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A Proof of Proposition 1

We assume that rt = ⇢t
r
r. Solving forward the Euler equation (3) with the marginal cost

given by (1), we obtain
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Take now the Phillips curve and solve forward to obtain
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We therefore obtain the (⇡t, r) equilibrium locus
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B The Patman Condition in Some Standard Cost Chan-
nel Models

Here we explore two simple models that are typical references for New Keynesian models
with a cost channel, namely Ravenna and Walsh [2006] and the no-capital version of Rabanal
[2007] proposed by Surico [2008]. Note that in those models, it is the nominal interest rate
that enters the marginal cost and not the real interest rate. However, the T.E. Patman
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condition is computed holding expectations fixed, so that real and nominal rates move as
one. Also note that the T.E. Patman condition is a necessary condition for inflation to
increase following a rise in the interest rate when expectations are not held constant. If the
T.E. Patman condition does not hold, then the G.E. Patman condition will not hold either,
so that inflation will never respond positively to monetary tightening when the monetary
shock is persistent.

B.1 Ravenna and Walsh [2006]

Firms must borrow the wage bill at the nominal interest rate. Preferences are c
1��

1�� ��N
1+⌘

1+⌘ .
Euler equation and Phillips curve are given by:

yt = Etyt+1 �
1

�
(it � Et⇡t+1),

⇡t = �Et⇡t+1 + (� + ⌘)yt + it.

The T.E. Patman condition writes �r

�y
> ↵r, with �r = , �y = (� + ⌘) and ↵r = 1

�
. T.E.

Patman condition implies 1
�+⌘ > 1

�
. It cannot hold as ⌘ � 0. Therefore, the T.E. Patman

condition is never satisfied, and the G.E. Patman condition is not either.

B.2 Surico [2008]

Here, only a fraction ✓ of firms need to borrow the wage bill in advance. Euler equation and
Phillips curve are given by:

yt = Etyt+1 �
1

�
(it � Et⇡t+1),

⇡t = �Et⇡t+1 + (� + ⌘)yt + ✓it.

The T.E. Patman condition writes �r

�y
> ↵r, with �r = ✓, �y = (� + ⌘) and ↵r =

1
�
. The

T.E. Patman condition implies 1
�+⌘ > 1

✓�
. A lower bound of the right-hand side is attained

at ✓ = 1. In that case, the T.E. Patman condition cannot hold as ⌘ � 0. This implies that
the T.E. Patman condition cannot hold for values of ✓ lower than one. Therefore, the T.E.
Patman condition is never satisfied, and the G.E. Patman condition is not either.

C Model Microfoundations

C.1 Discounted Euler Equation Specification

The derivation of the discounted Euler equation relies on two sets of assumptions. First,
because of asymmetry of information and lack of commitment, individual households will face
an upward sloping supply of funds when borrowing. To maintain tractability, we will consider
an equilibrium in which agents never default, so that the income and wealth distributions
will have a unique mass point. For exposition simplicity, we will derive the main features of
the equilibrium in a two-period model and explain why the extension to an infinite horizon is
trivial. Second, we will assume a particular timing of income and expenditure flows. Those
two assumptions will allow us to derive a discounted Euler equation.
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C.1.1 A simple two-period model with asymmetric information and lack of
commitment

We consider a deterministic model with two periods. There are two types of households and
a zero-profit risk neutral representative bank that has access to an unlimited supply of funds
at cost R. Households receive no endowment in the first period, and ! in the second period.
The consumption good is the numéraire.

Some households (superscript c) have access to commitment and always repay their debt
while other households (superscript nc) cannot commit to repay. Type is not observable.
Because of this, the risk neutral bank will want to charge a risk premium on its loans. More
specifically, the bank proposes to the households a schedule R(d) that is increasing in the
level of debt d.

Preferences over consumption are given by u(c1) + �u(c2). Households also bear an
additively separable utility cost of defaulting  (d) which is an increasing and convex function
of the amount of defaulted debt.

When households borrow (as they will always do under regularity conditions on prefer-
ences u), they will consume (c1, c2) and their debt is d = c1. Committed type households
maximize their utility under the budget constraint c2 = ! � R(c1)c1. Their optimal choice
for c1 satisfies

u0(cc1) = �
⇣
R(cc1) +R0(cc1)c

c

1

⌘
u0(! �R(cc1)). (C.1)

The non-committed type households optimally decide whether they will default (superscript
d) or not (superscript nd) in period 2, and this choice can be made in period 1 because there
is no uncertainty in this example. If they repay (no default), non-commited households
behave as the committed type, so that

cnc,nd1 = cc1.

If they default, then they will borrow (in period 1) as much as they need to equalise marginal
utility of consumption with marginal psychological cost of default. The optimal choice will
then satisfy:

u0(cnc,d1 ) =  0(cnc,d1 ), (C.2)

while cnc,d2 = !.
The optimal decision to default or not depends on the direction of the following inequality:

u(cc1) + �u
⇣
! �R(cc1)c

c

1

⌘

| {z }
if no default

? u(cnc�d

1 ) + �u(!)�  (cnc,d1 )| {z }
if default

.

For given u(·), � and !, there is always a psychological cost function  (·) such that household
of the non-committed type choose to behave as committed households. In this case, we have
a pooling equilibrium in which all households behave the same and in which there are no
defaults. From the bank’s zero-profit condition, we should have R(cc1) = R (as there is
no default). This condition is the only restriction put on the R(·) schedule, so that any
o↵-equilibrium belief R0(·) > 0 is consistent with a no default pooling equilibrium.
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Extension to an infinite horizon model : If we assume that past actions (default or
not) are not observable, the logic of the two-period model still holds in a standard infinite
horizon model. With asymmetric information on the household types (access or not to com-
mitment), one can sustain an equilibrium with no default with the following properties: (i)
households always make the same consumption and saving choices (no observed heterogene-
ity), (ii) there is no risk premium on the interest rate in equilibrium and (iii) households
consistently face an upward sloping interest schedule R(b). The interest of this modelling is
the absence of observed heterogeneity that allows for a simple solving of the model.

C.1.2 Household’s problem with upward sloping interest schedule.

There is a measure one of identical households indexed by i. Each household chooses a
consumption stream and labor supply to maximize discounted utility E0

P1
t=0 �

t⇣t�1(U(Cit)�
⌫(Lit)), where ⇣ is a discount shifter.

We split each period into a morning and an afternoon. There is no di↵erence in in-
formation between morning and afternoon. In the morning, household i must order and
pay consumption expenditures PtCit and cannot use previous savings to do so. Household
i must therefore borrow DM

it+1 = PtCit units of money (say dollars) at a nominal interest
rate iH

it
that, for the reasons mentioned above, will depend on her total borrowing in period

t (hence the subscript i). In the afternoon, household i can borrow DA

it+1 for intertempo-
ral smoothing motives, receives labor income WtLit and profits from intermediate firms ⌦it

and must repay principal and interest on the total debt inherited from the previous period
(1 + iH

it�1)(D
M

it
+DA

it
). The morning budget constraint is therefore given by:

DM

it+1 = PtCit,

and the afternoon budget constraint writes:

DA

it+1 +WtLit + ⌦it = (1 + iH
it�1)(D

M

it
+DA

it
).

Putting these together, we obtain the following budget constraint for period t:

DA

it+1 +WtLit + ⌦it = (1 + iH
it�1)D

A

it
+ (1 + iH

it�1)Pt�1Cit�1.

As there is no new information between morning and afternoon, the interest rate iH
it

faced
by household i is a function of the total real net debt subscribed in period t. We write it as
a premium over the risk-free nominal rate:

1 + iH
it
= (1 + it)

✓
1 + ⇢

✓
DM

it+1 +DA

it+1

Pt

◆◆
= (1 + it)

✓
1 + ⇢

✓
Cit +

DA

it+1

Pt

◆◆
,

with ⇢ > 0, ⇢0 > 0 and ⇢00 > 0.
The decision problem of household i is therefore given by:

max
1X

t=0

�t⇣t�1E0

⇥
U(Cit)� ⌫(Lit)

⇤
,

4



s.t. DA

it+1 +WtLit + ⌦it = (1 + iH
it�1)D

A

it
+ (1 + iH

it�1)PtCit,

1 + iH
it

= (1 + it)

✓
1 + ⇢

✓
Cit +

DA

it+1

Pt

◆◆
.

The first order conditions (evaluated at the symmetric equilibrium in which DA

it+1 = 0
8i) associated with this problem are:

U 0(Ct) = �
⇣t
⇣t�1

Et


U 0(Ct+1)(1 + it)

�
1 + ⇢(Ct) + Ct⇢

0(Ct)
� Pt

Pt+1

�
,

⌫ 0(Lt)

U 0(Ct)
=

Wt

Pt

.

Assuming that consumption utility is CRRA (U(Ct) = C
1��
t
1�� ), the Euler equation can be

log-linearized to obtain (omitting constant terms and using Ct = Yt) :

yt = ↵yEt[yt+1]� ↵r(it � Et[⇡t+1]) + dt,

where y is the log of Y and with ↵y = �

�+"⇢
2]0, 1[, ↵r =

1
�+"⇢

> 0, "⇢ =
C(2⇢0+C⇢

00)
⇢+C⇢0 > 0 and

dt = � 1
�+"⇢

(log ⇣t � log ⇣t�1). This give us equation (EE) in the main text.

C.1.3 Adding habit persistence

Assume that utility is (Cit��Ct�1)1��

1�� � ⌫(Lit). Note that we assume external habit. The first
order conditions (evaluated at the symmetric equilibrium in which DA

it+1 = 0 8i) become:

(Ct � �Ct�1)
�� = �

⇣t
⇣t�1

Et


(Ct+1 � �Ct)

��(1 + it)
�
1 + ⇢(Ct) + Ct⇢

0(Ct)
� Pt

Pt+1

�
,(C.3)

⌫ 0(Lt)

(Ct � �Ct�1)��
=

Wt

Pt

, (C.4)

and the log-linearized Euler equation writes:

yt = ↵y,fEt[yt+1] + ↵y,byt�1 � ↵r(it � Et[⇡t+1]) + dt.

C.2 Derivation of the Augmented New Keynesian Phillips Curve

The introduction of the real interest rate in the marginal cost of firms is not new (Christiano,
Eichenbaum, and Evans [2005], Ravenna and Walsh [2006]). However, the twists we intro-
duce here allow for arbitrary elasticities of the marginal cost with respect to respectively
the real wage and the real interest rate. In what follows, we present the derivation of the
marginal cost, that can be done considering the static optimal choice of inputs.

C.2.1 Production

Each monopolist produces a di↵erentiated good using a basic input as the only factor of
production, and according to a one to one technology. The marginal cost of production will
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therefore be the price of that basic input. It is assumed that the basic input is produced
by a representative competitive firm. The representative firm produces basic input Qt with
labor Lt and the final good Mt according to the following Leontief technology:

Qt = min(a⇥tLt, bMt).

For simplicity of the exposition, we assume that ⇥t is constant and normalized to one. The
optimal production plan implies Qt = aLt = bMt, so that the optimal input demands are
Lt =

Qt

a
and Mt =

Qt

b
. Denote by C(Qt) = WtLt + �tMt the total cost of production, where

the exact expression of �t will be derived later. Using the optimal input demands, we obtain:

C(Qt) =

✓
Wt

a
+
�t

b

◆
Qt,

so that marginal cost is

C 0(Qt) =
Wt

a
+
�t

b
.

Log-linearizing the above gives the following expression of the real marginal cost, where the
variables are now in logs and where constant terms have been omitted:

mct =

 
W

a

W

a
+ �

b

!
(wt � pt) +

 
�
b

W

a
+ �

b

!
(�t � pt).

C.2.2 Derivation of the cost �t

The unit price of the final good that enters the production of basic input is Pt. We assume
that, in the morning of each period, the basic input representative firm must borrow DB

t+1 at
the risk-free nominal interest rate it to pay for the input Mt. In the afternoon, it produces,
sells its production, pays wages, repays the debt contracted the previous period DB

t
and

distributes all the profits ⌦B

t
as dividends. Those profits will be zero in equilibrium. The

period t budget constraint of the firm is therefore:

DB

t+1 + ePtQt = WtLt + (1 + it�1)D
B

t
+ PtMt,

with DB

t+1 = PtMt. Period t profit writes:

⌦B

t
= ePtQt �WtLt � (1 + it�1)Pt�1Mt�1,

where ePt is the price of the basic input. Assuming that the firm maximizes the expected
discounted sum of profits real profits ⌦B

t
/Pt with discount factor �, and using Qt = aLt =

bMt, we obtain the first order condition:

ePt =

✓
1

a

Wt

Pt

+
�

b
Et


1 + it

1 + ⇡t+1

�◆
Pt.

Therefore, the real marginal cost of the basic input firm will be given by:

mct =
1

a

Wt

Pt

+
�

b
Et


1 + it

1 + ⇡t+1

�
.
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Note that 1
a

Wt
Pt

can be expressed as b�1
b

WtLt
Pt(Qt�Yt)

, which is the labor share in total value added,
so that a direct measure of the real marginal cost is

mct =
b� 1

b
⇥ labour sharet +

�

b
Et


1 + it

1 + ⇡t+1

�
.

The price of the basic input ePt is equal to the nominal marginal cost of the basic input firm
and is also equal to the marginal cost of the intermediate input firm (which is the relevant
one for pricing decisions). In logs, the real marginal cost will write (omitting constants):

mct =

 
1
a

W

P

1
a

W

P
+ �

b

1+i

1+⇡

!

| {z }
b�y

(wt � pt) +

 
�

b

1+i

1+⇡
1
a

W

P
+ �

b

1+i

1+⇡

!

| {z }
�r

(it � Et[⇡t+1]) .

C.2.3 Pricing

As in the standard New Keynesian model, intermediate firms play a Calvo lottery to draw
price setting opportunities. Except for the use of the basic input, the modelling is very
standard. The optimal household labor supply, that we will derive later, will give us:

⌫ 0(Lt)

U 0(Ct)
=

Wt

Pt

,

which writes in logs, using Ct = a
�
b�1
b

�
Lt and omitting constant terms:

wt � pt =

✓
L⌫ 00(L)

⌫ 0(L)
� CU 00(C)

U 0(C)

◆
yt.

As Ct = Yt = aLt, the marginal cost does not depend on the scale of production and is the
same for all the intermediate input firms. It is written as

mct = e�y
✓
L⌫ 00(L)

⌫ 0(L)
� CU 00(C)

U 0(C)

◆

| {z }
�y

yt + �r (it � Et[⇡t+1]) .

The rest of the model is standard, and we obtain the New Keynesian Phillips curve:

⇡t = �Et[⇡t+1] +  mct + µt.

Plugging in the expression for the real marginal cost, we have:

⇡t = �Et[⇡t+1] + 

✓
�yyt + �r (it � Et[⇡t+1])

◆
+ µt.

This give us equation (PC) in the main text.
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C.2.4 Adding habit persistence

When habit persistence is added, labor supply depends on current and last period consump-
tion (see section C.1.3). The Phillips curve writes :

⇡t = �Et[⇡t+1] + 

✓
�yyt + �y,byt�1 + �r (it � Et[⇡t+1])

◆
+ µt.

D Determinacy with Cost Channel and Discounted Eu-
ler Equation

Here we show that if the economy is in the Patman regime, there is no need for a Taylor
principle (of the type “monetary policy should be reacting aggressively enough to inflation”),
but one should satisfy an“anti-Taylor” principle, in the sense that monetary policy should
not be reacting too aggressively to inflation. Furthermore, being in the Patman regime is a
su�cient condition for determinacy under a nominal or real interest rate peg policy.

It is more convenient to work with a continuous time version of the model, and to
assume that the Taylor rule responds only to inflation. Adding the output gap in the Taylor
rule and/or assuming discrete time would not change the qualitative results but makes the
exposition more clumsy. The model is (assuming away shocks):

ẏt = (1� ↵y)yt + ↵r(it � ⇡t)

⇡̇t = (1� �)⇡t � �yyt � �r(it � ⇡t)

D.1 Determinacy with a Taylor rule

The Taylor rule is specified as:
it = �⇡⇡t.

In that case, the model dynamics is given by
✓

ẏt
⇡̇t

◆
=


1� ↵y ↵r(�⇡ � 1)
��y (1� �)� �r(�⇡ � 1)

�

| {z }
A

✓
yt
⇡t

◆

The two eigenvalues of A solve

�2�
�
(1� ↵y) + (1� �)� �r(�⇡ � 1)

�
| {z }

�1+�2

�+
�
↵r�y(�⇡ � 1) + (1� ↵y)((1� �)� �r(�⇡ � 1))

�
| {z }

�1⇥�2

= 0

The necessary and su�cient condition condition for determinacy is S = �1 + �2 > 0 and
P = �1 ⇥ �2 > 0. Let us look as sone polar cases for intuition.

D.1.1 The case with no Euler discounting (↵y = 1) and no cost channel (�r = 0)

This is the standard New Keynesian model. In that case, S = 1�� > 0 and P = ↵r�y(�⇡�
1) > 0, so that we have determinacy, if and only if

�⇡ > 1.

This is the Taylor principle for determinacy.
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D.1.2 The case with no Euler discounting (↵y = 1) and a cost channel (�r > 0)

In that case, S = 1� � � �r(�⇡ � 1) > 0 if and only if

�⇡ < 1 +
1� �

�r

and P = ↵r�y(�⇡ � 1) > 0 if and only if

�⇡ > 1.

Condition for determinacy is now that monetary policy �⇡ should satisfy the Taylor prin-
ciple but not be too aggressive (because of the cost channel).

D.1.3 The case with Euler discounting (↵y < 1) and no cost channel (�r = 0)

In that case, S = (1� ↵y) + (1� �) > 0 and P = ↵r�y(�⇡ � 1) + (1� �)(1� ↵y) > 0 if and
only if

�⇡ > 1� (1� �)(1� ↵y)

↵r�y
.

Condition for determinacy with Euler discounting is looser than the Taylor principle (�⇡
can be smaller than one).

D.1.4 The case with Euler discounting (↵y < 1) and cost channel (�r > 0)

In the general case, results will depend on whether the economy is in the Patman regime
or not. By Patman regime, we mean the case in which, in general equilibrium and for any
persistence smaller than one, an increase in the real interest rate increases inflation. That
condition, which we derive from Proposition 1, is

(1� ↵y)�r � ↵r�y > 0.

Conditions for determinacy are then

(i) If the economy is in the Patman regime, then there is an anti-Taylor principle. The
condition for determinacy is only that the response to inflation should not be too
strong:

�⇡ < 1 + min

⇢
(1� ↵y) + (1� �)

�r
,

(1� ↵y)(1� �)

(1� ↵y)�r � ↵r�y

�

(ii) If the economy is not in the Patman regime, then �⇡ should be neither to small (loose
Taylor principle) nor too strong):

1� (1� ↵y)(1� �)

↵r�y � (1� ↵y)�r
< �⇡ < 1 +

(1� �)(1� ↵y)

�r

Monetary policy �⇡ can be looser than the Taylor principle, the more so when ↵y is
small and �r is large. But it cannot be too aggressive, in particular when ↵y is small
and �r is large.

9



D.2 Nominal Interest Rate Peg

Policy is in that case (because we have not included shocks)

it = 0.

The model becomes
✓

ẏt
⇡̇t

◆
=


1� ↵y �↵r

��y (1� �) + �r

�✓
yt
⇡t

◆

Condition for determinacy is then

(1� ↵y)(1� � + �r) > ↵r�y.

A nominal interest rate peg will provide determinacy if Euler discounting and cost channel
are large enough (meaning ↵y small and �r large). This condition is satisfied if the economy
is in the Patman regime.

D.3 Real Interest Rate Peg

Policy is in that case (because we have not included shocks)

it = ⇡t.

The model becomes ✓
ẏt
⇡̇t

◆
=


1� ↵y 0
��y (1� �)

�✓
yt
⇡t

◆

The two eigenvalues of A are (1� ↵y) and (1� �). Both are always strictly positive as long
as there is some Euler discounting. Therefore, the equilibrium is always determinate under
a real rate peg. This condition is satisfied if the economy is in the Patman regime.

E Equivalence of Di↵erent Forms of Policy Rules

We show below that two classes of policy rules can replicate the same allocations in a simple
New Keynesian model without habit persistence and hybrid curve. The result can be easily
extended to a model with these two features. Those two classes are a standard Taylor rule
that satisfies the Taylor principle:

it = �yyt + �⇡⇡t + ⌫t, (E.1)

and a real interest rate rule:

it = Et[⇡t+1] +  ddt +  µµt +  ⌫⌫t. (E.2)

We prove the equivalence result in the fully forward New Keynesian model, but the proof
can be easily extended to the model with a backward component.
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The Euler equation and Phillips curve of the simple sticky prices model can be written
as:35

Xt = AEt[Xt+1] + B
⇣
it � Et[Xt+1]

⌘
+ CSt, (E.3)

where Xt = (yt, ⇡t)0, St = (dt, µt, ⌫t)0 and each shock x 2 {d, µ, ⌫} follows xt = ⇢xxt�1 + "xt.
Denote R the diagonal matrix with the persistence parameters ⇢x on the diagonal, with
|⇢x| < 1. Let’s also define K = [0 1] so that Et[⇡t+1] = KEt[Xt+1].

Solution under a Taylor rule (E.1): Note that policy rule (E.1) can be written:

it = �Xt + JSt (E.4)

with � = (�y,�⇡) and J = [0 0 1]. Plugging (E.4) in (E.3), we obtain:

Xt = (I � B�)�1(A� BK)| {z }
A

Et[Xt+1] + (I � B�)�1(BJ + C)| {z }
B

St (E.5)

We assume that the standard Taylor rule is restricted to give equilibrium determinacy, so
that the eigenvalues of A are inside the unit disk.

Solving forward, we obtain :

Xt =

 1X

i=0

AiBRi

!

| {z }
F (�)

St.

Under the assumption that the equilibrium is determinate,
P1

i=0 AiBRi converges and F (�)
is well defined.

Solution under the real interest rule (E.2): The policy rule (E.2) can be written:

it � Et[⇡t+1] = [ d  µ ⌫ ]| {z }
 

St. (E.6)

Plugging (E.6) in (E.3), we obtain:

Xt = AEt[Xt+1] + (B + C)| {z }
bB

St. (E.7)

Solving forward, we obtain:

Xt =

 1X

i=0

Ai bBRi

!

| {z }
bF ( )

St,

with  = ( d, µ, ⌫).  is uniquely defined given that A has its eigenvalues inside the unit
disk as long as |↵y| < 1.

35This does not cover the case where ↵y is exactly 1. We can easily generalize the following analysis for
this case.
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Equivalence: Policy rules (E.1) and (E.2), which are respectively characterized by the
parameters � and  , will give similar allocations if:

F (�) = bF ( ).

Given a standard Taylor rule with parameters � that guarantees determinacy, the map-
ping bF is typically invertible. One can recover the equivalent real interest rule with param-
eters  , that will be given by  = bF�1(F (�)).

F Data Definition and Sources

All series are final-vintage data.

Inflation : Headline CPI: Consumer Price Index for All Urban Consumers: All Items in
U.S. City Average, Percent Change, Quarterly, Seasonally Adjusted, obtained from the
FRED database, (CPIAUCSL PCH). Sample is 1947Q1-2017Q3.

Inflation : Consumer Price Index Retroactive Series, obtained from the BLS, U.S. city aver-
age, All items less food and energy, Monthly, Not Seasonally Adjusted, (R-CPI-U-RS).
Sample is 1978M1-2020M12

Domestic Producer Prices Index : Manufacturing for the United States, Change from
Year Ago, Index 2015=100, Quarterly, Not Seasonally Adjusted, obtained from the
FRED database, (USAPPDMQINMEI CH1). Sample is 1961Q1-2021Q1.

Expected Inflation : Expected Change in Price During the Next Year, obtained from the
Surveys of Consumers, University of Michigan. Transformed into annualized quarterly
expected inflation. Sample is 1960Q1-2017Q4.

Expected Inflation : 10-year Expected Inflation, obtained from the Cleveland Fed. Sam-
ple is 1982M1-2021M9.

Nominal interest rate : E↵ective Federal Funds Rate, Percent, Quarterly, Not Seasonally
Adjusted, obtained from the FRED database, (FEDFUNDS). Sample is 1954Q3-2017Q3.

Nominal interest rate : 3-Month Commercial Paper Rate, Percent, Quarterly, Not Sea-
sonally Adjusted, obtained from the FRED database, (CP3M). Sample is 1971Q1-1997Q3.

Nominal interest rate : 3-Month AA Financial Commercial Paper Rate, Percent, Quar-
terly, Not Seasonally Adjusted, obtained from the FRED database, (CPF3M). Sample
is 1907Q1-2021Q2.

Gross output : all industries, Millions of dollars, Annual, obtained from the BEA, Table
TGO105-A. Sample is 1997-2020.

Intermediate Inputs : all industries, Millions of dollars, Annual, obtained from the BEA,
Table TII105-A. Sample is 1997-2020.
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Labour share : Nonfarm Business Sector, Index 2012=100, Quarterly, Seasonally Ad-
justed, obtained from the FRED database, (PRS85006173). Sample is 1947Q1-2021Q1.

Unemployment : Civilian Unemployment Rate, Percent, Quarterly, Seasonally Adjusted,
obtained from the FRED database, (UNRATE). Sample is 1948Q1-2017Q3.

Unemployment : Noncyclical Rate of Unemployment, Percent, Quarterly, Not Seasonally
Adjusted, obtained from the FRED database, (NROU). Sample is 1949Q1-2017Q3.

Unemployment gap : constructed as UNRATE - NROU.

Monetary Shocks : obtained fromWieland and Yang [2020] who have followed the method
in Romer and Romer [2004] on an extended sample. Sample is 1969Q1-2007Q4.

International nominal interest rates : The measure of the nominal interest rate is ei-
ther the “Immediate interest rates, Call Money, Interbank Rate” or the “Short-term
interest rates” depending on availability . Data are taken from the Oecd MEI database.

G Transforming Year-to-Year Inflation Expectations
into Quarter-to-Quarter Ones

In the Michigan Survey of Consumers, every month a representative sample of consumers are
asked the following question: “By about what percent do you expect prices to go (up/down)

on the average, during the next 12 months?” The answer to this question is then the one-
year-ahead inflation expectation Et⇡t+4,t. To keep consistency with the quarter-to-quarter
inflation we use in the estimation, we rescale the one-year-ahead expected inflation in the
following way.36

We first assume that realized quarter-to-quarter inflation follows an AR(1) process with
persistence ⇢⇡:

⇡t+1,t = ⇢⇡⇡t,t�1 + ✏t (G.1)

Consumers may or may not have the correct belief on ⇢⇡. We assume they believe that
persistence is e⇢, so that the perceived law of motion of inflation is

⇡t+1,t = e⇢⇡t,t�1 + ✏t (G.2)

Consumers observe a noisy signal on inflation: st = ⇡t,t�1 + ⌘t where ⌘t is of mean zero,
i.i.d., orthogonal to ✏t and independent across time. Consumers will form quarter-to-quarter
inflation expectation, denoted by Et⇡t+1,t, using a Kalman filter:

Et⇡t+1,t = e⇢Et⇡t,t�1 = e⇢(1�K)Et�1⇡t,t�1 + e⇢K⇡t,t�1 + e⇢K⌘t (G.3)

where K is the Kalman gain.

36For details of this approach extended to multi-variable joint learning environment, see Hou [2020].
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Table G.1: Estimation of Equation (G.5)

OLS for: Et⇡t+4,t =  1Et�1⇡t+3,t�1 +  2⇡t,t�1 +  2⌘t
Sample: 1969-2007 1978-2007
 1 0.45 0.64

(0.104) (0.046)
 2 1.53 1.02

(0.277) (0.138)
Implied persistence:
e⇢ 0.89 0.93

Notes: The constant term is omitted from the table. Newey-West standard errors reported in brackets.
Measure of inflation in use is Headline CPI.

We do observe one-year-ahead expected inflation:

Et⇡t+4,t ⌘ Et(⇡t+4,t+3 + ⇡t+3,t+2 + ⇡t+2,t+1 + ⇡t+1,t)

Using the perceived law of motion (G.2):

Et⇡t+4,t = (1 + e⇢+ e⇢2 + e⇢3)Et⇡t+1,t (G.4)

= (1 + e⇢+ e⇢2 + e⇢3)
�
e⇢(1�K)Et�1⇡t,t�1 + e⇢K⇡t,t�1 + e⇢K⌘t

�

We use the t� 1 version of (G.4) and plug it in the above equation to obtain:

Et⇡t+4,t = e⇢(1�K)| {z }
 1

Et�1⇡t+3,t�1 + (1 + e⇢+ e⇢2 + e⇢3)e⇢K| {z }
 2

⇡t,t�1

+ (1 + e⇢+ e⇢2 + e⇢3)e⇢K⌘t (G.5)

We can estimate equation (G.5) with OLS because ⌘t is the i.i.d noise orthogonal to infla-
tion. We need to use quarter-to-quarter (not annualized) inflation for ⇡t,t�1 and year-ahead
expected inflation and its lag from the Michigan Survey of Consumers. We consider Headline
CPI as proxy for ⇡t,t�1 here, but the implied estimates for ⇢̃ are very close to those obtained
using Core CPI. We first use sample from 1969-2007 to guarantee it lines up with the sample
in Table 1 and Table 2, and we use sample from 1978-2007 for Table 3.

Given the estimate on the perceived persistence of inflation, the quarter-to-quarter ex-
pected inflation is implied by equation (G.4):

Et⇡t+1,t =
1

1 + e⇢+ e⇢2 + e⇢3Et⇡t+4,t (G.6)
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H Estimating the Phillips Curve Using Year-to-Year
Inflation

We start by deriving a version of Equation (8) in the main text using four-quarter inflation,
that we denote ⇡t,t�4. For periods t, t� 1, t� 2 and t� 3, Equation (8) writes

⇡t�j,t�j�1 = �Et�j⇡t�j+1,t�j + �yxt�j + �r(it�j � Et�j⇡t�j+1,t�j) + µt�j

= (� � �r)Et�j⇡t�j+1,t�j + �yxt�j + �rit�j + µt�j 8j = 0, 1, 2, 3. (H.1)

Summing the above equation up for all j = 0, 1, 2, 3, we obtain

⇡t,t�4 =⇡t,t�1 + ⇡t�1,t�2 + ⇡t�2,t�3 + ⇡t�3,t�4

=(� � �r)(Et⇡t+1,t + Et�1⇡t,t�1 + Et�2⇡t�1,t�2 + Et�3⇡t�2,t�3)

+ �y(xt + xt�1 + xt�2 + xt�3) + �r(it + it�1 + it�2 + it�3)

+ µt + µt�1 + µt�2 + µt�3. (H.2)

Taking expectation at time t� 3 and applying the law of iterated expectation, we obtain

Et�3(⇡t,t�4) =(� � �r)Et�3⇡t+1,t�3 + �yEt�3(xt + xt�1 + xt�2 + xt�3)

+ �rEt�3(it + it�1 + it�2 + it�3) + µt�3 (H.3)

Notice that ⇡t,t�4 contains information (about shocks) from t� 3 up to t. Adding ⇡t,t�4 and
subtracting Et�3(⇡t,t�4) from both sides, we obtain

⇡t,t�4 =(� � �r)Et�3⇡t+1,t�3 + �yEt�3(xt + xt�1 + xt�2 + xt�3)

+ �rEt�3(it + it�1 + it�2 + it�3) + µt�3 + (⇡t,t�4 � Et�3⇡t,t�4)| {z }
✏t,t�3

(H.4)

In the above equation, the term ✏t,t�3 contains shocks realized after t � 3, including the
monetary shocks. Denote It,t�3 = it + it�1 + it�2 + it�3 and Xt,t�3 = xt + xt�1 + xt�2 + xt�3

to simplify notations. We add and subtract It,t�3 and Xt,t�3 to the right hand side of (H.4)
to obtain:

⇡t,t�4 =�Et�3⇡t+1,t�3 + �yXt,t�3 + �r(It,t�3 � Et�3⇡t+1,t�3)

+ µt�3 + ✏t,t�3 � �y(Xt,t�3 � Et�3Xt,t�3)� �r(It,t�3 � Et�3It,t�3)| {z }
!t,t�3

(H.5)

Now notice the error term !t,t�3 include time t � 3 cost-push shock µt�3, and any shocks
happening from time t � 3 to t. To estimate �, �y and �r, we need to instrument with
monetary shocks at time t � 3 and in earlier periods. Monetary policy shocks at t � 3 and
earlier are indeed valid instruments because they are orthogonal to cost-push shocks at t� 3
and to any realized shocks between t� 3 and t.

15



I Estimating an Hybrid Phillips Curve

Table I.1 shows estimates of a “hybrid” version of the Phillips curve of the type:

⇡t = �f⇡
e

t+1 + �b⇡t�1 + �yxt + �r(it � ⇡e

t+1) + µt, (I.1)

We find again an insignificant slope �y and a positive and significant at 1% cost channel
parameter �r.

Table I.1: Estimation of the Hybrid Phillips Curve

⇡ Headline CPI Core R-CPI
(1) (2) (3) (4)

�f 0.56 0.67 0.54 0.46
(0.095) (0.103) (0.067) (0.042)

�b 0.49 0.44 0.46 0.54
(0.058) (0.075) (0.067) (0.041)

�y 0.04 -0.04 0.01 0.0138†

(0.042) (0.060) ( 0.005) (–)

�r 0.13 0.03 0.02
(0.048) (0.009) (0.008)

Observations 150 150 118 118
J Test 3.585 4.765 10.069 8.123
(jp) (0.981) (0.906) (0.434) (0.702)
Weak ID Test 1.495 1.473 7.237 61.945

Notes: All results are using IV-GMM procedure, Newey-West HAC standard errors with six lags are reported
in parentheses. The constant term is omitted from the table. The measure of inflation is BLS “Consumer
Price Index retroactive series using current methods for all items less food and energy”, the measure of
market tightness is the U.S. Congressional Budget O�ce unemployment gap. We use the Michigan Survey
of Consumers to measure inflation expectations is the MSC columns, and assume Full Information Rational
Expectations in the FIRE ones. Real oil price is added as a control in all the equations and all regressors are
instrumented using six lags of Romer and Romer’s [2004] shocks (as extended by Wieland and Yang [2020])
and their squares as instruments. For �y and �r, estimates highlighted in grey are significant at 1% and
not significant at 10% if not highlighted. Sample is 1969Q1-2007Q4.

J More Details on the Full Informatiom Estimations

J.1 The Simple Model

We refer to the simple model as the one without internal propagation mechanisms. It is
given by the following three equations:

yt = ↵yEt[yt+1]� ↵r(it � Et[⇡t+1]) + dt,
⇡t = �Et[⇡t+1] + 

�
�yyt + �r(it � Et[⇡t+1])

�
+ µt,

it = Et[⇡t+1] + �ddt + �µµt + ⌫t,
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where dt µt and ⌫t are independent AR(1) processes. We estimate the model following a
classical maximum likelihood method. We set � to .99 and ↵y to .99. Table J.1 presents the
baseline estimation of our forward-looking sticky prices model.

Table J.1: Estimated Parameters, Simple Model

↵r 0.01 �y 0.02 �r 0.04
(0.01) (0.03) (0.02)

�d 0.47 �µ -0.57 �d 0.02 �µ 0.63
(0.11) (0.11) (0.01) (0.10)

�⌫ 0.26 ⇢d 0.94 ⇢µ 0.38 ⇢⌫ 0.99
(0.12) (0.03) (0.09) (0.01)

T.E. Patman condition 0.04 (0.02)

G.E. Patman condition 0.03 (0.01)

Notes: this table shows the estimated coe�cients of equations (EE), (PC) and (Policy) with unemployment
gap, Core CPI Research Series. Parameters � and ↵y are not estimated and set to .99 and .99. Parameter
 is normalized to one. Standard errors are between parenthesis. Sample runs from 1978Q2 to 2007Q4. T.E.
Patman condition corresponds to �r � ↵r�y, G.E. Patman condition is the impact response of inflation ⇡ to
a one standard deviation monetary policy shock.

In this estimation, parameters ⇢d, ⇢µ and ⇢⌫ are restricted to be in the unit interval. We
find that the Phillips curve slope (�y) is not significantly di↵erent from zero and smaller than
the real interest rate channel (�r), which is positive and significant. Henceforth, the T.E.
Patman condition is clearly satisfied. As this is only a necessary condition in this model
with persistent shocks, we also compute the G.E. Patman condition, which is given by the
impact response of inflation to a one standard deviation monetary policy shock. As it can
be checked in Table J.1, that response is positive and significant at a 95% level.

J.2 The Extended New Keynesian Model in the Baseline Case

We assume relatively dispersed priors. For the parameters that were estimated in the simple
model, we center the prior distributions on the previously estimated value. For the new
parameters, we center the priors around zero. Figure J.1 displays prior and posterior distri-
butions for all the estimated parameters. One can check that all the parameters are indeed
well identified. Table J.2 presents more details about the prior and posterior distributions.
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Figure J.1: Prior and Estimated Posterior Distributions for Parameters, Extended New
Keynesian Model, Baseline
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Notes: this figure plots the prior (the light gray area) and posterior (the dark gray line) distributions for
the extended model parameters. The posterior distribution is obtained using the Random Walk Metropolis
algorithm, with two chains of 1,000,000 draws each and discarding the first 200,000 draws of each chain.
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Table J.2: Detailed Results on Parameters Estimation, Extended New Keynesian Model, Baseline

Prior distribution Max. posterior Posterior distribution MH
Parameter Type a b Mode s.d.

(Hessian)
Mean Med. 2.5% 97.5%

↵r: Euler coef. on real rate Beta([a,b]) 0.10 0.05 0.02 0.04 0.02 0.02 0.01 0.03
�y: Marginal cost loading to labour market Normal([a,b]) 0.00 0.20 -0.03 0.05 -0.03 -0.02 -0.12 0.05
�r: Marginal cost loading to the real interest rate Normal([a,b]) 0.00 0.20 0.06 0.03 0.07 0.07 0.03 0.12
�d: Policy rule reaction to demand shock Normal(a,b) 0.10 0.20 0.53 0.14 0.51 0.52 0.31 0.76
�µ: Policy rule reaction to markup shock Normal(a,b) -0.62 0.10 -0.72 0.10 -0.73 -0.73 -0.88 -0.59
�d: Demand shock s.d. InvGamma(a,b) 0.12 2.00 0.04 0.05 0.04 0.04 0.03 0.06
�µ: Markup shock s.d InvGamma(a,b) 0.61 2.00 0.44 0.06 0.46 0.45 0.34 0.57
�⌫ : Monetary shock s.d. InvGamma(a,b) 0.15 2.00 0.23 0.07 0.29 0.28 0.16 0.42
⇢d: Demand shock persistence Beta([a,b]) 0.80 0.05 0.86 0.03 0.85 0.85 0.79 0.90
⇢µ: Markup shock persistence Beta([a,b]) 0.80 0.05 0.61 0.06 0.60 0.60 0.49 0.71
⇢⌫ : Monetary shock persistence Beta([a,b]) 0.80 0.05 0.94 0.02 0.94 0.94 0.91 0.96
�b: Phillips curve intertia Beta(a,b) 0.10 0.05 0.03 0.02 0.04 0.04 0.01 0.09
�⇡,b: Past inflation in policy rule Normal(a,b) 0.00 0.20 0.07 0.16 0.03 0.03 -0.10 0.14
�r,b: Persistence in policy rule Normal(a,b) 0.00 0.20 0.17 0.08 0.14 0.14 -0.01 0.29
↵y,f : Habit persistence Beta(a,b) 0.95 0.03 0.75 0.03 0.75 0.75 0.67 0.88
�y,b: Past gap in policy rule Normal(a,b) 0.00 0.20 0.01 0.13 0.08 0.08 -0.30 0.38

Notes: this table shows the estimated coe�cients of equations (EE), (PC’) and (Policy) using unemployment gap, Core R-CPI and the sample is
1978Q2-2007Q4. Parameters � and ↵y are not estimated and set to .99 and .99. Parameter  is normalized to one. The posterior distribution is ob-
tained using the Random Walk Metropolis algorithm, with two chains of 1,000,000 draws each and discarding the first 200,000 draws of each chains. “Med.”
is the median of the posterior distribution.
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J.3 Estimating with Phillips Curve (PC) Instead of (PC’)

Here we repeat the benchmark estimation but we use Phillips curve (PC)

⇡t = �
�
(1� �b)Et[⇡t+1] + �b⇡t�1

�
+ 
�
�yyt + �y,byt�1 + �r(it � Et[⇡t+1])

�
+ µt, (PC)

instead of (PC’).

⇡t = �
�
(1� �b)Et[⇡t+1] + �b⇡t�1

�
+ 
�
�yyt + �r(it � Et[⇡t+1])

�
+ µt. (PC’)

Table J.3 shows that all the parameters are close to what was estimated in the benchmark
case and the Patman condition is again satisfied. Table J.4 gives more details about the
prior and posterior distributions.

Table J.3: Estimated Parameters, Extended New Keynesian Model with Phillips Curve (PC)

↵r 0.02 �y -0.11 �r 0.07 �d 0.51
[ 0.01, 0.03] [ -0.40, 0.16] [ 0.03, 0.11] [ 0.31, 0.74]

�µ -0.73 �d 0.04 �µ 0.45 �⌫ 0.29
[ -0.87, -0.60] [ 0.03, 0.06] [ 0.34, 0.57] [ 0.17, 0.44]

⇢d 0.85 ⇢µ 0.60 ⇢⌫ 0.94 �b 0.04
[ 0.79, 0.90] [ 0.50, 0.71] [ 0.91, 0.96] [ 0.01, 0.08]

�⇡,b 0.02 �r,b 0.14 ↵y,f 0.74 �y,b 0.09
[ -0.11, 0.16] [ -0.01, 0.29] [ 0.66, 0.87] [ -0.23, 0.42]

�y,b 0.09
[ -0.17, 0.35]

P.E. Patman condition 0.07 [ 0.03, 0.12]

G.E. Patman condition 0.11 [ 0.08, 0.14]

Notes: this table shows the posterior mean estimates of the coe�cients in equations (EE), (PC) and (Policy)
using unemployment gap, Core CPI and the sample is 1978Q2-2007Q4. Parameters � and ↵y are not
estimated and set to .99 and .99. Parameter  is normalized to one. The posterior distribution is obtained
using the Random Walk Metropolis algorithm, with two chains of 1,000,000 draws each and discarding the
first 200,000 draws of each chain. The numbers between brackets represent the 90% confidence band using
the posterior distribution. The P.E. Patman condition corresponds to �r � ↵r�y, G.E. Patman condition is
the impact response of inflation ⇡ to a one standard deviation monetary policy shock.
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Table J.4: Detailed Results on Parameters Estimation, Extended New Keynesian Model with Phillips Curve (PC)

Prior distribution Max. posterior Posterior distribution MH
Parameter Type a b Mode s.d.

(Hessian)
Mean Med. 2.5% 97.5%

↵r: Euler coef. on real rate Beta([a,b]) 0.10 0.05 0.02 0.01 0.02 0.02 0.01 0.03
�y: Marginal cost loading to labour market Normal([a,b]) 0.00 0.20 -0.13 0.11 -0.11 -0.11 -0.40 0.16
�r: Marginal cost loading to the real interest rate Normal([a,b]) 0.00 0.20 0.06 0.02 0.07 0.07 0.03 0.11
�d: Policy rule reaction to demand shock Normal(a,b) 0.10 0.20 0.53 0.11 0.51 0.51 0.31 0.74
�µ: Policy rule reaction to markup shock Normal(a,b) -0.62 0.10 -0.72 0.07 -0.73 -0.73 -0.87 -0.60
�d: Demand shock s.d. InvGamma(a,b) 0.12 2.00 0.04 0.01 0.04 0.04 0.03 0.06
�µ: Markup shock s.d InvGamma(a,b) 0.61 2.00 0.44 0.06 0.45 0.45 0.34 0.57
�⌫ : Monetary shock s.d. InvGamma(a,b) 0.15 2.00 0.24 0.07 0.29 0.28 0.17 0.44
⇢d: Demand shock persistence Beta([a,b]) 0.80 0.05 0.85 0.03 0.85 0.85 0.79 0.90
⇢µ: Markup shock persistence Beta([a,b]) 0.80 0.05 0.61 0.05 0.60 0.60 0.50 0.71
⇢⌫ : Monetary shock persistence Beta([a,b]) 0.80 0.05 0.94 0.01 0.94 0.94 0.91 0.96
�b: Phillips curve intertia Beta(a,b) 0.10 0.05 0.03 0.02 0.04 0.04 0.01 0.08
�⇡,b: Past inflation in policy rule Normal(a,b) 0.00 0.20 0.07 0.06 0.02 0.02 -0.11 0.16
�r,b: Persistence in policy rule Normal(a,b) 0.00 0.20 0.18 0.07 0.14 0.14 -0.01 0.29
↵y,f : Habit persistence Beta(a,b) 0.95 0.03 0.72 0.04 0.74 0.74 0.66 0.87
�y,b: Past gap in policy rule Normal(a,b) 0.00 0.20 0.04 0.14 0.09 0.09 -0.23 0.42
�y,b: Marginal cost loading to past labour market Normal(a,b) 0.00 0.20 0.09 0.11 0.09 0.09 -0.17 0.35

Notes: This table shows the estimated coe�cients of equations (EE), (PC) and (Policy) using unemployment gap, Core CPI and the sample 1978Q2-2007Q4.
Parameters � and ↵y are not estimated and set to .99 and .99. Parameter  is normalized to one. The posterior distribution is obtained using the Random
Walk Metropolis algorithm, with two chains of 1,000,000 draws each and discarding the first 200,000 draws of each chain. “Med.” is the median of the
posterior distribution.
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J.4 Counterfactual Simulations of Section 3.4 with Post-Volcker
Estimation

We check here the robustness of our counterfactual simulations by re-estimating the extended
model over 1983Q1-2007Q4. Parameters estimates are close to those obtained on a longer
sample, although the cost channel is weaker. The mean of the posterior distribution is
�y = �0.00, with 95% confidence interval [-0.02 0.02] and �r = 0.02, with 95% confidence
interval [-0.00 0.05]. The slope of the Phillips curve is not di↵erent from zero and the cost
channel is positive and significant. Furthermore, we find that the economy is in the Patman
regime. With this new set of parameters, the counterfactual simulations are displayed below.

Figure J.2: Actual and Counterfactual Simulations Of the Extended New Keynesian Model
during the ZLB Period with Post-Volcker Estimates
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(c) Inflation rate
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Notes: This Figure is obtained from simulating the extended model from 2007Q1 on. The model parameters
have been estimated in the post-Volcker pre-ZLB period (1983Q1-2007Q4). Then, the model with estimated
parameters and a ZLB constraint is used over 2007Q1-2017Q4 to recover structural shocks. These shocks (or
a subset) are then used for a simulations with an alternative monetary policy (fixed nominal interest rate at
the 2007Q1 level).
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