First, we want to show that when p ∈ T, V(p) is a singleton. Notice if p = 0,

by definition, V(p) has at most one element, that is 0.
Now consider the case of p > 0. Suppose V(p) has more than one element.

Then Lemma 2 implies there must be v1 < v2, such that V(p) = [v1, v2]. Lemma 2
also implies that p is the only optimal sale price for v ∈ (v1, v2), i.e., P (v) = p if
v ∈ (v1, v2). Then part 3(a) of the definition of equilibrium with multidimensional
private information implies the average quality of asset held by sellers with this
continuation value is

∆(p) =

∫ v2
v1

Γ(v)h(v)dv∫ v2
v1
h(v)dv

.

Monotonicity of Γ (Assumption 1) implies

Γ(v1) < ∆(p) < Γ(v2) ≤ ∆(p′)

for any price p′ > p. Note that the last inequality uses the definition of the
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equilibrium with unidimensional private information. Thus limx→p+
∆(x)
x > ∆(p)

p .

We can use this to prove that no buyer finds setting the price p optimal. If
there were such a buyer, he must have β∆(p) ≥ p by part 2 of the definition of
equilibrium with multidimensional private information. So take any p′ > p with
∆(p′)
p′ > ∆(p)

p ; this is feasible because ∆(x)
x jumps up at p+. Since Θ(p) < ∞,

Lemma 1 implies Θ(p′) < 1. Then

min{Θ(p)−1, 1}
(
β∆(p)

p
−1

)
≤ β∆(p)

p
−1 <

β∆(p′)

p′
−1 = min{Θ(p′)−1, 1}

(
β∆(p′)

p′
−1

)
.

The first inequality uses min{Θ(p)−1, 1} ≤ 1 and β∆(p) ≥ p. The second uses
∆(p)/p < ∆(p′)/p′. The equality uses Θ(p′) < 1. This proves all buyers prefer p′

to p.

We now have a contradiction. The measure of buyers setting price p is zero,
dµb(p) = 0, while the measure of sellers setting price p is positive, dµs(p) =∫ v2
v1
h(v)dv. This is inconsistent with part 4 of the definition of equilibrium with

multidimensional private information, dµb(p) = Θ(p)dµs(p).

So far we show if Θ(p) > 0, V(p) has at most 1 element. Then by Lemma 1,
when Θ(p) ∈ T, there exists a V(p) ∈ V such that V(p) = {V(p)}. In addition,
by Lemma 2, V is non-decreasing.

Now suppose V has a discontinuity at p ∈ T. Since V is non-decreasing, either
limp′→p− V(p′) < V(p) or V(p) < limp′→p+ . If limp′→p− V(p′) < V(p), pick any
ṽ ∈ (limp′→p− V(p′),V(p)), and let p̃ be a price that investors with continuation
value ṽ find weakly optimal. By Lemma 2, p̃ = p, so ṽ ∈ V(p), contradicting
with the first part of this lemma. Similarly, if V(p) < limp′→p+ , by picking any
ṽ ∈ (V(p), limp′→p+ , we can find another contradiction. Therefore, V is continuous
on T.

LEMMA 4: Impose Assumption 1 and consider an equilibrium with unidimen-
sional private information. If p ∈ int(T), Θ′(p) = −Θ(p)/(p− V(p)).

PROOF OF LEMMA 4:

First want to show if p ∈ intT, p > V(p). Suppose not, then p = V(p).
Since p ∈ intT, there exist p′ < p such that θ(p′) > 0. But then investors with
continuation value V(p) will be better off posting p, contradicting the defination
of V.

Consider an arbitrary sequence of prices {pk} with 0 < Θ(pk) < ∞ and con-
verging to p. From p > V(p), we know pk > V(p) for sufficiently large k. Since
V is continuous at p by Lemma 3, pk > V(pk) for sufficiently large k. We have
min{Θ(p), 1}(p − V(p)) ≥ min{Θ(pk), 1}(pk − V(p)), from the optimization con-
dition for seller with continuation value p; and min{Θ(pk), 1}(pk − V(pk)) ≥
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min{Θ(p), 1}(p− V(pk)) from the optimization condition for seller with continu-
ation value pk. In addition, by Lemma 1, if p ∈ intT, Θ(p) < 1 and Θ(pk) < 1
when k is large enough. Combining all the conditions, we have

Θ(p)
p− V(p)

pk − V(p)
≥ Θ(pk) ≥ Θ(p)

p− V(pk)

pk − V(pk)
.

The two bounds converge to Θ(p), proving that Θ(pk) → Θ(p). Rearranging
above inequalities, we also have

−Θ(pk)

p− V(p)
≥ Θ(pk)−Θ(p)

pk − p
≥ −Θ(p)

pk − V(pk)
,

if pk > p and
−Θ(pk)

p− V(p)
≤ Θ(pk)−Θ(p)

pk − p
≤ −Θ(p)

pk − V(pk)
,

if pk < p. Again both bounds converge to −Θ(p)/(p − V(p)), establishing the
result.

PROOF OF PROPOSITION 3:
First we assume that βΓ(v) ≤ v for all β ∈ B and show that we can construct an

equilibrium with no trade. Set P (v) = max{β̄Γ(v), v} for all v, where β̄ = supB.
Also set Θ(p) = 0 for all p ≥ P (v) and Θ(p) = ∞ otherwise. Finally, assume
∆(p) = p/β̄ for all p and pb(β) = 0. It is easy to verify that this is an equilibrium
with unidimensional private information.

Now to find a contradiction, suppose that βΓ(v) ≤ v for all β ∈ B and there is an
equilibrium where a positive measure of investors trades. This means dµb(p) > 0
for some p > v, so we have Θ(p) > 0. Sellers’ optimality implies P (v) > v
with Θ(P (v)) > 0. Lemma 3 implies only sellers with the lowest continuation
value set this price, and therefore ∆(P (v)) = Γ(v). Stringing together these
inequalities gives β∆(P (v)) < P (v) for all β ∈ B, and so part 2 of the definition
of equilibrium with multidimensional private information implies no buyer sets
this price, a contradiction.

For the remainder of the proof, assume β̄Γ(v) > v. Let p = sup{p : Θ(p) =∞}
and p̄ = inf{p : Θ(p) = 0}. Using Lemma 1, we have p ≤ p̄, Θ(p) = ∞ if p < p,
Θ(p) = 0 if p > p̄, and Θ(p) ∈ (0, 1) if p ∈ (p, p̄).

We first rule out the possibility of an equilibrium in which p = p̄. If p̄ > v
and Θ(p̄) < 1, there is no ps(β, δ) solves the maximization problem in part 1
of the definition of equilibrium with multidimensional private information for
βδ ∈ [v, p̄), a contradiction. If p̄ > v and Θ(p̄) ≥ 1, ps(β, δ) = p̄ for βδ ∈ [v, p̄),
which contradicts Lemma 3. Therefore it must be the case that p̄ ≤ v and hence
β̄Γ(v) > p̄. Part 1 of the definition of equilibrium with multidimensional private
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information implies ps(β, δ) ≥ βδ > p̄ for all βδ > v, hence sellers (β, δ) don’t sell
and dµs(p̄) = 0. If Θ(p̄) <∞, the second part of the definition of equilibrium with
unidimensional private information and Assumption 1 implies β̄∆(p̄) ≥ βΓ(v) >
p̄: all sufficiently patient buyers would post p̄, so µb(p̄) > 0 contradicting the
market clearing condition. If Θ(p̄) = ∞, the second part of the definition of
equilibrium with unidimensional private information and Assumption 1 implies
limp→p̄+ β̄∆(p) ≥ βΓ(v) > p̄. Then there is no pb(β) solves the maximization
problem in part 2 of the definition of equilibrium with multidimensional private
information for sufficiently large β. This cannot be an equilibrium.

Now consider the case of p < p̄. From the definition of V, we have for all
p ∈ (p, p̄), p > V(p). The differential equation for Θ in Lemma 4 then applies

(B5) Θ(p) = λ exp

(
−
∫ p

p

1

p̃− V(p̃)
dp̃

)

for all p ∈ (p, p̄) and some constant of integration λ > 0. In addition, Lemma 1
ensures that λ ≤ 1 so that Θ(p) < 1 for all p > p. Define V(p) and V(p̄) as the
associated right limit / left limit of V, respectively. Notice p > V(p), otherwise
sellers with continuation values V(p), with p→ p are better of posting (p+ p̄)/2
instead of p. If λ < 1, an investor with continuation value v = V(p) where
p approaches p from above would rather earn a profit approaching p − V(p) by

selling with probability 1 at price p−ε for ε→ 0+, than earn a profit approaching
λ(p− V(p)) by selling at price p, a contradiction. Therefore λ = 1.

Turn now to the buyers’ problem. From Lemma 3, only a seller with continua-
tion value V(p) sells at price p. Then from part 3 of the definition of equilibrium,
∆(p) = Γ(V(p)). For buyers to be willing to purchase at all prices p ∈ (p, p̄),

it must be the case that p/∆(p) = β̂ for some constant β̂ ≤ β̄, or equivalently

P (v) = β̂Γ(v) for all v ∈ (V(p),V(p̄)). From assumption 1, P is a continuously
differentiable function, so we can substitute this into equation (B5). Changing
the variable of integration gives

(B6) Θ(P (v)) = exp

(
−
∫ v

V(p)

β̂Γ′(ṽ)

β̂Γ(ṽ)− ṽ
dṽ

)

for v ∈ (V(p),V(p̄)). First, Lemma 2 implies V(p) = v. Second, want to show
V(p̄) = p̄. Suppose not, then V(p̄) < p̄. Consider any v ∈ (V(p̄), p̄). If Θ(P (v)) =
0, sellers with continuation value v can do better off by posting price p̄ − ε for
sufficiently small positive ε, a contradiction. If Θ(P (v)) > 0, from Lemma 2,
P (v) ≥ p̄. Then it has to be P (v) = p̄, which contradicts Lemma 3.

Now we have any seller with continuation value v < p̄ sets price P (v) = β̂Γ(v),
while any seller with continuation value higher than p̄ is indifferent about all
prices larger than or equal to his continuation value and in particular is willing
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to set a price such that P (v) ≥ β̂Γ(v). This ensures that buyers with β > β̂ are
indifferent about buying at any price p ∈ (p, p̄) and prefer those prices to higher

prices. Buyers with continuation values lower than β̂ set lower prices and do not
succeed in buying. To find an equilibrium, we simply allocate the buyers to the
different prices in a way that ensures the appropriate buyer-seller ratio at each
price. This is feasible if the total wealth of buyers with β > β̂ is exactly enough
to purchase the assets sold by sellers with v ∈ [v, p̄]:

(B7)

∫
β≥β̂

gb(β)d(β) =

∫
v≤p̄

P (v)Θ(P (v))h(v)dv.

This is the same as equation (A1). The left hand side is decreasing in β̂, equal to

0 when β̂ = β̄. The right hand side is strictly positive when β̂ = β̄ and increasing
in β̂. To prove monotonicity of right hand side, note first that p̄, defined as the
smallest solution to x ≥ β̂Γ(x), is nondecreasing in β̂. So are P (v) = β̂Γ(v)

and Θ(P (v)) defined in equation (B6). Therefore there is a unique β̂ that solves
equation (B7).

PROOF OF PROPOSITION 4:

Let β̂ denote the marginal buyer in the semi-separating equilibrium and β̂m
denote the marginal buyer in the mixed equilibrium. We first prove that if a
mixed equilibrium Pareto dominates the semi-separating equilibrium, it must
have β̂m = β̂. If β̂m > β̂, all buyers with β > β̂ are worse off in the mixed
equilibrium, since they live in autarky rather than buying, and so it does not
Pareto dominate the semi-separating equilibrium. If β̂m < β̂, consider a seller
with the lowest continuation value v. He sells for sure in both equilibria, earning
a price equal to Γ(v) times the discount factor of the marginal buyer. A reduction
in the discount factor of the marginal buyer therefore makes him worse off and
so again the mixed equilibrium does not Pareto dominate the semi-separating
equilibrium.

The bulk of the proof then compares a semi-separating equilibrium with a
given value of β̂ to a mixed equilibrium with the same value of β̂m = β̂. Here
we focus on the limiting case where the pool sizes are arbitrarily small. For the
construction of the mixed equilibrium when the pool sizes are not necessarily
small, see Appendix A.A4; we use those results here.

We start by approximating the price charged by each pool. Taking a Taylor
expansion of equation (A4) in a neighborhood of vi, we obtain

(B8) pi ≈ β̂Γ(vi) +
β̂

6

(
Γ′′(vi) +

2Γ′(vi)h
′(vi)

h(vi)

)
ε2
i +O(ε3

i ).

We next turn to the trading probabilities. For notational convenience, we let
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Θ(P (v)) and ω(v) denote the equilibrium trading probabilities for a seller with
continuation value v in the semi-separating and mixed equilibrium. The latter
probabilities are defined recursively in equations (A5), (A6) and (A7).

First, we claim that the mixed equilibrium makes all sellers better off than
the the semi-separating equilibrium if and only if ω(vi + εi) ≥ Θ(P (vi + εi)) for
i = 1, . . . , n. For vi + εi, pooling alters the probability of trade but not the price,
and so this seller is better off if and only if ω(vi+εi) ≥ Θ(P (vi+εi)). This proves
the “only if” part of the statement. To prove the “if” part, we turn to the other
sellers. In the mixed equilibrium, all individuals with v ∈ (vi − εi, vi + εi) trade
with the same probability and at the same price. Moreover, vi + εi is indifferent
about trading at that price. If trading in the pool makes vi + εi better off,
then it makes all the members of the pool, who have lower quality assets better
off. Additionally, for individuals who are separating in the mixed equilibrium,
v ∈ (vi + εi, vi+1 − εi+1), pooling raises the probability of trade by the same
proportion as it raises the probability of trade for vi + εi and again it has no
effect on their trading price. This establishes the claim.

Next we compute ω(vi+ εi)/Θ(P (vi+ εi)). Use equations (A5) and (A6) to get

ω(vi + εi)

ω(vi − εi)
=

(
β̂Γ(vi − εi)− (vi − εi)

)(
pi − (vi + εi)

)(
β̂Γ(vi + εi)− (vi + εi)

)(
pi − (vi − εi)

) .
Equation (A7) implies

ω(vi + εi)

ω(vi − εi)
= exp

(
−
∫ vi+εi

vi−εi

β̂Γ′(ṽ)

β̂Γ(ṽ)− ṽ
dṽ

)
.

Finally, the relative trading probabilities between the mixed and semi-separating
equilibria are constant within the separating regions:

ω(vi − εi)
Θ(P (vi − εi))

=
ω(vi−1 + εi−1)

Θ(P (vi−1 + εi+1))
,

where v0 + ε0 ≡ v and ω(v) = Θ(P (v)) = 1. Combining these three equalities
and solving the recursion gives

ω(vi + εi)

Θ(P (vi + εi))
=

i∏
j=1

(
β̂Γ(vj − εj)− (vj − εj)

)(
pj − (vj + εj)

)(
β̂Γ(vj + εj)− (vj + εj)

)(
pj − (vj − εj)

) exp

(∫ vj+εj

vj−εj

β̂Γ′(ṽ)

β̂Γ(ṽ)− ṽ
dṽ

)

for i = 1, . . . , n. Thus all sellers are better off in the mixed equilibrium than the
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semi-separating equilibrium if and only if

i∑
j=1

(
log

((
β̂Γ(vi − εi)− (vi − εi)

)(
pi − (vi + εi)

)(
β̂Γ(vi + εi)− (vi + εi)

)(
pi − (vi − εi)

))+

∫ vj+εj

vj−εj

β̂Γ′(ṽ)

β̂Γ(ṽ)− ṽ
dṽ

)
≥ 0

for i = 1, . . . , n. Finally, perform a Taylor expansion of this sum near εj = 0,
using the approximation for pi given in equation (B8). This gives
(B9)

log

(
ω(vi + εi)

Θ(P (vi + εi))

)
=

i∑
j=1

(
2β̂Γ′(vj)

3(β̂Γ(vj)− vj)2

(
h′(vj)

h(vj)
− 2− β̂Γ′(vj)

β̂Γ(vj)− vj

)
ε3
j +O(ε4

j )

)
.

All sellers are better off in the mixed equilibrium if and only if this is non-negative.

Now we turn to the amount of consumption goods buyers use to purchase assets
in the first period. We compute the difference in this cost in the mixed equilibrium
compared to the semi-separating equilibrium:

n∑
i=1

(
piω(vi)

(
H(vi + εi)−H(vi − εi)

)
+

ω(vi + εi)

Θ(P (vi + εi))

∫ vi+1−εi+1

vi+εi

β̂Γ(v)ω(v)dH(v)

)
−
∫ vn+1−εn+1

v1−ε1
β̂Γ(v)Θ(P (v))dH(v).

The first term on the first line is the cost within the pooling regions and the
second term is the cost in the separating regions in the mixed equilibrium. The
second line is the cost in the semi-separating equilibrium.

We substitute the previous expressions for ω(vi) and ω(vi + εi)/Θ(P (vi + εi))
into this expressions, then perform a Taylor expansion of this sum near εj = 0,
using the approximation for pi given in equation (B8). This gives that the increase
in first period cost is

(B10)
n∑
i=1

2β̂Γ′(vi)

3(β̂Γ(vi)− vi)2

((
h′(vi)

h(vi)
− 2− β̂Γ′(vi)

β̂Γ(vi)− vi

)∫ ∞
vi

β̂Γ(v)Θ(P (v))dH(v)

+ β̂Θ(P (vi))h(vi)(2Γ(vi)− viΓ′(vi))

)
ε3
i +

n∑
i=1

O(ε4
i ).

A quick comparison of this expression with equation (B9) shows that the first
period cost of the mixed equilbrium exceeds the first period cost of the semi-
separating equilibrium with the same value of β̂ whenever the mixed equilibrium
leaves all sellers better off and the elasticity of Γ is smaller than 2. Because Gb(β)
is continuous, this is inconsistent with Part 4 of the definition of equilibrium,
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market clearing.

Pareto Efficient Allocations

C1. Incentive Feasible Allocations

We start by using the revelation principle to define the set of incentive com-
patible and feasible allocations. Each seller and buyer reports his or her private
information to a mechanism, which then recommends certain trades. Without
loss of generality, we focus on incentive-compatible mechanisms and we verify
that the resulting trades are feasible.

We start with buyers. Each buyer reports her discount factor β to the mech-
anism and receives consumption cB1 (β) in period 1 and cB2 (β) in period 2. The
mechanism must be incentive compatible, so a buyer prefers to report her true
type β rather than misreporting it as some other β̃:

(C1) uB(β) = cB1 (β)− 1 + βcB2 (β) ≥ cB1 (β̃)− 1 + βcB2 (β̃)

for all β and β̃, where uB(β) is the buyer’s gain from trade. In addition, the
mechanism must satisfy the buyer’s participation constraint, uB(β) ≥ 0 for all β.

Turning now to sellers, each seller reports his continuation value v to the mech-
anism, getting expected consumption cS(v) in period 1 and giving up his asset
with probability ω(v).16 Again, the mechanism must be incentive compatible, so
a seller prefers to report his true type v rather than misreporting it as some other
ṽ:

uS(v) = cS(v)− vω(v) ≥ cS(ṽ)− ω(ṽ)v

for all v and ṽ, where uS(v) is the seller’s gain from trade. In addition, the
mechanism must satisfy the seller’s participation constraint, uS(v) ≥ 0 for all v.

Standard arguments imply that the seller’s mechanism is incentive compatible
if and only if ω(v) ∈ [0, 1] is non-increasing and

cS(v) =

∫ v̄

v
ω(x)dx+ vω(v) + k

for some constant k. Substituting this back into the expression for uS(v) in the
previous paragraph gives

(C2) uS(v) =

∫ v̄

v
ω(x)dx+ k.

16We assume that a seller only reports his continuation value, rather than both his discount factor and
his asset quality. It is an open question whether a mechanism that allows a seller to separately report
his asset quality and discount factor would do better still.
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The seller’s participation constraint imposes that k ≥ 0, which in turn also guar-
antees that cS(v) ≥ 0 for all v.

We next turn to feasibility, i.e. the cost of this mechanism. We start with the
buyers’ cost. In period 1, a buyer with discount factor β consumes cB1 (β) units
of the consumption good per unit of endowment. Allowing for free disposal, the
cost is therefore

(C3) CB1 ≥
∫ β̄

β
(cB1 (β)− 1)dG1(β).

In period 2, the buyers have no endowment and receive cB2 (β) units of the con-
sumption good per unit of endowment. Thus the cost is simply

(C4) CB2 ≥
∫ β̄

β
cB2 (β)dG1(β).

Now turn to the sellers’ cost. In period 1, the sellers receive cS(v) units of the
consumption good, so the cost is

(C5) CS1 ≥
∫ v̄

v
cS(v)h(v)dv =

∫ v̄

v
ω(v)(H(v) + vh(v))dv + k,

where the equality uses incentive compatibility and integration by parts. The
total cost of the mechanism in period 2 is negative, given by the amount of
dividends collected from the sellers:

(C6) CS2 ≥ −
∫ v̄

v
ω(v)Γ(v)h(v)dv.

The buyers’ and sellers’ mechanisms are feasible if total costs are zero in each
period, CB1 + CS1 = CB2 + CS2 = 0.

It is straightforward to verify that any equilibrium allocation is incentive com-
patible and feasible, but the converse is not true. The most important difference
lies in the trading probability ω(v). Incentive compatibility and feasibility only
restricts ω(v) to lie between 0 and 1 and be non-increasing. We argued in Sec-
tion II.B that equilibrium imposes additional restrictions on ω; for example, a
pair of discontinuities must surround any constant portion of ω. It follows that
some incentive compatible and feasible allocations cannot be supported in any
equilibrium.
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C2. Buyer Efficiency

We say an allocation is buyer efficient if it is incentive-compatible, feasible, and
Pareto optimal for buyers among all the incentive-compatible, feasible allocations
with the same buyer cost (CB1 , C

B
2 ). We prove that any buyer efficient allocation

is characterized by a threshold β̂. Buyers with discount factor β < β̂ consume
only in the first period, while buyers with β > β̂ consume only in the second
period. A buyer with discount factor β̂ is indifferent between consuming in the
two periods.

PROPOSITION 5: Let b and β̂ solve

(C7) CB1 =
(
bGb(β̂)− 1

)
and CB2 =

(Gb(β̄)−Gb(β̂))b

β̂
.

If this defines b ≥ 1, then any buyer efficient allocation has

cB1 (β) =

{
b if β < β̂

0 if β > β̂
and cB2 (β) =

{
0 if β < β̂

b/β̂ if β > β̂
.

Otherwise there is no incentive-compatible, feasible allocation with cost (CB1 , C
B
2 ).

PROOF OF PROPOSITION 5:

The proposed allocation is incentive compatible, has cB1 (β) and cB2 (β) nonneg-
ative, and satisfies the feasibility constraints (C3) and (C4). Now consider a

competitive equilibrium of an economy in which each individual with β < β̂ has
an endowment of b in period 1 and 0 in period 2, while each individual with β ≥ β̂
has an endowment of 0 in period 1 and b/β̂ in period 2. It is easy to verify the
equilibrium involves no trade. The first welfare theorem implies this allocation is
Pareto optimal among all allocations satisfying the two feasibility constraints. It
is therefore Pareto optimal among the smaller set of allocations that also satisfy
the incentive constraint (C1).

A corollary of this result is that any equilibrium of our model is buyer efficient.
This is not surprising, since there is no interesting information problem on the
buyer’s side of the market. A buyer is privately informed about her discount
factor, but a seller does not care about the buyer’s discount factor when they
trade.17 This contrasts with the seller’s side of the market, since a buyer cares
about a seller’s expected valuation v, which is private information. We turn to
the seller’s problem next.

17Comparing Propositions 2 and 5 shows that a buyer efficient allocation with b > 1 can never be
supported in equilibrium. Such an allocation would require an initial redistribution of b− 1 units of the
period 1 consumption good to each buyer.
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C3. Seller Efficiency

An allocation is seller efficient if it is incentive compatible, feasible, and Pareto
optimal for sellers among all the incentive-compatible, feasible allocations with
the same seller cost (CS1 , C

S
2 ). This section provides necessary and sufficient

conditions for a semi-separating equilibrium to be seller efficient:

PROPOSITION 6: If Assumption 1 holds and Γ(v) > 0, the semi-separating
equilibrium is seller efficient if and only if there exist non-negative numbers ψ1

and ψ2 satisfying the following conditions:

• ψ1 ≥ 1,

• J(v) = 0,

• J(v) nondecreasing for v ∈ [v, p̄],

• J(p̄) = 1, and

•
∫ v
p̄ J(x)dx/(v − p̄) ≥ 1 for v > p̄,

where J(v) ≡ ψ1(H(v) + vh(v))− ψ2Γ(v)h(v).

PROOF OF PROPOSITION 6:
To start, assume that the semi-separating equilibrium is seller efficient. This

means that there are nondecreasing integrated Pareto weights Λ(v) with Λ(v) ≥ 0
and Λ(v̄) = 1,18 such that the allocation maximizes the Pareto-weighted sum of
seller utilities, ∫ v̄

v
uS(v)dΛ(v),

among all incentive compatible and feasible allocations. Eliminate uS(v) using
equation (C2) and perform integration-by-parts to rewrite the Pareto-weighted
sum of utilities as

(C8)

∫ v̄

v
ω(v)(Λ(v)− Λ(v))dv + k.

Any seller-efficient allocation maximizes (C8) subject to ω(v) ∈ [0, 1] non-increasing,
k ≥ 0, and the two resource constraints (C5) and (C6) for some nondecreasing
integrated Pareto weights Λ(v).

Write the Lagrangian of the Pareto-weighted maximization problem, placing
nonnegative multipliers ψ1 and ψ2 on the two constraints (C5) and (C6):

(C9) L =

∫ v̄

v
ω(v)φ(v)dv + (1− ψ1)k + ψ1C

S
1 + ψ2C

S
2

18The integrated Pareto weight Λ(v) is the sum of the Pareto weights on sellers with continuation
value less than or equal to v, so the Pareto weight on v is dΛ(v).
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subject to k ≥ 0, and ω(v) ∈ [0, 1] non-increasing, where φ(v) ≡ Λ(v)−Λ(v)−J(v)
with

J(v) ≡ ψ1(H(v) + vh(v))− ψ2Γ(v)h(v).

The Lagrangian is linear in k, which implies that ψ1 ≥ 1; otherwise raising k
would increase the Lagrangian without bound. In addition, integration by parts
implies ∫ v̄

v
ω(v)φ(v)dv = ω(v̄)Φ(v̄)−

∫ v̄

v
Φ(v)dω(v),

where Φ(v) ≡
∫ v
v φ(x)dx. Therefore the Lagrangian is also linear in dω(v), which

implies that ω(v) is constant at any v that does not maximize Φ(v). In the semi-
separating equilibrium, Θ(P (v)) is strictly decreasing for all v ∈ [v, p̄]. Therefore
if the equilibrium is Pareto efficient, all values of v in this interval must maximize
Φ(v). We use this to characterize the conditions for Pareto efficiency.

Now assume there is a pair (ψ1, ψ2) such that the five conditions in the state-
ment of the proposition hold. Set Λ(v) = J(v) for v ∈ [v, p̄] and Λ(v) = 1 for
v > p̄. The first condition ensure that k = 0 is optimal with these Pareto weights
and Lagrange multipliers. The next three conditions ensure that Λ(v) = 0, Λ(v) is
nondecreasing, and Λ(p̄) = 1, so dΛ(v) are valid Pareto weights. By construction
φ(v) = Φ(v) = 0 for all v ∈ [v, p̄] and Φ(v) =

∫ v
p̄ (1 − J(x))dx ≤ 0 for all v > p̄

using the final condition. Therefore any function ω(v) that is strictly decreasing
on [v, p̄] and 0 at higher values of v maximizes the Lagrangian. In particular, the
semi-separating equilibrium is Pareto optimal.

Conversely, suppose there is no pair (ψ1, ψ2) satisfying these five conditions.
If the first condition failed, the Lagrangian would not have a maximum and so
the semi-separating equilibrium allocation would not maximize it. If any of the
next three conditions failed, any nondecreasing Pareto weight Λ(v) would have
φ(v) = Λ(v)−Λ(v)−J(v) 6= 0 for some v ∈ [v, p̄]; therefore not all v ∈ [v, p̄] would
maximize Φ(v) and any solution to the Lagrangian must have dω(v) constant
at such v, inconsistent with the semi-separating equilibrium allocation. And if
the fifth condition failed, Φ(v) > 0 at some v > v̄, so again any solution to
the Lagrangian must have dω(v) = 0 at all v ≤ v̄, inconsistent with the semi-
separating equilibrium allocation.

We use this proposition to prove the results in Section IV.C. As in the text,
assume

Γ(v) =
1 + v

2
and H(v) = 1− (α+ 1)v−α + αv−α−1.

First assume 0 < α ≤ 2.19 If β̂ < 2, set ψ1 = ψ2 =
(
H(p̄)+ p̄h(p̄)−Γ(p̄)h(p̄)

)−1
>

1. If β̂ ≥ 2, set ψ1 = ψ2 = 1. It is easy to verify that J(v) is increasing with

19With α ≤ 1, total dividends held by sellers are infinite,
∫∞
1 Γ(v)H′(v) dv = ∞, which might seem

worrisome for constructing an equilibrium. Nevertheless, total dividends sold are bounded above by the

dividends of the worst asset:
∫∞
1 Θ(P (v))Γ(v)H′(v) dv < 1 for any value of β̂, so the market clearing

condition can hold.
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J(1) = 0 and J(p̄) = 1. Proposition 6 implies that the semi-separating equilibrium
is seller efficient.

If instead α > 2 and β̂ ≥ 2 (so p̄ =∞), then the semi-separating equilibrium is
not seller efficient. If ψ1 < ψ2, J ′(1) < J(1) = 0, which implies J(v) is negative
at values of v slightly above 1, inconsistent with a seller-efficient allocation. If
ψ1 ≥ ψ2, J(v) is decreasing at sufficiently large values of v, again inconsistent
with a seller efficient allocation when p̄ =∞.

To construct a Pareto improvement in this example, it is not enough to pool a
single group of sellers. That will always either reduce some sellers’ utility or raise
costs in one of the periods. Instead, we must pool investors within two separate
intervals.

We illustrate this with a concrete example. As in the text, assume α = 3
and β̂ = 2, so that Θ(P (v)) = e1−v. First consider a pool with radius ε in the
neighborhood of some v > 1+ε, setting ω(v) equal to the average value of Θ(P (v))
within this pool, ω(v) = e1−v(eε − e−ε)/(2ε). By construction, this increases
welfare relative to the semi-separating equilibrium for all v′ ∈ (v− ε, v+ ε), while
welfare is unchanged for other sellers; see equation (C2). Thus the pool is Pareto
improving if it is cost feasible.

Taking a Taylor expansion of costs in a neighborhood of ε = 0, we find that the
first period cost of the pool in excess of the cost of the semi-separating allocation,
is ∫ v+ε

v−ε

(
ω(v)−Θ(P (x))

)
(H(x) + xH ′(x))dx =

8e1−v(3− 2v)

v5
ε3 +O(ε4)

which is negative if v > 3/2. The second period cost of this pool, again in excess
of the cost of the semi-separating allocation, is

−
∫ v+ε

v−ε

(
ω(v)−Θ(P (x))

)
Γ(x)H ′(x)dx =

4e1−v(3v2 − 5)

v6
ε3 +O(ε4),

which is negative if v <
√

5/3. Since these regions do not overlap, any single pool
must raise costs in one of the two periods.

But now consider two such pools, one with radius ε1 in a neighborhood of some
v1 <

√
5/3 and the other with radius ε2 in a neighborhood of some v2 > 3/2.

Manipulating the above expressions, we find that for small values of ε1 and ε2,
the costs are negative in both periods if(

e1−v2(2v2 − 3)v5
1

e1−v1(3− 2v1)v5
2

)1/3

>
ε1

ε2
>

(
e1−v2(3v2

2 − 5)v6
1

e1−v1(5− 3v2
1)v6

2

)1/3

Simplifying these inequalities, we find that if v1 ∈ (1, 10/9) and v2 >
5(3−2v1)
10−9v1

,

the inequalities on ε1/ε2 define a non-empty open interval on the nonnegative
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real line. This means that in a neighborhood of such v1 and v2, we construct two
small pools. Each pool alone would raise costs in one of the periods, but the two
pools together reduce costs in both periods.

We can also compute the expected price within such a pool, the ratio of the
buyer’s cost in period 1 to the amount of dividends he gets in period 2. Again
using a Taylor expansion, this is

ω(v + ε) + (v + ε)ω(v)

ω(v)
∫ v+ε
v−ε Γ(x)H′(x)dx

H(v+ε)−H(v−ε)

= 2 +
2(v2 + 3v − 5)

3v(v2 − 1)
ε2 +O(ε3),

which is bigger than 2 when v is bigger than (
√

29 − 3)/2 ≈ 1.19 and smaller
than 2 at lower values. In other words, buyers get a low price when they buy
from the low pool, v ∈ (v1 − ε1, v1 + ε1), but they pay a high price when they
buy from the high pool, v ∈ (v2 − ε2, v2 + ε2). Randomizing between both pools
allows them to make money in expected value. The example in the text, with
pools for v ∈ [1, 1.01] and v ∈ [8.3, 11.3], is based on this calculation but does not
use limits as the radius of the pools vanish.

C4. Local Pareto Efficiency

In the previous two sections, we asked whether, starting from a semi-separating
equilibrium, it is possible to improve the welfare first of buyers and then of sellers
without affecting the other group of investors, i.e. taking the costs CB1 , CB2 , CS1 ,
and CS2 as given. This section examines the possibility of achieving a Pareto
improvement by moving costs across periods in a manner consistent with the
resource constraint.

To understand the scope for this, we need to understand how buyers’ and
sellers’ utility is affected by changes in the costs. We focus here on marginal
changes in the costs, again starting from a semi-separating equilibrium. We say
an allocation is locally Pareto efficient if it is buyer- and seller-efficient and if no
small resource-feasible change in the costs generates a Pareto improvement.

PROPOSITION 7: Impose Assumption 1 and Γ(v) > 0 and suppose that the
semi-separating equilibrium is seller efficient. If there exists a pair (ψ1, ψ2) that
not only satisfies all conditions in Proposition 6 but also

Gb(β̂) + β̂gb(β̂)

g(β̂)
>
ψ2

ψ1
>

β̂2gb(β̂)

1−Gb(β̂) + β̂gb(β̂)
,

then the semi-separating equilibrium is locally Pareto efficient. Otherwise it is
not locally efficient.

PROOF OF PROPOSITION 7:
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Proposition 5 describes the buyer efficient allocation. Buyers’ utility is

uB(β) =

{
b− 1 if β < β̂

βb/β̂ − 1 if β ≥ β̂,

where b and β̂ depend on CB1 and CB2 through equation (C7). Implicitly differenti-
ating this expression, we get that a change in (CB1 , C

B
2 ) of magnitude (dCB1 , dC

B
2 )

raises the utility of buyers with β < β̂ if and only if

dCB1 +
β̂2gb(β̂)

1−Gb(β̂) + β̂gb(β̂)
dCB2 > 0

The same change raises the utility of buyers with β > β̂ if and only if

gb(β̂)

Gb(β̂) + β̂gb(β̂)
dCB1 + dCB2 > 0.

Note that
Gb(β̂) + β̂gb(β̂)

gb(β̂)
≥ β̂2gb(β̂)

1−Gb(β̂) + β̂gb(β̂)
,

as can be confirmed algebraically. This means that if buyers β < β̂ like the
perturbation (dCB1 , dC

B
2 ) with dCB2 ≥ 0, all buyers like the perturbation. And if

buyers β > β̂ like the perturbation (dCB1 , dC
B
2 ) with dCB2 ≤ 0, all buyers like the

perturbation.
Next, a feasible change in the costs satisfies dCS1 = −dCB1 and dCS2 = −dCB2

and so in particular ψ1dC
S
1 + ψ2dC

S
2 = −ψ1dC

B
1 − ψ2dC

B
2 . Proposition 6 then

implies that if ψ1dC
B
1 +ψ2dC

B
2 < 0 for any (ψ1, ψ2) consistent with the conditions

in the Proposition, the equilibrium is not locally Pareto efficient.
Putting these results together, the equilibrium is locally Pareto efficient if there

exists a (ψ1, ψ2) consistent with the conditions in Proposition 6 such that

1) for any dCB2 > 0, dCB1 + β̂2gb(β̂)

1−Gb(β̂)+β̂gb(β̂)
dCB2 < 0 or ψ1dC

B
1 + ψ2dC

B
2 ≥ 0,

and

2) for any dCB2 < 0, gb(β̂)

Gb(β̂)+β̂gb(β̂)
dCB1 + dCB2 < 0 or ψ1dC

B
1 + ψ2dC

B
2 ≥ 0.

Part 1 holds if and only if ψ2

ψ1
> β̂2gb(β̂)

1−Gb(β̂)+β̂gb(β̂)
, while part 2 holds if and only if

Gb(β̂)+β̂gb(β̂)

g(β̂)
> ψ2

ψ1
.

The Lagrange multipliers ψ1 and ψ2 give the marginal value of funds to the
sellers in each period, thus their ratio is the marginal rate of substitution of funds
across the two periods. The first ratio involving Gb(β̂) is the marginal rate of
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substitution for active buyers, those with β > β̂. The last ratio is the marginal
rate of substitution for inactive buyers, those with β < β̂. If the marginal rate of
substitution for sellers lies in between these two marginal rates of substitution,
there is no way to make all investors better off by reallocating resources across
periods.

To see how to apply this Proposition, we build on our previous example with
independent Pareto distributions. Assume 0 ≤ αδ ≤ 1. For any ψ2 > ψ1,
J ′(1) < 0, so there is no associated seller-efficient allocation, while any ratio
ψ2/ψ1 ≥ 0 gives us valid Pareto weights for the semi-separating equilibrium.
Therefore the semi-separating equilibrium is locally Pareto efficient if and only

if β̂2gb(β̂)

1−Gb(β̂)+β̂gb(β̂)
< 1.20 Since these conditions hinge on the value of Gb(β̂) and

gb(β̂), they may or may not hold in any particular economy.

20If 1 < αδ ≤ 2, there is also a lower bound on the ratio ψ2/ψ1 for generating valid Pareto weights, say

ψ2/ψ1 ≥ ψ̄, where ψ̄ ∈ (0, 1]. We therefore also require
Gb(β̂)+β̂gb(β̂)

g(β̂)
> ψ̄ in order for the semi-separating

equilibrium to be locally Pareto efficient.


