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A. Profit Function Approximation

The derivation follows closely Alvarez and Lippi (2010). All firms share the same profit function

Π(Pt, Yt, Ct) = YtP
−η
t (Pt − Ct). Where η > 1 represents the constant price elasticity, Yt is the

intercept of the demand (i.e. it’s a demand shifter) and Ct is the marginal cost at time t. I

assume that Yt and Ct are perfectly correlated, i.e. when costs are high demand is also high. In

order to approximate the objective function as (1), I compute a second order approximation of

Π(Pt, Yt, Ct) around its frictionless price. In the RI context, the frictionless price is the optimal

price under full information P ∗t .

The second order approximation of Π(Pt, Yt, Ct)

Π(Pt, Yt, Ct) ≈ Π(P ∗t , Yt, Ct) +
∂Π(Pt, Yt, Ct)

∂Pt

∣∣∣∣
Pt=P ∗t

(Pt − P ∗t ) +
1

2

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
Pt=P ∗t

(Pt − P ∗t )2

Which can be written:

Π(Pt, Yt, Ct)

Π(P ∗t , Yt, Ct)
= 1 +

1

Π(P ∗t , Yt, Ct)

∂Π(Pt, Yt, Ct)

∂Pt

∣∣∣∣
Pt=P ∗t

P ∗t
(Pt − P ∗t )

P ∗t

+
1

2

1

Π(P ∗t , Yt, Ct)

∂2Π(Pt, Yt, Ct)

∂P 2
t
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Pt=P ∗t

(P ∗t )2

(
Pt − P ∗t
P ∗t

)2

Taking the first and second order conditions:
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∂Π(Pt, Yt, Ct)

∂Pt
= YtP

−η
t

[
−η
(
Pt − Ct
Pt

)
+ 1

]
∂2Π(Pt, Yt, Ct)

∂P 2
t

= −YtP−η−1
t η

[
−η
(
Pt − Ct
Pt

)
+ 1

]
− YtηP−η−2

t Ct

From the first order conditions, the optimal price is simply a constant mark-up over marginal

cost Pt = η
η−1

Ct. Evaluating the first and second order conditions at the optimal price:

∂Π(Pt, Yt, Ct)

∂Pt

∣∣∣∣
P ∗t

= 0

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
P ∗t

= −ηYtCt
(

1

P ∗t

)2(
η

η − 1
Ct

)−η
The maximized value of the profits:

Π(P ∗t , Yt, Ct) = Yt

(
η

η − 1

)−η
C1−η
t

(
1

η − 1

)
Therefore, the term:

1

2

1

Π(P ∗t , Yt, Ct)

∂2Π(Pt, Yt, Ct)

∂P 2
t

∣∣∣∣
Pt

(P ∗t )2 =
−ηYtCt

(
η
η−1

Ct

)−η
Yt

(
η
η−1

)−η
C1−η
t

(
1

η−1

) = −η(η − 1)

Finally, the second order approximation:

Π(Pt, Yt, Ct)− Π(P ∗t , Yt, Ct)

Π(P ∗t , Yt, Ct)
= −1

2
η(η − 1)

(
Pt − P ∗t
P ∗t

)2

+ o

(
Pt − P ∗t
P ∗t

)

Where I can finally define γ ≡ −1
2
η(η−1), Π̂(pit, p̂it) = log(Π(Pt, Yt, Ct))−log(Π(P ∗t , Yt, Ct)),

pt = log(Pt) and p̂it = log(P ∗t ) as stated in equation (1).
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B. Equivalence of mutual information

Information entropy is a measure about the uncertainty of a random a variable. Consider a

random variable X with finite support Ωx, which is distributed according to f ∈ ∆(Ωx). The

entropy of X, is defined by:

H(X) = −
∑
x∈Ωs

f(x)logf(x)

With the convention that 0log0 = 0. In RI, the acquired amount of information is measured

by entropy reduction. Given the signal st, entropy reduction is measured by mutual information,

which in the context of this dynamic model is:

I(p̂it, sit|st−1
i ) = H(p̂it|st−1

i )− Esit [H(p̂it|sit)|st−1
i ]

Given the entropy, the target-price p̂it = σtεit ∈ Ωp̂, and the definition for mutual informa-

tion we can prove:

I(p̂it, sit|st−1
i ) = H(p̂it|st−1

i )− Esit [H(p̂it|sit)|st−1
i ]

=
∑
sit

f(sit|st−1
i )

[∑
σ

∑
ε

f(p̂it|sit, st−1
i )log(f(p̂it|sit, st−1

i ))

]
−

∑
σt

∑
εit

g(p̂t|st−1
i )log(g(p̂t|st−1

i ))

=
∑
sit

∑
σt

∑
εit

f(sit, p̂it|st−1
i )log(f(p̂it|sit, st−1

i ))

−
∑
σt

∑
εit

[∑
sit

f(sit, p̂it|st−1
i )

]
log(g(p̂it|st−1

i ))

=
∑
sit

∑
σt

∑
εit

f(sit, p̂it|st−1
i )log

(
f(p̂it|sit, st−1

i )

g(p̂it|st−1
i )

)
=

∑
sit

∑
σt

∑
εit

f(sit, p̂it|st−1
i )log

(
f(sit, p̂it|st−1

i )

g(p̂it|st−1
i )f(sit|st−1

i )

)

Using the notation
∑

xt
=
∑

xt∈Ωx
.

From the second to the third line of the equivalence we rely on the fact that the prior distri-

bution (marginal) is characterized as the sum of the joint probability distribution f(sit, p̂it|st−1
i )

across all potential signals. The final expression is then what is shown in equation (3).
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C. Solution of the dynamic RI problem

In this section, I show how to derive the solution for the dynamic RI problem formally intro-

duced in Section 2.4. Given prior beliefs git(p̂it|pit−1), firms choose the conditional probability

distribution of prices fit(pit|p̂it) (equivalent of choosing f(pit, p̂it)) in each point of the simplex

Ωp × Ωσ × Ωε. To simplify notation, I will omit the lagged price conditioning and focus on a

representative firm λi = λ.

Since the prior belief about the volatility distribution mt(σL) is the state variable of the

problem, we can write the Bellman equation:

V (mt(σL)) = max
ft(pt|p̂t)

∑
σ

∑
ε

∑
p

[Π̂(pt, p̂t) + βV (mt+1(σL))]ft(pt|p̂t)gt(p̂t) − λI(p̂t, pt)

Where:

I(p̂t, pt) = ft(pt, p̂it)log

(
ft(pt, p̂t)

gt(p̂t)ft(pt)

)
= ft(pt|p̂t)gt(p̂t)[log(ft(pt|p̂t))− log(ft(pt))]

The function is also maximized subject to the constraint on the prior (7). The first order

condition of V (mt(σL)) with respect to ft(pt|p̂it):

gt(p̂t)

[
Π̂(pt, p̂it) + βV (mt+1(σL)) + β

[
∂V (mt+1(σL))

∂mt+1(σL)
× ∂mt+1(σL)

∂ft(pt|p̂t)

]]
−λgt(p̂t)[log(ft(pt|p̂t)) + 1− log(ft(pt))− 1]− gt(p̂t)µ(p̂t) = 0

(A.1)

The last term on the left hand side of equation (A.1), µ(p̂it), corresponds to the Lagrange

multiplier of the constraint attached to the prior, equation (7) in the main text.

Embedded in equation (A.1) is the effect of the current information strategy on posterior

beliefs, ∂mt+1(σL)
∂ft(pt|p̂t) . As discussed, posterior beliefs will later become the prior for t + 1, gt+1 =

mt+1(σ)h(ε). The known i.i.d. structure of the idiosyncratic shocks εt implies that the chosen

information strategy is not going to affect beliefs about this marginal distribution. Moreover,

as stressed by SSM (2017), we can treat the effects of current information on future beliefs

about the persistent state σt as fixed. The authors shows that a dynamic RI problem such as

the one presented in this paper, is equivalent to a control problem without uncertainty about
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persistent states.1 Therefore ∂mt+1(σL)
∂ft(pt|p̂t) = 0 and given gt(p̂t) ≥ 0 and λ > 0, equation (A.1)

becomes:

Π(pt, p̂t) + βV (mt+1(σL))− µ(p̂t)

λ
= log

(
f(pt|p̂t)
ft(p)

)
exp

(
Π(pt, p̂t) + βV (mt+1(σL))

λ

)
exp

(
−µ(p̂t)

λ

)
=
f(pt|p̂t)
ft(p)

⇒ f(pt|p̂t) = exp

(
Π(pt, p̂t) + βV (mt+1(σL))

λ

)
ft(pt)φ(p̂t)

Where:

φ(p̂t) ≡ exp

(
−µ(p̂t)

λ

)
(A.2)

Finally, due to the restriction on the prior:

gt(p̂t) =
∑
p
′
t

ft(p
′

t|p̂t)g(p̂t)

=
∑
p
′
t

exp

(
Π(p

′
t, p̂t) + βV (mt+1(σL))

λ

)
ft(p

′

t)φ(p̂t)g(p̂t)

⇒ φ(p̂t) =
1∑

p
′
t
exp

(
Π(p
′
t,p̂t) +βV (mt+1(σL))

λ

)
ft(p

′
t)

Combining this expression with (A.2), and adding the conditioning on lagged prices, we get

the expression for the optimal posterior distribution of prices given the unobserved target, (11)

in the main text:

ft(pt|p̂t, pt−1) =
exp [(Π(pt, p̂t) + βV (mt+1(σL|pt))) /λ] ft(pt|pt−1)∑
p
′
t
exp

[[
Π(p

′
t, p̂t) + βV (mt+1(σL|pt))

)
/λ
]
ft(p

′
t|pt−1)

1The intuition behind the result is the following. In the control problem, while firms have full information
about the current and past history of shocks, they face a trade-off of optimizing their flow utility Π̂(pt, p̂t) against
a control cost given by: Ef(pt|p̂it)[log(f(pt|p̂t))− log(q(pt|p̂t)|zt]. The variable zt stands for the entire history of
past shocks and prices. The cost is determined by the deviation of the final action with respect to some default
action q(pt|p̂it). By relying on properties of the entropy, the paper shows an equivalence between a control
and a dynamic Rational Inattention problem. Thus the inattention problem is solved by initially solving the
control problem with observable states, characterizing the optimal conditional probability for each default rule
f(pt|p̂t), and then choosing q. As states are observable in the control problem, the solution ignores the effects
of information acquisition on future beliefs (i.e., treat them as fixed) when solving the dynamic RI problem.
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The expression for the value function is then simply given by plugging this expression into

equation (5) in the main text:

V (mt(σL)) = λ
∑
σt

∑
εt

∑
pt

f(pt, p̂t) log

(∑
p

exp

(
Π(pt, p̂t) + βV (mt+1(σL))

λ

)
f(pt|pt−1)

)

= λE

[
log

(∑
pt

exp

(
Π(pt, p̂t) + βV (mt+1(σL))

λ

)
f(pt|pt−1)

)]

D. Dynamic RI Algorithm

The algorithm to solve the dynamic RI problem is as follows:

1. Fix a value for the idiosyncratic information acquisition cost, e.g. λ1.

2. Given λ1 and the belief simplex, compute prior beliefs g(p̂it) = m(σt)h(εit).

3. With g(p̂it), the model is solved by Value Function Iteration.

3.1. Starting with a guess for the vector V (mt+1(σL)), we first solve the static RI problem.

The algorithm computes f(pit, p̂it|pit−1) ∈ ∆(Ωp×Ωσ ×Ωε) which is the solution for

the system of nonlinear equations (7), (11) and f(pit|pit−1) =
∑

σ

∑
ε f(pit, p̂it|pit−1).

3.2. Given f(pit, p̂it|pit−1), the prior git(p̂it) and using Bayes Law, we can compute the con-

ditional probability f(σ|pit, pit−1) =
∑

ε f(σ, ε|pit, pit−1) for each pit ∈ Ωp. Through

equation (10), posterior beliefs become the prior beliefs for the next period. With

this we update V (mt+1(σL)).

3.3. Relying on the definition for V (mit(σL|pt)) in (12), the algorithm iterates the value

function until convergence when, within each iteration, it re-estimates f(pit, p̂it|pit−1).

4. Repeat point 3 for all possible values in ∆(Ωσ), i.e. setting different priors g(p̂it).

5. Repeat 2, 3, and 4 for all possible values for λi.

The setting of the model and the decision of the shape of the joint probability distribu-

tion resembles a filtering problem. The numerical discrepancies between filtering with discrete

variables relative to continuous outcomes are not significant and depend on the nature of the

approximation, Farmer (2016) and Farmer and Toda (2017).
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E. Sensitivity analysis

In this section, we provide a further description of the identification strategy of our baseline

model. As discussed we targeted four moments, E(|∆p|), E(Dispersion|σL), E(Dispersion|σH)

and βIR, using for parameters θ = {σL, φ, λ, σλ}.
To provide a sensitivity analysis of which data moments are more informative of which

parameters we perform the following exercise: starting from the first parameters in θ, i.e., σL,

we reduce its magnitude by 0.1% while keeping all the remaining parameters fixed at their

calibrated values. With this new parametrization we solve the model again, and report the

four targeted moments. We repeat this exercise for different values of σL, where its original

magnitude is reduced or increased by 0.x% where x = 1, . . . , 5. We repeat the procedure for

each parameter in θ one at a time, keeping all of the remaining parameters fixed in their original

calibrated values. The results are shown in Figure A.1.

Although we allow for some marginal perturbations of the parameters, in some cases the

response of the targeted moments is sizable. We conjecture that this is because of the interplay

between the effects of the new parameters on the learning and pricing strategies combined with

the discretization assumed for the simplex of each variable.

The average magnitude of price revisions E(|∆p|) (top left panel of Figure A.1) seems very

sensible to volatility changes in the more persistent (and therefore the most likely) aggregate

state. Changes in σL, represented by the connected line with squares, affects the intensive mar-

gin of prices significantly. This moment is also very sensible to the dispersion of information

costs, shown by the black line with triangles. In line with was described in Section 3.3, hetero-

geneous costs leads to heterogeneous pricing strategies creating a direct mapping between the

array of values for λi and the magnitude of price adjustments. The degree by which E(|∆p|) is

affected by σλ is simply a direct implication of this result.

As the dispersion of information costs σλ disciplines the relative magnitude of price adjust-

ments between firms, the two dispersion moments (top right and bottom left figures) are also

highly responsive to this parameter. As expected, the price dispersion in the low volatility

state is also affected by σL. Intuitively, the relevance of this last parameter is more muted

when we look at the reaction of price dispersion in the high volatility state. In this latter case,

and by construction, the role of φ in identifying this moment is more relevant relative to σL.

However, for these two moments the implications are not so clear, suggesting that they are

jointly identified by the set of parameters.

Finally, the overall degree of information rigidity βIR in the model seems very sensible to

average value of information costs λ. As discussed in the main text, this parameter is identified

by regressing the forecast error on the forecast revision over the cross-section of firms. As shown

by CG (2015) there is a direct mapping between this parameter and the degree of information
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rigidity faced by agents. As λ reflects the average magnitude of the information rigidity across

firms it is not surprising that this moment is very responsive to this parameter.

Figure A.1: Sensitivity of moments to parameters
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(b) E(Dispersion|σL)
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(c) E(Dispersion|σH)
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(d) βIR

Notes: The figure presents the sensitivity of the four targeted moments to changes in one of the parameters in θ,

while keeping the rest constant. The procedure is repeated for all four parameters where within each iteration

the dynamic learning model is solved and the relevant moments are saved.

F. Information acquisition - Alternative Models

In this section we study the different implications for dynamic learning over the business cycle for

all alternative specifications presented in Section 5. Figure A.2 shows the simulated evolution

for the baseline model along with the static, homogeneous price, and common cost models.

As in Figure 1 in the main text, we show the response of total acquired information after
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the economy enters into the high volatility state at quarter t = 0. Since the focus in on the

underlying dynamics, we normalize the initial response to 100.

Figure A.2: Information acquisition over the business cycle - Alternative Models
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Notes: The figure represents the impulse response function of the different simulated models after the economy

enters into the less predictable state at time t = 0. The red dashed line represents the baseline model, the blue

with triangles is the static learning model, the dotted black lines is the common price version and finally the

dashed gray line is the homogeneous cost specification. The initial responses are normalized to 100.

Static Learning

Despite the muted predictions for βIR, we can still assess if the static learning model is con-

sistent with state-dependent attention and its dynamic evolution. Based on equation (15) it

is straightforward to notice that total attention will increase immediately after the economy

enters into the less predictable state at t = 0. As expected, the figure shows that κt will stays

almost constant throughout the 16 simulated quarters. This result is completely in line with

the average duration of the high volatility state given by the calibrated transition probabilities.2

While the initial response is normalize to 100, the magnitude of κ in this case is significantly

higher than in the other cases. In particular, κ is around 8 times higher compared to the

baseline model. In the static version, price-setters does not waste any of their attention in

noticing the actual state of the economy. Hence, the learning problem is simpler as firms only

collect information to track the outcome of the target-price, leading them to rationally choose

to collect more information.

2Actually, the two transitions probabilities τLH = 0.00882 and τHL = 0.0196 imply that the average duration
of the high volatility state is 17 quarters.
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The implied dynamics for κ in this case are completely at odds with the dynamic patters

of both the data and the baseline model. This, along with the discussion in Section 5.5.1,

reinforces the impossibility of a more stylized version of the model to consistently replicate the

features of the data.

Common Cost

Given the same cost of information λ, the learning and pricing strategies will be common

across firms. Hence, the rate by which firms will notice any new aggregate state will also be

similar across them. Consistent with the results discussed in Section 3.3, a firm with an average

cost will focus almost all of its attention on a subset of prices which are closer to the mean.

This would prevent them from noticing any extreme realization of the target-price that could

suggest that the economy is actually in the more volatile state. This intuition is reinforced

by the results in figure A.2. The fact that κ slightly decreases until the 7-8th quarter after

the recession starts suggest that firms confound the new state with the more predictable state,

leading them to marginally collect less information. It is only after several quarters of being

exposed to more extreme realization of p̂it that they start revising their beliefs in favor of the

high volatility state. The rise in κ is therefore delayed due to their misperceived beliefs.

The simulated response of total information is not only inconsistent with the data, but also

reinforces the relevance of allowing for idiosyncratic differences at the firm level as a relevant

mechanism to capture the time-varying implication of attention.

Common Target Price

Among the alternative models, the version with a common optimal price successfully resembles

the dynamic features of the data (black dotted line in figure A.2). Although this version of

the model is not fully consistent with some key targeted price facts, this result highlights

the relevance of having both dynamic information and firm heterogeneity to replicate state-

dependent attention.

G. Robustness to first and second-moment shocks

This section provides further detailed results for the extended version of the model with both

first and second-moments shocks. As discussed in Section 5.6, the consequences of adding a

first-moment shock to our model are not obvious, particularly within a setup where information

is endogenous and fully flexible. Since the entire learning strategy will change with the two

shocks, it is hard to anticipate the changes in acquired information, which complicates the

comparison with our baseline scenario. Hence, we solve the two shocks version using the
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original parameters in Table 2 (main text) and setting µH = 0.995µL. Table A.1 shows the

pricing and the information moments.

Table A.1: Matched Moments and Alternative Specifications

Targeted moments Data Baseline First & Second Moment

E(|∆p|) 0.077 0.071 0.061
E(Dispersion|σL) 0.073 0.072 0.068
E(Dispersion|σH) 0.090 0.090 0.086
βIR 0.674 0.724 0.773

Non-Targeted moments

Frequency 0.150 0.564 0.636
Kurtosis(|∆p|) 6.403 4.049 4.127
Fraction small 0.330 0.175 0.209
Corr(Dis, Freq) 0.506 0.630 0.516

Although the moments are not directly targeted, the distance between the extended model

and the data is not far. This is reassuring as it implies that the results are robust to more com-

plex versions of the dynamic learning model, accounting for additional business cycle features.

The model can still replicate (and even be closer to match) one of the key non-targeted mo-

ments, such as the correlation between dispersion and frequency of price adjustments. Turning

to the learning responses, Figure A.3 shows the standardized response of acquired information

over the cycle. From the Figure, we notice that, the presence of the two shocks brings an amp-

lification in the learning reaction of firms relative to the scenario with just a second-moment

shock. Intuitively, the different mean makes the learning problem easier for firms as now the

perceived average of signals changes over time. This boosts learning right after the economy

enters into a recession. Besides the different learning rates, the dynamic correlation between the

extended model and the data is 0.83, a marginal improvement relative to the 0.79 correlation

of the baseline data.3

First-moment shock only

Finally, we propose a different version that allows for a drop in the mean while keeping the

volatility constant. In particular, we assume that p̂it = µt + σtεit where µH < µL and σt =

σL. The response of this specification to a recession is shown by the green dotted line in

Figure A.3. Allowing for just a first-moment shock is not enough to generate any meaningful

reaction in the learning rate. Although the states of the economy are still persistent, the only

3We conjecture that by calibrating the two-shock version of the model to match the targeted moments, both
the empirical and the simulated responses would be closer to each other. This is because one of the targeted
moments is the average information rigidity parameter βIR. However, this section intended to address whether
a more sophisticated model robust to business cycle features can be consistent with the data. We leave the
challenge of calibrating such a model for future work.
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Figure A.3: IRF Response

−
.2

−
.1

0
.1

.2
.3

.4
.5

.6
.7

S
ta

n
d
a
rd

iz
e
d
 L

e
a
rn

in
g

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (quarters) since the start of a recession

Baseline

Kalman−Gain CG(2015)

First and second moment shock

First moment shock

evidence suggesting a change of state is given by a shift in the average of acquired signals.

Since the volatility of the target price remains constant, firms’ learning problem is possibly

more straightforward than the time-varying volatility setting. The level of total learning stays

relatively constant over time. In particular, it randomly revolves around the initial attention

level of 0.1 approximately.

As shown in Section 5.1 and consistent with Wiederholt (2010), in RI models, more attention

is endogenously devoted to more volatile processes. Within a price-setting model, Maćkowiak

and Wiederholt (2009) shows that the different attitudes towards volatility can explain why

prices react more quickly to idiosyncratic relative to aggregate shocks. As idiosyncratic con-

ditions are more volatile relative to aggregate ones, price-setters respond by focusing more

attention on the former than the latter shock. The results with only a mean shock point ex-

actly in this direction. While the results are robust to having both a mean and a variance shock,

it is the presence of a rise in volatility that endogenously boosts learning over the business cycle,

resembling the data.
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