
Data and Code Readme for “Approximating the Cost-of-Living Index for a
Storable Good”

Matthew Osborne

August 2017

Overview

This document describes how to access the data used in the paper, and how to set up

and run the code which replicates all the empirical output and simulations in the pa-

per. To do this there are a number of steps that need to be followed in order, which

I describe briefly, and then give details about in the relevant subsections below. To get

started, the raw data used by the code needs to be downloaded from the Kilts Center at

the University of Chicago, and properly set up. In particular, it will be necessary to run

the SAS files that Chicago supplies in order to generate the daily price files. For run-

ning the code, there are a few additional programs that may need to be installed and set

up, depending on your system. The code to process the data, to run the post-estimation

analysis (such as constructing the indexes), and to run the simulations used in the identi-

fication and final discussion of the paper are written in a combination of R, C and C++.

It will be necessary to have R installed, and if you are on windows you will need to in-

stall Rtools in order to allow compilation of the C files. The estimation of the struc-

tural model uses Fortran 90 with OpenMP. The supplied code can be compiled and run

on a Linux/Unix workstation with the standard set of compilers (which should include

OpenMP by default), or on Windows with any version of the MinGW compiler suite that

includes OpenMP. On Windows this compiler can be obtained from the website SourceForge,

and I used SeZero’s build, which is available from https://sourceforge.net/projects/mingw-

w64/files/Toolchains%20targetting%20Win64/Personal%20Builds/. The Fortran 90 code

uses some LAPACK libraries that are available for download from Netlib, which I have

supplied. To make the setup and instructions easier to follow I describe the details in 5 steps

below, which should be followed in order. Instructions for compiling and running the code

are given for Windows, but compiling on Unix will be similar. In addition to giving detailed

instructions in each step, I also provide descriptions of each included file.

1



1 Step 1: Set up the raw data files

I’ve included a zip file called input data which contains the raw data. Create a directory to

contain the contents of this file. Note that this data may be downloaded from the Chicago

Kilts Center website (https://research.chicagobooth.edu/kilts/marketing-databases/erim).

The files downloaded from the ERIM site do not contain pf1.csv and pf2.csv, which are the

daily price files. The ERIM website supplies SAS code that is used to construct these files. I

additionally include the file dateweektranslation.csv, which is a mapping of ERIM weeks to

calendar dates that I copied from the instructions supplied on the Kilts website. Note the

ssoup directory has a file called ”sssoup upcs.RData”. This RData file is a list of the UPCs

for Cambpells and the store brand described in Appendix 15.1 I also note that I deleted

the very last line of the raw data files sssoup f1.dat and sssoup f2.dat, as the last lines of

the original versions of those files appeared to be timestamps that interfered with the data

creation step.

2 Step 2: Create the estimation data

In the supplied zip file is a folder called ”R code for data creation”. Copy the contents of

this code into your code folder. There are two subfolders here, titled “Step 1 Code” and

“Step 1 Code”. Run the contents of each in order:

1. Step 1 code: Compile the file functions.c using “R CMD SHLIB functions.c” from

the command line. Create a new directory that will contain the ouput files for this

step. In the load erim data tuna.r file, set the inputpath to the location of the raw

data and the outputpath variable to where the output files should for step 1 should

go. Run the file in R. Repeat the process for load erim data soup.r. Finally, run the

file “load demogs.r”, which will create a file of demographic data used for some of

the supplementary analysis (the path variables in this file should be the same as the

load erim data *.r files). Then, edit the inputpath and outputpath variables in the file

”analyze prices tuna.r” to be the same as the prior files. Also, set the tablepath and

figpath variables to point to where you want tables and figures to be placed. Run this

file, and it will load the price files and process them.

2. Step 2 code: Copy the functions.dll file (or functions.do if you are using Unix)

1In this file, there are two UPCs listed as 1 and 2, which are placeholders for the composite products
used in the soup category estimation.

2



from Step 1 Code into Step 2 Code. Compile the soup.c file using “R CMD SHLIB

soup.”. Create a new directory for the estimation data. Inside this directory, create

two subdirectories, one called “tuna” and one call “sssoup”. Then, inside the tuna

and sssoup subdirectories, create a directory called “hb”. Now, edit the pathnames in

createestimationdata tuna.r: Set the inputpath variable to point to the location of the

output files from the previous step, and set the outputpath to point to the estimation

directory. Run this file in R. Repeat this step for the createestimationdata soup.r file.

2.1 Included Files with Descriptions

• load erim data tuna.r: This file loads in the raw ERIM data from the Chicago Kilts

website, and produces R Data files containing household purchases, household trips,

store price information from the store price files, and product information. This applies

to the tuna category.

• load erim data soup.r: This file performs the same functions as load erim data tuna.r,

but for the soup category.

• load demogs.r: This file loads in the raw demographic data from the ERIM files and

saves it into an R Data file. This files loads in data for both tuna and soup.

• analyze prices tuna.r: This file loads in the R Data files created by load erim data tuna.r,

as well as the pf1.csv and pf2.csv files created using the ERIM SAS code. It outputs

R Data files containing weekly prices and product information. It produces Figure 1,

some initial summary statistics that are presented in the Data section of the paper,

and the numbers presented in online Appendix Tables A5 through A7.

• analyze prices soup.r: This file does the same function as analyze prices tuna.r,

except for the soup category (this also produces similar summary statistics as the tuna

file, as well as the numbers presented in online Appendix Tables A8 through A9).

• functions.c: This contains two routines which loop through data and are called by

analyze prices soup.r as well as the createestimationdata *.r files. In particular, there

is a routine that imputes missing prices, and a routine that calculates an imputation

for inventory used in the regressions in online Appendix Table A1.

• createestimationdata tuna.r: This file creates all the estimation files needed to

run the fortran code, and also runs some supplementary analysis that goes into the

3



appendix tables. In particular, it runs the regression (for tuna) in online Appendix

Table A1, as well as the analysis in online Appendix B related to nonlinear pricing

(including creating the numbers in online Appendix Table A2).

• createestimationdata soup.r: This is the same file as createestimationdata tuna.r

but for the soup data.

• mcmc tuna.r: This file is called by createestimationdata tuna.r. It runs a prelimi-

nary, static estimation of tuna demand that can be used to compute an importance

distribution for the inclusive values.2 The importance distributions are loaded into the

Fortran code. Note that the output of this file is not used to construct the estimates

in the current version of the paper (the importance distribution is taken over prices

rather than an inclusive value distribution as described in online Appendix E.6), but

if the variable pdrawtype in params.f90 is set to 2 the code will switch to using these.

Regardless, the output file produced from this estimation routine needs to be available

for the Fortran code to read, as it will crash if the resulting files don’t exist.

• mcmc soup.r: This is the same as mcmc tuna.r but for the soup data.

• soup.c: Estimating a static demand model for soup is harder than for tuna due to

the larger choice set, so I recoded some of the routines to compute the likelihood in

C. These routines are called by mcmc soup.r. Again, the output of this routine is not

used in the estimates presented in the latest version of the paper.

3 Step 3: Compile and run the estimation code

The files for this step are location in the “Fortran code for estimation” subdirectory. Inside

this directory are two subdirectories called tuna and soup - these contain the code to estimate

the model on each category. First, inside the tuna directory navigate to the directory “lapack

files”, and if on Windows run compile.bat, which will create lapack1.dll from files in “lapack

files”, “lapack routine”, and “blas routine” (if on Unix, a similar script can be written to

create lapack1.so). Then, copy lapack1.dll to the tuna directory. In the tuna directory,

edit the path variable in the file params.f90 to point to the estimation data directory from

the previous step. Then, compile all the .f90 files into a single executable (I’ve supplied a

2The procedure estimates a standard random coefficients demand model and then computes the resulting
inclusive values for each individual. Then for each household it computes the household level average inclusive
value as well as the standard deviation. These are stored in text files that the Fortran code will load in.

4



compile.bat script that does this in Windows. A similar script can be written to compile in

Unix). Run the resulting executable (I call the executable inv in my compile script). Note

that the estimation may take two or three days to run. Repeat the same steps for the files

in the soup directory (note that you can just copy the lapack1.dll file from the tuna to the

soup directory - they are the same for each program). The soup estimation usually takes

about twice as long as the tuna estimation.

The estimation output will be put into the estimation data directory, in the hb folder

of the corresponding product category.

3.1 Included Files with Descriptions

Below I describe the files in the tuna directory. The files in the soup directory are structured

in the same way. As described above, to replicate the paper it’s sufficient to simply edit the

path variable in params.f90.

• params.f90: This file contains the global variables needed for the estimation routine,

as well as some work routines (such as random number generators).

• main.f90: This file is the main program file for the estimation routine. It calls routines

to load in the data and run the estimation.

• setvars.f90: This file sets up the choice set, which is used in likelihood construction.

• process.f90: The main routine in this file (createhhdata) will load in the estimation

files created in the prior steps.

• hbstruct.f90: This file contains the routines which run the estimation. In particular,

the main mcmc loop is in hbstruct.

• compile.bat: Sample batch file that shows how to compile the main executable on

Windows.

• files in lapack files, lapack routines, and blas routines directories: These files

were downloaded from http://www.netlib.org/lapack/. They contain work routines

to invert and construct Cholesky factorizations of matrices. I also include a sample

compile batch file called compile lapack.bat.

5



4 Step 4: Run the post-estimation code

The files in the “Post estimation code” directory will create the tables and figures in the

paper. To create the main tables of price indexes, run the file make indexes big tuna.r

(or make indexes big soup.r for soup). Note that you will need to set the estpath variable

to point to the category’s estimation data, and step1path to be the output directory you

specified in part 1 of Step 2. Note that these files create some intermediate data from the

estimates that is stored in the estimation data directory. This intermediate data is created if

the flag createhhdata is TRUE. Creating the intermediate data is slow, so if you have already

created the data and only wish to run the code to make the indexes, you can set this flag

to FALSE. The file “create tables of estimates.r” will create tables of parameter estimates,

time plots, and will run the regressions of storage cost type on demographics. For this file,

you need to set the path variables to the same values as the index creation scripts.

4.1 Included Files with Descriptions

• make indexes big tuna.r: This file creates the cost-of-living indexes presented in

the main paper (Table 4), as well as a number of supplementary tables and figures

for the online Appendix: Figures A1 and A8, Table A3, the first 3 columns of A14,

and the regressions for Tables A15 and A16. It also creates a file of id variables

called tuna hhids.RData and puts it in the estimates folder. This file is loaded by the

create tables of estimates.r file.

• make indexes big soup.r: This file does the same analysis as make indexes big tuna.r,

but for soup. It also produces online Appendix Table A4 and the second 3 columns of

A14, and the regressions for soup in Tables A15 and A16, and Figure A8.

• create tables of estimates.r: This file creates the tables and figures of estimates

(the numbers in Table 3, as well as online Appendix Tables A10, A11, A12 and A13,

and online Appendix Figures A3 through A7).

• index code.cpp: This code contains some supplementary routines to compute utilities

and inclusive values for make indexes big tuna.r and make indexes big soup.r. Since

the matrices of estimates are extremely large it is more computationally efficient to do

some of these calculations in C++ rather than R.

6



5 Step 5: Run the simulation code

The directory “Simulation Code” has all the code necessary to run the simulations used in

Section IV (Parameter Identification) and at the end of Section VII C. (Comparison of the

Indexes). To set up the code, it is necessary to first compile the simulation functions.dll

file. To do this type “R CMD SHLIB simulation functions.c funcs.c”. The file “identifi-

cation simulation.r” will run the identification simulation. You will need to set the path

variable to point to the location of the code, and to set tablepath to point to where you

want the output tables to be. Note that I include a subdirectory called figuresandtables in

the code directory. The files will create a lot of supplementary plots that will go here (such

as plots of the purchase hazard, which are verbally described in the identification section).

To run the simulation at the end of the paper, run “index simulation.r”. Again, the path

variables should be set up the same way as the “identification simulation.r” file.

5.1 Included Files with Descriptions

• identification simulation.r: This file runs the identification simulation and creates

the numbers in Table 2.

• index simulation.r: This file creates the numbers that are in Table 5. The table

has 2 sets of columns, the first 3 correspond to simulation 1, and the second three

to simulation 2. To reproduce simulation 1, set the variable pregime to 1. To do

simulation 2, set it to 2.

• simulation functions.r: This code contains work functions for the two simulations.

In particular, it contains code to simulate prices, and to simulate household choices

(the underlying simulation is done in C, and this code calls the C code).

• simulation functions.c: This code contains C functions to solve for individual value

functions and simulate choices.

• funcs.c: This code contains some work functions that are used by simulation functions.c.

• funcs.h: This is a header file for funcs.c.

7


