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A Theoretical Model

Appendix A presents a simple New Keynesian model with an effective lower bound (ELB)
and unconventional monetary policy (UMP). The model is a version of a preferred habitat
model such as Chen et al. (2012), extended to incorporate two things: a policy rule for
quantitative easing (QE) that is operated using a shadow rate as policy guidance and forward
guidance (FG) in the spirit of Reifschneider and Williams (2000). To keep the analysis
focused on the salient features of the transmission mechanisms of UMP, the model abstracts
from capital accumulation and consumption habit formation. There are three shocks: a
demand (preference) shock, a supply (productivity) shock, and a monetary policy shock.

A.1 Model building blocks

A.1.1 Long-term bonds

There is a long-term government bond (consol bond). The long-term bond issued at time t
yields µj−1 dollars at time t + j over time. Let RL,t+1 denote the gross nominal rate from
time t to t+ 1. The period-t price of the bond issued at time t, PL,t, is defined as

PL,t = Et

(
1

RL,t+1

+
µ

RL,t+1RL,t+2

+
µ2

RL,t+1RL,t+2RL,t+3

+ ...

)
= Et

(
1

RL,t+1

+
µ

RL,t+1

PL,t+1

)
. (A.1)

The gross yield to maturity (or the long-term interest rate) at time t, R̄L,t is defined as

Et

(
1

R̄L,t

+
µ(

R̄L,t

)2 +
µ2(
R̄L,t

)3 + ...

)
= PL,t,
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or

PL,t =
1

R̄L,t − µ
. (A.2)

Let BL,t|t−s denote period-t holdings of bonds that were issued at time t − s. Suppose
that a household has BL,t|t−s for s = 1, 2, ... in the beginning of period t. The total amount
of dividends the household receives in period t is

∞∑
s=1

µs−1BL,t|t−s.

Note that having one unit of BL,t|t−s is equivalent to having µs−1 units of BL,t|t−1 because
they both yield µs−1 dollars. The total amount of dividends then can be expressed in terms
of BL,t|t−1 as

∞∑
s=1

µs−1BL,t|t−s ≡ BL,t−1,

where BL,t−1 denotes the amount of bonds in units of the bonds issued at time t−1, held by
the household in the beginning of period t. Let PL,t|t−s denote the time-t price of the bond
issued at time t− s. Then, the value of all bonds at time t is

∞∑
s=1

PL,t|t−sBL,t|t−s.

The bond price satisfies

PL,t|t−s = Et

(
µs

RL,t+1

+
µs+1

RL,t+1RL,t+2

+
µs+2

RL,t+1RL,t+2RL,t+3

+ ...

)
= µsPL,t

Then the value of all bonds at time t is

∞∑
s=1

PL,t|t−sBL,t|t−s = PL,tµ
∞∑
s=1

µs−1BL,t|t−s = µPL,tBL,t−1.

So the return of holding BL,t−1 is given by the sum of dividends and the value of all bonds
as:

BL,t−1 + µPL,tBL,t−1 = (1 + µPL,t)BL,t−1 = PL,tR̄L,tBL,t−1 =
R̄L,t

R̄L,t − µ
BL,t−1.

A.1.2 Households

There are two types of households: unrestricted households (U-households) and restricted
households (R-households). U-households, with population ωu, can trade both short-term
and long-term government bonds subject to a transaction cost ζt per unit of long-term
bonds purchased. R-households, with population ωr = 1 − ωu, can trade only long-term
government bonds. For j = u, r, each household chooses consumption cjt , hours worked h

j
t ,
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the long-term government bond holdings Bj
L,t, and the short-term government bond holdings

Bj
S,t to maximize utility,

∞∑
t=0

βt
jdt

[(
cjt
)1−σ

1− σ
− ψ

(
hjt
)1+1/ν

1 + 1/ν

]
,

subject to: for a U-household,

Ptc
u
t +Bu

S,t + (1 + ζt)PL,tB
u
L,t = (1 + it−1)B

u
t−1 + PL,tR̄L,tB

u
L,t−1 +Wth

u
t − T u

t +Πu
t ,

and for a R-household,

Ptc
r
t + PL,tB

r
L,t = PL,tR̄L,tB

r
L,t−1 +Wth

r
t − T r

t +Πr
t ,

where Pt is the price level and it is the short-term interest rate. In addition R̄L,t denotes the
gross yield to maturity at time t on the long-term bond

R̄L,t =
1

PL,t

+ µ, 0 < µ ≤ 1.

The average duration of the bond is given by R̄L,t/
(
R̄L,t − µ

)
. There is a shock dt to the

preference, and it is given by:

dt =

{
ez

b
1ez

b
2 ...ez

b
t

1
for t ≥ 1
for t = 0

,

where zbt is a preference (demand) shock, which is assumed to follow an AR(1) process

zbt = ρbz
b
t−1 + ϵbt ,

with ϵbt ∼ i.i.d. N (0, σ2
b ).

We assume that the transaction cost of trading long-term bonds for the U-households
is collected by financial firms and redistributed as a lump-sum profits to the U-households.
Under the assumption, the transaction cost does not appear in the goods market clearing
condition, which is given by:

yt = ωuc
u
t + (1− ωu) c

r
t . (A.3)

Arranging the first-order conditions of the U-household’s problem yields the following
optimality conditions:

wt = ψ (cut )
σ (hut )

1/ν , (A.4)

1 = Etβue
zbt+1

(
cut+1

cut

)−σ
1 + it
πt+1

, (A.5)

1 + ζt = Etβue
zbt+1

(
cut+1

cut

)−σ
RL,t+1

πt+1

, (A.6)

where wt ≡ Wt/Pt denotes the real wage, πt ≡ Pt/Pt−1 denotes the inflation rate, and RL,t+1

denotes the yield of the long-term bond between periods t and t+ 1, given by

RL,t+1 ≡
PL,t+1

PL,t

R̄L,t+1 =
PL,t+1

PL,t

(
1

PL,t+1

+ µ

)
=

1 + µPL,t+1

PL,t

.
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Similarly, arranging the first-order conditions of the R-household’s problem yields

wt = ψ (crt )
σ (hrt )

1/ν , (A.7)

1 = Etβre
zbt+1

(
crt+1

crt

)−σ
RL,t+1

πt+1

. (A.8)

A.1.3 Firms

The firm sector consists of two types of firms: final-goods-producing firms and intermediate-
goods-producing firms. The problems of these firms are standard except that the average
discount rate between U-households and R-households is used in discounting the profits of
these firms. The profits need to be derived explicitly because one of the two households’
budget constraints constitutes an equilibrium condition as well as the goods market clearing
condition.

Each final-goods-producing firm produces a unit of final goods yt in a competitive market
by combining intermediate goods {yt (l)}1l=0 according to

yt =

[∫ 1

0

yt (l)
1
λp dl

]λp

, λp > 1.

The demand function for the l-th intermediate good is given by

yt (l) =

(
Pt (l)

Pt

) λp
1−λp

yt.

Each intermediate-goods-producing firm uses labor and produce intermediate goods ac-
cording to

yt (l) = ez
a
t ht (l)

θ , 0 < θ ≤ 1.

where zat is a productivity shock, which is assumed to follow

zat = ρaz
a
t−1 + ϵat ,

with ϵat ∼ i.i.d. N (0, σ2
a). Because there is no price dispersion in steady state, the aggregate

output can be expressed up to the first-order approximation as:

ŷt = zat + θĥt, (A.9)

where ŷt and ĥt denote the aggregate output and hours worked in terms of deviation from
the steady state. The total cost of producing yt (l) is equal to

Wtht (l) = Wt

(
yt (l)

ez
a
t

) 1
θ

.

In each period, intermediate-goods-producing firms can change their price with prob-
ability ξ identically and independently across firms and over time. For each l, the l-th
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intermediate-goods producing firm chooses the price, P̃t (l), to maximize the discounted sum
of profits,

max
P̃t(l)

Et

∞∑
s=0

(ξδ)s Λ̄t+s|t

[
Pt+s (l) yt+s (l)−Wt+s

(
yt+s (l)

ez
a
t+s

) 1
θ

]
,

subject to the demand curve,

yt+s(l) =

(
Pt+s (l)

Pt+s

) λp
1−λp

yt+s,

where

δ = ωuβu + (1− ωu)βr,

Λ̄t+s|t ≡ dt+s|t
(
ωuΛ

u
t+s|t + (1− ωu) Λ

r
t+s|t

)
,

Λj
t+s|t =

(
cjt+s

cjt

)−σ
1

Pt+s

, dt+s|t =

{
1 if s = 0

ez
b
t+1ez

b
t+2 ...ez

b
t+s if s = 1, 2, ...

Pt+s (l) = P̃t(l)Π
p
t,t+s,

Πp
t+s|t =

{
1 if s = 0∏s

k=1(πt+k−1)
ιp (π)1−ιp if s = 1, 2, ...

The presence of Πp
t+s|t implies price indexation for firms that do not have a chance to change

prices and 0 ≤ ιp ≤ 1 governs the degree of indexation to the past inflation rates. Substitut-
ing the demand curve into the objective function yields

max
P̃t(l)

Et

∞∑
s=0

(ξδ)s Λ̄t+s|t

P̃t(l)Π
p
t+s|t

(
P̃t(l)Π

p
t+s|t

Pt+s

) λp
1−λp

Yt+s −Wt+s

(
P̃t(l)Π

p
t+s|t

Pt+s

) λp

(1−λp)θ ( yt+s

ez
a
t+s

) 1
θ

 .
The first-order condition is

0 = Et

∞∑
s=0

(ξδ)s Λ̄t+s|t

[
1

1− λp
Πp

t+s|tyt+s (l)−Wt+s
λp

(1− λp) θ

(
yt+s (l)

ez
a
t+s

) 1
θ 1

P̃t(l)

]
.

Since P̃t (l) does not depend on l, index l is omitted hereafter. Define p̃t ≡ P̃t/Pt and

Π̃p
t+s|t =

{
1 if s = 0∏s

k=1
(πt+k−1)

ιp (π)1−ιp

πt+k
if s = 1, 2, ...

The first-order condition can be transformed as

0 = Et

∞∑
s=0

(ξδ)s Λ̄t+sPt+s

[
1

1− λp

Πp
t+s|t

Pt+s

(
p̃tΠ̃

p
t+s|t

) λp
1−λp

yt+s

−Wt+s

Pt+s

λp
(1− λp) θ

(
p̃tΠ̃

p
t+s|t

) λp

(1−λp)θ

(
Yt+s

ez
a
t+s

) 1
θ 1

P̃t

]
,
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This equation can be written as:

p̃t =

(
λp
θ

ωuK
u
p,t + (1− ωu)K

r
p,t

ωuF u
p,t + (1− ωu)F r

p,t

) (1−λp)θ
θ−λp

, (A.10)

where for j ∈ {r, u}

F j
p,t = (cjt)

−σyt + ξδEte
zbt+1(Π̃p

t+1|t)
1

1−λpF j
p,t+1, (A.11)

Kj
p,t = (cjt)

−σ
( yt
ez

a
t

) 1
θ
wt + ξδEte

zbt+1(Π̃p
t+1|t)

λp

(1−λp)θKj
p,t+1. (A.12)

The aggregate price level evolves following

Pt =

[
ξ[(πt−1)

ιp (π)1−ιp Pt−1]
1

1−λp + (1− ξ)P̃
1

1−λp

t

]1−λp

,

which can be written as

p̃t =

1− ξ(Π̃p
t|t−1)

1
1−λp

1− ξ

1−λp

. (A.13)

The conditions, (A.10)-(A.13), summarize the price setting behavior of intermediate-goods-
producing firms.

The aggregate nominal profits earned by intermediate-goods-producing firms are given
by:

Πm
t =

∫ 1

0

(
Pt (l) yt (l)−Wt

(
yt (l)

ez
a
t

) 1
θ

)
dl = Ptyt −Wt

( yt
ez

a
t

) 1
θ
,

where the last equality holds up to the first-order approximation. Then, the aggregate real

profits are given by πm
t = yt − wt

(
yt/e

zat
)1/θ

.

A.1.4 Government

The government flow budget constraint is

(1 + it−1)BS,t−1 + (1 + µPL,t)BL,t−1 = BS,t + PL,tBL,t + Tt,

where Tt = ωuT
u
t +(1− ωu)T

r
t . We assume that the lump-sum tax is imposed on households

equally so that T u
t = T r

t = Tt. To focus on the role of long-term government bonds, we
assume that the amount of short-term bonds is constant at bS,t ≡ BS,t/Pt = b̄S.

A.1.5 Central bank

The nominal interest rate it set by the central bank is bounded below by the ELB as

it = max {i∗t , i} , (A.14)
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where i is the ELB and i∗t is a shadow rate – the short-term rate the central bank would set
if there were no ELB. The shadow rate i∗t is given by1

i∗t = iTaylort − α
(
it − iTaylort

)
. (A.15)

The shadow rate i∗t consists of two parts: iTaylort and α(it− iTaylort ). First, iTaylort is the Taylor-
rule-based rate that responds to inflation πt, output yt, and the lagged ‘effective’ interest
rate (1− λ∗)it−1 + λ∗i∗t−1:

iTaylort − i = ρi
(
(1− λ∗)it−1 + λ∗i∗t−1 − i

)
+(1− ρi) [rπ log (πt/π) + ry log (yt/y)]+ϵ

i
t, (A.16)

where ϵit is a monetary policy shock and variables without subscripts denote those in steady

state. The parameter λ∗ will be derived later in this appendix. Second, α(it − iTaylort ) in
equation (A.15) encapsulates the strength of FG. A positive value for α will maintain the

target rate i∗t below the Taylor rate iTaylort . Under the ELB of it = i, the more the central
bank has missed to set the interest rate at its Taylor rate, the lower the central bank sets
its target rate i∗t through equation (A.15) as long as ρiλ

∗ > 0 in equation (A.16).2

The central bank activates QE when the economy hits the ELB. The central bank con-
tinues using the shadow rate as policy guidance in an ELB regime as in a non-ELB regime.
Specifically, the amount of long-term bond purchases depends on the shadow rate, and as a
result the amount of long-term government bonds, bL,t ≡ BL,t/Pt, held by the private agents
is given by:

b̂L,t =

{
0

γ
i∗t−i

1+i

if i∗t ≥ i
if i∗t < i

, (A.17)

where the caret on a variable denotes a deviation from the steady state. This QE rule implies
that asset purchases by the central bank is zero (relative to the steady state) when the ELB

is not binding (i.e. it = i∗t ≥ i) and, given γ > 0, the purchases are positive (i.e., b̂L,t < 0)
when the shadow rate goes below the ELB (i.e., i∗t < i).

A.1.6 Market clearing and equilibrium

As well as the goods market clearing condition (A.3), there are market clearing conditions
for labor, long-term government bonds, and short-term government bonds:

ωuh
u
t + (1− ωu)h

r
t = ht, (A.18)

ωub
u
L,t + (1− ωu) b

r
L,t = bL,t, (A.19)

ωub
u
S,t = bS,t (A.20)

Also, either the U-household’s budget constraint or the R-household’s budget constraint
should be added as an equilibrium condition. Here the latter budget constraint is added:

crt + PL,tb
r
L,t =

(
R̄L,t/πt

)
PL,tb

r
L,t−1 + wth

r
t − T r

t /Pt +Πr
t/Pt, (A.21)

1Reifschneider andWilliams (2000) use the following rule: i∗t = iTaylort −αZt and Zt = ρZZt−1+(it−iTaylort )
with ρZ = 1.

2Debortoli et al. (2019) consider the case of α = 0 and λ∗ = 1 in equation (A.16) and interpret ρi – the
coefficient of interest rate smoothing – as FG when i∗t is below the ELB.
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where

T r
t

Pt

= − (bS,t + PL,tbL,t) +
1 + it−1

πt
bS,t−1 +

1 + µPL,t

πt
bL,t−1,

Πr
t

Pt

= yt − wtht.

The cost of trading long-term bonds, ζt, is specified as

ζt
ζ
=

(
bL,t
bL

)ρζ

, ρζ > 0. (A.22)

The trading cost is increasing in the amount of long-term bonds relative to its steady state
value. The trading cost is ζ in steady state.

The system of equations for the economy consists of 19 equations, (A.3)-(A.21), with the
following endogenous variables:

cut , c
r
t , h

u
t , h

r
t , ht, b

u
L,t, b

r
L,t, bL,t, b

u
t , yt, wt, it, i

∗
t , i

Taylor
t , RL,t, πt, p̃t, F

j
p,t, K

j
p,t.

A.2 Log-linearized equations

We log-linearize the equilibrium conditions of the theoretical model presented in Appendix
A.1 around the steady state in which inflation is equal to the target rate of inflation set by
the central bank. By doing so, we derive key equations in the system of equations (1)-(16)
presented in Section I of the main text. We also derive a log-linearized equation for the
long-term yield.

Euler equation. Log-linearizing equations (A.3), (A.5), (A.6), (A.8), and (A.22), we ob-
tain3

ŷt =
ωuc

u

y
ĉut +

(1− ωu) c
r

y
ĉrt . (A.23)

0 = Et

[
−σ
(
ĉut+1 − ĉut

)
+ ı̂t − π̂t+1 + zbt+1

]
, (A.24)

ζ

1 + ζ
ζ̂t = Et

[
−σ
(
ĉut+1 − ĉut

)
+ R̂L,t+1 − π̂t+1 + zbt+1

]
, (A.25)

0 = Et

[
−σ
(
ĉrt+1 − ĉrt

)
+ R̂L,t+1 − π̂t+1 + zbt+1

]
, (A.26)

ζ̂t = ρζ b̂L,t. (A.27)

Equation (A.23) can be written as:

ĉut =
y

ωucu

{
ŷt −

(1− ωu) c
r

y
ĉrt

}
.

3The variable î represents the deviation of the gross interest rate from the steady state.
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Subtracting ĉut+1 from ĉut yields:

ĉut+1 − ĉut =
y

ωucu

{
ŷt+1 − ŷt −

(1− ωu) c
r

y

(
ĉrt+1 − ĉrt

)}
,

=
y

ωucu

ŷt+1 − ŷt −
(1− ωu) c

r

y

(
R̂L,t+1 − π̂t+1 + zbt+1

)
σ

 , (A.28)

where equation (A.26) was used in the second equality. Substituting equation (A.28) into
equation (A.24) yields:

0 = Et

[
−σ
(
ĉut+1 − ĉut

)
+ ı̂t − π̂t+1 + zbt+1

]
,

= Et

− σy

ωucu
(ŷt+1 − ŷt) +

σy

ωucu
(1− ωu) c

r

y

(
R̂L,t+1 − π̂t+1 + zbt+1

)
σ

+ı̂t − π̂t+1 + zbt+1

]
,

or, by using equation (A.3) in steady state,

0 = Et

[
−σ (ŷt+1 − ŷt) +

(1− ωu) c
r

y
R̂L,t+1 +

ωuc
u

y
ı̂t − π̂t+1 + zbt+1

]
. (A.29)

Equation (A.29) shows that the interest rate relevant to the aggregate variables such as

output and inflation is the weighted sum of the return of holding the long-term bonds R̂L,t+1

and the short-term interest rate ît. Also, substituting equation (A.28) into equation (A.25)
yields:

ζ

1 + ζ
ζ̂t = Et

[
−σ
(
ĉut+1 − ĉut

)
+ R̂L,t+1 − π̂t+1

]
= Et

−σ y

ωucu

ŷt+1 − ŷt −
(1− ωu) c

r

y

(
R̂L,t+1 − π̂t+1 + zbt+1

)
σ


+R̂L,t+1 − π̂t+1 + zbt+1

]
,

= Et

[
− σy

ωucu
(ŷt+1 − ŷt) +

y

ωucu

(
R̂L,t+1 − π̂t+1 + zbt+1

)]
,

or, substituting out ζ̂t by using equation (A.27) yields

Et

(
R̂L,t+1 − π̂t+1

)
= σEt (ŷt+1 − ŷt)− Et

(
zbt+1

)
+
ωuc

u

y

ζ

1 + ζ
ρζ b̂L,t. (A.30)
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Combining equations (A.29) and (A.30) yields:

0 = Et

[
−σ (ŷt+1 − ŷt) +

(1− ωu) c
r

y
R̂L,t+1 +

ωuc
u

y
ı̂t − π̂t+1 + zbt+1

]
= Et

[
−σ (ŷt+1 − ŷt) +

(1− ωu) c
r

y

(
σ (ŷt+1 − ŷt)− zbt+1 +

ωuc
u

y

ζ

1 + ζ
ρζ b̂L,t + π̂t+1

)
+
ωuc

u

y
ı̂t − π̂t+1 + zbt+1

]
= Et

[
−ωuc

uσ

y
(ŷt+1 − ŷt) +

ωuc
u

y
ı̂t −

ωuc
u

y

(
π̂t+1 − zbt+1

)
+

(1− ωu) c
r

y

ωuc
u

y

ζ

1 + ζ
ρζ b̂L,t

]
,

or

0 = Et

[
−σ (ŷt+1 − ŷt) + ı̂t − π̂t+1 + zbt+1 +

(1− ωu) c
r

y

ζ

1 + ζ
ρζ b̂

]
,

or

ŷt = Etŷt+1 −
1

σ

(
ı̂t − Etπ̂t+1 + Etz

b
t+1

)
− 1

σ

(1− ωu) c
r

y

ζ

1 + ζ
ρζ b̂L,t

= Etŷt+1 −
1

σ
(̂ıt − Etπ̂t+1)−

1

σ

(1− ωu) c
r

y

ζ

1 + ζ
ρζ b̂L,t −

ρb
σ
zbt .

This equation shows that the central bank’s government bond purchase – a decrease in b̂L,t –

stimulates output, given Etŷt+1 and the real rate ît−Etπ̂t+1. Since b̂L,t follows the simple rule
(A.17), the equation can be written as equation (12) in the main text, which is reproduced
here for convenience:

ŷt = Etŷt+1 −
1

σ

(
(1− λ∗)̂it + λ∗î∗t − Etπ̂t+1

)
− χbz

b
t (A.31)

where

λ∗ =
(1− ωu) c

r

y

ζ

1 + ζ
ρζγ

χb =
ρb
σ

(A.32)

The case of λ∗ = 1 (and α = 0) corresponds to the fully effective UMP, which makes the
ELB irrelevant. Such a case can be achieved, e.g., when the central bank responds to the
shadow rate aggressively enough to satisfy

γ =

[
(1− ωu) c

r

y

ζ

1 + ζ
ρζ

]−1

.

Phillips curve. The Phillips curve can be derived from equations (A.10)-(A.13). Log-
linearizing equation (A.13) yields:

̂̃pt = − ξ

1− ξ
̂̃Πp

t|t−1, (A.33)
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where ̂̃Πp

t|t−1 = (1− νp) π̂t−1 − π̂t.

Log-linearizing equation (A.10) yields:

θ − λp
(1− λp) θ

̂̃pt = ωuK
u
p

ωuKu
p + (1− ωu)Kr

p

K̂u
p,t +

(1− ωu)K
r
p

ωuKu
p + (1− ωu)Kr

p

K̂r
p,t

−
ωuF

u
p

ωuF u
p + (1− ωu)F r

p

F̂ u
p,t −

(1− ωu)F
r
p

ωuF u
p + (1− ωu)F r

p

F̂ r
p,t. (A.34)

Combining equations (A.33) and (A.34) leads to:

− ξ

1− ξ

θ − λp
(1− λp) θ

[(1− νp) π̂t−1 − π̂t] =
ωuK

u
p

ωuKu
p + (1− ωu)Kr

p

K̂u
p,t +

(1− ωu)K
r
p

ωuKu
p + (1− ωu)Kr

p

K̂r
p,t

−
ωuF

u
p

ωuF u
p + (1− ωu)F r

p

F̂ u
p,t −

(1− ωu)F
r
p

ωuF u
p + (1− ωu)F r

p

F̂ r
p,t.

(A.35)

Log-linearizing equation (A.11) and (A.12) yields:

F̂ j
p,t = (1− ξδ)

(
−σĉjt + ŷt

)
+ ξδEt

(
zbt+1 +

1

1− λp

̂̃Πp

t+1|t + F̂ j
p,t+1

)
,

K̂j
p,t = (1− ξδ)

(
−σĉjt +

1

θ
ŷt −

1

θ
zat + ŵt

)
+ ξδEt

(
zbt+1 +

λp
(1− λp) θ

̂̃Πp

t+1|t + K̂j
p,t+1

)
,

for j ∈ {r, u}. The term involving F̂ u
p,t and F̂

r
p,t in equation (A.35) is calculated as follows.

ωuF
u
p

ωuF u
p + (1− ωu)F r

p

F̂ u
p,t +

(1− ωu)F
r
p

ωuF u
p + (1− ωu)F r

p

F̂ r
p,t

= (1− ξδ)

(
−σ

ωuF
u
p ĉ

u
t + (1− ωu)F

r
p ĉ

r
t

ωuF u
p + (1− ωu)F r

p

+ ŷt

)
+ ξδEt

(
zbt+1 +

1

1− λp

̂̃Πp

t+1|t +
ωuF

u
p

ωuF u
p + (1− ωu)F r

p

F̂ u
p,t+1 +

(1− ωu)F
r
p

ωuF u
p + (1− ωu)F r

p

F̂ r
p,t+1

)
.

Similarly, the term involving K̂u
p,t and K̂

r
p,t in equation (A.35) is calculated as:

ωuK
u
p

ωuKu
p + (1− ωu)Kr

p

K̂u
p,t +

(1− ωu)K
r
p

ωuKu
p + (1− ωu)Kr

p

K̂r
p,t

= (1− ξδ)

(
−σ

ωuK
u
p ĉ

u
t + (1− ωu)K

r
p ĉ

r
t

ωuKu
p + (1− ωu)Kr

p

+
1

θ
ŷt −

1

θ
zat + ŵt

)
+ ξδEt

(
zbt+1 +

λp
(1− λp) θ

̂̃Πp

t+1|t +
ωuK

u
p

ωuKu
p + (1− ωu)Kr

p

K̂u
p,t+1 +

(1− ωu)K
r
p

ωuKu
p + (1− ωu)Kr

p

K̂r
p,t+1

)
.
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Let the right-hand-side of equation (A.35) be denoted as X̂t. Then, using the above rela-

tionships just derived, X̂t can be written as:

X̂t = (1− ξδ)

[(
1

θ
− 1

)
ŷt −

1

θ
zat + ŵt

]
+ ξδEt

(
− λp − θ

(λp − 1) θ
̂̃Πp

t+1|t + X̂t+1

)
Because X̂t is the right-hand-side of equation (A.35), equation (A.35) can be written as:

− ξ

1− ξ

λp − θ

(λp − 1) θ
[(1− νp) π̂t−1 − π̂t] = (1− ξδ)

[(
1

θ
− 1

)
ŷt −

1

θ
zat + ŵt

]
+ ξδEt

(
− λp − θ

(λp − 1) θ
̂̃Πp

t+1|t −
ξ

1− ξ

λp − θ

(λp − 1) θ
[(1− νp) π̂t − π̂t+1]

)
,

or

π̂t =
ξ (1− νp)

(ξ + 1− νp)
π̂t−1+

(1− ξδ) (1− ξ) (λp − 1) θ

(λp − θ) (ξ + 1− νp)

[(
1

θ
− 1

)
ŷt −

1

θ
zat + ŵt

]
+

ξδ

(ξ + 1− νp)
Etπ̂t+1.

From equations (A.4) and (A.7), the wage ŵt can be written as:

ŵt = ωu

(
σĉut +

1

ν
ĥut

)
+ (1− ωu)

(
σĉrt +

1

ν
ĥrt

)
,

= σŷt +
1

ν
ĥt =

(
σ +

1

νθ

)
ŷt −

1

νθ
zat ,

where the market clearing conditions (A.3) and (A.18) were used in the second equality and
the production function (A.9) was used in the third equality. Since we assume cu = cr, the
second equality holds. By using the expression for ŵt, the Phillips curve can be written as

π̂t =
ξ (1− νp)

(ξ + 1− νp)
π̂t−1

+
(1− ξδ) (1− ξ) (λp − 1) θ

(λp − θ) (ξ + 1− νp)

[
ν + νθ (σ − 1) + 1

νθ
ŷt −

1 + ν

νθ
zat

]
+

ξδ

(ξ + 1− νp)
Etπ̂t+1.

In the case of no price indexation to the past inflation rate and a linear production function,
that is, in the case of νp = 1 and θ = 1, the Phillips curve collapses to the standard form:

π̂t =
(1− ξδ) (1− ξ)

ξ

(
σ +

1

ν

)
ŷt + δEtπ̂t+1 −

(1− ξδ) (1− ξ)

ξ

1 + ν

ν
zat .

This completes the derivation of equation (16) in the main text, where

κ =
(1− ξδ) (1− ξ)

ξ

(
σ +

1

ν

)
, (A.36)

χa =
(1− ξδ) (1− ξ)

ξ

1 + ν

ν
. (A.37)
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Long-term yield. From equations (A.29) and (A.31), the interest rate relevant to the
aggregate variables has the following equality:

(1− ωu)c
r

y
EtR̂L,t+1 +

ωuc
u

y
ît = (1− λ∗)̂it + λ∗î∗t . (A.38)

This equation can be written as

EtR̂L,t+1 =

{
î∗t î∗t ≥ î

λ∗y
(1−ωu)cr

î∗t +
(1−λ∗)y−ωucu

(1−ωu)cr
î î∗t < î

(A.39)

By using RL,t+1 = R̄L,t+1(R̄L,t−µ)/(R̄L,t+1−µ), which relates the return of holding long-term

bonds R̂L,t+1 to the long-term yield ˆ̄RL,t, the long-term yield can be written as

ˆ̄RL,t =
R̄L − µ

R̄L

EtR̂L,t+1 +
µ

R̄L

Et
ˆ̄RL,t+1, (A.40)

where R̄L > µ in steady state. Substitution equation (A.39) into equation (A.40) yields

ˆ̄RL,t =


R̄L−µ
R̄L

î∗t +
µ
R̄L
Et

ˆ̄RL,t+1 î∗t ≥ î
R̄L−µ
R̄L

[
yλ∗

(1−ωu)cr
î∗t +

(1−λ∗)y−ωucu

(1−ωu)cr
î
]
+ µ

R̄L
Et

ˆ̄RL,t+1 î∗t < î
(A.41)

Equation (A.41) shows that the long-term yield is the discounted sum of the current and
future short-term returns, where the short-term return is given by the shadow rate in the
non-ELB regime and in the ELB regime it is given by the first two terms in the square
brackets in (A.41).

A.3 Parameterization of the model

Instead of parameterizing the model presented in Appendix A.1, we parameterize the system
of log-linearized equations (1)-(16) in the main text. It is worth emphasizing that we use
the parameterized model to illustrate the implications of the theoretical model, and not to
study the quantitative implications, which would require a more complex system.

The relative risk aversion parameter is set at σ = 2. The discount factor is set close to
unity at δ = 0.997. The slope of the Phillips curve κ is set at κ = 0.336 using equation
(A.36) with the Calvo parameter of ξ = 0.75 and the Frisch labor elasticity of ν = 0.5. In the
monetary policy rule, the persistence parameter is set at ρi = 0.7; the inflation coefficient
is set at rπ = 1.5; the output coefficient is set at ry = 0.5. The AR(1) coefficients for the
supply and demand shocks are set at ρa = ρb = 0.9, and the coefficients χb and χa are set
according to equations (A.32) and (A.37), respectively. The term premium in steady state
is set at ζ = 0.01/4. We consider different values for the parameters λ∗ and α (reported in
the main text) to study the effects of UMP.

A.4 Proof of Proposition 1

Part (i) Because of the equivalence established in Lemma 1, without loss of generality,
consider the case of λ∗ = 1 and α = 0 in the theoretical model. In this case, the variables

13



ŷt, π̂t, and î∗t have a closed system of equations, consisting of equation (12) with λ∗ = 1,

equation (16), and î∗t = îTaylort , where îTaylort is given by equation (3).

In this case, the state of the economy in period t can be summarized by î∗t−1, ϵ
i
t, z

a
t , and

zbt . Then decision rules for ŷt and π̂t have the following form:

ŷt = dyi∗ î
∗
t−1 + dyiϵ

i
t + dyaz

a
t + dybz

b
t ,

π̂t = dπi∗ î
∗
t−1 + dπiϵ

i
t + dπaz

a
t + dπbz

b
t ,

with coefficients {dyi∗ , dyi, dya, dyb, dπi∗ , dπi, dπa, dπb} uniquely determined under standard as-
sumptions of the model (such as the Taylor principle). With these decision rules, the equation

for î∗t can be written as

î∗t = [ρi + (1− ρi) (rπdπi∗ + rydyi∗)] î
∗
t−1 + [(1− ρi) (rπdπi + rydyi) + 1] ϵit

+(1− ρi) (rπdπa + rydya) z
a
t + (1− ρi) (rπdπb + rydyb) z

b
t

=di∗i∗ î
∗
t−1 + di∗iϵ

i
t + di∗az

a
t + di∗bz

b
t . (A.42)

Let yt ≡ [ŷt, π̂t, î
∗
t ]

′ denote the vector of endogenous variables. The decision rule implies

yt =

dyi∗ dyi dya dyb
dπi∗ dπi dπa dπb
di∗i∗ di∗i di∗a di∗b


 i∗t−1

ϵit
ρaz

a
t−1 + ϵat

ρbz
b
t−1 + ϵbt


=

dyi∗ ρadya ρbdyb
dπi∗ ρadπa ρbdπb
di∗i∗ ρadi∗a ρbdi∗b

i∗t−1

zat−1

zbt−1

+

dyi dya dyb
dπi dπa dπb
di∗i di∗a di∗b

ϵitϵat
ϵbt


=Cxt−1 +Dϵt. (A.43)

The law of motion for xt ≡ [̂i∗t , z
a
t , z

b
t ]
′ is:

xt =

di∗i∗ ρadi∗a ρbdi∗b
0 ρa 0
0 0 ρb

xt−1 +

di∗i di∗a di∗b
0 1 0
0 0 1

 ϵt
=Axt−1 +Bϵt. (A.44)

Solving equation (A.43) for ϵt, and substituting the outcome in equation (A.44) yields:

xt =
(
A−BD−1C

)
xt−1 +BD−1yt.

If A−BD−1C = 0, the vector of endogenous variables, yt, has a VAR(1) representation:

yt = CBD−1yt−1 +Dϵt.

The rest of the proof shows A−BD−1C = 0. Substituting the matrices A and B in equation
(A.44) into this condition yields:

D−1C =

di∗i∗/di∗i 0 0
0 ρa 0
0 0 ρb

 .
14



Further substituting the matrices C and D in equation (A.43) into this condition leads to:
A−BD−1C = 0 if and only if dyi∗ = dyi (di∗i∗/di∗i) and dπi∗ = dπi (di∗i∗/di∗i). Substituting
the decision rules into equation (12) yields:

ŷt =

(
dyi∗ −

1

σ
+
dπi
σ

)
di∗i∗ î

∗
t−1 +

(
dyi∗ −

1

σ
+
dπi
σ

)
di∗iϵ

i
t + ...,

where terms related to zat and zbt are omitted. Matching coefficients on î∗t−1 and ϵit of both
sides of the equation yields:

dyi∗ =

(
dyi∗ −

1

σ
+
dπi
σ

)
di∗i∗ ,

dyi =

(
dyi∗ −

1

σ
+
dπi
σ

)
di∗i.

These two equations imply dyi∗ = dyi (di∗i∗/di∗i). Next, substituting the decision rules into
equation (16) yields:

π̂t = (δdπi∗ + κdyi∗) î
∗
t−1 + (δdπi∗di∗i + κdyi) ϵ

i
t + ...,

where terms related to zat and zbt are omitted. Matching coefficients on î∗t−1 and ϵit of both
sides of the equation yields:

dπi∗ =δdπi∗ + κdyi

(
di∗i∗

di∗i

)
,

dπi =δdπi∗di∗i + κdyi,

where dyi∗ = dyi (di∗i∗/di∗i) is used in the first equation. Solving these two equations for dπi∗
yields dπi∗ = dπi (di∗i∗/di∗i).

Part (ii) Again, without loss of generality, consider the case of λ∗ = 1 and α = 0. Under
Assumption 1 and the irrelevance hypothesis, the long-term yield can be written as (15) with
λ∗ = 1 as

ˆ̄RL =
R̄L − µ

R̄L

î∗t +
µ

R̄L

Et
ˆ̄RL,t+1.

Solving this equation forward yields

ˆ̄RL,t =

(
R̄L − µ

R̄L

)
Et

[
î∗t +

µ

R̄L

î∗t+1 +

(
µ

R̄L

)2

î∗t+2 + ...

]
.

Because the right-hand-side of the equation depends on information in period t, which consist
of î∗t , z

a
t , and z

b
t , the long-term interest rate can be written as:

ˆ̄RL,t = fi∗ î
∗
t + faz

a
t + fbz

b
t ,
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where fi∗ , fa, and fb are coefficients derived by using equation (A.42) as

fi∗ =
R̄L − µ

R̄L − di∗i∗µ
,

fa =
(R̄L − µ)di∗aρaµ

(R̄L − ρaµ)(R̄L − di∗i∗µ)
,

fb =
(R̄L − µ)di∗bρbµ

(R̄L − ρbµ)(R̄L − di∗i∗µ)
.

Again by using equation (A.42) the equation for the long-term yield can be written as:

ˆ̄RL,t = fi∗di∗i∗ î
∗
t−1 + fi∗di∗iϵ

i
t + (fi∗di∗a + fa) z

a
t + (fi∗di∗b + fb) z

b
t .

Define yt ≡ [ŷt, π̂t,
ˆ̄RL,t]

′, xt ≡ [̂i∗t−1, z
a
t , z

b
t ]
′, and ϵt = [ϵit, ϵ

a
t , ϵ

b
t ]
′. Then, the state space

representation for y is

yt =

 dyi∗ ρadya ρbdyb
dπi∗ ρadπa ρbdπb

fi∗di∗i∗ ρa(fi∗di∗a + fa) ρb(fi∗di∗b + fb)

xt +

 dyi dya dyb
dπi dπa dπb

fi∗di∗i fi∗di∗a + fa fi∗di∗b + fb

 ϵt
=Cxt−1 +Dϵt.

and

xt =

di∗i∗ ρadi∗a ρbdi∗b
0 ρa 0
0 0 ρb

xt−1 +

di∗i di∗a di∗b
0 1 0
0 0 1

 ϵt
=Axt−1 +Bϵt.

Similar to the part (i) in Proposition 1, a solution for yt has a VAR(1) representation if
and only if A − BD−1C = 0. This condition holds if and only if dyi∗ = dyi(di∗i∗/di∗i) and
dπi∗ = dπi(di∗i∗/di∗i). The latter two conditions hold as shown in Part (i).

A.5 Proof of Proposition 2

We show that equations (1), (2), (3), (12), and (16) can be written in the empirical structural
form of equations (17a), (17b), and (17c). This will prove the proposition since the structural
form has a piecewise linear representation, as explained in the main text. It is straightforward
to see that equations (1), (2), and (3) in the theoretical model can be written in the form
of equations (17a) and (17b) in the empirical model. Below, we are going to show that
equations (12) and (16) can be represented by the structural form equation (17c).

Without loss of generality, consider a case in which agents forming expectations assuming:
λ∗ = 1 and α = 0. When forming expectations about variables in period t + 1, the initial
condition is given by x̃t ≡ [(1 − λ∗)̂it + λ∗î∗t , z

a
t , z

b
t ]
′. Under Assumption 2, the decision

rule used for forming expectations about period t + 1 variables is yt+1 = Cx̃t + Dϵt+1,
where C and D are those defined in equation (A.43). From period t + s onward, for s =
2, 3, ..., time t + s variables are expected in period t to follow yt+s = Cxt+s−1 + Dϵt+s,
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where xt ≡ [̂i∗t , z
a
t , z

b
t ]
′. But, once the time proceeds and becomes period t + 1, the initial

condition is updated to x̃t+1 and this is used for forming expectations about t+ 2 variables
as Et+1yt+2 = Cx̃t+1. Hence, under the assumption about expectations, the decision rule is
given by yt+s = Cx̃t+s−1 +Dϵt+s for s = 1, 2, ... In this system, in every period information
is updated and x̃t+s−1 is used as an initial condition. The interest rate ît+s−1 in the initial
condition is treated as if it were an exogenous variable.

By substituting the decision rule into the expected variables, equations (12) and (16) can
be written as:

ŷt =

(
− 1

σ
+ dyi∗ +

dπi∗

σ

)(
(1− λ∗)̂it + λ∗î∗t

)
+

(
ρadya +

ρadπa
σ

)
zat +

(
ρbdyb +

ρbdπb
σ

− χz

)
zbt ,

(A.45)

− κyt + π̂t = δdπi∗
(
(1− λ∗)̂it + λ∗î∗t

)
+ (δρadπa − χa)z

a
t + δρbdπbz

b
t . (A.46)

Since zat and zbt follow AR(1) processes, equations (A.45) and (A.46) can be written in a
matrix form as:

H1

[
ŷt
π̂t

]
= H2

(
(1− λ∗)̂i+ λ∗î∗t

)
+H3

[
zat−1

zbt−1

]
+H4

[
ϵat
ϵbt

]
.

or [
ŷt
π̂t

]
= H−1

1 H2

(
(1− λ∗)̂i+ λ∗î∗t

)
+H−1

1 H3

[
zat−1

zbt−1

]
+H−1

1 H4

[
ϵat
ϵbt

]
. (A.47)

Also, under Assumption 2, the expected values can be written as: Etỹt+1 = Gỹt, where
ỹt ≡ [ŷt, π̂t, (1−λ∗)̂it+λ

∗î∗t ]
′ and G ≡ CBD−1, as derived in the proof of Proposition 1. By

using this equation, equations (12) and (16) can be written as:

χzz
b
t =

(
gyy +

gπy
σ

− 1
)
ŷt +

(
gyπ +

gππ
σ

)
π̂t +

(
gyi∗ +

gπi∗

σ
− 1

σ

)(
(1− λ∗)̂it + λ∗î∗t

)
,

χaz
a
t = (δgπy + κ) ŷt + (δgππ − 1) π̂t + δgπi∗

(
(1− λ∗)̂it + λ∗î∗t

)
,

where gij’s correspond to elements in the matrix G. Then, the lagged shocks zbt−1 and z
a
t−1 in

equation (A.47) can be represented by a function of ỹt−1 ≡ [ŷt−1, π̂t−1, (1−λ∗)̂it−1+λ
∗î∗t−1]

′.
From this result, equation (A.47) is in the same form of equation (17c) in the structural
form.

A.6 Impulse responses to demand and supply shocks

We study impulse responses to a demand shock and a supply shock, respectively, in an ELB
regime, using the theoretical model presented in Section I of the main text. We show that
the responses differ significantly depending on the effectiveness of UMP.

Figure 1 plots impulse responses of output and inflation in the theoretical model to the
contractionary demand shock of ϵbt = 0.25/400 under the ELB. The responses are calculated
exactly in the same way as those to a monetary policy shock, shown in Figure 2 in the main
text. In the case of no UMP (ξ = 0), a negative demand shock causes the largest declines in
output and inflation. As the effectiveness of UMP increases, i.e., as ξ increases, the negative
responses of output and inflation become smaller.
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Figure 1: Impulse responses to a demand shock at the ELB

Figure 2: Impulse responses to a supply shock at the ELB

Figure 2 plots impulse responses of output and inflation to the negative supply shock of
ϵat = −0.25/100 under the ELB. In the case of fully effective UMP (ξ = 1), output decreases
and inflation increases in response to the negative supply shock, as in the responses in a
non-ELB regime. However, as the effectiveness of UMP decreases, the degree of a decrease
in output shrinks, and output even increases on impact in response to the negative supply
shock in the case of no UMP (ξ = 0). This is driven by a stronger increase in inflation under
the ELB. Such an increase in inflation mitigates the negative impact of the ELB on output.
This effect dominates the direct effect of the negative supply shock, resulting in an increase
in output on impact.

While we exclusively focus on monetary policy shocks in this paper, the same co-movement
of the variables in response to supply and demand shocks when the economy approaches the
ELB would pose a challenge for identifying responses to demand and supply shocks.
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B Derivation of the attenuation effect (24)

Start from the definition of the IRF to the monetary policy shock ε̄2t := A∗−1
22 ε2t.

4 This is a
function of the shock magnitude ς and horizon h:

IRFh,t (ς) = E (Y1t+h|ε̄2t = ς, xt)− E (Y1t+h|ε̄2t = 0, xt) , (B.1)

where xt = (x′1t, x2t)
′, xit := CiXt + C∗

iX
∗
t embodies all the relevant history of Yt up to

period t− 1.5 We only need to discuss the impact effects, so we set h = 0 in (B.1) and write
IRF0,t (ς) = g (ς;xt)− g (0;xt) , where

g (ς;xt) := E (Y1t|ε̄2t = ς, xt) . (B.2)

Note that, despite the kink in the model, the fact that we are taking expectations with respect
to the remaining shocks ε̄1t := A−1

11 ε1t implies that the function g is smooth in both argu-

ments. So, we can consider infinitesimal interventions by computing limς→0
g(ς;xt)−g(0;xt)

ς
=:

∂g(ς;xt)
∂ς

.
Let Dt = 1{i∗t<it} denote the indicator that the interest rate is at the ELB. Then, using

equation (19) in the main text, we obtain:

g (ς, xt) = C1Xt + C∗
12X

∗
2t + E (u1t|ε̄2t = ς, xt)

− β̃E (Dt (C2Xt + C∗
22X

∗
2t − it + u2t) |ε̄2t = ς, xt)

= x1t + (Ik−1 − βγ)−1 βς − β̃E (Dt|ε̄2t = ς, xt)

(
x2t − it +

ς

1− γβ

)
− β̃E

(
γε̄1t

1− γβ
Dt

∣∣∣∣ ε̄2t = ς, xt

)
= x1t + (Ik−1 − βγ)−1 βς − β̃Φ

(
it − x2t − ς

1−γβ

ϖ

)(
x2t − it +

ς

1− γβ

)
+ β̃ϖϕ

(
it − x2t − ς

1−γβ

ϖ

)
. (B.3)

The second equality in equation (B.3) follows from the definitions of xit and the fact that:

u1t = (Ik−1 − βγ)−1 (ε̄1t + βε̄2t) , and u2t :=
γε̄1t + ε̄2t
1− γβ

,

see (Mavroeidis, 2021, equations 32 and 33), and the third equality in equation (B.3) follows
from:

E (Dt|ε̄2t = ς, xt) = Pr (u2t < it − x2t|ε̄2t = ς, xt)

= Pr

(
γε̄1t

1− γβ
< it − x2t −

ς

1− γβ

)
= Φ

(
b− x2t − ς

1−γβ

ϖ

)
, ϖ2 := var

(
γε̄1t

1− γβ

)
4Note that the derivation of (24) remains the same if we worked with perturbations to ε2t instead of ε̄2t,

but we choose the latter to avoid carrying A∗
22 around in the derivation.

5xt is the sufficient statistic for the entire history of Yt in the conditional expectations, i.e.,
E (Yt+h|ε̄2t, Yt−1, Yt−2, ...) = E (Yt+h|ε̄2t, xt).
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and

E

(
γε̄1t

1− γβ
Dt

∣∣∣∣ ε̄2t = ς, xt

)
= E

(
γε̄1t

1− γβ

∣∣∣∣ γε̄1t
1− γβ

< it − x2t −
ς

1− γβ
, ε̄2t = ς, xt

)
× Pr

(
γε̄1t

1− γβ
< it − x2t −

ς

1− γβ

∣∣∣∣ ε̄2t = ς, xt

)
= −ϖϕ

(
it − x2t − ς

1−γβ

ϖ

)
,

where the second equality in the last expression follows from the independence of ε̄1t from ε̄2t
and xt, and the properties of the truncated standard normal distribution, i.e., E (z|z < a) =
−ϕ (a) /Φ (a).

Differentiating equation (B.3) with respect to ς yields:

∂g (ς, xt)

∂ς
= (Ik−1 − βγ)−1 β − 1

1− γβ
β̃Φ

(
it − x2t − ς

1−γβ

ϖ

)
+ β̃

1

1− γβ
ϕ

(
it − x2t − ς

1−γβ

ϖ

)(
x2t − it +

ς
1−γβ

ϖ

)
+ β̃

1

1− γβ

(
it − x2t − ς

1−γβ

ϖ

)
ϕ

(
it − x2t − ς

1−γβ

ϖ

)
= (Ik−1 − βγ)−1 β − 1

1− γβ
β̃Φ

(
it − x2t − ς

1−γβ

ϖ

)
,

where the first equality follows from the fact that ∂ϕ (z) /∂z = −zϕ (z) . Evaluating the
above expression at ς = 0 yields the impact effect of a small monetary policy shock on Y1t
in period t, which is a k − 1 vector, namely,

IRt :=
∂g (ς, xt)

∂ς

∣∣∣∣
ς=0

= (Ik−1 − βγ)−1 β − 1

1− γβ
β̃Φ

(
it − x2t
ϖ

)
.

If there is no attenuation effect, the impact effect of the monetary policy shock ε̄2t on Y1t
is common across regimes and is given by:

IRNA = (Ik−1 − βγ)−1 β =
β

1− γβ
,

where the second equality follows from the fact that (Ik−1 − βγ) β = β (1− γβ). Therefore,

IRt = IRNA − 1

1− γβ
β̃Φ

(
it − x2t
ϖ

)
.

The jth element of the k − 1 vector IRt above can be written as

IRj,t = IRj,NA − 1

1− γβ
β̃jΦ

(
it − x2t
ϖ

)
=

βj
1− γβ

− βj
1− γβ

β̃j
βj

Φ

(
it − x2t
ϖ

)
=

(
1− β̃j

βj
Φ

(
it − x2t
ϖ

))
IRj,NA.

20



Renaming x2t = C2Xt + C∗
22X

∗
2t, the one-step ahead forecast of the reduced-form shadow

rate, as i∗t|t−1 yields (24) as required.

C Data description

We construct our quarterly data by taking averages of monthly series. For the U.S., the
inflation rate is computed from the implicit price deflator (GDPDEF) as πt = 400 ×
log(Pt/Pt−1), where Pt is the GDP deflator. The output gap is calculated as 100% ×
(GDPC1−GDPPOT )/GDPPOT , where GDPC1 is the series for the U.S. real GDP and
GDPPOT is the U.S. real potential GDP. The long-term interest rate is from the 10-year
Treasury constant maturity rate (GS10). All these series are from the FRED database.6

Money growth data for the U.S. are computed from 12 alternative indicators as listed in
Table 1 as mt = 400× log(Mt/Mt−1), where Mt is the particular money supply considered.
AllMt values are quarterly and computed by taking averages of their corresponding monthly
values. The traditional monetary aggregates (MB, M1, M2, M2M, MZM), and securities held
outright are from the FRED database. The Divisia monetary aggregates (DIVM1, DIVM2,
DIVM2M, DIVMZM, DIVM4) are from the Center for Financial Stability Divisia database.

For Japan, the quarterly call rate, bond yields, and the core CPI are computed as the
averages of their monthly counterparts. The quarterly inflation rate is computed from the
core CPI (consumption tax changes adjusted) as πt = 400× (CPIt −CPIt−1)/CPIt−1. The
GDP gap is that published by the Bank of Japan. The trend growth is defined by the
annualised growth rate of potential GDP from the previous quarter, which comes from the
estimates of the Cabinet Office. The interest on reserves (IOR) is constructed from the
interest rate that the Bank of Japan applies to the Complementary Deposit Facility (Bank
of Japan, 2008, 2016).7

6The data can be retrieved from the following websites: GDP deflator (U.S. Bureau of Economic Anal-
ysis, 2019a) https://fred.stlouisfed.org/series/GDPDEF; and series to construct the output gap (U.S.
Bureau of Economic Analysis, 2019b; U.S. Congressional Budget Office, 2019): https://fred.stlouisfed.
org/series/GDPC1 and https://fred.stlouisfed.org/series/GDPPOT; the Federal Funds Rate (Board of
Governors of the Federal Reserve System (US), 2019b) https://fred.stlouisfed.org/series/FEDFUNDS;
and the long yield (Board of Governors of the Federal Reserve System (US), 2019f,g,h,i,j,k) https:

//fred.stlouisfed.org/series/GS10. The data for the different monetary aggregates (Board of Governors
of the Federal Reserve System (US), 2019a,c,d,e,l,m; The Center for Financial Stability, 2019) is available
at: https://fred.stlouisfed.org/categories/24 and http://www.centerforfinancialstability.

org/amfm_data.php.
7The data can be retrieved from the following websites: call rate (Bank of Japan, 2019a): http://www.

stat-search.boj.or.jp/index_en.html; 9-year and 10-year government bond yields (Ministry of Finance
of Japan, 2019): https://www.mof.go.jp/jgbs/reference/interest_rate/data/jgbcm_all.csv; GDP
gap Bank of Japan (2019b): https://www.boj.or.jp/en/research/research_data/index.htm/; core CPI
inflation (Statistics Bureau of Japan, 2019): https://www.e-stat.go.jp/stat-search/file-download?

statInfId=000031431696&fileKind=1; trend growth rate (Cabinet Office of Japan, 2019): https://www5.
cao.go.jp/keizai3/getsurei-e/index-e.html.
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Table 1: Monetary Aggregates Data used in the Model

Monetary Aggregate (Mt) Mnemonics in the Corre-
sponding Database

Available Sample Periods

Monetary Base (MB) BOGMBASE 1948Q1-2019Q1
M1 M1SL 1959Q2-2019Q1
M2 M2SL 1959Q2-2019Q1
M2M M2MSL 1959Q2-2019Q1
MZM MZMSL 1959Q2-2019Q1
Securities Held Outright WSECOUT 1989Q3-2019Q1
Divisia M1 (DIVM1) Divisia M1 1967Q2-2019Q1
Divisia M2 (DIVM2) Divisia M2 1967Q2-2019Q1
Divisia M2M (DIVM2M) Divisia M2M 1967Q2-2019Q1
Divisia MZM (DIVMZM) Divisia MZM 1967Q2-2019Q1
Divisia M4 (DIVM4) DM4 1967Q2-2019Q1

D Additional empirical results

Weaker version of IH1. Table 2 shows the results of the weaker version of IH1, i.e.,
C12 = C∗

12 = β̃ = 0 for inflation and output equations only. As in the baseline CKSVAR
specification reported in Table 1 in the main text, 4 lags are selected for the U.S. and 2 lags
are selected for Japan. The p-values reported in Table 2 show that the weaker version of IH1

is firmly rejected for both countries.

Adding alternative measures of monetary policy. Table 3 shows the results of tests
for exclusion of the Federal Funds Rate from a SVAR that includes inflation, the output
gap, the 10-year bond yield, and various alternative measures of the growth of monetary
aggregates outlined in column (1). Column (3) shows the order of the VAR selected by the
AIC, which varies between 3 and 4 lags, consistent with the benchmark model in Table 1 in
the main text. Columns (4) and (6) report the likelihood ratio test statistics for the joint
exclusion hypothesis and the corresponding asymptotic p-values, respectively. These results
show that the data strongly and consistently reject the joint exclusion restrictions on the
Federal Funds Rate across all the alternative specifications for all measures of money supply,
which corroborates the findings in the baseline 4-equation model in Table 1 in the main text.
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Table 2: Test for excluding short rates from VAR that includes long rates

Panel A: KSVAR
United States Japan

p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 -213.4 - 2.62 36.08 12 0.000 248.1 - -2.18 12.74 12 0.389
4 -221.5 0.446 2.55 33.42 10 0.000 239.9 0.425 -2.30 14.13 10 0.167
3 -234.4 0.112 2.53 27.12 8 0.001 232.2 0.471 -2.42 14.89 8 0.061
2 -266.0 0.000 2.66 28.29 6 0.000 223.8 0.445 -2.53 15.70 6 0.015
1 -296.7 0.000 2.78 24.62 4 0.000 184.8 0.000 -2.19 25.15 4 0.000

Panel B: CKSVAR
p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 -191.3 - 2.60 52.08 22 0.000 284.7 - -2.42 48.79 22 0.001
4 -202.7 0.290 2.53 44.48 18 0.000 277.1 0.766 -2.61 52.42 18 0.000
3 -223.0 0.011 2.53 33.32 14 0.003 258.1 0.081 -2.62 42.61 14 0.000
2 -256.3 0.000 2.64 31.10 10 0.001 242.1 0.018 -2.68 28.23 10 0.002
1 -290.2 0.000 2.76 27.19 6 0.000 204.8 0.000 -2.43 43.99 6 0.000

Note: Panel A reports results for a KSVAR(p) with inflation, output gap, long rate, and policy rate. Panel
B reports corresponding results for a CKSVAR(p) that includes shadow rates. The sample period is 1960q1-
2019q1 for the U.S. and 1985q3-2019q1 for Japan. Long rates are 10-year government bond yields for the
U.S. and 9-year yields for Japan. Under the null hypothesis, the short rate is excluded from the equations
for inflation and output only. loglik is the value of the log-likelihood. pv-p is the p-value of the test for lag
reduction. AIC is the Akaike information criterion. LR is the value of the LR test statistic for excluding short
rates from equations for inflation and output gap. df is the number of restrictions. p-val is the asymptotic
χ2
df p-value of the test.
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Table 3: Test for excluding short rates from VARs that include long rates and money

Mon. Aggr. sample p LR df p-val
MB 1960q1–2019q1 3 55.05 16 0.0000
M1 1960q3-2019q1 3 55.50 16 0.0000
M2 1960q3-2019q1 3 54.77 16 0.0000
M2M 1960q3-2019q1 4 73.78 20 0.0000
MZM 1960q3-2019q1 4 79.65 20 0.0000
DIVM1 1968q3-2019q1 4 80.68 20 0.0000
DIVM2 1968q3-2019q1 4 111.50 20 0.0000
DIVM2M 1968q3-2019q1 4 110.88 20 0.0000
DIVMZM 1968q3-2019q1 4 107.10 20 0.0000
DIVM4 1968q3-2019q1 4 135.38 20 0.0000
SHO 1990q4-2019q1 3 94.38 16 0.0000

Note: The estimated model is a KSVAR(p) for the U.S. with inflation, output gap, the Federal Funds Rate,
the 10-year government bond yield, and a different measure of money growth in each row. Sample availability
varies for each monetary aggregate used. LR is the value of the LR test statistic for the testing that lags of
the Federal Funds Rate can be excluded from all other equations in the model, df is the number of exclusion
restrictions, and p-val is the asymptotic χ2

df p-value of the test.

Robustness of test results for the U.S. to the Great Moderation. The test results
of the IH over the full sample are subject to a possible misspecification arising from the
‘Great Moderation’, a drop in U.S. macroeconomic volatility in the mid-1980s. Therefore,
we assess the robustness of our results by estimating the model and performing the above
tests of the IH over the sub-sample which starts in 1984q1. Tables 4 and 5 report the results
over this subsample, which correspond to the results reported in Tables 1 and 3 in the main
text for the full sample, respectively. The results of the tests of the IH remain the same: the
hypothesis is firmly rejected.

Table 4: Test for excluding short rates form VAR that includes long rates post-1984

KSVAR(p) CKSVAR(p)
p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 97.92 - -0.01 25.63 18 0.11 122.37 - -0.07 61.65 33 0.002
4 92.83 0.857 -0.17 28.01 15 0.022 119.99 1.000 -0.33 70.78 27 0.000
3 85.07 0.776 -0.28 22.31 12 0.034 103.32 0.556 -0.37 48.44 21 0.001
2 66.06 0.064 -0.24 22.99 9 0.006 77.86 0.009 -0.30 40.06 15 0.000
1 14.30 0.000 0.27 5.33 6 0.502 19.29 0.000 0.25 13.59 9 0.138

Note: The estimated model is a (C)KSVAR(p) for the U.S. with inflation, output gap, Federal Funds Rate,
and the 10-year government bond yield. Estimation sample is 1984q1-2019q1. loglik is the value of the
log-likelihood. pv-p is the p-value of the test for lag reduction. AIC is the Akaike information criterion. LR
is the test statistic for excluding short rates from equations for inflation, output gap and long rates. df is
the number of restrictions. p-val is the asymptotic χ2

df p-value of the test.

24



Table 5: Testing CSVAR against CKSVAR post-1984

Country p LR df p-val
U.S. 3 31.17 15 0.008

Note: The unrestricted model is a CKSVAR(3) for the U.S. with inflation, output gap, 10-year government
bond yields, and the Federal Funds Rate. Sample: 1984q1-2019q1. LR is the test statistics of the restrictions
that the model reduces to CSVAR(3). Lag order is chosen by AIC. df is the number of restrictions. p-val is
the asymptotic χ2

df p-value of the test.

Robustness of results to the inclusion of credit spreads in the VAR. For the
U.S., we use Moody’s seasoned BAA corporate bond yield relative to 10-year treasury yield
(Federal Reserve Bank of St. Louis, 2019) as the credit spreads, and the excess bond premium
in Gilchrist and Zakrajsek (2012) and Favara et al. (2019) for Japan. The test results show
that our baseline results for IH1 (Tables 6-7) and IH2 (Table 8) are robust to the inclusion
of credit spreads in the VAR.

Table 6: Test for excluding short rates from VAR that includes long rates and credit spreads

Panel A: KSVAR
United States Japan

p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 298.6 - -2.34 40.59 24 0.018 391.8 - -3.52 45.64 24 0.005
4 286.3 0.486 -2.54 42.69 20 0.002 373.9 0.073 -3.63 38.10 20 0.009
3 266.5 0.086 -2.62 37.49 16 0.002 358.7 0.061 -3.77 34.18 16 0.005
2 232.1 0.000 -2.47 18.24 12 0.109 346.3 0.100 -3.96 31.84 12 0.001
1 178.4 0.000 -2.02 10.79 8 0.214 303.4 0.000 -3.69 44.30 8 0.000

Panel B: CKSVAR
p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 328.6 - -2.42 87.26 44 0.000 441.6 - -3.89 131.19 44 0.000
4 309.9 0.167 -2.59 83.99 36 0.000 412.4 0.001 -3.90 100.99 36 0.000
3 288.0 0.035 -2.72 73.60 28 0.000 376.7 0.000 -3.82 62.78 28 0.000
2 243.0 0.000 -2.48 37.62 20 0.010 356.6 0.000 -3.97 47.15 20 0.001
1 183.5 0.000 -2.10 20.41 12 0.060 316.2 0.000 -3.81 62.95 12 0.000

Note: Panel A reports results for a KSVAR(p) with inflation, output gap, long rate, credit spread, and policy
rate. Panel B reports corresponding results for a CKSVAR(p) that includes shadow rates. Estimation sample
is 1987q2-2019q1 for the U.S. and 1985q3-2019q1 for Japan. Long rates are 10-year government bond yields
for the U.S. and 9-year yields for Japan. The credit spreads are Moody’s seasoned BAA corporate bond
yield relative to 10-year treasury yield for the U.S., and the excess bond premium introduced by Gilchrist
and Zakrajsek (2012) for Japan. loglik is the value of the log-likelihood. pv-p is the p-value of the test for
lag reduction. AIC is the Akaike information criterion. LR is the test statistic for excluding short rates from
equations for inflation, output gap, credit spread, and long rates. df is the number of restrictions. p-val is
the asymptotic χ2

df p-value of the test.
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Table 7: Test for excluding short rates from VAR that includes long rates and credit spreads

United States, with Excess Bond Premium
Panel A: KSVAR Panel B: CKSVAR

p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 60.9 - 0.979 73.83 24 0.000 86.7 - 0.970 113.92 44 0.000
4 47.4 0.359 0.851 70.02 20 0.000 70.4 0.332 0.818 100.20 36 0.000
3 22.6 0.009 0.849 54.65 16 0.000 36.7 0.001 0.859 69.35 28 0.000
2 -13.8 0.000 0.975 33.35 12 0.001 0.4 0.000 0.929 49.91 20 0.000
1 -49.3 0.000 1.092 20.91 8 0.007 -36.6 0.000 1.006 37.12 12 0.000

Note: Panel A reports results for a KSVAR(p) with inflation, output gap, long rate, credit spread, and
policy rate. Panel B reports corresponding results for a CKSVAR(p) that includes shadow rates. Estimation
sample is 1974q2-2019q1. Credit spreads are the excess bond premium in Gilchrist and Zakrajsek (2012).
loglik is the value of the log-likelihood. pv-p is the p-value of the test for lag reduction. AIC is the Akaike
information criterion. LR is the test statistic for excluding short rates from equations for inflation, output
gap, credit spread, and long rates. df is the number of restrictions. p-val is the asymptotic χ2

df p-value of
the test.

Table 8: Testing CSVAR against CKSVAR with credit spreads

Country p LR df p-val
U.S.(BAA) 3 49.58 19 0.000
U.S.(EBP) 4 53.56 24 0.000
Japan 2 40.62 14 0.000

Note: The unrestricted model is a CKSVAR(p) in inflation, output gap, long rate, credit spread, and policy
rate. Long rate: 10-year government bond yield (U.S.), 9-year government bond yield (Japan). Policy rate:
Federal Funds Rate (U.S.), call rate (Japan). Credit spread: Moody’s seasoned BAA corporate bond yield
relative to 10-year treasury yield (U.S.), the excess bond premium (U.S. and Japan). Sample: 1987q2-2019q1
(U.S. with BAA spread), 1974q2-2019q1 (U.S. with EBP), 1985q3-2019q1 (Japan). p chosen by AIC. LR is
the test statistics of the restrictions that the model reduces to CSVAR(p). df is the number of restrictions.
p-val is the asymptotic χ2

df p-value of the test.

Robustness of Japanese results to 10-year rates. Similarly, we test the robustness
of our results for the Japanese data by using the 10-year yields instead. This shortens the
available sample for estimation to 1987q4 to 2019q1. Tables 9 and 10 report test statistics
for the two types of tests for the IH. From Tables 9 and 10, the IH is rejected across all lags.
For the CKSVAR alternative, 2 lags are selected based on the AIC. Table 10 also suggests
the rejection of the IH.
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Table 9: Test for excluding short rates from VAR for Japan using 10-year bond yields

KSVAR(p) CKSVAR(p)
p loglik pv-p AIC LR df p-val loglik pv-p AIC LR df p-val
5 285.1 - -2.92 37.43 18 0.005 320.5 - -3.17 99.85 33 0.000
4 275.1 0.217 -3.02 31.62 15 0.007 307.4 0.159 -3.28 86.95 27 0.000
3 270.5 0.605 -3.20 32.05 12 0.001 290.6 0.023 -3.33 62.07 21 0.000
2 256.2 0.155 -3.23 24.60 9 0.003 274.3 0.004 -3.39 50.90 15 0.000
1 196.4 0.000 -2.53 22.84 6 0.001 212.8 0.000 -2.73 38.81 9 0.000

Note: The estimated model is a (C)KSVAR(p) for Japan with inflation, output gap, 10-year government
bond yields, and the call rate. Estimation sample is 1987q4-2019q1. loglik is the value of the log-likelihood.
pv-p is the p-value of the test for lag reduction. AIC is the Akaike information criterion. LR is the test
statistic for excluding short rates from equations for inflation, output gap and long rates. df is the number
of restrictions. p-val is the asymptotic χ2

df p-value of the test.

Table 10: Testing CSVAR against CKSVAR for Japan using 10-year bond yields

Country p LR df p-val
Japan 2 47.54 11 0.000

Note: The unrestricted model is a CKSVAR(2) for Japan with inflation, output gap, 10-year government
bond yields, and the call rate. Estimation sample: 1987q4-2019q1. LR is the test statistics of the restrictions
that the model reduces to CSVAR(2). Lag order is chosen by AIC. df is yje number of restrictions. p-val is
the asymptotic χ2

df p-value of the test.

Power of the irrelevance tests IH1 and IH2. We use the theoretical model to generate
100 artificial time series under values for the parameter ξ in the range [0.7, 0.99]. Table 11
and 12 report the number of rejections for the tests of our irrelevance hypotheses IH1 and
IH2, respectively. If our tests are powerful, we would expect the number of rejections to
decline with ξ approaching the value of 1 for which the irrelevance hypothesis holds true in
the simulated data.

The tables show that the irrelevance tests are powerful. For instance, in the case of the
KSVAR as the unrestricted model, the test rejects IH1 at a 1 percent significance level with
the rejection rate (frequency) of 99 percent when ξ = 0.7, while the rejection rate is 1 percent
when ξ = 0.99 at the same significance level. Similar results hold for alternative significance
levels (columns 2, 3), the CKSVAR as the unrestricted model (Table 11, Panel B), and the
test for IH2 (Table 12).
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Table 11: Test for excluding short rates from VAR that includes long rates, with simulated
data

Panel A: KSVAR
(1) (2) (3)

ξ p ≤ 0.01 p ≤ 0.05 p ≤ 0.1
0.7 99 100 100
0.75 90 98 99
0.8 76 92 94
0.85 58 73 81
0.9 25 48 60
0.95 7 19 31
0.99 1 11 18

Panel B: CKSVAR
(1) (2) (3)

ξ p ≤ 0.01 p ≤ 0.05 p ≤ 0.1
0.7 99 100 100
0.75 93 99 100
0.8 85 92 94
0.85 69 84 88
0.9 42 62 71
0.95 20 33 45
0.99 13 25 32

Note: Panel A reports results for a KSVAR(1) with inflation, output gap, long rate, and policy rate. Panel
B reports corresponding results for a CKSVAR(1) that includes shadow rates. Estimation sample is data
simulated by the calibrated DSGE model for 237 quarters, which equals the length of the U.S. sample in
section III.B. For each value of ξ, we run 100 simulations. Columns 2-4 report how many times the irrelevant
hypothesis is rejected with 1 percent, 5 percent, and 10 percent significance levels, respectively.
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Table 12: Test CSVAR against CKSVAR, with simulated data

(1) (2) (3)
ξ p ≤ 0.01 p ≤ 0.05 p ≤ 0.1
0.7 100 100 100
0.75 100 100 100
0.8 99 100 100
0.85 91 97 97
0.9 58 81 85
0.95 13 20 34
0.99 3 6 14

Note: This table reports results for a CKSVAR(1) with inflation, output gap, long rate, and policy rate.
Estimation sample is data simulated by the calibrated DSGE model for 237 quarters, which equals the length
of the U.S. sample in section III.B. For each value of ξ, we run 100 simulations. Columns 2-4 report how
many times the irrelevant hypothesis is rejected with 1 percent, 5 percent, and 10 percent significance levels,
respectively.

Testing no attenuation effect. We repeat our test of no attenuation in the response of
long rates to monetary policy shocks for different sample periods for the U.S. Table 13 shows
that no attenuation hypothesis is not rejected if the same sample period of 1990q1–2012q4
is adopted as in Swanson and Williams (2014). If the sample period is extended backwards
(starting from 1960q1), the null is rejected at a 5 percent significance level. These results
suggest that the responses of the long rate to a monetary policy shock may differ between
non-ELB and ELB regimes, depending on the sample period.

Table 13: Test for no attenuation, various sample periods

sample p LR p-val
1990q1–2012q4 3 0.03 0.872
1960q1–2012q4 3 4.08 0.043

Note: The estimated model is a CKSVAR(p) for the U.S. with inflation, output gap, long-term rate, and
policy rate. The long rate is the 10-year government bond yields. The hypothesis is tested with different
sample periods, with the first one being consistent with Swanson and Williams. LR is the value of the
likelihood ratio test statistic and asymptotic p-values are reported.

E Choleski identification

In our benchmark analysis we use the combination of the ELB identification developed by
Mavroeidis (2021) and the sign restrictions similar to those employed by Debortoli et al.
(2019) to estimate the UMP parameter ξ. This appendix shows the results from using the
standard Choleski identification. Figures 3 and 4 reports results for the U.S. and Japan,
respectively. They show that the Choleski identification generates several puzzling responses
such as the instantaneous decreases in output and inflation in reaction to a negative mon-
etary policy shock. These responses are consistent with the findings in Gertler and Karadi
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(2015) for the U.S. and Kubota and Shintani (2022) for Japan, who also show similar re-
sponses when using the Choleski identification. Thus, our analysis corroborates the results
on the empirically-incongruous responses from the Choleski identification, while showing
that the identification based on the combination of the ELB identification and sign restric-
tions provides plausible responses to monetary policy shocks for the U.S. and Japan when
the economy is at the ELB. See Gortz et al. (2023) for a discussion of the issue and some
additional corroborative evidence on U.K data.

Figure 3: Choleski identification: Impulse responses to a monetary policy shock in the U.S.
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Note: Identified sets of IRFs in 1999q1 and 2009q1 to a -25bps monetary policy shock estimated from
CKSVAR(3) model in inflation, output gap, and the Federal Funds Rate for the U.S. over the period 1960q1-
2019q1, identified by the Choleski restrictions that the monetary policy shock has no contemporaneous effects
on inflation and output. Dotted lines show the 67 percent asymptotic error bands.
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Figure 4: Choleski identification: Impulse responses to a monetary policy shock in Japan
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Note: Identified sets of IRFs in 1990q1 and 2010q1 to a -25bps point monetary policy shock estimated using
a CKSVAR(2) model in inflation, output gap, and the call rate for Japan over the period 1985q3-2019q1,
identified by the Choleski restrictions that the monetary policy shock has no contemporaneous effects on
inflation and output. Dotted lines show the 67 percent asymptotic error bands.

F Shadow rates

Our analysis defines the shadow rate as the short-term interest rate that the central bank
would set if there were no ELB. Thus defined, the shadow rate can be interpreted as an
indicator of the desired monetary policy stance and we provide estimates of it for Japan and
the U.S. Our estimates of the shadow rate do not impose the assumption that the model
used to obtain them is constant across regimes, and therefore they explicitly account for the
empirical relevance of the ELB over the estimation periods.

The important caveat is that the shadow rates are not identified under our present as-
sumptions. As explained in Mavroeidis (2021), identifying the shadow rate i∗t in the empirical
model (17a)-(17c) in the main text requires knowledge of the parameter α, which scales the
reaction function coefficients and policy shocks during the ELB regimes and is not identified
without additional information. This parameter is needed in addition to the parameter ξ
that measures the overall impact effect of UMP. In other words, to properly identify the
shadow rate and interpret it as a measure of desired policy stance, we need to be able to
isolate the effect of FG encapsulated by α. This exercise is beyond the scope of the present
paper.
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Figure 5: Shadow policy rate for the U.S.

1990 1995 2000 2005 2010 2015
-8

-6

-4

-2

0

2

4

6

8

10

Note: Estimated using a CKSVAR(3) model in inflation, output gap, and the Federal Funds Rate for the U.S.
over the period 1960q1-2019q1 (plotted over the sub-sample 1985q3-2019q1), identified by the sign restrictions
that a -25bp monetary policy shock has nonnegative effects on inflation and output and nonpositive effects
on the short rate up to four quarters.

Figure 6: Shadow policy rate for Japan
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Note: Estimated using a CKSVAR(2) model in inflation, output gap, and the call rate for Japan over the
period 1985q3-2019q1, identified by the sign restrictions that a -25bp monetary policy shock has nonnegative
effects on inflation and output and nonpositive effects on the short rate up to four quarters.
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With the above caveat in mind, we report identified shadow rates under the assumption
of α = 0. The shadow rates are given in Figures 5 and 6 for the U.S. and Japan, respectively.
Different values of α would scale those estimates by a factor 1 + α.8 Note that, even with
α = 0, the shadow rate is only partially identified because it also depends on the parameter
ξ that is partially identified. This uncertainty due to ξ is reflected in the shaded areas below
the ELB in the figures.9 In the case of the U.S., the shadow rate dropped sharply soon
after the onset of the global financial crisis of 2007-2008. It reached its smallest value at the
beginning of 2010 and gradually recovered until the exit from the ELB in 2016. In Japan,
the behaviour of the shadow rate is different during the three ELB episodes. During the
first episode, the shadow rate fell modestly. In the second episode, it exhibited a persistent
decline until the beginning of 2005, followed by a quick reversal. In the third episode, which
coincided with the ELB in the U.S., the decline was sharp, and followed by a second wave of
declines that lasted until mid-2012. From that point on, the shadow rate exhibited a steady
rise, but stayed far from zero even at the end of the sample, and remained near its trough
in the second episode.

8Results are available on request.
9The shadow rate is equal to the observed policy rate above the ELB, see equation (17a) in the main text.

Below the ELB, it is given by the equation Y ∗
2t = κY 2t +(1−κ)bt, where κ = (1+α)(1− γβ)/(1− ξγβ) and

Y 2t is a “reduced-form” shadow rate that can be filtered from the data using the likelihood, see Mavroeidis
(2021).
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