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7 Supplementary Figures

Figure 7: Job Creation and Destruction Rates: Continuing vs. Entry/Exit
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Notes: Quarterly job creation and destruction rates broken down into the contribution from
continuing establishments and from those establishments that are entering or exiting. Data
from the BLS Business Employment Dynamics database.

Figure 8: Fraction of Establishments Adjusting Employment
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Notes: Fraction of establishments whose employment is either expanding or contracting each
quarter. Data from the BLS Business Employment Dynamics database.
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Figure 9: State and National Employment Growth
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Notes: Blue lines depict state-level annual employment growth. Black line depicts national
annual employment growth. Data is total nonfarm employment from the BLS Current Em-
ployment Statistics Database.

Figure 10: De-trended US Employment
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Notes: Cyclical component of quarterly US employment de-trended using the Hodrick-Prescott
filter with λ = 1e5.
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Figure 11: Model-Implied Job Creation and Destruction Rates
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Notes: Quarterly job creation and destruction rates implied by the baseline model when it is
matched to detrended US employment.

Figure 12: Model-Implied Expansion and Contraction Rates
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Notes: Quarterly establishment expansion and contraction rates implied by the baseline model
when it is matched to detrended US employment.
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Figure 13: Model-Implied Worker Flow Rates:Baseline Model
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Notes: Worker flow rates as a function of establishment-level employment growth. The base-
line model abstracts from quits.

Figure 14: Model-Implied Worker Flow Rates: Model with Quits

-40 -20 0 20 40
Employment Growth

0

10

20

30

40

P
er

ce
nt

 o
f E

m
pl

oy
m

en
t

Hiring Rate
Layoff Rate
Quit Rate

Notes: Worker flow rates as a function of establishment-level employment growth. The ex-
tended model considered in Appendix 11 has a quarterly quit rate of 6.5%.
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8 Data Sources

For Sections II.A, II.B and Appendix 3 I use state and industry-level data on
job creation and destruction rates derived from establishment-level data from
the US Bureau of Labor Statistics’ Business Employment Dynamics database.
At the state level I use data from the 50 US states as the data from Washington
D.C. only begins in 2000. At the industry level I use data from 84 3-digit NAICS
sectors. This is all the 3-digit industries for which the BLS database has job
creation and destruction rates apart from two industries: Scenic and Sightseeing
Transport, and Support Activities for Mining. I remove these industries as
their employment growth is significantly more volatile than that of the other
industries in the sample. In the state-level data for Section II.A I winsorize
the top 0.1% of the distribution of the absolute changes in job creation and job
destruction, to limit the influence of outliers.

For Section II.B I use annual data on job creation and destruction rates at
the state level from the Census Bureau Business Dynamics Statistics database.
I merge this with the data on military spending provided by (Nakamura &
Steinsson 2014).

For Section II.B I also use shocks to the excess bond premium, identified
by (Gilchrist & Zakraǰsek 2012). These shocks are identified from a VAR with
the following variables: the log-difference of personal consumption expenditures,
the log-difference of real private domestic investment, the log-difference of real
GDP, the log-difference of the GDP price deflator, the quarterly average of the
excess bond premium, the quarterly value-weighted excess stock market return,
the ten-year treasury yield, and the federal funds rate. Shocks to the excess
bond premium are identified by a Cholesky decomposition. The identifying
assumption is that shocks to the excess bond premium affect economic activity
and inflation with a one quarter lag. Interest rates and the stock market are
able to react in the same quarter. Further details are provided in (Gilchrist &
Zakraǰsek 2012).

In Section V I use total non-farm payrolls from the BLS (FRED code:
PAYEMS) as my measure of US employment.

9 Additional Empirical Results

9.1 Conditional Volatility of Total Job Creation and Destruction

In Section II.A I use the job creation and destruction rates for continuing estab-
lishments, which excludes the contribution to total job creation and destruction
of entering and exiting establishments. The results of estimating equation 1 us-
ing total job creation and destruction rates are shown in Table 8. The estimates
of conditional volatility using total job creation and destruction are very similar
to those in Table 1.
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9.2 Conditional Volatility without Fixed Effects

Table 9 shows the results of estimating equation 1 without state or time fixed
effects. The procyclicality of the volatility of job creation and the countercycli-
cality of the volatility of job destruction remains.

9.3 Conditional Volatility at the Industry Level

In Section II.A I show that job creation and destruction exhibit time-varying
volatility using state-level data. In this section I show that the same pattern
emerges using industry-level data. I re-estimate equation 1 using data from
84 3-digit NAICS industries. As with the state-level data, this is from the BLS
Business Employment Dynamics database at a quarterly frequency from 1992Q4
to 2019Q4. The estimates are shown in Table 10. The time-varying volatility of
job creation and destruction rates in industry-level data is very similar to that
seen in state-level data.

9.4 Conditional Volatility Using a Panel ARCH Approach

In Section II.A I show that changes in job creation and destruction rates exhibit
conditional heteroskedasticity. In this section I use a panel ARCH approach to
show that this is also true of shocks to job creation and destruction rates.

I employ a two-step process, similar to that used in (Bachmann, Caballero
& Engel 2013). First, I estimate an auto-regressive process for the job creation
rate:

∆JCi,t = α+
J∑
j=1

βj∆JCi,t−j + ϵi,t (16)

I then use the residuals from the above regression in order to investigate
whether or not the size of shocks to the job creation rate is related to the state
of the business cycle:

|ϵ̂i,t| = αi + γt + β∆gNi,t−1 + ηi,t (17)

In the second stage I include state and time fixed effects, as in Section II.A.
I follow the same process for the job destruction rate and overall employment
growth. Table 11 shows the estimates of β in equation 17 from estimating the
above regressions with J = 2 in the first stage. As in Table 1, the second
and third rows quantify this time-varying volatility. The second row reports the
mean value of the dependent variable. The third row calculates the log difference
between the fitted values from the regression when lagged employment growth
is at the 5th or 95th percentiles of its distribution, denoted log(σ95) − log(σ5).
The results are similar to those in Table 1: the size of shocks to the job creation
rate is significantly procyclical, the size of shocks to the job destruction rate
is significantly countercyclical, and the size of shocks to overall employment
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Table 8: Conditional Volatility of Total Job Creation and Destruction

|∆Job Creation| |∆Job Destruction| |∆Emp. Growth|
Lagged Employment 0.058 -0.065 -0.000
Growth ( 0.012 ) ( 0.014 ) ( 0.020 )

Mean of Dependent Vari-
able

0.41 0.37 0.63

log(σ95)− log(σ5) 0.39 -0.47 -0.00

Observations 5439 5439 5439
R2 0.21 0.21 0.22

Notes: Results from estimating equation 1 and the analogous regressions for job destruction
and overall employment growth. Robust standard errors clustered at the state level are re-
ported in parentheses. The second row reports the average value of the absolute change in job
creation/destruction or employment growth in percentage points. The third row quantifies
the conditional heteroskedasticity by comparing volatility at the 5th and 95th percentiles of
the lagged employment growth distribution as described in the text. I use data from the
50 US states at a quarterly frequency from the BLS Business Employment Dynamics (BED)
database from 1992Q4 to 2019Q4. I winsorize the top 0.1% of the distribution of the absolute
changes in job creation and job destruction, to limit the influence of outliers. The 5th and
95th percentiles of the state (industry) employment growth distribution are -1.2% and 1.5%.

Table 9: Conditional Volatility without Fixed Effects

|∆Job Creation| |∆Job Destruction| |∆Emp. Growth|
Intercept 0.326 0.304 0.538

( 0.016 ) ( 0.013 ) ( 0.024 )
Lagged Employment 0.029 -0.050 -0.026
Growth ( 0.008 ) ( 0.007 ) ( 0.012 )

Mean of Dependent Vari-
able

0.33 0.29 0.53

log(σ95)− log(σ5) 0.24 -0.46 -0.13

Observations 5438 5438 5438
R2 0.004 0.016 0.001

Notes: Results from estimating equation 1 and the analogous regressions for job destruction
and overall employment growth without fixed effects. Robust standard errors clustered at
the state level are reported in parentheses. The second row reports the average value of
the absolute change in job creation/destruction or employment growth in percentage points.
The third row quantifies the conditional heteroskedasticity by comparing volatility at the
5th and 95th percentiles of the lagged employment growth distribution as described in the
text. I use data from the 50 US states at a quarterly frequency from the BLS Business
Employment Dynamics (BED) database from 1992Q4 to 2019Q4. I winsorize the top 0.1%
of the distribution of the absolute changes in job creation and job destruction, to limit the
influence of outliers. The 5th and 95th percentiles of the state employment growth distribution
are -1.2% and 1.5%.
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Table 10: Conditional Volatility of Industry-Level Job Creation and Destruction

|∆Job Creation| |∆Job Destruction| |∆Emp. Growth|
Lagged Employment 0.071 -0.084 -0.001
Growth ( 0.014 ) ( 0.012 ) ( 0.022 )

Mean of Dependent Vari-
able

0.54 0.53 0.93

log(σ95)− log(σ5) 0.67 -0.74 -0.00

Observations 9138 9138 9138
R2 0.41 0.37 0.40

Notes: Results from estimating equation 1 and the analogous regressions for job destruction
and overall employment growth. Robust standard errors clustered at the industry level are
reported in parentheses. The second row of each panel reports the average value of the
absolute change in job creation/destruction or employment growth. The third row quantifies
the conditional heteroskedasticity by comparing volatility at the 5th and 95th percentiles of
the lagged employment growth distribution as described in the text. I use data from 84 NAICS
3-digit sectors at a quarterly frequency from the BLS Business Employment Dynamics (BED)
database from 1992Q4 to 2019Q4. I winsorize the top 0.1% of the distribution of the absolute
changes in job creation and job destruction, to limit the influence of outliers. The 5th and
95th percentiles of the industry employment growth distribution are -2.5% and 2.2%.

Table 11: Conditional Volatility Using Panel ARCH Approach

|∆Job Creation| |∆Job Destruction| |∆Emp. Growth|
Lagged Employment 0.019 -0.030 -0.013
Growth ( 0.008 ) ( 0.014 ) ( 0.014 )

Mean of Dependent Vari-
able

0.27 0.27 0.46

log(σ95)− log(σ5) 0.19 -0.30 -0.08

Observations 5339 5339 5339
R2 0.23 0.26 0.28

Notes: Results from estimating equation 17 and the analogous regressions for job destruc-
tion and overall employment growth. Robust standard errors clustered at the state level are
reported in parentheses. The second row reports the average value of the size of the shock
to job creation/destruction or employment growth. The third row quantifies the conditional
heteroskedasticity by comparing the estimated size of shocks at the 5th and 95th percentiles
of the lagged employment growth distribution. I use data from the 50 US states at a quarterly
frequency from the BLS Business Employment Dynamics (BED) database from 1992Q4 to
2019Q4. The 5th and 95th percentiles of the state employment growth distribution are -1.2%
and 1.5%.
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growth is acyclical. These results are robust to different lag orders in the first
stage.

10 Computational Method

Below I outline the computational algorithms used to solve the baseline and
frictionless model.

10.1 Baseline Model

To solve the firm’s problem, I approximate the expected marginal value func-
tion using linear splines. A similar computational procedure is used in (Fujita
& Nakajima 2016). I follow (Khan & Thomas 2008) and re-write the firm’s re-
cursive problem in terms of utils of the representative household. Consequently,
the problem can be written:

V (zr, zi, n;S) = max
n′

p(S)[Azrzin
α − w(S)n− κ(n′ − n)1(n′ > n)] (18)

+ βEz′r,z′i,A′ [V (z′r, z
′
i, n

′;S′)] (19)

s.t.

µ′ = Γ(A,µ)

where

p(S) ≡ UC(C,N) =

(
C − ψ

N1+ψ

1 + ψ

)−γ

(20)

The above problem is not computable due to the infinite dimensionality of µ.
I use the technique of (Krusell & Smith 1998) and approximate µ by the first
moment of its distribution over employment (equivalent to aggregate employ-
ment). I approximate Γ using log-linear forecast equations. The problem which
I compute is:

V (zr, zi, n;A,N) = max
n′

p(A,N)[Azrzin
α − w(N)n− κ(n′ − n)1(n′ > n)]

(21)

+ βEz′r,z′i,A′ [V (z′r, z
′
i, n

′;A′, N ′)]

s.t.

logN ′ = aN + bN logN + cN logA

log p = ap + bp logN + cp logA

The firm’s hiring and firing thresholds are described by the following FOCs:

Ez′r,z′i,A′Vn(zr, zi, n(zr, zi;A,N, p);A,N) = pκ (22)

Ez′r,z′i,A′Vn(zr, zi, n̄(zr, zi;A,N, p);A,N) = 0 (23)
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The firm’s envelope condition for this problem is:

Vn(zr,zi, n;A,N) = p(A,N)[Azrziαn
α−1 − w(N)]

+


0 if βE[Vn(z′r, z′i, n;A′, N ′)] < 0

βE[Vn(z′r, z′i, n;A′, N ′)] if 0 ≤ βE[Vn(z′r, z′i, n;A′, N ′)] ≤ p(A,N)κ

p(A,N)κ if βE[Vn(z′r, z′i, n;A′, N ′)] > p(A,N)κ

(24)

The expected marginal value function, before the realization of zi,zr and A, is
then:

W (zr,zi, n;A,N) ≡ Ez′r,z′i,A′Vn(zr, zi, n;A,N) (25)

= Ez′r,z′i,A′ [A′z′rz
′
iαn

α−1 − w +min(max[βW (z′r, z
′
i, n;A

′, N), 0], p(A′, N)κ)]

10.1.1 Equilibrium Algorithm (Baseline Model)

1. Guess an initial forecast rule system: Γ̂ = {ai, bi, ci}i=N,p

2. Given the forecast rule system, solve for the expected marginal value func-
tion by iterating equation (25) until convergence.

3. Use the expected marginal value function along with the FOCs (22 and
23) to approximate the thresholds that describe the firm’s policy function:
n(zr, zi;A,N, p) and n̄(zr, zi;A,N, p). Note that the firm’s policy can
depend on the market-clearing price p.

4. Simulate the model for T periods using the non-stochastic approach of
(Young 2010), i.e. on a discrete (but dense) grid of points for zr, zi and
n. Each period in the simulation, the market-clearing price pt must be
determined.

5. When the simulation for T periods is complete, discard an initial T̄ pe-
riods, and then use the remaining periods to update the forecast rules
using OLS regression. If these coefficients Γ̃ have converged with Γ̂, the
algorithm is complete. Otherwise, update Γ̂ and return to step 2.

10.2 Frictionless Model

In the frictionless model the firm’s problem is:

V (zr, zi, n;S) = max
n′

p(S)[Azrzin
α − w(S)n] + βEz′r,z′i,A′ [V (z′r, z

′
i, n

′;S′)]

(26)

s.t.

µ′ = Γ(A,µ)
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where

p(S) ≡ UC(C,N) =

(
C − ψ

N1+ψ

1 + ψ

)−γ

(27)

The firms employment decision for the following period is implied by the fol-
lowing first-order condition:

Ez′r,z′i,A′Vn(zr, zi, n;A,N) = 0 (28)

The firm’s envelope condition is:

Vn(zr, zi, n;S) = p(S)[Azrziαn
α−1 − w(S)] (29)

Using the previous two equations, the employment policy function is given by:

n′(zr, zi;S) =

[
αEz′r,z′i,A′

[
A′z′rz

′
i

w(S′)

]] 1
1−α

(30)

Consequently, in the frictionless version of the model there is no need to forecast
p in order to find the firm’s policy functions. This simplifies the algorithm.

10.2.1 Equilibrium Algorithm (Frictionless Model)

1. Guess an initial forecast rule system: Γ̂ = {aN , bN , cN}

2. Given the forecast rule system, solve for the firm’s policy functions using
equation 30.

3. Simulate the model for T periods using the non-stochastic approach of
(Young 2010), i.e. on a discrete (but dense) grid of points for zr, zi and
n.

4. When the simulation for T periods is complete, discard an initial T̄ pe-
riods, and then use the remaining periods to update the forecast rules
using OLS regression. If these coefficients Γ̃ have converged with Γ̂, the
algorithm is complete. Otherwise, update Γ̂ and return to step 2.

10.3 Computational Accuracy

Table 12 shows the coefficients of the estimated log-linear forecast rules in the
(Krusell & Smith 1998) approach in both the baseline and frictionless models.
It is clear from these coefficients that the baseline model induces persistence
in aggregate employment. The most basic test of accuracy of these forecast
equations is their R2. While these are extremely high, they are also a poor
measure of accuracy, as pointed out by (Den Haan 2010). The basic issue
is that one-period ahead forecast errors are a poor way of ensuring that the
approximated law of motion for the model is close to the true one. Consequently,
I follow Den Haan’s recommendation and simulate the model for a large number

12



Table 12: Accuracy of Equilibrium Forecasting Rules
Baseline Frictionless

aN 0.000 -0.009
bN 0.427 0.000
cN 0.670 1.170
ap 0.207 N/A
bp -0.218 N/A
cp -1.531 N/A

R2
N 0.999933 1.000000

R2
p 0.999990 N/A

Max Error N (%) 0.14 0.10
Mean Error N (%) 0.03 0.09
Max Error p (%) 0.09 N/A
Mean Error p (%) 0.03 N/A

Notes: Mean/maximum errors constructed by simulat-
ing the model for 5000 periods and comparing p and N
series from the model with those from the forecasting
rules.

of periods (T = 5000)1. I then compare the average and maximum percentage
deviation between levels of p and N implied by the model and those that occur
from iterating on the estimated forecast rule system. The last four rows of Table
12 show that both mean and maximum percentage errors from the forecast rule
system are small. This confirms that the (Krusell & Smith 1998) approach
provides a very accurate approximation.

11 Robustness

In this section I show that the time-varying responsiveness of job creation and
job destruction is robust to a number of alternative calibrations of the model.
In the first, I consider household preferences that are separable between labor
and consumption. In the second, I consider the implications of a risk-neutral
representative household. Third, I consider a lower aggregate labor supply elas-
ticity. Fourth, I extend the model to allow for quits. Finally, I consider a model
in which labor adjustment is infrequent due to costs of firing rather than hiring
workers. In all cases, I recalculate the responsiveness indices from Section 5
and show that the time-varying responsiveness of aggregate job creation and
destruction rates predicted by the model is very similar.

1Note, this is not the same sample for which the equilibrium coefficients of the forecast
rules were found.
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11.1 Separable Preferences

First I consider alternative preferences for the representative household. As in
(Hopenhayn & Rogerson 1993), I endow the household with separable prefer-
ences between consumption and leisure, assuming that households participate
in employment lotteries as in (Hansen 1985) and (Rogerson 1988):

U(C,N) =
C1−γ − 1

1− γ
− ψN (31)

I assume that γ = 0.5 and recalibrate ψ to keep mean employment equal to
1. Figures 15 and 16 shows that the responsivness indices from this model are
very similar to those from the baseline model (Figure ??).

11.2 Risk-Neutral Representative Household

(Khan & Thomas 2008) showed that procyclical real interest rates in general
equilibrium have the ability to neutralize the time-varying responsiveness of
aggregate investment in models of lumpy capital adjustment. To understand
the impact of general equilibrium effects on the time-varying responsiveness
in the case of labor adjustment, I consider a model where the representative
household is risk-neutral, i.e. γ = 0, and consequently where real interest rates
are constant. Again, Figures 15 and 16 shows that the responsiveness indices
from this model are very similar to those in the baseline model.

Why do real interest rate movements have such a limited effect in the case
of lumpy labor adjustment? The key reason is that the timing of employment
adjustment has little impact on consumption of the representative household. In
the model of (Khan & Thomas 2008), general equilibrium effects are important
because of the consumption smoothing motive of the representative household,
which causes large real interest rate movements in the face of consumption
volatility. In this model the only impact that employment adjustment has on
consumption is through the hiring cost, which is small.

11.3 Lower Labor Supply Elasticity

In the baseline calibration I use a Frisch labor supply elasticity of 2, a value that
is common in the macro literature but higher than micro estimates. In this sec-
tion I repeat the experiment of Section 5 assuming that the Frisch labor supply
elasticity is lowered to 1. The responsiveness indices shown in Figures 15 and 16
are almost identical to those in Figure 1. The only difference between this cali-
bration of the model and the baseline calibration is that aggregate productivity
now needs to be more volatile to induce the changes aggregate employment seen
in the data.

11.4 Quits

The baseline model does not include quits as doing so means that the model
would be inconsistent with the large fraction of establishments that keep their
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Figure 15: Robustness: Responsiveness Index (Job Creation)
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Notes: Responsiveness indices show the impact on job creation, job destruction and employ-
ment of a one SD aggregate productivity shock. The mean response is normalized to one.

Figure 16: Robustness: Responsiveness Index (Job Destruction)
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number of employees unchanged from quarter to quarter. However, a large
number of employees do quit their jobs each quarter, as shown in Figure 1 in
(Davis, Faberman & Haltiwanger 2012).

In this section I assume that a fraction q of employees quit their jobs each
quarter. The firm’s problem is the same as in equation 5, but now the cost of
adjusting employment is:

g(n, n′) = κ(n′ − n(1− q))1(n′ > n(1− q)) (32)

I assume that 6.5% of employees quit their job each quarter. The responsive-
ness indices shown in Figures 15 and 16 are very similar to those in the baseline
model.

11.5 Firing Costs Rather Than Hiring Costs

In this section I show that the results are not sensitive to the linear adjustment
costs being on the hiring margin rather than the firing margin. I remove the
hiring costs from the model, and instead assume that firms face a linear firing
tax, F . The firm problem is then:

V (zr, zi, n;S) = max
n′

Azrzin
α − w(S)n− g(n, n′) + Ez′r,z′i,A′ [Λ(S, S′)V (z′r, z

′
i, n

′;S′)]

(33)

subject to

g(n, n′) = F (n− n′)1(n′ < n)

µ′ = Γ(A,µ)

A′ = (1− ρA) + ρAA+ σAϵ
′
A

z′r = (1− ρr) + ρrzr + σrϵ
′
r

log z′i = ρi log zi + σiϵ
′
i

I set the value of the firing tax equal to the value of the hiring cost in the
baseline calibration of the model. Again, Figures 15 and 16 shows that the
responsiveness indices implied by the model are almost unchanged.

12 Fixed Costs of Labor Adjustment

The baseline model includes linear hiring costs. This leads to employment poli-
cies that follow two adjustment thresholds, as described in Section III.A and
shown in Figure 1.

Alternatively, firms may face fixed adjustment costs that do not vary with
the number of employees that they hire or fire. I now consider a model where
firms face a disruption cost equal to a fraction λ of their output if they choose
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to adjust their employment. Their problem is as follows:

V (zr, zi, n;S) = max
n′

Azrzin
α − w(S)n− g(n, n′) + Ez′r,z′i,A′ [Λ(S, S′)V (z′r, z

′
i, n

′;S′)]

(34)

subject to

g(n, n′) = λAzrzin
α
1(n′ ̸= n)

µ′ = Γ(A,µ)

A′ = (1− ρA) + ρAA+ σAϵ
′
A

z′r = (1− ρr) + ρrzr + σrϵ
′
r

log z′i = ρi log zi + σiϵ
′
i

I set the value of λ equal to 2%, similar to that estimated by (Cooper & Willis
2009) and recalibrate the other parameters to maintain their existing targets.

Fixed adjustment costs have a number of different implications to the linear
adjustment costs considered in the baseline model. One implication is that such
models struggle to generate small changes in employment. Figure 17 shows the
distribution of quarterly log employment changes in the baseline model and the
disruption cost model. The disruption cost model generates no small changes
in employment, whereas in the baseline model a large fraction of adjustments
involve employment changing by 20% or less, as shown in the data by (Cooper,
Haltiwanger & Willis 2007).

Another implication of the disruption cost model is that the employment
choice conditional on adjustment is independent of a firm’s current employment.
This significantly reduces the persistence of the distribution of employment gaps
in the model. In Table 13 I replicate the estimates of equation 1 in the fixed
cost model. While the model does generate some time-varying volatility, it is
much less than in the data or in the baseline model, as documented in Sections
2 and 4.
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Figure 17: Histograms of Quarterly Employment Adjustment

Notes: Histograms of quarterly log employment change in the baseline model and a model
where firms face a fixed (disruption) cost of employment adjustment.

Table 13: Time-Varying Volatility in Disruption Cost Model

|∆Job Creation| |∆Job Destruction| |∆Emp. Growth|
Lagged Employment 0.027 -0.016 0.011
Growth ( 0.010 , 0.046 ) ( -0.030 , 0.000 ) ( -0.021 , 0.046 )

Mean of Dependent Vari-
able

0.36 0.30 0.65

log(σ95)− log(σ5) 0.22 -0.16 0.05

Notes: Results from estimating equation 1 and the analogous regressions for job destruction
and overall employment growth using simulated data from the disruption cost model for 50 re-
gions and 109 periods. Point estimates are the mean values of the regression coefficients from
100 simulations of the model. Parenthesis contain 95 percent confidence intervals from these
simulations. The second row of each panel reports the average value of the absolute change
in job creation/destruction or employment growth. The third row quantifies the conditional
heteroskedasticity by comparing volatility at the 5th and 95th percentiles of the lagged em-
ployment growth distribution as described in the text in Section II.A. As the model does not
include trend growth, for the 5th and 95th percentiles of the state-level employment growth
distribution I use -1.35% and +1.35%, centering the values from the data.
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Gilchrist, Simon, and Egon Zakraǰsek. 2012. “Credit spreads and business
cycle fluctuations.” American Economic Review, 102(4): 1692–1720.

Hansen, Gary D. 1985. “Indivisible labor and the business cycle.” Journal of
monetary Economics, 16(3): 309–327.

Hopenhayn, Hugo, and Richard Rogerson. 1993. “Job turnover and policy
evaluation: A general equilibrium analysis.” Journal of political Economy,
101(5): 915–938.

Khan, Aubhik, and Julia K Thomas. 2008. “Idiosyncratic shocks and the
role of nonconvexities in plant and aggregate investment dynamics.” Econo-
metrica, 76(2): 395–436.

Krusell, Per, and Anthony A Smith, Jr. 1998. “Income and wealth hetero-
geneity in the macroeconomy.” Journal of political Economy, 106(5): 867–
896.

Nakamura, Emi, and Jon Steinsson. 2014. “Fiscal stimulus in a mon-
etary union: Evidence from US regions.” American Economic Review,
104(3): 753–92.

Rogerson, Richard. 1988. “Indivisible labor, lotteries and equilibrium.” Jour-
nal of monetary Economics, 21(1): 3–16.

19



Young, Eric R. 2010. “Solving the incomplete markets model with aggregate
uncertainty using the Krusell–Smith algorithm and non-stochastic simula-
tions.” Journal of Economic Dynamics and Control, 34(1): 36–41.

20


