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This appendix contains additional results for the paper “Short-term Planning, Monetary Pol-
icy, and Macroeconomic Persistence.” It also provides details about the data and methodology
used to estimate the model.

1 Model Dynamics

This section contains additional results regarding the dynamic properties of the model with
planning over finite horizons. It discusses the Taylor principle as well as the systems of equations
determining the model’s cycle and trend. It also shows that the model can generate a hump-
shaped output response in response to a monetary shock without any need for habit persistence
or the indexation of inflation to past values of inflation.

1.1 The Cycle and the Taylor Principle

The system determining the cycle is:

x̃t = ρM · Et[x̃t+1] +N · ut, (1)

where the matrices M = 1
δ

(
1 σ(1− βφπ)
κ κσ + β(1 + σφy)

)
and N = 1

δ

(
−σ −σκφπ
−κσ κ(1 + σφy)

)
, with

δ = 1 + σ(φy + κσπ). To determine the Taylor principle for the finite-horizon planning (FHP)
model, rewrite the system (1) as

Et[x̃t+1] = A[x̃t] +But,

where the relevant matrix A is given by

A =

(
(βρ)−1 −κ(βρ)−1

σ(φπ − β−1) 1 + σ(φy + κβ−1)

)
.

The equilibrium is determinate if and only if the matrix A has both eigenvalues outside the
unit circle (i.e., with modulus larger than one). Invoking proposition (C.1) in Woodford (2003),
this condition is satisfied if and only if

det(A)− tr(A) > −1.

This condition implies: (
1− βρ
κ

)
φy + φπ > ρ.

1.2 Trend-Cycle Decomposition

In this section, we report the matrices that determine the evolution of the model’s trends. The
evolution equations of vt and vft are given by:

Vt+1 = (I − Γ)Vt + ΓΦxt, (2)

where V ′t =
(
vt vft

)
, and the matrices Γ =

(
γ 0
0 γf

)
and Φ =

(
1 σ
0 1

(1−α)

)
. The

trends can be written in terms of Vt as: :

xt = (1− ρ)ΘVt, (3)

where the matrix of coefficients Θ = 1
∆

(
1− βρ −σ(φπ − ρ)(1− α)β

κ (1− ρ+ σφy)(1− α)β

)
and ∆ = (1 −

βρ)(1− ρ+ σφy) + κσ(φ pi − ρ).
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Combining expression (2) with expression (3) yields:

xt = Λxt−1 + (1− ρ)γQxt−1,

where Λ = Θ(I − Γ)Θ−1 and (1 − ρ)γQ = ΘΓΦ. After some algebra these matrices can be
written as:

Λ =
1

∆

 (1− γ)(1− βρ)(1− ρ+ σφy) + (1− γf ) (φπ−ρ)
(σκ)−1 σ(1− βρ)(φπ − ρ)(γf − γ)

(γf − γ)κ(1− ρ+ σφy) (1− γf )(1− βρ)(1− ρ+ σφy) + (1− γ) (φπ−ρ)
(σκ)−1



Q =
1

∆

(
(1− βρ) σ(1− βρ)− γf

γ σ(φπ − ρ)β

κ κσ +
γf
γ (1− ρ+ σφy)β

)
.

When γ = γf , the system simplifies to:

xt = (1− γ)xt−1 + (1− ρ)γQxt−1,

with Q = 1
∆

(
1− βρ σ(1− βφπ)

κ κσ + (1− ρ+ σφy)β

)
. Note that in this case the feedback of xt on its

lag can be characterized by the scalar, 1− γ, and that Q is independent of γ. Finally, Q can be

simplified further if φy = 0: Q = 1
∆

(
1− βρ σ(1− βφπ)
κ κσ + (1− ρ)β

)
, with ∆ = (1 − βρ)(1 − ρ) +

κσ(φπ − ρ) > 0 if φπ > ρ.

1.3 Dynamic Responses to a Monetary Policy Shock

In this section we examine the impulse responses to a monetary policy shock to further illustrate
the model’s properties. In particular, we consider a tightening in policy, which corresponds to
a positive innovation in εi,t, for three different parameterizations. In the first, ρ = 1.0, which
corresponds to the Canonical NK model in which the responses of the aggregate and cyclical
variables are the same, and the model’s trend corresponds to the nonstochastic steady state. In
Figure 1, the Canonical NK model’s impulse responses are labeled “Canonical NK”. In the second
and third parameterizations of the model, we set ρ = 0.5 which corresponds to 50 percent of
households and firms doing their planning within the existing quarter, 25 percent of them doing
it in two quarters, and only a small fraction – less than 0.5 percent – of households and firms
having a planning horizon of two years or more. The second parameterization, labeled “Large
gain” in Figure 1, sets γ = 0.5, which implies that households and firms put a relatively large
weight on current observations in updating their value functions. The third parameterization,
labeled “Small gain”, is the same as the second one except that γ = 0.05. This value implies that
current observations get a relatively small weight in the updating of agents’ value functions.1

Figure 1 displays the impulse responses of output, yt, inflation, πt, and the short-term
interest rates, it to a unit increase in εi,t at date 0. (All variables are expressed in deviation
from their values in the nonstochastic steady state.) The first row in the figure corresponds to
the responses of the aggregate variables, the second row to the trend responses, and the third
row to the cyclical responses. As shown in the first row of the figure, a policy tightening results
in an immediate fall in output of a little more than 2 percent and a 15 basis point fall in inflation
in the Canonical model (green lines). Thereafter, the responses of output and inflation converge
back monotonically to their steady state values. This monotonic convergence entirely reflects
the persistence of the shock. The middle and lower panels of the figure confirm that in the
Canonical model, there is no difference between the trends and steady state values of the model
so that the aggregate and cyclical responses are the same.

1For these three cases, we set the remaining parameters as follows: β = 0.995, σ = 1, κ = 0.01, φπ = 1.5, φy = 0.5
4

,
and ρi∗ = 0.85.
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The blue lines, labeled “Large Gain,” in Figure 1 show the impulse responses in the finite
horizon model in which agents heavily weigh recent data in updating their value functions. As
in the Canonical NK model, aggregate output and inflation fall on impact; however, the fall is
dampened substantially. Moreover, output and inflation display hump-shaped dynamics despite
the lack of indexation or habit persistence in consumption. While output reaches its peak
decline after about a year, it takes substantially longer for inflation to reach its peak decline. As
shown in the middle panel, these hump-shaped dynamics are driven by the gradual adjustment
of the trends. The trend values for output and inflation fall in response to the policy tightening,
reflecting that the policy shock persistently lower aggregate output and inflation. For output
this return back to trend is relatively quick with a slight overshoot (not shown). However, the
inflation trend returns back to its steady state very gradually as agents with finite horizons
only come to realize slowly over time that the policy tightening will have a persistent effect on
inflation.

The orange lines, labeled “Small Gain,” show a similar parameterization except that agents
update their value function even more slowly. In this case, the responses of the output and
inflation trends is smaller and even more drawn out over time. Because of the dampened
response of trend output, the response of aggregate output is no longer hump-shaped, as the
aggregate effect is driven primarily by the monotonic cyclical response shown in the bottom left
panel. In contrast, the aggregate inflation response is both dampened and more persistent. In
sum, the finite horizon model is capable of generating substantial persistence in inflation and
hump-shaped output responses following a monetary policy shock. Such dynamics are in line
with empirical work examining the effects of monetary policy shocks on the macroeconomy.2

2 Data

The data used in the estimation is constructed as follows.

1. Per Capita Real Output Growth. Take the level of real gross domestic product (FRED
mnemonic “GDPC1”), call it GDPt. Take the quarterly average of the Civilian Non-
institutional Population (FRED mnemonic “CNP16OV” / BLS series “LNS10000000”), call
it POPt. Then,

Per Capita Real Output Growth

= 100

[
ln

(
GDPt
POPt

)
− ln

(
GDPt−1

POPt−1

)]
.

2. Annualized Inflation. Take the GDP deflator (FRED mnemonic “GDPDEF”), call it
PGDPt. Then,

Annualized Inflation = 400 ln

(
PGDPt
PGDPt−1

)
.

3. Federal Funds Rate. Take the effective federal funds rate (FRED mnemonic “FED-
FUNDS”), call it FFRt. Then,

Federal Funds Rate = FFRt.

The figures in the paper include two additional series, the CBO estimate of the Output Gap
and longer-run inflation expectations. These data are constructed as follows.

1. CBO Output Gap. The CBO’s estimate of the level of Potential GDP (FRED mnemonic
“GDPPOT”), call it POTt.

CBO Output Gapt = 100 ln

(
GDPt
POTt

)
.

2See, for instance, Christiano, Eichenbaum, and Evans (2005) and the references therein.
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Figure 1: Impulse Responses to an Unexpected Monetary Tightening

Note: The figure shows impulse responses to a monetary policy shock. In the Canonical NK model (green
lines), agents have infinite planning horizons (ρ = 1.0), and in the two remaining models, agents have finite
planning horizons (ρ = 0.5). The first of these models, Large Gain (blue lines), agents update their value
function quickly, (γ = 0.5); in the second one, Small Gain (green lines), agents update their value function
slowly (γ = 0.05).

2. Longer-run Inflation Expectations. An estimate of historical inflation expectations
can be found in the public FRB/US dataset. The variable is called PTRt. Then,

Longer-run Inflation Expectations = PTRt

2.1 Data Bibliography

Board of Governors of the Federal Reserve System (US), Effective Federal Funds Rate
[FEDFUNDS], retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/FEDFUNDS, July 31st, 2020.

Board of Governors of the Federal Reserve System (US), Long-run Inflation Ex-
pectations [PTR], retrieved from the Board of Governors of the Federal Reserve Systsem;
https://www.federalreserve.gov/econres/files/data only package.zip, accessed Novem-
ber 24 2019.

Federal Reserve Bank of St. Louis, NBER based Recession Indicators for the United States
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from the Period following the Peak through the Trough [USRECQ], retrieved from FRED, Fed-
eral Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/USRECQ, January 5,
2021.

U.S. Bureau of Economic Analysis, Real Gross Domestic Product [GDPC1], retrieved from
FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GDPC1,
July 31st, 2020.

U.S. Bureau of Economic Analysis, Gross Domestic Product: Implicit Price Deflator
[GDPDEF], retrieved from FRED, Federal Reserve Bank of St. Louis;
https://fred.stlouisfed.org/series/GDPDEF, July 31st, 2020.

U.S. Bureau of Labor Statistics, Population Level [CNP16OV], retrieved from FRED, Fed-
eral Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CNP16OV, July 31st,
2020.

3 Model Comparision: FHP-φ̄ and Hybrid NK Models

Parameter Estimates. In Table 1, we reproduce the posterior distributions of the FHP-φ̄ and
the two Hybrid NK models. In this table, we include the median as well as the mean parameter
values, as the posterior of the Hybrid NK model exhibits some bimodality. The estimated degree
of habits in the Hybrid NK, governed by the parameter ν, is 0.93 at the posterior mean. By
contrast, there is little evidence of indexation of prices, as the parameter a is near 1. Compared
to the standard Hybrid NK model, the hybrid NK-λπ model, with its ad hoc adjustment of the
Fisher equation, yields similar estimates for price indexation parameter a, but a dramatically
different estimate for habit formation parameter. In this model, the posterior mean estimate of
ν is about 0.43, less than half its value in the Hybrid NK model. The Hybrid NK-λπ features a
very low estimate of λπ, with λπ ≈ 0.10, indicating that the effect of expected future inflation
on household spending is dampened considerably. Moreover, φy, which governs the response of
the policy rate to the output gap, is about twice as large in the Hybrid NK-λπ model as it is
in the Hybrid NK model. Finally, the persistence and size of demand shocks are substantially
higher in the Hybrid NK-λπ model relative to the Hybrid NK model.
Posterior Predictive Checks. The estimates of the marginal data densities (MDD) in Table 5
in the main text provide summary measures of model fit, but these measures can sometimes
be opaque. Here we supplement the MDD with posterior predictive checks. The logic of a
(posterior) predictive check is simple. Let ỹ denote a random variable as distinguished from the
realized value y, with M denoting a particular model. The posterior predictive distribution for
ỹ under model M is given by

p(ỹ|M) =

∫
p(ỹ|θ,M)p(θ|Y,M)dθ. (4)

Consider some statistic, S(y), of your data. Using (4), it is straightforward (at least conceptu-
ally) to compare where the observed statistic S(y) lies in the predictive distribution of a given
model. Models for which important observed statistics of the data S(y) lie in the tail of predic-
tive distribution S(ỹ|M) are said to be deficient along a particular dimension. By comparing
the posterior predictive distributions from two models, one can get a sense of the strengths and
weaknesses of different models.

Figure 2 displays the posterior predictive distributions for the variance and first autocorre-
lation of output growth, as well as the covariance of output growth and inflation for each of the
models, along with the observed values of these statistics. We choose these moments because the
models display sizeable differences in predictions for them. Consider first the posterior predic-
tive check for the variance of output growth. The Hybrid NK model predicts a counterfactually
high variance for output growth, with the realized value falling in the tail of the distribution.
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Table 1: Posterior Distributions of the FHP-φ̄ and Hybrid NK Models

FHP-φ̄ Hybrid NK Hybrid NK-λπ
Mean Median SD Mean Median SD Mean Median SD

rA 2.40 2.42 0.30 1.55 1.54 0.57 1.89 1.84 0.72
πA 3.80 3.79 0.91 4.04 4.04 0.99 4.25 4.26 0.78
µQ 0.45 0.45 0.02 0.49 0.49 0.06 0.43 0.43 0.04
ρ 0.46 0.46 0.14
γ 0.11 0.11 0.02
ν 0.93 0.94 0.03 0.43 0.42 0.09
a 0.98 0.98 0.02 0.97 0.98 0.02
σ 3.72 3.69 0.65 1.47 1.43 0.41 1.79 1.75 0.47
κ 0.03 0.03 0.01 0.00 0.00 0.00 0.01 0.01 0.01
φπ 0.94 0.92 0.15 1.64 1.63 0.23 1.65 1.64 0.25
φy 0.74 0.73 0.16 0.18 0.18 0.03 0.38 0.37 0.08
φ̄π 2.09 2.08 0.26
φ̄y 0.06 0.04 0.05
ρξ 0.97 0.97 0.02 0.39 0.39 0.09 0.87 0.87 0.03
ρy∗ 0.57 0.57 0.08 0.99 0.99 0.01 0.98 0.98 0.01
ρi∗ 0.97 0.97 0.02 0.99 1.00 0.01 0.98 0.98 0.01
σξ 2.08 2.02 0.39 0.93 0.92 0.08 2.89 2.73 0.93
σy∗ 5.97 5.59 1.94 2.18 1.92 1.05 1.40 1.30 0.42
σi∗ 0.58 0.56 0.11 0.49 0.48 0.06 0.53 0.53 0.06
Log MDD -714.59 -714.61 0.10 -730.97 -730.98 0.11 -714.84 -714.88 0.08

Note: The table displays the mean, median, and standard deviation of the posterior distributions of
parameters.

By contrast, both the FHP-φ̄ model and the Hybrid NK-λπ model exhibit predictive distribu-
tions more consistent with the realized value in the data. The Hybrid NK model also fails to
reproduce the negative correlation of output growth and inflation as well as the slightly positive
autocorrelation in output growth. The Hybrid NK-λπ model performs better (albeit it is still
deficient) at reproducing the correlation of output growth and inflation, while succeeding at
matching the persistence of output growth. For the autocorrelation of output growth, it outper-
forms even the FHP-φ̄ model. The differences between the two Hybrid NK models are tied to
their respective estimates of ν, the habit parameter. The standard Hybrid NK model requires
a large value for ν to match the correlation between inflation and the policy rate observed in
the data. This high value for ν leads to output growth that is too highly autocorrelated, and
a correlation between output growth and inflation that is too high relative to the data. By
contrast, when the Fisher equation is broken—in an ad hoc fashion—the estimate of ν drops
dramatically, and the persistence of output growth is in line with the data.

4 Posterior Sampler: Details and Additional Results

For most of the models in the paper, our estimation follows Herbst and Schorfheide (2014) with
the following hyperparameters: Npart = 16, 000, Nφ = 500, λ = 2.1, Nblocks = 3, Nintmh = 1.
We run each sampler Nrun = 10 times, and pool the draws from the runs, yielding a posterior
distribution with 160, 000 draws. There are three exceptions: for the Canonical NK, the Hybrid
NK, and the FHP-γ̃ models, we use Npart = 25, 000, Nφ = 2000, and Nblocks = 6 because of
bimodalities in the posterior.
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Figure 2: Posterior Predictive Checks

Note: The figure displays estimates of posterior predictive checks. The checks are computed by drawing from
the respective posterior of each model N = 200 times and simulating, for each draw, observable datasets of
length T = 168.

We assess the convergence and efficiency of our algorithm by analyzing the variation of the
estimate of the sample mean across the Nrun runs of the algorithm. This variance serves as an
estimate of the CLT variance associated with the SMC-based estimate of the sample mean (as
the number of particles becomes large). Call this estimated variance VAR[θ̄] for any parameter
θ. We also construct a measure of efficiency of the sampler based on the following idea: Suppose
we were able to compute M iid draws from the marginal posterior distribution for θ. The
variance of the mean, θ̄, of these draws would be given by

V[θ̄] =
V[θ]

M
,

where V[θ] is the posterior variance of θ. We define the number of effective draws as:

number of effective draws =
V̂[θ]

VAR[θ̄]
,

where the hat indicates that we are using our estimated posterior variance. Such a measure
indicates this (in)efficiency of the sampler, relative to hypothetical iid draws. Tables 2 through
9 display the estimated mean and 5th and 95th percentiles of the posteriors, in addition to the
standard deviation of the mean across the Nruns runs and Neff , the number of effective draws
for each of the estimated models.

In general the SMC-based estimates of the posterior mean are relatively precise. The param-
eter σy∗ , whose posterior mean lies in the tail of its prior distribution for many models, typically
has the noisiest estimates. Across models, the Canonical NK model is the most difficult to esti-
mate, owing to a bimodality in σ. However, this bimodality does not affect the stability of the
estimate model fit (log MDD), as each mode has about the same density height.
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Table 2: Posterior Distribution of the Canonical
NK Model

Mean Std(Mean) Q05 Q95 Neff

rA 2.25 0.01 1.27 3.26 7060.56
πA 3.76 0.01 2.55 5.03 6140.92
µQ 0.40 0.00 0.31 0.50 1764.48
σ 0.45 0.02 0.23 1.30 410.38
κ 0.31 0.01 0.01 0.49 539.78
φπ 2.14 0.01 1.42 2.61 619.23
φy 0.10 0.01 0.00 0.95 393.38
ρξ 0.93 0.00 0.80 0.97 348.04
ρy∗ 0.99 0.00 0.95 1.00 491.94
ρi∗ 0.71 0.00 0.62 0.96 524.75
σξ 1.11 0.04 0.62 2.39 288.46
σy∗ 1.18 0.06 0.81 2.44 783.37
σi∗ 0.63 0.00 0.51 0.82 726.86

Note: The table displays the mean, 5th, and 95th per-
centile of the posterior distribution of the Canonical NK
model, as well as the standard deviation of the posterior
mean across 10 runs of the sampler.
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Table 3: Posterior Distribution of the Exogenous
Trends Model

Mean Std(Mean) Q05 Q95 Neff

rA 2.06 0.01 0.89 3.36 5815.27
πA 3.88 0.03 2.46 5.30 942.33
µQ 0.43 0.00 0.38 0.47 2611.56
σ 1.75 0.01 1.08 2.57 1790.34
κ 0.00 0.00 0.00 0.00 2098.67
φπ 1.57 0.00 1.17 2.01 3247.53
φy 0.86 0.00 0.60 1.21 2092.40
ρξ 0.83 0.00 0.70 0.92 959.68
ρy∗ 0.90 0.01 0.29 1.00 426.79
ρi∗ 0.97 0.00 0.95 0.99 1767.18
σξ 2.44 0.07 1.02 4.67 279.73
σy∗ 1.58 0.03 0.75 3.15 807.21
σi∗ 0.70 0.00 0.50 0.98 1895.24
ρπ̄ 0.78 0.01 0.58 0.95 286.80
ρī 0.96 0.00 0.90 0.99 1965.97
ρȳ 0.95 0.00 0.86 1.00 3038.06
σπ̄ 0.23 0.00 0.19 0.27 468.25
σī 0.12 0.00 0.07 0.19 3742.10
σȳ 0.12 0.00 0.07 0.19 1254.13

Note: The table displays the mean, 5th, and 95th per-
centile of the posterior distribution of the Exog. Trends
model, as well as the standard deviation of the posterior
mean across 10 runs of the sampler.
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Table 4: Posterior Distribution of the FHP Model

Mean Std(Mean) Q05 Q95 Neff

rA 2.51 0.01 1.85 3.07 5251.54
πA 3.98 0.01 2.34 5.62 6468.59
µQ 0.45 0.00 0.43 0.47 5544.45
ρ 0.50 0.01 0.27 0.71 639.00
γ 0.14 0.00 0.09 0.19 2192.39
σ 3.57 0.01 2.59 4.64 3790.00
κ 0.04 0.00 0.02 0.06 692.01
φπ 1.07 0.00 0.89 1.30 6865.39
φy 0.79 0.01 0.57 1.07 926.28
ρξ 0.98 0.00 0.94 1.00 4893.74
ρy∗ 0.53 0.00 0.39 0.67 1533.31
ρi∗ 0.97 0.00 0.95 0.99 5370.33
σξ 2.17 0.02 1.62 2.94 515.89
σy∗ 5.93 0.12 3.24 10.12 335.06
σi∗ 0.67 0.00 0.51 0.89 1090.33

Note: The table displays the mean, 5th, and 95th percentile
of the posterior distribution of the FHP model, as well as the
standard deviation of the posterior mean across 10 runs of
the sampler.
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Table 5: Posterior Distribution of the FHP-γ̃ Model

Mean Std(Mean) Q05 Q95 Neff

rA 2.55 0.00 1.76 3.24 12107.09
πA 3.96 0.01 2.34 5.59 19699.67
µQ 0.44 0.00 0.42 0.46 9307.94
ρ 0.69 0.00 0.47 0.85 915.59
γ 0.06 0.00 0.01 0.14 3165.49
γ̃ 0.31 0.00 0.16 0.46 1650.56
σ 3.15 0.01 2.24 4.21 1719.39
κ 0.01 0.00 0.01 0.03 790.72
φπ 1.01 0.00 0.78 1.29 15744.44
φy 0.93 0.00 0.65 1.30 3400.78
ρξ 0.93 0.00 0.86 0.99 7124.87
ρy∗ 0.31 0.00 0.14 0.51 1662.95
ρi∗ 0.97 0.00 0.95 0.99 8313.81
σξ 2.62 0.01 1.85 3.76 2125.10
σy∗ 17.35 0.42 5.96 34.94 446.74
σi∗ 0.77 0.00 0.56 1.06 4066.76

Note: The table displays the mean, 5th, and 95th percentile
of the posterior distribution of the FHP-γ̃ model, as well as the
standard deviation of the posterior mean across 10 runs of the
sampler.
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Table 6: Posterior Distribution of the FHP-φ̄
Model

Mean Std(Mean) Q05 Q95 Neff

rA 2.39 0.01 1.88 2.84 2243.90
πA 3.80 0.01 2.33 5.33 3716.65
µQ 0.45 0.00 0.42 0.48 8951.67
ρ 0.46 0.01 0.22 0.68 525.70
γ 0.11 0.00 0.08 0.15 7959.75
σ 3.72 0.02 2.70 4.84 1001.96
κ 0.03 0.00 0.02 0.06 556.04
φπ 0.94 0.00 0.71 1.20 9018.26
φy 0.75 0.00 0.53 1.03 1697.69
φ̄π 2.09 0.00 1.68 2.52 3116.96
φ̄y 0.05 0.00 0.00 0.16 4517.02
ρξ 0.97 0.00 0.93 0.99 4036.74
ρy∗ 0.57 0.00 0.45 0.70 1171.34
ρi∗ 0.97 0.00 0.94 0.99 5604.30
σξ 2.08 0.01 1.56 2.78 775.48
σy∗ 5.99 0.11 3.64 9.61 308.57
σi∗ 0.58 0.00 0.43 0.78 1970.05

Note: The table displays the mean, 5th, and 95th per-
centile of the posterior distribution of the FHP-φ̄ model, as
well as the standard deviation of the posterior mean across
10 runs of the sampler.
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Table 7: Posterior Distribution of the
Angeletos-Lian Model

Mean Std(Mean) Q05 Q95 Neff

rA 1.83 0.02 0.69 3.26 1133.09
πA 4.03 0.01 2.68 5.36 4850.55
µQ 0.41 0.00 0.38 0.45 3481.66
ρ 0.76 0.01 0.44 0.96 232.75
ρf 0.86 0.01 0.24 1.00 290.04
λ 0.08 0.00 0.01 0.22 3128.29
σ 1.88 0.01 1.10 2.79 2226.39
κ 0.03 0.00 0.01 0.12 290.52
φπ 1.45 0.01 1.06 1.89 437.97
φy 0.51 0.01 0.25 0.85 214.24
ρξ 0.87 0.00 0.81 0.94 1758.82
ρy∗ 0.97 0.00 0.93 0.99 456.90
ρi∗ 0.98 0.00 0.96 1.00 524.92
σξ 0.36 0.00 0.30 0.44 239.75
σy∗ 1.43 0.03 0.77 2.59 341.03
σi∗ 0.56 0.00 0.44 0.75 546.13

Note: The table displays the mean, 5th, and 95th per-
centile of the posterior distribution of the Angeletos-Lian
model, as well as the standard deviation of the posterior
mean across 10 runs of the sampler.
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Table 8: Posterior Distribution of the Hybrid NK
Model

Mean Std(Mean) Q05 Q95 Neff

rA 1.55 0.04 0.64 2.51 205.42
πA 4.04 0.01 2.41 5.67 15427.95
µQ 0.49 0.00 0.39 0.60 545.31
ν 0.93 0.00 0.87 0.97 209.17
a 0.98 0.00 0.94 1.00 7491.13
σ 1.47 0.01 0.86 2.21 2738.41
κ 0.00 0.00 0.00 0.00 189.17
φπ 1.64 0.00 1.27 2.04 2838.78
φy 0.18 0.00 0.14 0.24 381.09
ρξ 0.39 0.00 0.24 0.54 752.15
ρy∗ 0.99 0.00 0.98 1.00 538.77
ρi∗ 0.99 0.00 0.98 1.00 261.51
σξ 0.93 0.00 0.82 1.07 814.29
σy∗ 2.18 0.04 1.10 4.15 772.22
σi∗ 0.49 0.00 0.40 0.59 5578.19

Note: The table displays the mean, 5th, and 95th percentile
of the posterior distribution of the Hybrid NK model, as well
as the standard deviation of the posterior mean across 10 runs
of the sampler.
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Table 9: Posterior Distribution of the Hybrid
NK-λπ Model

Mean Std(Mean) Q05 Q95 Neff

rA 1.89 0.01 0.81 3.17 14242.89
πA 4.25 0.01 2.94 5.51 7721.07
µQ 0.43 0.00 0.37 0.49 3806.14
ν 0.43 0.00 0.29 0.57 3297.41
a 0.97 0.00 0.92 1.00 15047.89
λπ 0.10 0.00 0.01 0.24 6389.45
σ 1.79 0.01 1.09 2.64 4650.79
κ 0.01 0.00 0.00 0.02 1352.43
φπ 1.65 0.00 1.26 2.07 5824.27
φy 0.38 0.00 0.26 0.52 2786.47
ρξ 0.87 0.00 0.81 0.92 2074.63
ρy∗ 0.98 0.00 0.95 1.00 5497.73
ρi∗ 0.98 0.00 0.96 1.00 1557.50
σξ 2.89 0.03 1.69 4.62 1085.26
σy∗ 1.40 0.01 0.94 2.18 798.35
σi∗ 0.53 0.00 0.45 0.63 7079.41

Note: The table displays the mean, 5th, and 95th percentile
of the posterior distribution of the Hybrid NK-λπ model, as
well as the standard deviation of the posterior mean across
10 runs of the sampler.
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Figure 3: Estimated Innovations
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Note: The figure shows the time series of the posterior mean smoothed innovations for the FHP-φ̄ model.
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