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Part I

Models

Here we derive the equilibrium conditions of the baseline model and the other specifications discussed in the main

text.

1 Baseline specification

The baseline specification features input-output production linkages and sectoral labor market segmentation. Note that

here we present a more general specification than the baseline presented in the main text, as we include a labor-supply

shock. For the description of variables and parameters, see the main text.

1.1 Model

1.1.1 Representative household

The representative household maximizes

E0

{ ∞∑
t=0

βtΓt

[
log (Ct)− Ξt

K∑
k=1

ωk
H1+ϕ
k,t

1 + ϕ

]}
,

subject to the flow budget constraint

PtCt + Et [Qt,t+1Bt+1] = Bt +

K∑
k=1

Wk,tHk,t +

K∑
k=1

∫
Ik

Πk,t (i) di,

where the aggregate consumption composite Ct is defined as

Ct =

[
K∑
k=1

(nkDk,t)
1/η

Ck,t
(η−1)/η

]η/(η−1)

.

Sectoral demand shocks, Dk,t > 0 for k = 1, 2, · · · ,K, are relative and thus are subject to the following constraint

K∑
k=1

nkDk,t = 1.

The price level associated with the aggregate consumption composite is given by

Pt =

[
K∑
k=1

(nkDk,t)P
1−η
k,t

]1/(1−η)

.

Given the aggregate consumption composite, Ct, and the price levels, Pk,t and Pt, the optimal demand for the

sectoral goods is one that minimizes total expenditure PtCt. This leads to the following sectoral demands:

Ck,t = nkDk,t

(
Pk,t
Pt

)−η
Ct.
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Sectoral consumption Ck,t in sector k is a composite of differentiated goods produced in the sector:

Ck,t =

[(
1

nk

)1/θ ∫
Ik
Ck,t(i)

(θ−1)/θdi

]θ/(θ−1)

.

The associated sectoral price index is given by

Pk,t =

(
1

nk

∫
Ik
Pk,t(i)

1−θdi

)1/(1−θ)

.

Given sectoral consumption Ck,t and prices Pk,t and Pk,t (i), the optimal demand for type-i good in sector k, Ck,t (i),

is

Ck,t(i) =
1

nk

(
Pk,t (i)

Pk,t

)−θ
Ck,t.

The remaining optimality conditions for the household’s utility maximization problem are

Qt,t+1 = β

(
Γt+1

Γt

)(
Ct+1

Ct

)−1(
Pt
Pt+1

)
,

Wk,t

Pt
= ΞtωkH

ϕ
k,tCt.

1.1.2 Firms

Consider firm i in sector k (firm ik), where i ∈ Ik. Its production function is given by

Yk,t (i) = AtAk,tHk,t(i)
1−δZk,t (i)

δ
, (1)

where Zk,t (i) is firm ik’s usage of other goods as intermediate inputs, defined as follows:

Zk,t(i) =

[
K∑
k′=1

(
nk′Dk′ ,t

)1/η

Zk,k′,t(i)
(η−1)/η

]η/(η−1)

.

The amount of sector k′ goods used as intermediate inputs by firm ik is given by

Zk,k′,t(i) =

[(
1

nk′

)1/θ ∫
Ik′

Zk,k′,t(i, i
′)(θ−1)/θdi′

]θ/(θ−1)

,

where Zk,k′,t (i, i′) is the quantity of firm i′k′ output purchased by firm ik. Firm ik’s cost-minimization problem yields

the optimal demand for intermediate inputs:

Zk,k′,t(i) = nk′Dk′ ,t

(
Pk′,t
Pt

)−η
Zk,t(i),

and

Zk,k′,t(i, i
′) =

1

nk′

(
Pk′,t(i

′)

Pk′,t

)−θ
Zk,k′,t(i).
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Note that firm ik’s total output has to satisfy the sum of household consumption and demand by all other firms:

Yk,t(i) = Ck,t(i) +

K∑
k′=1

∫
Ik′

Zk′,k,t(i
′, i)di′

= CtDk,t

(
Pk,t(i)

Pk,t

)−θ (
Pk,t
Pt

)−η
+

K∑
k′=1

∫
Ik′

Dk,t

(
Pk,t(i)

Pk,t

)−θ (
Pk,t
Pt

)−η
Zk′,t(i

′)di′

= YtDk,t

(
Pk,t(i)

Pk,t

)−θ (
Pk,t
Pt

)−η
, (2)

where Yt = Ct + Zt and Zt =
∑K
k′=1

∫
Ik′

Zk′,t(i
′)di′. The second term on the right hand side in the first row above

represents the total demand for the intermediate input produced by firm ik.

Firm ik’s nominal profit is given by

Πk,t(i) = Pk,t(i)Yk,t(i)−Wk,tHk,t(i)− PtZk,t(i). (3)

The cost minimization problem implies the following relationship:

Zk,t(i) =
δ

1− δ
Wk,t

Pt
Hk,t(i),

which can be substituted into the profit function (3) to yield

Πk,t(i) = Pk,t(i)Yk,t(i)−
1

1− δ
Wk,tHk,t(i). (4)

From the production function (1), we can write Hk,t(i) as a function of the firm’s output:

Hk,t(i) =
Yk,t(i)

AtAk,t

(
δ

1− δ

)−δ (
Wk,t

Pt

)−δ
.

Substitute this again into the profit function (4) to obtain

Πk,t(i) =Pk,t(i)Yk,t(i)−
1

1− δ

(
δ

1− δ

)−δ (
Wk,t

Pt

)1−δ
Yk,t(i)

AtAk,t
Pt

=

[
Pk,t(i)−

1

1− δ

(
δ

1− δ

)−δ (
Wk,t

Pt

)1−δ
1

AtAk,t
Pt

]
Dk,t

(
Pk,t(i)

Pk,t

)−θ (
Pk,t
Pt

)−η
Yt, (5)

where we eliminated Yk,t (i) using total demand for firm ik’s output (2).

Lastly, we derive the first-order condition of firm ik’s profit maximization problem when prices are fully flexible:

Pk,t(i)

Pt
=

θ

θ − 1

1

1− δ

(
δ

1− δ

)−δ (
Wk,t

Pt

)1−δ
1

AtAk,t
, (6)

where MCk,t ≡ 1
1−δ

(
δ

1−δ

)−δ (
Wk,t

Pt

)1−δ
1

AtAk,t
is the real marginal cost and θ/ (θ − 1) is the price mark-up over

marginal cost. It follows that, when prices are flexible, the equilibrium price is the same for all firms in a given sector.

We denote that optimal flexible price by

P ∗∗k,t ≡
θ

θ − 1
MCk,t. (7)
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1.2 Price setting

Prices are sticky as in Calvo (1983). Each firm in sector k adjusts its price with probability 1 − αk each period. A

fraction αk of firms do not change their prices. The sectoral price level Pk,t evolves as

Pk,t =

[
1

nk

∫
I∗k,t

P ∗k,t
1−θdi+

1

nk

∫
Ik−I∗k,t

Pk,t−1(i)1−θdi

] 1
1−θ

=
[
(1− αk)P ∗k,t

1−θ + αkP
1−θ
k,t−1

] 1
1−θ

, (8)

where P ∗k,t is the common optimal price chosen by sector k firms that adjust in period t. These firms are a random

subset of all firms in the sector, and their indexes are collected in the set I∗k,t, whose measure is nk (1− αk).

Firms that adjust at time t set their prices to maximize expected discounted profits, as follows:

max
Pk,t(i)

Et

∞∑
s=0

αskQt,t+sΠk,t+s(i),

where Qt,t+s =
∏s−1
τ=0Qt+τ,t+τ+1 is the nominal stochastic discount factor between time t and t+ s, and

Πk,t+s(i) = Pk,t (i)Yk,t+s (i)−Wk,t+sHk,t+s (i)− Pt+sZk,t+s (i)

=

[
Pk,t(i)−

1

1− δ

(
δ

1− δ

)−δ (
Wk,t+s

Pt+s

)1−δ
1

At+sAk,t+s
Pt+s

]
Dk,t+s

(
Pk,t(i)

Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Yt+s

is the nominal profit at time t + s conditional on the price chosen at time t still being charged. So, the first-order

condition for the firm’s profit maximization problem is given by

Et

∞∑
s=0

αskQt,t+sDk,t+s

(
P ∗k,t
Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Yt+s

[
P ∗k,t −

(
θ

θ − 1

)
MCk,t+s

]
= 0,

where the nominal marginal cost in period t+ s is given by

MCk,t+s = Pt+s
1

1− δ

(
δ

1− δ

)−δ (
Wk,t+s

Pt+s

)1−δ
1

At+sAk,t+s
.

The first-order condition above and the sectoral price level in (8) together determine equilibrium dynamics of sectoral

prices. Aggregate price dynamics are then determined by aggregation of such sectoral prices.

1.3 Government policy

Monetary policy is given by either the following Taylor-type interest rate rule:

It = β−1Iρit−1

[(
Pt
Pt−1

)φπ (Ct
C

)φy]1−ρi

exp (µt) ,

or by a policy such that nominal aggregate consumption (Mt ≡ PtCt) follows an exogenous stochastic process. We

abstract from fiscal policy.
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1.4 Shocks

Shocks follow AR(1) processes:

log Γt+1 = ρΓ log Γt + σΓεΓ,t+1,

log (Ξt+1 − Ξ) = ρΞ log (Ξt − Ξ) + σΞεΞ,t+1,

logAt+1 = ρA logAt + σAεA,t+1,

logAk,t+1 = ρAk logAk,t + σAkεAk,t+1,

logDk,t+1 = ρDk logDk,t + σDkεDk,t+1,

where Ak = Dk = Γ = A = 1 in the steady state, and

K∑
k=1

nkDk,t = 1.

As for monetary policy specifications, we assume either

µt+1 = ρµµt + σµεµ,t+1,

or

logMt+1 = ρM logMt + σMεM,t+1.

In the steady state, µ = 0 and M = 1.

1.5 Equilibrium conditions

Here we collect the equilibrium conditions of the model.

1.5.1 CES aggregates, market clearing conditions, and definitions

• Aggregate price level

Pt =

[
K∑
k=1

(nkDk,t)P
1−η
k,t

]1/(1−η)

.

• Sectoral price level

Pk,t =

(
1

nk

∫
Ik
Pk,t(i)

1−θdi

)1/(1−θ)

.

• Aggregate consumption (value-added output)

Ct =

[
K∑
k=1

(nkDk,t)
1/η

Ck,t
(η−1)/η

]η/(η−1)

.

• Sectoral consumption

Ck,t =

[(
1

nk

)1/θ ∫
Ik
Ck,t(i)

(θ−1)/θdi

]θ/(θ−1)

.
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• Intermediate input used by firm ik

Zk,t(i) =

[
K∑
k′=1

(
nk′Dk′ ,t

)1/η

Zk,k′,t(i)
(η−1)/η

]η/(η−1)

.

• Intermediate input produced by sector k′ used by ik firm

Zk,k′,t(i) =

[(
1

nk′

)1/θ ∫
Ik′

Zk,k′,t(i, i
′)(θ−1)/θdi′

]θ/(θ−1)

.

• Asset market clearing condition

Bt = 0.

• Sectoral labor input

Hk,t =

∫
Ik
Hk,t(i)di.

• Aggregate intermediate input

Zt =

K∑
k′=1

∫
Ik′

Zk′,t(i
′)di′.

• ik firm’s total output

Yk,t(i) = Ck,t(i) +

K∑
k′=1

∫
Ik′

Zk′,k,t(i
′, i)di′.

• Sectoral output

Yk,t =

∫
Ik
Yk,t (i) di.

Note that Yk,t is a simple sum of output by individual firms in sector k and thus is not the same composite (CES

aggregate) as Ck,t and Zk′,k,t (i′).

• Aggregate gross output

Yt = Ct + Zt.

• Aggregate wage

Wt =

K∑
k=1

nkWk,t.

• Aggregate hours index

Ht =

K∑
k=1

Hk,t.

1.5.2 Demand functions

• Sectoral consumption

Ck,t = nkDk,t

(
Pk,t
Pt

)−η
Ct.
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• Consumption of an ik good

Ck,t(i) =
1

nk

(
Pk,t(i)

Pk,t

)−θ
Ck,t.

• ik firm’s demand for sector k′ good

Zk,k′,t(i) = nk′Dk′ ,t

(
Pk′,t
Pt

)−η
Zk,t(i).

• ik firm’s demand for i′k′ good

Zk,k′,t(i, i
′) =

1

nk′

(
Pk′,t(i

′)

Pk′,t

)−θ
Zk,k′,t(i).

1.5.3 Household

• Consumption Euler equation / stochastic discount factor

Qt,t+1 = β

(
Γt+1

Γt

)(
Ct+1

Ct

)−1(
Pt
Pt+1

)
.

• Optimal labor supply condition
Wk,t

Pt
= ΞtωkH

ϕ
k,tCt.

1.5.4 Firms

• Production function

Yk,t(i) = AtAk,tHk,t(i)
1−δZk,t (i)

δ
.

• Cost minimization
Wk,t

Pt
=

1− δ
δ

Zk,t(i)

Hk,t(i)
.

• Nominal marginal cost

MCk,t+s = Pt+s
1

1− δ

(
δ

1− δ

)−δ (
Wk,t+s

Pt+s

)1−δ
1

At+sAk,t+s
.

• First order condition

0 = Et

∞∑
s=0

αskQt,t+s

(
P ∗k,t
Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Yt+s

[
P ∗k,t −

(
θ

θ − 1

)
MCk,t+s

]
.

• Frictionless optimal price

P ∗∗k,t =

(
θ

θ − 1

)
MCk,t.

1.6 Steady state

We solve the model by log-linearizing quilibrium conditions around a symmetric non-stochastic zero-inflation steady

state, which is presented here. A non-stochastic steady-state need not be symmetric. In particular, it depends on the
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steady-state levels of sector-specific productivity {Ak}Kk=1 and the sector-specific parameters that measure the relative

disutilities of supplying labor, {ωk}Kk=1. For simplicity, we make two assumptions that deliver a symmetric steady

state: i) the steady-state levels of productivities are the same across sectors: specifically, Ak = 1 for all k, without

loss of generality;1 ii) ωk = n−ϕk for all k. The latter assumption relates the relative disutilities of labor to the size of

sectors, and equalizes steady-state sectoral wages.

We solve for {Y,C, Z,H,W/P,Π/P}: the steady state values of aggregate gross output, aggregate value added-

output (i.e. GDP), aggregate intermediate input usage, aggregate hours, real wage, and real profits. Once we obtain

the steady state values of these aggregate variables, it is trivial to characterize the steady-state values for sectoral and

micro variables using the symmetric nature of the steady state: Yk = nkYk(i) = nkY , Ck = nkCk(i) = nkC, Zk,k′ (i) =

nk′Zk,k′ (i, i
′) = nk′Z, Zk (i) = Z, Hk = nkHk(i) = nkH, Πk(i)/P = Π/P , Wk/P = W/P , and P (i)/P = Pk/P = 1.

After exploiting symmetry and market-clearing conditions, the system of equilibrium conditions can be reduced to

the following seven equations:

C =

(
W

P

)
H +

(
Π

P

)
, (9)(

W

P

)
= HϕC, (10)

Y = H1−δZδ, (11)

Y = C + Z, (12)(
Π

P

)
= Y −

(
W

P

)
H − Z, (13)

Z =
δ

1− δ

(
W

P

)
H, (14)(

θ

θ − 1

)
χ

(
W

P

)1−δ

= 1, (15)

where χ ≡ 1
1−δ

(
δ

1−δ

)−δ
.

First, it is trivial to obtain the real wage from (15):

(
W

P

)
=

(
θ − 1

θ

1

χ

) 1
1−δ

.

Next, we substitute out Z in (11) and (13) using (14), which gives:

Y = H

(
δ

1− δ

)δ (
W

P

)δ
,(

Π

P

)
= Y −

(
1

1− δ

)(
W

P

)
H.

Combining the two equations above, we substitute out H and express real profits as a function of the real wage and

output: (
Π

P

)
=

[
1− χ

(
W

P

)1−δ
]
Y.

1Similarly, we fix the steady-state level of all other exogenous processes at unity.
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But, χ
(
W
P

)1−δ
= θ−1

θ from (15), so it follows that (
Π

P

)
=

1

θ
Y.

Equation (9) indicates that aggregate value-added output should be equal to the sum of labor income and real profits:

C =

(
W

P

)
H +

(
Π

P

)
=

1− δ
δ

Z +
1

θ
Y =

[
1− δ

(
θ − 1

θ

)]
Y.

Consequently, aggregate intermediate inputs are obtained as:

Z = Y − C = Y −
[
1− δ

(
θ − 1

θ

)]
Y = δ

(
θ − 1

θ

)
Y.

From (14), total labor hours are given by:

H =
1− δ
δ

(
W

P

)−1

Z =

[
δ

(
θ − 1

θ

)]− δ
1−δ

Y.

So far, we have expressed the steady-state values of {Y,C, Z,H,Π/P} in terms of Y , which can be obtained using (10):

Y =

{(
1

χ

) 1
1−δ
(
θ − 1

θ

) 1
1−δ
[
δ

(
θ − 1

θ

)] δϕ
1−δ
[
1− δ

(
θ − 1

θ

)]−1
} 1

1+ϕ

.

In the special case in which δ = 0, the expression for aggregate gross output simplifies to Y =
(
θ−1
θ

) 1
1+ϕ , which is the

standard result in models without intermediate inputs.

1.7 Log-linear approximation

We denote the log deviation of variables from the steady state by lower case letters. For example, ct = logCt − logC

and γt = log Γt − log Γ.

1.7.1 CES Aggregates, market clearing conditions, and definitions

• Aggregate price level

pt =

K∑
k=1

nkpk,t.

• Sectoral price level

pk,t =
1

nk

∫
Ik
pk,t(i)di.

• Aggregate consumption (value-added output)

ct =

K∑
k=1

nkck,t.
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• Sectoral consumption

ck,t =
1

nk

∫
Ik
ck,t(i)di.

• Intermediate input used by ik firm

zk,t(i) =

K∑
k′=1

nk′zk,k′,t(i).

• Intermediate input produced by sector k′ used by ik firm

zk,k′,t(i) =
1

nk′

∫
Ik′

zk,k′,t(i, i
′)di′.

• Sectoral labor input

hk,t =
1

nk

∫
Ik
hk,t(i)di. (16)

• Aggregate intermediate input

zt =

K∑
k′=1

∫
Ik′

zk′,t(i
′)di′. (17)

• firm ik’s total output

yk,t(i) = (1− ψ) ck,t (i) + ψ

K∑
k′=1

∫
Ik′

zk′,k,t (i′, i) di′.

• Sectoral output

yk,t =
1

nk

∫
Ik
yk,t(i)di. (18)

By the way, note that

yk,t =
1

nk

∫
Ik
yk,t(i)di

= (1− ψ) ck,t + ψ

K∑
k′=1

∫
Ik′

zk′,k,t (i′) di′.

• Aggregate gross output

yt = (1− ψ)ct + ψzt.

where ψ ≡ δ
(
θ−1
θ

)
. It follows that

K∑
k=1

nkyk,t = (1− ψ)

K∑
k=1

nkck,t + ψ

K∑
k=1

nk

K∑
k′=1

∫
Ik′

zk′,k,t (i′) di′

= (1− ψ) ct + ψzt

= yt.

• Aggregate wage

wt =

K∑
k=1

nkwk,t. (19)
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• Aggregate hours index

ht =

K∑
k=1

nkhk,t. (20)

1.7.2 Demand functions

• Sectoral consumption

ck,t − ct = −η (pk,t − pt) + dk,t. (21)

• Consumption of good ik

ck,t(i)− ck,t = −θ (pk,t(i)− pk,t) .

• Firm ik’s demand for sector k′ good

zk,k′,t(i)− zk,t(i) = −η (pk′,t − pt) + dk′,t. (22)

• Firm ik’s demand for good i′k′

zk,k′,t(i, i
′)− zk,k′,t(i) = −θ (pk′,t(i

′)− pk′,t) .

• Firm ik’s total output. Using the demand for consumption of good ik and the demand for good ik by firm i′k′,

we can show that

yk,t (i) = (1− ψ) ck,t (i) + ψ

K∑
k′=1

∫
Ik′

zk′,k,t (i′, i) di′

= −θ (pk,t(i)− pk,t) + yk,t,

or

yk,t (i)− yk,t = −θ (pk,t(i)− pk,t) .

1.7.3 Household

• Consumption Euler equation

ct = Et (ct+1)− (it − Etπt+1) + (γt − Etγt+1) .

• Optimal labor supply condition

wk,t − pt = ϕhk,t + ct + ξt. (23)

Using the definition of the aggregate wage (19) and the aggregate hours index, we can derive the following

aggregate labor supply condition

wt − pt = ϕht + ct + ξt.
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1.7.4 Firms

• Firm ik’s production function

yk,t(i) = at + ak,t + (1− δ)hk,t(i) + δzk,t(i). (24)

Using the definition of sectoral output (18) and sectoral labor input (16), we can show that

yk,t = at + ak,t + (1− δ)hk,t +
δ

nk

∫
Ik
zk,t (i) di.

It follows that

yt =

K∑
k=1

nkyk,t = at +

K∑
k=1

nkak,t + (1− δ)
K∑
k=1

nkhk,t + δ

K∑
k=1

∫
Ik
zk,t (i) di

= at +

K∑
k=1

nkak,t + (1− δ)ht + δzt,

where we used the definition of aggregate intermediate input (17) and aggregate hours index (20).

• Cost minimization

wk,t − pt = zk,t(i)− hk,t(i). (25)

Note that integrating both sides over Ik and dividing by nk leads to

wk,t − pt =
1

nk

∫
Ik
zk,t (i) di− hk,t,

where we used the definition of sectoral labor input (16). From the definition of aggregate wages (19) and

aggregate intermediate input (17), it follows that

wt − pt = zt − ht.

• Nominal marginal cost

mck,t = (1− δ) (wk,t − pt)− ak,t − at + pt.

• First order condition

Et

∞∑
s=0

αskβ
sp∗k,t = Et

∞∑
s=0

αskβ
smck,t+s. (26)

1.7.5 Derivation of the Phillips curve

From the log-linearized first order condition by the price-setting firm (26), the optimal price is given by

p∗k,t = (1− αkβ)Et

∞∑
s=0

αskβ
smck,t+s,

or

p∗k,t = (1− αkβ)mck,t + αkβEt
[
p∗k,t+1

]
. (27)
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Loglinearizing (8) leads to

pk,t = (1− αk)p∗k,t + αkpk,t−1. (28)

Combining (27)and (28), we can derive the sectoral Phillips curve (PC)

πk,t = βEtπk,t+1 +
(1− αk) (1− αkβ)

αk
(mck,t − pk,t) (29)

Now let us show how marginal cost is determined. First, note that by integrating (25) over Ik, we obtain

wk,t − pt =
1

nk

∫
Ik
zk,t(i)di− hk,t.

We can combine this eqution with (23) to obtain

1

nk

∫
Ik
zk,t(i)di = (1 + ϕ)hk,t + ct + ξt. (30)

Also, by integrating both sides of the production function (24) over Ik, we get

yk,t = at + ak,t + (1− δ)hk,t + δ
1

nk

∫
Ik
zk,t(i)di

= at + ak,t + (1 + δϕ)hk,t + δct + δξt,

where we use (30) to obtain the second row. It follows that

hk,t =
1

1 + δϕ
yk,t −

δ

1 + δϕ
ct −

δ

1 + δϕ
ξt −

1

1 + δϕ
ak,t −

1

1 + δϕ
at,

and thus

mck,t = (1− δ) (wk,t − pt)− ak,t − at + pt

= (1− δ) (ϕhk,t + ct + ξt)− ak,t − at + pt

=
(1− δ)ϕ
1 + δϕ

yk,t +
(1− δ)
1 + δϕ

ct +
(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t + pt.

Consequently, the sectoral PC (29) can be written as

πk,t =βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

{
(1− δ)ϕ
1 + δϕ

yk,t +
(1− δ)
1 + δϕ

ct +
1− δ

1 + δϕ
ξt

− 1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t + (pt − pk,t)

}
.

We can write the sectoral PC in terms of sectoral consumption instead of sectoral output. Note that the consumption

demand for sector k goods (21) can be rewritten as

pt − pk,t =
1

η
(ck,t − ct)−

1

η
dk,t. (31)

Also, using the demand function for sectoral consumption (21) and the demand for sector k good by firm i′k′ (22), we

16



can show that

yk,t = (1− ψ) ck,t + ψ

K∑
k′=1

∫
Ik′

zk′,k,t (i′) di′

= −η (pk,t − pt) + dk,t + yt,

or

yk,t − yt = −η (pk,t − pt) + dk,t.

From (21), it turns out that relative consumption for sector k good is identical to relative output of sector k

yk,t − yt = ck,t − ct.

It follows that

yk,t = yt + ck,t − ct
= (1− ψ) ct + ψzt + ck,t − ct
= ψzt + ck,t − ψct. (32)

Thus, we can substitute out yk,t from the marginal cost:

mck,t =
(1− δ)ϕ
1 + δϕ

ck,t +
(1− δ) (1− ψϕ)

1 + δϕ
ct +

(1− δ)ψϕ
1 + δϕ

zt +
(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t + pt. (33)

Substituting out pt − pk,t from the sectoral PC as well using (31), we obtain

πk,t =βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

{[
(1− δ)ϕ
1 + δϕ

+
1

η

]
ck,t +

[
(1− δ) (1− ψϕ)

1 + δϕ
− 1

η

]
ct

+
(1− δ)ψϕ

1 + δϕ
zt +

1− δ
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t −

1

η
dk,t

}
.

Aggregate inflation is obtained by aggregation of sectoral inflation:

πt =

K∑
k=1

nkπk,t.

1.8 Log-linear equilibrium conditions

Here we present the log-linearized equilibrium conditions necessary to characterize the equilibrium dynamics of the

variables of interest. They are the following aggregate variables:

{ct, πt, it,mt, ht, (wt − pt)} ,

and the following sectoral variables

{ck,t, πk,t}Kk=1 .
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The following 6 + (K + 2) equations determine the equilibrium dynamics of those variables:

ct = Et [ct+1]− (it − Etπt+1) + (γt − Etγt+1) , (IS equation)

wt − pt = ϕht + ct + ξt, (agg. labor supply)

(1− ψ) ct + ψzt = at +

K∑
k=1

nkak,t + (1− δ)ht + δzt, (agg. resource constraint)

wt − pt = zt − ht, (agg. cost-minimization relation)

πk,t = βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

{[
(1− δ)ϕ
1 + δϕ

+
1

η

]
ck,t +

[
(1− δ) (1− ψϕ)

1 + δϕ
− 1

η

]
ct

+
(1− δ)ψϕ

1 + δϕ
zt +

1− δ
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t −

1

η
dk,t

}
, (sectoral PC)

πt =

K∑
k=1

nkπk,t, (agg. inflation)

∆ (ck,t+1 − ct+1) = −η (πk,t+1 − πt+1) + ∆dk,t+1. (sectoral consumption)

For monetary policy, we consider a Taylor-type interest rate rule:

it = ρiit−1 + (1− ρi) (φππt + φcct) + µt,

or an exogenous stochastic process for nominal aggregate consumption:

mt = pt + ct.

1.9 Derivation of key equations

Here we show how to derive important equations of the baseline specification that show how sectoral price levels evolve

and how firms would set prices in the absence of pricing friction.

1.9.1 The evolution of the sectoral price levels

Recall from Section 1.7.5 that

p∗k,t = (1− αkβ)mck,t + αkβEt
[
p∗k,t+1

]
, (34)

pk,t = (1− αk)p∗k,t + αkpk,t−1. (35)

Substitute out p∗k,t and p∗k,t+1 in (34) using (35), one obtains

βEtpk,t+1 −
1 + α2

kβ

αk
pk,t + pk,t−1 = − (1− αk) (1− αkβ)

αk
mck,t. (36)

Note that

mck,t =
(1− δ)ϕ
1 + δϕ

ck,t +
(1− δ) (1− ψϕ)

1 + δϕ
ct +

(1− δ)ψϕ
1 + δϕ

zt +
(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t + pt

=
(1− δ) (1− ψϕ+ ϕ)

1 + δϕ
ct +

(1− δ)ψϕ
1 + δϕ

zt +

[
1 +

(1− δ)ϕη
1 + δϕ

]
pt +

(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at
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− 1 + ϕ

1 + δϕ
ak,t +

(1− δ)ϕ
1 + δϕ

dk,t −
(1− δ)ϕη

1 + δϕ
pk,t,

where we substituted out ck,t from (33) using the demand for sectoral consumption (21). Now let

mck,t = m̃ck,t −
(1− δ)ϕη

1 + δϕ
pk,t, (37)

where

m̃ck,t =
(1− δ) (1− ψϕ+ ϕ)

1 + δϕ
ct +

(1− δ)ψϕ
1 + δϕ

zt +

[
1 +

(1− δ)ϕη
1 + δϕ

]
pt +

(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at

− 1 + ϕ

1 + δϕ
ak,t +

(1− δ)ϕ
1 + δϕ

dk,t.

Plugging (37) into (36), one obtains

βEtpk,t+1 −
{

1 + β +
(1− αk) (1− αkβ)

αk

[
1 +

(1− δ)ϕη
1 + δϕ

]}
pk,t + pk,t−1 = − (1− αk) (1− αkβ)

αk
m̃ck,t. (38)

Using the lag polynomial

B (L) = β −
{

1 + β +
(1− αk) (1− αkβ)

αk

[
1 +

(1− δ)ϕη
1 + δϕ

]}
L+ L2,

where L is the lag operator, we can rewrite (38) as

Et [B (L) pk,t+1] = − (1− αk) (1− αkβ)

αk
m̃ck,t.

Note that the lag polynomial B (L) can be factored as

B (L) = β (1− λ1L) (1− λ2L) ,

where λ1 and λ2 are the two roots of the characteristic polynomial

f (λ) ≡ βλ2 −
[
1 + β +

(1− αk) (1− αkβ)

αk

[
1 +

(1− δ)ϕη
1 + δϕ

]]
λ+ 1 = 0.

Without loss of generality, suppose that |λ1| ≤ |λ2|. Note that λ1 and λ2 are real and must satisfy 0 < λ1 < 1 <

1/β < λ2 since f (0) > 0, f (1) < 0, and

f (λ) < β

(
λ− 1

β

)
(λ− 1) ,

for λ > 0. It follows that

Et [(1− λ1L) (1− λ2L) pk,t+1] = − 1

β

(1− αk) (1− αkβ)

αk
m̃ck,t,

or

(1− λ1L) pk,t =
1

λ2
Et [(1− λ1L) pk,t+1] +

1

βλ2

(1− αk) (1− αkβ)

αk
m̃ck,t.
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Since |λ2| > 1, one solution of this equation can be found by solving it forward as2

(1− λ1L) pk,t =
1

βλ2

(1− αk) (1− αkβ)

αk

∞∑
s=0

(
1

λ2

)s
Etm̃ck,t+s,

or

pk,t = λ1pk,t−1 +
1

βλ2

(1− αk) (1− αkβ)

αk

∞∑
s=0

(
1

λ2

)s
Etm̃ck,t+s.

Since

λ1λ2 =
1

β
,

it follows that

pk,t = λ1pk,t−1 + λ1
(1− αk) (1− αkβ)

αk

∞∑
s=0

(
1

λ2

)s
Etm̃ck,t+s,

where

m̃ck,t+s =
(1− δ) (1− ψϕ+ ϕ)

1 + δϕ
ct+s +

(1− δ)ψϕ
1 + δϕ

zt+s +

[
1 +

(1− δ)ϕη
1 + δϕ

]
pt+s +

(1− δ)
1 + δϕ

ξt+s −
1 + ϕ

1 + δϕ
at+s

− 1 + ϕ

1 + δϕ
ak,t+s +

(1− δ)ϕ
1 + δϕ

dk,t+s.

In summary, the sectoral price levels evolve as

pk,t =λ1pk,t−1 +
1

βλ2

(1− αk) (1− αkβ)

αk

∞∑
s=0

(
1

λ2

)s
Et

{
(1− δ) (1− ψϕ+ ϕ)

1 + δϕ
ct+s +

(1− δ)ψϕ
1 + δϕ

zt+s

+

[
1 +

(1− δ)ϕη
1 + δϕ

]
pt+s +

(1− δ)
1 + δϕ

ξt+s −
1 + ϕ

1 + δϕ
at+s −

1 + ϕ

1 + δϕ
ak,t+s +

(1− δ)ϕ
1 + δϕ

dk,t+s

}
. (39)

We then consider simple cases to inspect the mechanisms more clearly. First, when δ = 0 and ϕ = 0, (39) is reduced

to

pk,t = λ1pk,t−1 +
1

βλ2

(1− αk) (1− αkβ)

αk

∞∑
s=0

(
1

λ2

)s
Et [ct+s + pt+s + ξt+s − at+s − ak,t+s] .

If we further assume that mt = pt + ct, it follows that

pk,t = λ1pk,t−1 +
1

βλ2

(1− αk) (1− αkβ)

αk

∞∑
s=0

(
1

λ2

)s
Et [mt+s + ξt+s − at+s − ak,t+s] .

Second, when δ > 0 but ϕ = 0, (39) is reduced to

pk,t = λ1pk,t−1 +
1

βλ2

(1− αk) (1− αkβ)

αk

∞∑
s=0

(
1

λ2

)s
Et [(1− δ) ct+s + pt+s + (1− δ) ξt+s − at+s − ak,t+s] .

If we further assume that mt = pt + ct, it follows that

pk,t = λ1pk,t−1 +
1

βλ2

(1− αk) (1− αkβ)

αk

∞∑
s=0

(
1

λ2

)s
Et [(1− δ)mt+s + (1− δ) ξt+s − at+s − ak,t+s + δpt+s] .

2Since the price level is difference-stationary in this model, m̃ck,t+s is also difference-stationary. However, its expectation conditional
on the information set of date t is bounded and thus the infinite sum is well defined. For a discussion of the uniqueness of the solution, see
Woodford (2003).
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Third, when δ = 0 but ϕ > 0, ψ = 0. So (39) is reduced to

pk,t =λ1pk,t−1 +
1

βλ2

(1− αk) (1− αkβ)

αk

∞∑
s=0

(
1

λ2

)s
Et [(1 + ϕ) ct+s + (1 + ϕη) pt+s + ξt+s

− (1 + ϕ) (at+s + ak,t+s) + ϕdk,t+s] .

If we further assume that mt = pt + ct, it follows that

pk,t =λ1pk,t−1 +
1

βλ2

(1− αk) (1− αkβ)

αk

∞∑
s=0

(
1

λ2

)s
Et [(1 + ϕ)mt+s + ϕ (η − 1) pt+s + ξt+s

− (1 + ϕ) (at+s + ak,t+s) + ϕdk,t+s] .

1.9.2 Frictionless optimal price

When firms can change prices continuously, the log-linearized optimal price is given by

p∗∗k,t =mck,t

=
(1− δ) (1− ψϕ+ ϕ)

1 + δϕ
ct +

(1− δ)ψϕ
1 + δϕ

zt +

[
1 +

(1− δ)ϕη
1 + δϕ

]
pt +

(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at

− 1 + ϕ

1 + δϕ
ak,t +

(1− δ)ϕ
1 + δϕ

dk,t −
(1− δ)ϕη

1 + δϕ
pk,t,

where we substitute the demand for sectoral consumption (21) for ck,t in (33). If mt = pt + ct, this can be written as

p∗∗k,t =
(1− δ) (1− ψϕ+ ϕ)

1 + δϕ
mt +

(1− δ)ψϕ
1 + δϕ

zt +

[
1− (1− δ) (1− ψϕ+ ϕ− ϕη)

1 + δϕ

]
pt +

(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at

− 1 + ϕ

1 + δϕ
ak,t +

(1− δ)ϕ
1 + δϕ

dk,t −
(1− δ)ϕη

1 + δϕ
pk,t.

We then consider simple cases to understand the nature of pricing interactions more clearly. First, when ϕ = 0 but

δ > 0, the frictionless optimal price is simplified to

p∗∗k,t = (1− δ)mt + δpt + (1− δ) ξt − at − ak,t.

Second, when δ = 0 but ϕ > 0, the frictionless optimal price is simplified to

p∗∗k,t = (1 + ϕ)mt − (ϕ− ϕη) pt + ξt − (1 + ϕ) (at + ak,t) + ϕdk,t − ϕηpk,t.

Lastly, when δ = 0 and ϕ = 0 , the frictionless optimal price becomes

p∗∗k,t = mt + ξt − at − ak,t.

For the frictionless optimal price with the firm-specific labor market, see Section 3.

21



2 Economy-wide labor market

This section describes a simple version of the baseline specification with a single, economy-wide labor market. We

present only differences from the baseline model.

2.1 Model

2.1.1 Representative household

The representative household maximizes

E0

{ ∞∑
t=0

βtΓt

[
log (Ct)− Ξt

H1+ϕ
t

1 + ϕ

]}
,

subject to the flow budget constraint

PtCt + Et [Qt,t+1Bt+1] = Bt +WtHt +

K∑
k=1

∫
Ik

Πk,t (i) di,

where Ht is the labor supply and Wt is nominal wages for a unit of labor hours.

The optimality conditions for the household’s utility maximization problem are given by

Qt,t+1 = β

(
Γt+1

Γt

)(
Ct+1

Ct

)−1(
Pt
Pt+1

)
,

Wt

Pt
= ΞtH

ϕ
t Ct.

2.1.2 Firms

Consider firm i in sector k (firm ik), where i ∈ Ik. Its production function is given by

Yk,t (i) = AtAk,tHt(i)
1−δZk,t (i)

δ
. (40)

Firm ik’s nominal profit is given by

Πk,t(i) = Pk,t(i)Yk,t(i)−WtHt(i)− PtZk,t(i). (41)

The cost minimization problem implies the following relationship

Zk,t(i) =
δ

1− δ
Wt

Pt
Ht(i),

which can be substituted into the profit function (41) as

Πk,t(i) = Pk,t(i)Yk,t(i)−
1

1− δ
WtHt(i). (42)

From the production function (40), we can write Ht(i) as a function of the firm’s output

Ht(i) =
Yk,t(i)

AtAk,t

(
δ

1− δ

)−δ (
Wt

Pt

)−δ
.
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Substitute this again into the profit function (42) to obtain

Πk,t(i) =Pk,t(i)Yk,t(i)−
1

1− δ

(
δ

1− δ

)−δ (
Wt

Pt

)1−δ
Yk,t(i)

AtAk,t
Pt

=

[
Pk,t(i)−

1

1− δ

(
δ

1− δ

)−δ (
Wt

Pt

)1−δ
1

AtAk,t
Pt

]
Dk,t

(
Pk,t(i)

Pk,t

)−θ (
Pk,t
Pt

)−η
Yt. (43)

Lastly, we derive the first order condition of firm ik’s profit maximization problem when prices are flexible

Pk,t(i)

Pt
=

(
θ

θ − 1

)
1

1− δ

(
δ

1− δ

)−δ (
Wt

Pt

)1−δ
1

AtAk,t
, (44)

where 1
1−δ

(
δ

1−δ

)−δ (
Wk,t

Pt

)1−δ
1

AtAk,t
is the real marginal cost and θ/ (θ − 1) is the mark-up. It follows that when

prices are flexible, the equilibrium price is identical across firms within a sector.

2.2 Price setting

Firm ik that can adjust its price at time t chooses its price to maximize the expected discounted profits as follows

max
Pk,t(i)

Et

∞∑
s=0

αskQt,t+sΠk,t+s(i),

where Qt,t+s =
∏s−1
τ=0Qt+τ,t+τ+1 is the nominal stochastic discount factor between time t and t+ s, and

Πk,t+s(i) = Pk,t (i)Yk,t+s (i)−Wt+sHt+s (i)− Pt+sZk,t+s (i) ,

=

[
Pk,t(i)−

1

1− δ

(
δ

1− δ

)−δ (
Wt+s

Pt+s

)1−δ
1

At+sAk,t+s
Pt+s

]
Dk,t+s

(
Pk,t(i)

Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Yt+s,

is the nominal profit at time t + s under the condition that the firm’s price has not been updated since time t.

The nominal profit Πk,t+s(i) can be derived as Πk,t(i) in (43). So the the first order condition of the firm’s profit

maximization problem is given by

Et

∞∑
s=0

αskQt,t+sDk,t+s

(
P ∗k,t
Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Yt+s

[
P ∗k,t −

(
θ

θ − 1

)
MCk,t+s

]
= 0,

where the nominal marginal cost in period t+ s is given by

MCk,t+s = Pt+s
1

1− δ

(
δ

1− δ

)−δ (
Wt+s

Pt+s

)1−δ
1

At+sAk,t+s
.

2.3 Equilibrium conditions

Here we collect the equilibrium conditions specific to this specification. The other equilibrium conditions are the same

as for the baseline specification.
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2.3.1 CES aggregates, market clearing conditions, and definitions

• Aggregate labor input (hours index)

Ht =

∫ 1

0

Ht(i)di.

2.3.2 Household

• Optimal labor supply condition
Wt

Pt
= ΞtωkH

ϕ
t Ct.

2.3.3 Firms

• Production function

Yk,t(i) = AtAk,tHt(i)
1−δZk,t (i)

δ
.

• Cost minimization
Wt

Pt
=

1− δ
δ

Zk,t(i)

Ht(i)
.

• Nominal marginal cost

MCk,t+s = Pt+s
1

1− δ

(
δ

1− δ

)−δ (
Wt+s

Pt+s

)1−δ
1

At+sAk,t+s
.

• Frictionless optimal price

P ∗∗k,t =

(
θ

θ − 1

)
MCk,t.

2.4 Steady state

The steady state is the same as for the baseline model.

2.5 Log-linear approximation

2.5.1 CES aggregates, market clearing conditions, and definitions

• Aggregate labor input (hours index)

ht =

∫ 1

0

hk,t(i)di.

2.5.2 Household

• Optimal labor supply condition

wt − pt = ϕht + ct + ξt. (45)

2.5.3 Firms

• Firm ik’s production function

yk,t(i) = at + ak,t + (1− δ)ht(i) + δzk,t(i).
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Using the definition of sectoral output (18) and sectoral labor input (16), we can show that

yk,t = at + ak,t + (1− δ) 1

nk

∫
Ik
ht (i) di+

δ

nk

∫
Ik
zk,t (i) di.

It follows that

yt =

K∑
k=1

nkyk,t = at +

K∑
k=1

nkak,t + (1− δ)ht + δ

K∑
k=1

∫
Ik
zk,t (i) di

= at +

K∑
k=1

nkak,t + (1− δ)ht + δzt, (46)

where we used the definition of aggregate intermediate input (17).

• Cost minimization

wt − pt = zk,t(i)− ht (i) .

Note that integrating both sides over Ik and dividing by nk leads to

wt − pt =
1

nk

∫
Ik
zk,t (i) di− 1

nk

∫
Ik
ht (i) di.

From the definition of aggregate intermediate input (17), it follows that

wt − pt = zt − ht. (47)

• Nominal marginal cost

mck,t = (1− δ) (wt − pt)− ak,t − at + pt.

2.5.4 Derivation of the Phillips curve

As in the baseline model, we can derive the sectoral Phillips curve (PC)

πk,t = βEtπk,t+1 +
(1− αk) (1− αkβ)

αk
(mck,t − pk,t) (48)

Now let us show how the marginal cost is determined. First combine (45) with (47) to obtain

zt = (1 + ϕ)ht + ct + ξt,

which can be plugged in (46) to obtain

yt = at +

K∑
k=1

nkak,t + (1 + δϕ)ht + δct + δξt,

or

ht =
1

1 + δϕ
yt −

δ

1 + δϕ
ct −

δ

1 + δϕ
ξt −

1

1 + δϕ
at −

1

1 + δϕ
āt,
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where

āt =

K∑
k=1

nkak,t.

It follows that

mck,t = (1− δ) (wt − pt)− ak,t − at + pt

= (1− δ) (ϕht + ct + ξt)− ak,t − at + pt

=
(1− δ)ϕ
1 + δϕ

yt +
(1− δ)
1 + δϕ

ct +
(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at − ak,t −

(1− δ)ϕ
1 + δϕ

āt + pt.

Consequently, the sectoral PC (48) can be written as

πk,t =βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

{
(1− δ)ϕ
1 + δϕ

yt +
(1− δ)
1 + δϕ

ct +
1− δ

1 + δϕ
ξt

− 1 + ϕ

1 + δϕ
at − ak,t −

(1− δ)ϕ
1 + δϕ

āt + (pt − pk,t)
}
.

Using the resource constraint

yt = (1− ψ) ct + ψzt, (49)

we can substitute out yt from the marginal cost as

mck,t =
(1− δ) [(1− ψ)ϕ+ 1]

1 + δϕ
ct +

(1− δ)ψϕ
1 + δϕ

zt +
(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at − ak,t −

(1− δ)ϕ
1 + δϕ

āt + pt.

Substituting out pt − pk,t from the sectoral PC as well, we have

πk,t =βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

{
1

η
ck,t +

[
(1− δ) [(1− ψ)ϕ+ 1]

1 + δϕ
− 1

η

]
ct +

(1− δ)ψϕ
1 + δϕ

zt

+
1− δ

1 + δϕ
ξt −

1 + ϕ

1 + δϕ
at − ak,t −

(1− δ)ϕ
1 + δϕ

āt −
1

η
dk,t

}
.

2.5.5 Frictionless optimal price

When firms can change prices continuously, the log-linearized optimal price is given by

p∗∗k,t =
(1− δ)ϕ
1 + δϕ

yt +
(1− δ)
1 + δϕ

ct +
(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at − ak,t −

(1− δ)ϕ
1 + δϕ

āt + pt.

Using (49) and the definition that mt = pt + ct, we can rewrite the above equation as

(1 + δϕ) p∗∗k,t = (1− δ) [ϕ (1− ψ) + 1]mt + (1− δ)ϕψzt + (1− δ) ξt − (1 + ϕ) (at + ak,t)

{1− (1− δ) [ϕ (1− ψ) + 1]} pt.

When δ = 0, ψ = 0 and it follows that

p∗∗k,t = (ϕ+ 1)mt + (1− δ) ξt − (1 + ϕ) (at + ak,t)− ϕpt.
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2.6 Log-linear equilibrium conditions

Here we present the log-linearized equilibrium conditions necessary to characterize the equilibrium dynamics of the

variables of interest. They are the following aggregate variables

{ct, πt, it,mt, ht, (wt − pt)}

and the following sectoral variables

{ck,t, πk,t}Kk=1 .

The following 6 + (K + 2) equations determine the equilibrium dynamics of those variables

ct = Et [ct+1]− (it − Etπt+1) + (γt − Etγt+1) , (IS equation)

wt − pt = ϕht + ct + ξt, (agg. labor supply)

(1− ψ) ct + ψzt = at +

K∑
k=1

nkak,t + (1− δ)ht + δzt, (agg. resource constraint)

wt − pt = zt − ht, (agg. cost-minimization relation)

πk,t = βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

{
1

η
ck,t +

[
(1− δ) [(1− ψ)ϕ+ 1]

1 + δϕ
− 1

η

]
ct +

(1− δ)ψϕ
1 + δϕ

zt

+
1− δ

1 + δϕ
ξt −

1 + ϕ

1 + δϕ
at − ak,t −

(1− δ)ϕ
1 + δϕ

āt −
1

η
dk,t

}
. (sectoral PC)

πt =

K∑
k=1

nkπk,t, (agg. inflation)

∆ (ck,t+1 − ct+1) = −η (πk,t+1 − πt+1) + ∆dk,t+1. (sectoral consumption)

For monetary policy, we consider a Taylor-type interest rate rule

it = ρiit−1 + (1− ρi) (φππt + φcct) + µt,

or an exogenous stochastic process for nominal aggregate consumption

mt = pt + ct.

3 Firm-specific labor market

This section describes a specification where the labor market is firm-specific. We describe only differences from the

baseline specification.
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3.1 Model

3.1.1 Representative household

The representative household maximizes

E0

{ ∞∑
t=0

βtΓt

[
log (Ct)− Ξt

K∑
k=1

ωk

∫
Ik

Hk,t (i)
1+ϕ

1 + ϕ
di

]}
,

subject to the flow budget constraint

PtCt + Et [Qt,t+1Bt+1] = Bt +

K∑
k=1

∫
Ik
Wk,t (i)Hk,t (i) di+

K∑
k=1

∫
Ik

Πk,t (i) di,

where Hk,t (i) is the labor supply to firm i in sector k and Wk,t (i) is the wage rate.

The optimality conditions for the household’s utility maximization problem are given by

Qt,t+1 = β

(
Γt+1

Γt

)(
Ct+1

Ct

)−1(
Pt
Pt+1

)
,

Wk,t (i)

Pt
= ΞtωkHk,t (i)

ϕ
Ct.

3.1.2 Firms

Consider firm i in sector k (firm ik), where i ∈ Ik. Its production function is given by

Yk,t (i) = AtAk,tHk,t(i)
1−δZk,t (i)

δ
. (50)

Firm ik’s nominal profit is given by

Πk,t(i) = Pk,t(i)Yk,t(i)−Wk,t (i)Hk,t(i)− PtZk,t(i). (51)

The cost minimization problem implies the following relationship

Zk,t(i) =
δ

1− δ
Wk,t (i)

Pt
Hk,t(i),

which can be substituted into the profit function (51) as

Πk,t(i) = Pk,t(i)Yk,t(i)−
1

1− δ
Wk,t (i)Hk,t (i) . (52)

From the production function (40), we can write Hk,t(i) as a function of the firm’s output

Hk,t(i) =
Yk,t(i)

AtAk,t

(
δ

1− δ

)−δ (
Wk,t (i)

Pt

)−δ
.

Substitute this again into the profit function (52) to obtain

Πk,t(i) =Pk,t(i)Yk,t(i)−
1

1− δ

(
δ

1− δ

)−δ (
Wk,t (i)

Pt

)1−δ
Yk,t(i)

AtAk,t
Pt
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=

[
Pk,t(i)−

1

1− δ

(
δ

1− δ

)−δ (
Wk,t (i)

Pt

)1−δ
1

AtAk,t
Pt

]
Dk,t

(
Pk,t(i)

Pk,t

)−θ (
Pk,t
Pt

)−η
Yt.

Lastly, we derive the first order condition of firm ik’s profit maximization problem when prices are flexible

Pk,t(i)

Pt
=

(
θ

θ − 1

)
1

1− δ

(
δ

1− δ

)−δ (
Wk,t (i)

Pt

)1−δ
1

AtAk,t
,

where 1
1−δ

(
δ

1−δ

)−δ (
Wk,t

Pt

)1−δ
1

AtAk,t
is the real marginal cost and θ/ (θ − 1) is the mark-up.

3.2 Price setting

Firm ik that can adjust its price at time t chooses its price to maximize the expected discounted profits as follows

max
Pk,t(i)

Et

∞∑
s=0

αskQt,t+sΠk,t+s(i),

where Qt,t+s =
∏s−1
τ=0Qt+τ,t+τ+1 is the nominal stochastic discount factor between time t and t+ s, and

Πk,t+s(i) = Pk,t (i)Yk,t+s (i)−Wk,t+s (i)Hk,t+s (i)− Pt+sZk,t+s (i) ,

=

[
Pk,t(i)−

1

1− δ

(
δ

1− δ

)−δ (
Wk,t+s (i)

Pt+s

)1−δ
1

At+sAk,t+s
Pt+s

]
Dk,t+s

(
Pk,t(i)

Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Yt+s,

is the nominal profit at time t+ s under the condition that the firm’s price has not been updated since time t. So the

the first order condition of the firm’s profit maximization problem is given by

Et

∞∑
s=0

αskQt,t+sDk,t+s

(
P ∗k,t
Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Yt+s

[
P ∗k,t −

(
θ

θ − 1

)
MCk,t+s (i)

]
= 0,

where the nominal marginal cost in period t+ s is given by

MCk,t+s (i) = Pt+s
1

1− δ

(
δ

1− δ

)−δ (
Wk,t+s (i)

Pt+s

)1−δ
1

At+sAk,t+s
.

3.3 Equilibrium conditions

Here we collect the equilibrium conditions of the model.

3.3.1 CES aggregates, market clearing conditions, and definitions

• Aggregate wage

Wt =

K∑
k=1

∫
Ik
Wk,t (i) di.

3.3.2 Household

• Optimal labor supply condition
Wk,t (i)

Pt
= ΞtωkHk,t (i)

ϕ
Ct.
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3.3.3 Firms

• Cost minimization
Wk,t (i)

Pt
=

1− δ
δ

Zk,t(i)

Hk,t(i)
.

• Nominal marginal cost

MCk,t+s (i) = Pt+s
1

1− δ

(
δ

1− δ

)−δ (
Wk,t+s (i)

Pt+s

)1−δ
1

At+sAk,t+s
.

3.4 Steady state

The steady state is the same as for the baseline model.

3.5 Log-linear approximation

3.5.1 CES aggregates, market clearing conditions, and definitions

• Aggregate wage

wt =

K∑
k=1

∫
Ik
wk,t (i) di.

3.5.2 Household

• Optimal labor supply condition

wk,t (i)− pt = ϕhk,t (i) + ct + ξt. (53)

Note that this is integrated over sector k as

1

nk

∫
Ik
wk,t (i) di− pt = ϕhk,t + ct + ξt,

and thus the aggregate labor supply condition is derived as

wt − pt = ϕht + ct + ξt.

3.5.3 Firms

• Cost minimization

wk,t (i)− pt = zk,t(i)− hk,t(i). (54)

Note that integrating both sides over Ik and dividing by nk leads to

1

nk

∫
Ik
wk,t (i) di− pt =

1

nk

∫
Ik
zk,t (i) di− hk,t,

which can be further summed over all the sectors so that

wt − pt = zt − ht.
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• Nominal marginal cost

mck,t (i) = (1− δ) (wk,t (i)− pt)− ak,t − at + pt.

3.5.4 Derivation of the Phillips curve

Let us first show how the marginal cost is determined. Suppose that firm ik sets its price at p∗k,t and cannot readjust

the price again. Combine (54) with (53) to obtain

zk,t(i) = (1 + ϕ)hk,t (i) + ct + ξt.

Also from the production function, it follows that

hk,t (i) =
1

1 + δϕ
yk,t (i)− δ

1 + δϕ
ct −

δ

1 + δϕ
ξt −

1

1 + δϕ
ak,t −

1

1 + δϕ
at

= − θ

1 + δϕ

(
p∗k,t − pk,t

)
+

1

1 + δϕ
yk,t −

δ

1 + δϕ
ct −

δ

1 + δϕ
ξt −

1

1 + δϕ
ak,t −

1

1 + δϕ
at,

where we used the demand function for firm ik’s output to eliminate yk,t (i). Therefore, the nominal marginal cost of

firm ik in period t+ s is given by

mck,t+s (i) = (1− δ) (wk,t+s (i)− pt+s)− ak,t+s − at+s + pt+s

= (1− δ) (ϕhk,t+s (i) + ct+s + ξt+s)− ak,t+s − at+s + pt+s

=− (1− δ) θϕ
1 + δϕ

(
p∗k,t − pk,t+s

)
+

(1− δ)ϕ
1 + δϕ

yk,t+s +
(1− δ)
1 + δϕ

ct+s +
(1− δ)
1 + δϕ

ξt+s

− 1 + ϕ

1 + δϕ
at+s −

1 + ϕ

1 + δϕ
ak,t+s + pt+s.

Let

mck,t+s (i) = − (1− δ) θϕ
1 + δϕ

p∗k,t +
(1− δ) θϕ+ 1 + δϕ

1 + δϕ
pk,t+s + m̃ck,t+s,

where

m̃ck,t+s =
(1− δ)ϕ
1 + δϕ

yk,t+s +
(1− δ)
1 + δϕ

ct+s +
(1− δ)
1 + δϕ

ξt+s −
1 + ϕ

1 + δϕ
at+s −

1 + ϕ

1 + δϕ
ak,t+s − (pk,t+s − pt+s) .

From the log-linearized first order condition by the price-setting firm, the optimal price is given by

p∗k,t = (1− αkβ)Et

∞∑
s=0

αskβ
smck,t+s (i) ,

or

p∗k,t = (1− αkβ) pk,t +
(1− αkβ) (1 + δϕ)

1 + δϕ+ (1− δ) θϕ
m̃ck,t + αkβEt

[
p∗k,t+1

]
.

Loglinearizing the equation for the price index leads to

pk,t = (1− αk)p∗k,t + αkpk,t−1.
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Therefore, we can derive the sectoral Phillips curve

πk,t = βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

(1 + δϕ)

1 + δϕ+ (1− δ) θϕ
m̃ck,t,

or

πk,t =βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

(1 + δϕ)

1 + δϕ+ (1− δ) θϕ

{
(1− δ)ϕ
1 + δϕ

yk,t +
(1− δ)
1 + δϕ

ct +
(1− δ)
1 + δϕ

ξt

− 1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t + (pt − pk,t)

}
.

We can write the sectoral PC in terms of sectoral consumption instead of sectoral output as in the baseline model.

Substituting out yk,t and pt − pk,t from the sectoral PC, we have

πk,t =βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

(1 + δϕ)

1 + δϕ+ (1− δ) θϕ

{[
(1− δ)ϕ
1 + δϕ

+
1

η

]
ck,t +

[
(1− δ) (1− ψϕ)

1 + δϕ
− 1

η

]
ct

+
(1− δ)ψϕ

1 + δϕ
zt +

1− δ
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t −

1

η
dk,t

}
.

3.5.5 Frictionless optimal price

When firms can change prices continuously, the log-linearized optimal price is given by

p∗∗k,t =mck,t

=− (1− δ) θϕ
1 + δϕ

(
p∗∗k,t − pk,t

)
+

(1− δ)ϕ
1 + δϕ

yk,t +
(1− δ)
1 + δϕ

ct +
(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t + pt,

or

[1 + δϕ+ (1− δ) θϕ] p∗∗k,t = (1− δ) θϕpk,t + (1− δ)ϕyk,t + (1− δ) ct + (1− δ) ξt − (1 + ϕ) (at + ak,t) + (1 + δϕ) pt.

Using (32), (21), and the definition that mt = pt + ct, we can rewrite the above equation as

[1 + δϕ+ (1− δ) θϕ] p∗∗k,t = (1− δ) (θ − η)ϕpk,t + {(1− δ) [ϕη − ϕ (1− ψ)− 1] + 1 + δϕ} pt
+ (1− δ)ϕψzt + (1− δ) [ϕ (1− ψ) + 1]mt + (1− δ)ϕdk,t + (1− δ) ξt − (1 + ϕ) (at + ak,t) .

When δ = 0, ψ = 0 and it follows that

(1 + θϕ) p∗∗k,t = (θ − η)ϕpk,t + (ϕη − ϕ) pt + (ϕ+ 1)mt + ϕdk,t + ξt − (1 + ϕ) (at + ak,t) .

3.6 Log-linear equilibrium conditions

Here we present the loglinearized equilibrum conditions necessary to characterize the equilibrium dynamics of the

variables of interest. They are the following aggregate variables

{ct, πt, it,mt, ht, (wt − pt)}

and the following sectoral variables

{ck,t, πk,t}Kk=1 .
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The following 6 + (K + 2) equations determine the equilibrium dynamics of those variables

ct = Et [ct+1]− (it − Etπt+1) + (γt − Etγt+1) , (IS equation)

wt − pt = ϕht + ct + ξt, (agg. labor supply)

(1− ψ) ct + ψzt = at +

K∑
k=1

nkak,t + (1− δ)ht + δzt, (agg. resource constraint)

wt − pt = zt − ht, (agg. cost-minimization relation)

πk,t = βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

(1 + δϕ)

1 + δϕ+ (1− δ) θϕ

{[
(1− δ)ϕ
1 + δϕ

+
1

η

]
ck,t +

[
(1− δ) (1− ψϕ)

1 + δϕ
− 1

η

]
ct

+
(1− δ)ψϕ

1 + δϕ
zt +

1− δ
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t −

1

η
dk,t

}
, (sectoral PC)

πt =

K∑
k=1

nkπk,t, (agg. inflation)

∆ (ck,t+1 − ct+1) = −η (πk,t+1 − πt+1) + ∆dk,t+1. (sectoral consumption)

For monetary policy, we consider a Taylor-type interest rate rule

it = ρiit−1 + (1− ρi) (φππt + φcct) + µt,

or an exogenous stochastic process for nominal aggregate consumption

mt = pt + ct.

4 Extension with habit formation in sectoral consumption

This section describes an extension of the baseline model that features habit formation in sectoral consumption. We

describe only what changes from the baseline model.

4.1 Model

4.1.1 Representative household

The representative household derives utility from an aggregate consumption index Xt defined by

Xt =

[
K∑
k=1

(nkDk,t)
1/η
(
Ck,t − τkC̃k,t−1

)
(η−1)/η

]η/(η−1)

,

where Ck,t is consumption of sector k goods, C̃k,t−1 is the consumption index of sector k goods in period t− 1, which

the household takes as exogenously given, and 0 ≤ τk ≤ 1 is a parameter that determines the extent of habit formation

in consumption of sector k goods. In equilibrium, we have that C̃k,t−1 = Ck,t−1. The optimal level of Ck,t given C̃k,t−1

is a solution to the expenditure minimization problem and given by

Ck,t = nkDk,t

(
Pk,t
Pt

)−η
Xt + τkC̃k,t−1,
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where the aggregate price level is given by

Pt =

[
K∑
k=1

(nkDk,t)P
1−η
k,t

]1/(1−η)

.

At the optimum, we have that

PtXt =

K∑
k=1

Pk,t

(
Ck,t − τkC̃k,t−1

)
.

The representative household maximizes

E0

{ ∞∑
t=0

βtΓt

[
log (Xt)− Ξt

K∑
k=1

ωk
H1+ϕ
k,t

1 + ϕ

]}
,

subject to the flow budget constraint

K∑
k=1

Pk,tCk,t + Et [Qt,t+1Bt+1] = Bt +

K∑
k=1

Wk,tHk,t +

K∑
k=1

∫
Ik

Πk,t (i) di.

Note that the sectoral demand shocks are relative and thus subject to the following constraint

K∑
k=1

nkDk,t = 1,

where Dk,t > 0 for k = 1, 2, · · · ,K.

Sectoral consumption is defined as a composite of differentiated goods in each sector

Ck,t =

[(
1

nk

)1/θ ∫
Ik
Ck,t(i)

(θ−1)/θdi

]θ/(θ−1)

.

Then the sectoral price index is derived as

Pk,t =

(
1

nk

∫
Ik
Pk,t(i)

1−θdi

)1/(1−θ)

.

Given Ck,t, the optimal demand for type-i good in sector k, Ck,t (i), would be

Ck,t(i) =
1

nk

(
Pk,t (i)

Pk,t

)−θ
Ck,t.

The optimality conditions for the household’s utility maximization problem are given by

Qt,t+1 = β

(
Γt+1

Γt

)(
Xt+1

Xt

)−1(
Pt
Pt+1

)
,

Wk,t

Pt
= ΞtωkH

ϕ
k,tXt.
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Lastly, we define aggregate consumption as the real consumption expenditure

Ct =
1

Pt

K∑
k=1

Pk,tCk,t,

which implies that in equilibrium

PtCt = PtXt +

K∑
k=1

τkPk,tCk,t−1.

Also note that

PtCt =

K∑
k=1

Pk,tCk,t =

K∑
k=1

∫
Ik
Pk,t (i)Ck,t (i) di. (55)

4.1.2 Firms

Consider firm i in sector k (firm ik), where i ∈ Ik. Its production function is given by

Yk,t (i) = AtAk,tHk,t(i)
1−δZk,t (i)

δ
, (56)

where Zk,t (i) is the firm ik’s usage of other goods as intermediate inputs defined as follows

Zk,t(i) =

[
K∑
k′=1

(
nk′Dk′ ,t

)1/η

Zk,k′,t(i)
(η−1)/η

]η/(η−1)

,

where the sectoral intermediate input, or the amount of firm ik’s usage of sector k′ goods as intermediate inputs, is

given by

Zk,k′,t(i) =

[(
1

nk′

)1/θ ∫
Ik′

Zk,k′,t(i, i
′)(θ−1)/θdi′

]θ/(θ−1)

,

with the quantity of input produced by i′k′ firm and purchased by ik firm Zk,k′,t (i, i′). The cost-minimization problem

of firm ik yields the optimal demand for intermediate inputs as follows

Zk,k′,t(i) = nk′Dk′ ,t

(
Pk′,t
Pt

)−η
Zk,t(i),

and

Zk,k′,t(i, i
′) =

1

nk′

(
Pk′,t(i

′)

Pk′,t

)−θ
Zk,k′,t(i).

Note that the firm ik’s total output is the sum of household consumption and the intermediate input

Yk,t(i) = Ck,t(i) +

K∑
k′=1

∫
Ik′

Zk′,k,t(i
′, i)di′︸ ︷︷ ︸

total demand for the intermediate

input produced by firm ik

= XtDk,t

(
Pk,t(i)

Pk,t

)−θ (
Pk,t
Pt

)−η
+
τk
nk

(
Pk,t (i)

Pk,t

)−θ
Ck,t−1 +

K∑
k′=1

∫
Ik′

Dk,t

(
Pk,t(i)

Pk,t

)−θ (
Pk,t
Pt

)−η
Zk′,t(i

′)di′
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= Ωk,tDk,t

(
Pk,t(i)

Pk,t

)−θ (
Pk,t
Pt

)−η
, (57)

where Zt =
∑K
k′=1

∫
Ik′

Zk′,t(i
′)di′ and Ωk,t is the sector k habit-adjusted aggregate demand which is given by

Ωk,t = Xt +

[
nkDk,t

(
Pk,t
Pt

)−η]−1

τkCk,t−1 + Zt.

We imposed the equilibrium condition C̃k,t−1 = Ck,t−1.

Firm ik’s nominal profit is given by

Πk,t(i) = Pk,t(i)Yk,t(i)−Wk,tHk,t(i)− PtZk,t(i). (58)

The cost minimization problem implies the following relationship

Zk,t(i) =
δ

1− δ
Wk,t

Pt
Hk,t(i),

which can be substituted into the profit function (58) as

Πk,t(i) = Pk,t(i)Yk,t(i)−
1

1− δ
Wk,tHk,t(i). (59)

From the production function (56), we can write Hk,t(i) as a function of the firm’s output

Hk,t(i) =
Yk,t(i)

AtAk,t

(
δ

1− δ

)−δ (
Wk,t

Pt

)−δ
.

Substitute this again into the profit function (59) to obtain

Πk,t(i) =Pk,t(i)Yk,t(i)−
1

1− δ

(
δ

1− δ

)−δ (
Wk,t

Pt

)1−δ
Yk,t(i)

AtAk,t
Pt

=

[
Pk,t(i)−

1

1− δ

(
δ

1− δ

)−δ (
Wk,t

Pt

)1−δ
1

AtAk,t
Pt

]
Dk,t

(
Pk,t(i)

Pk,t

)−θ (
Pk,t
Pt

)−η
Ωk,t, (60)

where we eliminated Yk,t (i) using the total demand for firm ik’s output (57).

Lastly, we define aggregate gross output as the nominal gross value of output by all the firms deflated by the

aggregate price level

Yt =
1

Pt

K∑
k=1

∫
Ik
Pk,t (i)Yk,t (i) di.

Note that the nominal gross expenditure on intermediate goods by all the firms is given by

K∑
k=1

∫
Ik
Pk,t (i)

[
K∑
k′=1

∫
Ik′

Zk′,k,t(i
′, i)di′

]
di =

K∑
k′=1

∫
Ik′

[
K∑
k=1

∫
Ik
Pk,t (i)Zk′,k,t(i

′, i)di

]
di′

=

K∑
k′=1

∫
Ik′

[
K∑
k=1

Pk,tZk′,k,t (i′)

]
di′
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=

K∑
k′=1

∫
Ik′

PtZk′,t (i′) di′

= PtZt. (61)

Therefore, from (55), (57), and (61), it follows that

Yt = Ct + Zt.

4.2 Price setting

Prices are set as in Calvo (1983). The firms in sector k can adjust their prices with probability 1 − αk each period.

The remaining fraction αk of prices remains unchanged. Then the sectoral price level Pk,t evolves as

Pk,t =

[
1

nk

∫
I∗k,t

P ∗k,t
1−θdi+

1

nk

∫
Ik−I∗k,t

Pk,t−1(i)1−θdi

] 1
1−θ

=
[
(1− αk)P ∗k,t

1−θ + αkP
1−θ
k,t−1

] 1
1−θ

, (62)

where P ∗k,t is the common optimal price chosen by firms in I∗k,t. The set I∗k,t, whose measure is nk (1− αk) , is a

randomly chosen subset of Ik, which collects the indexes of firms that adjust their prices at time t.

Firm ik that can adjust its price at time t chooses its price to maximize the expected discounted profits as follows

max
Pk,t(i)

Et

∞∑
s=0

αskQt,t+sΠk,t+s(i),

where Qt,t+s =
∏s−1
τ=0Qt+τ,t+τ+1 is the nominal stochastic discount factor between time t and t+ s, and

Πk,t+s(i) =Pk,t (i)Yk,t+s (i)−Wk,t+sHk,t+s (i)− Pt+sZk,t+s (i) ,

=

[
Pk,t(i)−

1

1− δ

(
δ

1− δ

)−δ (
Wk,t+s

Pt+s

)1−δ
1

At+sAk,t+s
Pt+s

]
Dk,t+s

(
Pk,t(i)

Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Ωk,t+s,

is the nominal profit at time t + s under the condition that the firm’s price has not been updated since time t.

The nominal profit Πk,t+s(i) can be derived as Πk,t(i) in (60). So the the first order condition of the firm’s profit

maximization problem is given by

Et

∞∑
s=0

αskQt,t+sDk,t+s

(
P ∗k,t
Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Ωk,t+s

[
P ∗k,t −

(
θ

θ − 1

)
MCk,t+s

]
= 0,

where the nominal marginal cost in period t+ s is given by

MCk,t+s = Pt+s
1

1− δ

(
δ

1− δ

)−δ (
Wk,t+s

Pt+s

)1−δ
1

At+sAk,t+s
.

The first order condition above and (62) together determine equilibrium dynamics of the sectoral prices. The aggregate

price dynamics is then determined by aggregation of such sectoral prices.
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Let P ∗∗k,t (i) denote the optimal price when firm ik can set the prices freely. Then

P ∗∗k,t (i) =

(
θ

θ − 1

)
MCk,t,

It follows that when prices are flexible, the equilibrium price is identical across firms within a sector. So we can drop

the firm index i and write

P ∗∗k,t =

(
θ

θ − 1

)
MCk,t, (63)

4.3 Government policy

We abstract from any influences of fiscal policy on equilibrium. For monetary policy, we consider a Taylor-type interest

rate rule

It = β−1Iρit−1

[(
Pt
Pt−1

)φπ (Ct
C

)φy]1−ρi

exp (µt) ,

or a policy such that nominal aggregate consumption follows an exogenous stochastic process

Mt = PtCt,

where Mt is an exogenous process. Note that Ct is value-added output in this economy.

4.4 Shocks

The shocks are assumed to follow an AR(1) process

log Γt+1 = ρΓ log Γt + σΓεΓ,t+1,

log (Ξt+1 − Ξ) = ρΞ log (Ξt − Ξ) + σΞεΞ,t+1,

logAt+1 = ρA logAt + σAεA,t+1,

logAk,t+1 = ρAk logAk,t + σAkεAk,t+1,

logDk,t+1 = ρDk logDk,t + σDkεDk,t+1,

where Ak = Dk = Γ = A = 1 in the steady state, and

K∑
k=1

nkDk,t = 1.

For monetary policy, we assume

µt+1 = ρµµt + σµεµ,t+1,

or

logMt+1 = ρM logMt + σMεM,t+1.

In the steady state, µ = 0 and M = 1.

4.5 Equilibrium conditions

Here we collect the equilibrium conditions of the model.
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4.5.1 CES aggregates, market clearing conditions, and definitions

• Aggregate price level

Pt =

[
K∑
k=1

(nkDk,t)P
1−η
k,t

]1/(1−η)

.

• Sectoral price level

Pk,t =

(
1

nk

∫
Ik
Pk,t(i)

1−θdi

)1/(1−θ)

.

• Aggregate consumption index

Xt =

[
K∑
k=1

(nkDk,t)
1/η

(Ck,t − τkCk,t−1) (η−1)/η

]η/(η−1)

,

• Real consumption expenditure (value-added output)

Ct =
1

Pt

K∑
k=1

Pk,tCk,t.

• Sectoral consumption

Ck,t =

[(
1

nk

)1/θ ∫
Ik
Ck,t(i)

(θ−1)/θdi

]θ/(θ−1)

.

• Intermediate input used by firm ik

Zk,t(i) =

[
K∑
k′=1

(
nk′Dk′ ,t

)1/η

Zk,k′,t(i)
(η−1)/η

]η/(η−1)

.

• Intermediate input produced by sector k′ used by ik firm

Zk,k′,t(i) =

[(
1

nk′

)1/θ ∫
Ik′

Zk,k′,t(i, i
′)(θ−1)/θdi′

]θ/(θ−1)

.

• Asset market clearing condition

Bt = 0.

• Sectoral labor input

Hk,t =

∫
Ik
Hk,t(i)di.

• Aggregate intermediate input

Zt =

K∑
k′=1

∫
Ik′

Zk′,t(i
′)di′.

• ik firm’s total output

Yk,t(i) = Ck,t(i) +

K∑
k′=1

∫
Ik′

Zk′,k,t(i
′, i)di′.
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• Sectoral output

Yk,t =

∫
Ik
Yk,t (i) di.

Note that Yk,t is a simple sum of output by individual firms in sector k and thus is not the same consumption

composite (CES aggregate) as Ck,t and Zk′,k,t (i′).

• Aggregate gross output

Yt = Ct + Zt.

• Aggregate wage

Wt =

K∑
k=1

nkWk,t.

• Aggregate hours index

Ht =

K∑
k=1

Hk,t.

4.5.2 Demand functions

• Sectoral consumption

Ck,t = nkDk,t

(
Pk,t
Pt

)−η
Xt + τkCk,t−1.

• Consumption of an ik good

Ck,t(i) =
1

nk

(
Pk,t(i)

Pk,t

)−θ
Ck,t.

• ik firm’s demand for sector k′ good

Zk,k′,t(i) = nk′Dk′ ,t

(
Pk′,t
Pt

)−η
Zk,t(i).

• ik firm’s demand for i′k′ good

Zk,k′,t(i, i
′) =

1

nk′

(
Pk′,t(i

′)

Pk′,t

)−θ
Zk,k′,t(i).

4.5.3 Household

• Consumption Euler equation / stochastic discount factor

Qt,t+1 = β

(
Γt+1

Γt

)(
Xt+1

Xt

)−1(
Pt
Pt+1

)
.

• Optimal labor supply condition
Wk,t

Pt
= ΞtωkH

ϕ
k,tXt.

4.5.4 Firms

• Production function

Yk,t(i) = AtAk,tHk,t(i)
1−δZk,t (i)

δ
.
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• Cost minimization
Wk,t

Pt
=

1− δ
δ

Zk,t(i)

Hk,t(i)
.

• Nominal marginal cost

MCk,t+s = Pt+s
1

1− δ

(
δ

1− δ

)−δ (
Wk,t+s

Pt+s

)1−δ
1

At+sAk,t+s
.

• First order condition

0 = Et

∞∑
s=0

αskQt,t+sDk,t+s

(
P ∗k,t
Pk,t+s

)−θ (
Pk,t+s
Pt+s

)−η
Ωk,t+s

[
P ∗k,t −

(
θ

θ − 1

)
MCk,t+s

]
,

where

Ωk,t+s = Xt+s +
τk

nkDk,t+s

(
Pk,t+s
Pt+s

)η
Ck,t+s−1 + Zt+s.

• Frictionless optimal price

P ∗∗k,t =

(
θ

θ − 1

)
MCk,t.

4.6 Steady state

We solve the model by log-linearizing the equilibrium conditions around a symmetric non-stochastic zero-inflation

steady state, which is derived here. A non-stochastic steady-state need not be symmetric. In particular, it depends

on the steady-state levels of sector-specific productivity {Ak}Kk=1 and the sector-specific parameters that measure the

relative disutilities of supplying hours, {ωk}Kk=1. For simplicity, we make two assumptions that deliver a symmetric

steady state: i) the steady-state levels of sector-specific productivities are the same across sectors: specifically, Ak = 1

for all k, without loss of generality;3 ii) ωk = n−ϕk for all k. The latter assumption relates the relative disutilities of

labor to the size of the sectors and equalizes steady-state sectoral wages.

Let us solve for {Y,X,C,Z,H,W/P,Π/P}: the steady state values of aggregate gross output, aggregate value

added-output (i.e. GDP), aggregate intermediate input usage, aggregate hours, real wage, and real profits. Once

we obtain the steady state values of these aggregate variables, it is trivial to characterize the steady-state values for

sectoral and micro variables using the symmetric nature of the steady state (i.e. Yk = nkYk(i) = nkY , Ck = nkCk(i) =

nkC, Zk,k′ (i) = nk′Zk,k′ (i, i
′) = nk′Z, Zk (i) = Z, Hk = nkHk(i) = nkH, Πk(i)/P = Π/P , Wk/P = W/P , and

P (i)/P = Pk/P = 1).

After exploiting the symmetry and the market-clearing conditions, the system of equilibrium conditions can be

reduced to the following seven equations:

[
K∑
k=1

nk (1− τk)
η−1
η

] η
η−1

C = X, (64)

C =

(
W

P

)
H +

(
Π

P

)
, (65)(

W

P

)
= HϕX, (66)

Y = H1−δZδ, (67)

3Similarly, we fix the steady-state level of all other exogenous processes at unity.
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Y = C + Z, (68)(
Π

P

)
= Y −

(
W

P

)
H − Z, (69)

Z =
δ

1− δ

(
W

P

)
H, (70)

1 =

(
θ

θ − 1

)
χ

(
W

P

)1−δ

, (71)

where χ ≡ 1
1−δ

(
δ

1−δ

)−δ
.

First, it is trivial to obtain the real wage from (71):

(
W

P

)
=

(
θ − 1

θ

1

χ

) 1
1−δ

.

Next, we substitute out Z in (67) and (69) using (70), which gives:

Y = H

(
δ

1− δ

)δ (
W

P

)δ
,(

Π

P

)
= Y −

(
1

1− δ

)(
W

P

)
H.

Combining the two equations above, we substitute out H and express real profits as a function of the real wage and

output: (
Π

P

)
=

[
1− χ

(
W

P

)1−δ
]
Y.

But, χ
(
W
P

)1−δ
= θ−1

θ from (71), and consequently we obtain:(
Π

P

)
=

1

θ
Y.

Equation (65) indicates that aggregate value-added output should be equal to the sum of labor income and real profits:

C =

(
W

P

)
H +

(
Π

P

)
=

1− δ
δ

Z +
1

θ
Y =

[
1− δ

(
θ − 1

θ

)]
Y.

Consequently, aggregate intermediate input usage is obtained as:

Z = Y − C = Y −
[
1− δ

(
θ − 1

θ

)]
Y = δ

(
θ − 1

θ

)
Y.

From (70), total labor hours are given by:

H =
1− δ
δ

(
W

P

)−1

Z =

[
δ

(
θ − 1

θ

)]− δ
1−δ

Y.

So far, we have expressed the steady-state values of {Y,X,C,Z,H,Π/P} in terms of Y , which can be obtained using
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(66) as:

Y =

{(
1

χ

) 1
1−δ
(
θ − 1

θ

) 1
1−δ
[
δ

(
θ − 1

θ

)] δϕ
1−δ
[
1− δ

(
θ − 1

θ

)]−1

(1− τ)
−1

} 1
1+ϕ

.

4.7 Log-linear approximation

4.7.1 CES aggregates, market clearing conditions, and definitions

• Aggregate price level

pt =

K∑
k=1

nkpk,t.

• Sectoral price level

pk,t =
1

nk

∫
Ik
pk,t(i)di.

• Aggregate consumption index

xt =

(
C

X

) η−1
η

K∑
k=1

nk (1− τk)
η−1
η

[
1

η − 1
dk,t +

1

1− τk
(ck,t − τkck,t−1)

]
,

where (X/C)
(η−1)/η

=
∑K
k=1 nk (1− τk)

(η−1)/η
.

• Real consumption expenditure (value-added output)

ct =

K∑
k=1

nkck,t.

• Sectoral consumption

ck,t =
1

nk

∫
Ik
ck,t(i)di.

• Intermediate input used by ik firm

zk,t(i) =

K∑
k′=1

nk′zk,k′,t(i).

• Intermediate input produced by sector k′ used by ik firm

zk,k′,t(i) =
1

nk′

∫
Ik′

zk,k′,t(i, i
′)di′.

• Sectoral labor input

hk,t =
1

nk

∫
Ik
hk,t(i)di. (72)

• Aggregate intermediate input

zt =

K∑
k′=1

∫
Ik′

zk′,t(i
′)di′. (73)
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• firm ik’s total output

yk,t(i) = (1− ψ) ck,t (i) + ψ

K∑
k′=1

∫
Ik′

zk′,k,t (i′, i) di′.

• Sectoral output

yk,t =
1

nk

∫
Ik
yk,t(i)di. (74)

By the way, note that

yk,t =
1

nk

∫
Ik
yk,t(i)di

= (1− ψ) ck,t + ψ

K∑
k′=1

∫
Ik′

zk′,k,t (i′) di′.

• Aggregate gross output

yt = (1− ψ)ct + ψzt.

where ψ ≡ δ
(
θ−1
θ

)
. It follows that

K∑
k=1

nkyk,t = (1− ψ)

K∑
k=1

nkck,t + ψ

K∑
k=1

nk

K∑
k′=1

∫
Ik′

zk′,k,t (i′) di′

= (1− ψ) ct + ψzt

= yt.

• Aggregate wage

wt =

K∑
k=1

nkwk,t. (75)

• Aggregate hours index

ht =

K∑
k=1

nkhk,t. (76)

4.7.2 Demand functions

• Sectoral consumption

ck,t =
X

C
[dk,t − η (pk,t − pt) + xt] + τkck,t−1, (77)

where X/C =
[∑K

k=1 nk (1− τk)
(η−1)/η

]η/(η−1)

.

• Consumption of good ik

ck,t(i)− ck,t = −θ (pk,t(i)− pk,t) .

• Firm ik’s demand for sector k′ good

zk,k′,t(i)− zk,t(i) = −η (pk′,t − pt) + dk′,t. (78)
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• Firm ik’s demand for good i′k′

zk,k′,t(i, i
′)− zk,k′,t(i) = −θ (pk′,t(i

′)− pk′,t) .

• Firm ik’s total output. Using the demand for consumption of good ik and the demand for good ik by firm i′k′,

we can show that

yk,t (i) = (1− ψ) ck,t (i) + ψ

K∑
k′=1

∫
Ik′

zk′,k,t (i′, i) di′

= −θ (pk,t(i)− pk,t) + yk,t,

or

yk,t (i)− yk,t = −θ (pk,t(i)− pk,t) .

4.7.3 Household

• Consumption Euler equation

xt = Et (xt+1)− (it − Etπt+1) + (γt − Etγt+1) .

• Optimal labor supply condition

wk,t − pt = ϕhk,t + xt + ξt. (79)

Using the definition of the aggregate wage (75) and the aggregate hours index, we can derive the following

aggregate labor supply condition

wt − pt = ϕht + xt + ξt.

4.7.4 Firms

• Firm ik’s production function

yk,t(i) = at + ak,t + (1− δ)hk,t(i) + δzk,t(i). (80)

Using the definition of sectoral output (74) and sectoral labor input (72), we can show that

yk,t = at + ak,t + (1− δ)hk,t +
δ

nk

∫
Ik
zk,t (i) di.

It follows that

yt =

K∑
k=1

nkyk,t = at +

K∑
k=1

nkak,t + (1− δ)
K∑
k=1

nkhk,t + δ

K∑
k=1

∫
Ik
zk,t (i) di

= at +

K∑
k=1

nkak,t + (1− δ)ht + δzt,

where we used the definition of aggregate intermediate input (73) and aggregate hours index (76).
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• Cost minimization

wk,t − pt = zk,t(i)− hk,t(i). (81)

Note that integrating both sides over Ik and dividing by nk leads to

wk,t − pt =
1

nk

∫
Ik
zk,t (i) di− hk,t,

where we used the definition of sectoral labor input (72). From the definition of aggregate wages (75) and

aggregate intermediate input (73), it follows that

wt − pt = zt − ht.

• Nominal marginal cost

mck,t = (1− δ) (wk,t − pt)− ak,t − at + pt.

• First order condition

Et

∞∑
s=0

αskβ
sp∗k,t = Et

∞∑
s=0

αskβ
smck,t+s. (82)

4.7.5 Derivation of the Phillips curve

From the log-linearized first order condition by the price-setting firm (82), the optimal price is given by

p∗k,t = (1− αkβ)Et

∞∑
s=0

αskβ
smck,t+s,

or

p∗k,t = (1− αkβ)mck,t + αkβEt
[
p∗k,t+1

]
. (83)

Loglinearizing (62) leads to

pk,t = (1− αk)p∗k,t + αkpk,t−1. (84)

Combining (83)and (84), we can derive the sectoral Phillips curve (PC)

πk,t = βEtπk,t+1 +
(1− αk) (1− αkβ)

αk
(mck,t − pk,t) (85)

Now let us show how the marginal cost is determined. First note that by integrating (81) over Ik, we obtain

wk,t − pt =
1

nk

∫
Ik
zk,t(i)di− hk,t.

We can combine this with (79) to obtain

1

nk

∫
Ik
zk,t(i)di = (1 + ϕ)hk,t + xt + ξt. (86)

Also by integrating both sides of the production function (80) over Ik, we get

yk,t = at + ak,t + (1− δ)hk,t + δ
1

nk

∫
Ik
zk,t(i)di
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= at + ak,t + (1 + δϕ)hk,t + δxt + δξt,

where we use (86) to obtain the second line. It follows that

hk,t =
1

1 + δϕ
yk,t −

δ

1 + δϕ
xt −

δ

1 + δϕ
ξt −

1

1 + δϕ
ak,t −

1

1 + δϕ
at,

and thus

mck,t = (1− δ) (wk,t − pt)− ak,t − at + pt

= (1− δ) (ϕhk,t + xt + ξt)− ak,t − at + pt

=
(1− δ)ϕ
1 + δϕ

yk,t +
(1− δ)
1 + δϕ

xt +
(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t + pt.

Consequently, the sectoral PC (85) can be written as

πk,t =βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

{
(1− δ)ϕ
1 + δϕ

yk,t +
(1− δ)
1 + δϕ

xt +
1− δ

1 + δϕ
ξt

− 1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t + (pt − pk,t)

}
.

We can write the sectoral PC in terms of sectoral consumption instead of sectoral output. Note that the consumption

demand for sector k goods (77) can be rewritten as

pt − pk,t =
1

η

[
C

X
(ck,t − τkck,t−1)− dk,t − xt

]
. (87)

Also, using the demand function for sectoral consumption (77) and the demand for sector k good by firm i′k′ (78), we

can show that

yk,t = (1− ψ) ck,t + ψ

K∑
k′=1

∫
Ik′

zk′,k,t (i′) di′

=

[
(1− ψ)

X

C
+ ψ

]
[−η (pk,t − pt) + dk,t] + (1− ψ)

[
X

C
xt + τkck,t−1

]
+ ψzt.

From (77), it follows that

yk,t = ψzt − ψxt +

[
(1− ψ) + ψ

C

X

]
ck,t − ψτk

C

X
ck,t−1.

Thus we can substitute out yk,t from the marginal cost as

mck,t =
(1− δ)ϕ
1 + δϕ

{[
(1− ψ) + ψ

C

X

]
ck,t − ψτk

C

X
ck,t−1

}
+

(1− δ) (1− ψϕ)

1 + δϕ
xt +

(1− δ)ψϕ
1 + δϕ

zt

+
(1− δ)
1 + δϕ

ξt −
1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t + pt. (88)

Substituting out pt − pk,t from the sectoral PC as well using (87), we have

πk,t =βEtπk,t+1
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+
(1− αk) (1− αkβ)

αk

{[
(1− δ)ϕ
1 + δϕ

[
(1− ψ) + ψ

C

X

]
+

1

η

C

X

]
ck,t − τk

C

X

(
(1− δ)ϕψ

1 + δϕ
+

1

η

)
ck,t−1

+

[
(1− δ) (1− ψϕ)

1 + δϕ
− 1

η

]
xt +

(1− δ)ψϕ
1 + δϕ

zt +
1− δ

1 + δϕ
ξt −

1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t −

1

η
dk,t

}
.

Aggregate inflation can be obtained by aggregation of sectoral inflation as follows

πt =

K∑
k=1

nkπk,t.

4.8 Log-linear equilibrium conditions

Here we present the loglinearized equilibrum conditions necessary to characterize the equilibrium dynamics of the

variables of interest. They are the following aggregate variables

{ct, πt, it,mt, ht, (wt − pt)}

and the following sectoral variables

{ck,t, πk,t}Kk=1 .

The following 6 + (K + 2) equations determine the equilibrium dynamics of those variables

xt =

(
C

X

) η−1
η

K∑
k=1

nk (1− τk)
η−1
η

[
1

η − 1
dk,t +

1

1− τk
(ck,t − τkck,t−1)

]
, (habit formation)

xt = Et [xt+1]− (it − Etπt+1) + (γt − Etγt+1) , (IS equation)

wt − pt = ϕht + xt + ξt, (agg. labor supply)

(1− ψ) ct + ψzt = at +

K∑
k=1

nkak,t + (1− δ)ht + δzt, (agg. resource constraint)

wt − pt = zt − ht, (agg. cost-minimization relation)

πk,t = βEtπk,t+1 +
(1− αk) (1− αkβ)

αk

{[
(1− δ)ϕ
1 + δϕ

[
(1− ψ) + ψ

C

X

]
+

1

η

C

X

]
ck,t − τk

C

X

(
(1− δ)ϕψ

1 + δϕ
+

1

η

)
ck,t−1

+

[
(1− δ) (1− ψϕ)

1 + δϕ
− 1

η

]
xt +

(1− δ)ψϕ
1 + δϕ

zt +
1− δ

1 + δϕ
ξt −

1 + ϕ

1 + δϕ
at −

1 + ϕ

1 + δϕ
ak,t −

1

η
dk,t

}
, (sectoral PC)

πt =

K∑
k=1

nkπk,t, (agg. inflation)

∆

[
ck,t+1 −

X

C
xt+1 − τkck,t

]
=
X

C
[−η (πk,t+1 − πt+1) + ∆dk,t+1] . (sectoral consumption)

For monetary policy, we consider a Taylor-type interest rate rule

it = ρiit−1 + (1− ρi) (φππt + φcct) + µt,

or an exogenous stochastic process for nominal aggregate consumption

mt = pt + ct.
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5 Alternative monetary policy rule

We consider an alternative specification of the monetary policy rule, in which the interest rate responds to smoother

measures of inflation and consumption (growth). When log-linearized, it specifies that the nominal interest rate is

adjusted as follows:

it = ρiit−1 + (1− ρi)

 3∑
j=0

φπ
4
πt−j +

φc
4

(ct − ct−4)

+ µt. (89)
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Part II

Sectoral price facts, model fit, and other results

6 Sectoral price facts under alternative specifications

This section reports the estimated sectoral price facts under alternative specifications.4

6.1 Variants of the baseline specification

We first report the price facts of the variants of the baseline specification. All these specifications are estimated on

the 27-sector quarterly data as the baseline specification and do not include Sector 11 (Gasoline and other energy

goods) in estimation as explained in the main text. Specifically, we consider 1) a specification where δ = 0 and thus

intermediate inputs are not used; 2) a specification where nominal aggregate consumption is exogenous (Mt = PtCt);

3) a specification without labor market segmentation so there is a common labor market across the economy; 4)

a specification where the labor market is firm-specific; 5) a specification that features habit formation in sectoral

consumption; 6) a specification that features habit formation in sectoral consumption and where η and δ are estimated;

and 7) a specification where monetary policy follows an alternative monetary policy rule. Note that all the other

features of these specifications except the described feature are identical to those of the baseline specification. The

alternative monetary policy rule is described in Equation (89).

As for the baseline specification, we estimate these extra specifications using Bayesian methods with the same prior

distribution for the parameters, simulate 12,000 observations from each of the specifications at the posterior mode,

discard first 2,000 observations, and estimate FAVAR on the remaining 10,000 observations to compute the price facts.

FAVAR includes 2 latent common components and 4 lags of them in their VAR process. The price facts are reported

in Tables 1 and 2.

4We do not report the Bayesian estimation results of all these specifications to save on space.
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Table 1: Price facts for variants of the baseline specification: Speed of sectoral price responses

Specifications Mean Median Standard Correlation Correlation

deviations with 1−αk

(1) To common component 0.364 0.366 0.062 0.958 0.920

To sector-specific component 0.841 0.800 0.235 0.903

(2) To common component 0.736 0.733 0.093 0.979 0.950

To sector-specific component 0.847 0.897 0.237 0.956

(3) To common component 0.270 0.279 0.042 0.919 0.834

To sector-specific component 0.745 0.758 0.267 0.802

(4) To common component 0.251 0.246 0.019 0.708 0.679

To sector-specific component 0.829 0.845 0.235 0.932

(5) To common component 0.483 0.502 0.046 0.878 0.750

To sector-specific component 0.732 0.731 0.225 0.811

(6) To common component 0.444 0.453 0.069 0.802 0.765

To sector-specific component 0.843 0.889 0.237 0.955

(7) To common component 0.267 0.266 0.006 0.758 0.661

To sector-specific component 0.776 0.813 0.248 0.870

Note: Specifications are: (1) a specification where δ = 0 and thus intermediate inputs are not used; (2) a specification where nominal
aggregate consumption is exogenous (Mt = PtCt); (3) a specification without labor market segmentation so there is a common labor
market across the economy; (4) a specification where the labor market is firm-specific; (5) a specification that features habit formation in
sectoral consumption; (6) a specification that features habit formation in sectoral consumption and where η and δ are estimated; and (7) a
specification where monetary policy follows an alternative monetary policy rule. 1 − αk is the price change probability estimated in each
specification.
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Table 2: Price facts for variants of the baseline specification: Correlations between components of prices and quantities

Specifications Mean Median Max Min

(1) Common component -0.101 -0.073 0.171 -0.383

Sector-specific component -0.316 -0.363 0.022 -0.591

(2) Common component -0.663 -0.786 -0.024 -0.979

Sector-specific component -0.403 -0.459 0.09 -0.623

(3) Common component -0.146 -0.145 0.212 -0.561

Sector-specific component -0.589 -0.646 -0.135 -0.739

(4) Common component -0.078 -0.045 -0.015 -0.301

Sector-specific component -0.435 -0.465 0.064 -0.665

(5) Common component -0.384 -0.543 0.472 -0.811

Sector-specific component -0.325 -0.359 0.125 -0.688

(6) Common component -0.421 -0.414 -0.124 -0.800

Sector-specific component -0.424 -0.484 0.071 -0.649

(7) Common component -0.346 -0.382 0.076 -0.569

Sector-specific component -0.259 -0.264 0.207 -0.608

Note: See the note in Table 1.

6.2 Other specifications I

Next we report estimated price facts based on specifications that differ from the baseline specification in terms of the

sectors included in estimation or the level of disaggregation. Specifically, we consider 8) a specification that includes

Sector 11 and thus all sectors; 9) a specification that is estimated on the 15-sector quarterly data. In specification

9), we drop the sector of gasoline and other energy goods from estimation but keep the sector in the model as in the

baseline specification. Note that all the other features of these extra specifications are identical to those of the baseline

specification.

We compute the price facts in the same way as before and report them in Table 3 and 4. FAVAR includes 2 latent

common components and 4 lags of them in their VAR process.

Table 3: Price facts for other specifications I: Speed of sectoral price responses

Specifications Mean Median Standard Correlation Correlation

deviations with 1−αk

(8) To common component 0.318 0.306 0.079 0.535 0.357

To sector-specific component 0.853 0.914 0.231 0.934

(9) To common component 0.271 0.269 0.011 0.520 0.722

To sector-specific component 0.818 0.785 0.178 0.804

Note: Specifications are: (8) a specification that includes Sector 11 and thus all sectors; (9) a specification that is estimated on the 15-sector
quarterly data. 1− αk is the price change probability estimated in each specification.
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Table 4: Price facts for other specifications I: Correlations between components of prices and quantities

Specifications Mean Median Max Min

(8) Common component -0.092 -0.035 0.045 -0.910

Sector-specific component -0.411 -0.455 0.094 -0.656

(9) Common component -0.086 -0.068 0.035 -0.279

Sector-specific component -0.392 -0.419 0.077 -0.628

Note: See the note in Table 3.

6.3 Other specifications II

Lastly we report price facts based on a specification that includes hours worked data in estimation. This specification,

numbered as (10), is identical to the baseline specification except that it includes the labor supply shock as described

in Section 1 of this appendix and is estimated using data on hours worked as well.

We compute the price facts in the same way as before and report them in Tables 5 and 6. For comparison, we

also present the price facts computed in FAVAR estimated on actual data that includes hours worked data. FAVAR

includes 2 latent common components and 4 lags of them in their VAR process. Note that sector 11 is not included in

estimation of the structural model and FAVAR as in the baseline specification.

Table 5: Price facts for other specifications II: Speed of sectoral price responses

Specifications Mean Median Standard Correlation Correlation

deviations with 1−αk

(10) To common component 0.300 0.291 0.031 0.938 0.745

To sector-specific component 0.799 0.826 0.275 0.723

Actual data To common component 0.274 0.279 0.043 0.484 0.302

(with hours) To sector-specific component 0.851 0.864 0.238 0.426

Note: Specification (10) is identical to the baseline specification except that it includes the labor supply shock and is estimated on hours
worked as well. 1− αk is the price change probability estimated in each specification.

Table 6: Price facts for other specifications II: Correlations between components of prices and quantities

Specifications Mean Median Max Min

(10) Common component 0.035 0.051 0.978 -0.920

Sector-specific component 0.048 0.036 0.162 -0.040

Actual data Common component -0.203 -0.174 0.585 -0.858

(with hours) Sector-specific component -0.259 -0.268 0.113 -0.630

Note: See the note in Table 5.
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7 Model fit

This section presents various statistics to assess the fit of the baseline model and compares it with the other speci-

fications. We report the statistics for volatility, persistence and comovement of the observable variables in the data

and those implied by the estimated specifications. The statistics for the estimated specifications are computed using

simulated data with model parameters fixed at the posterior mode. It is actually the same simulated data used to

estimate FAVAR. For each specification, we simulate 12,000 observations, discard the first 2,000 observations and use

the last 10,000 observations to compute the statistics.

7.1 Volatility

We report the standard deviation of the observable variables in the data and in the estimated specifications to assess

the fit of the models in terms of volatility. The baseline specification fits volatility of the data reasonably well.

Specifications (5) and (6) that extend the baseline specification and allow for habit formation in sectoral consumption

fit volatility of sectoral consumption quite well.

Table 7: Volatility - standard deviations of observable variables

Variable Data Baseline (1) (2) (3) (4) (5) (6) (7)

Nominal interest rates 0.006 0.009 0.004 0.004 0.010 0.009 0.007 0.007 0.004

Sectoral consumption growth rates

Sector 1 0.063 0.062 0.061 0.061 0.062 0.062 0.061 0.061 0.061

Sector 2 0.060 0.062 0.062 0.062 0.083 0.062 0.061 0.061 0.062

Sector 3 0.013 0.017 0.011 0.014 0.017 0.018 0.013 0.012 0.015

Sector 4 0.021 0.026 0.020 0.022 0.028 0.027 0.020 0.019 0.025

Sector 5 0.023 0.024 0.022 0.021 0.025 0.024 0.022 0.022 0.022

Sector 6 0.020 0.023 0.018 0.020 0.025 0.024 0.018 0.018 0.021

Sector 7 0.007 0.017 0.009 0.014 0.018 0.017 0.011 0.008 0.015

Sector 8 0.012 0.021 0.012 0.019 0.024 0.022 0.015 0.013 0.019

Sector 9 0.014 0.019 0.013 0.017 0.020 0.020 0.014 0.013 0.018

Sector 10 0.014 0.019 0.013 0.016 0.020 0.020 0.015 0.013 0.018

Sector 11 0.013 NA

Sector 12 0.016 0.021 0.017 0.017 0.021 0.021 0.016 0.016 0.018

Sector 13 0.010 0.016 0.010 0.012 0.015 0.017 0.011 0.010 0.014

Sector 14 0.007 0.014 0.008 0.010 0.012 0.015 0.009 0.008 0.012

Sector 15 0.014 0.042 0.019 0.041 0.057 0.043 0.025 0.019 0.041

Sector 16 0.004 0.015 0.007 0.009 0.012 0.015 0.011 0.008 0.011

Sector 17 0.028 0.036 0.027 0.035 0.046 0.037 0.028 0.029 0.035

Sector 18 0.005 0.016 0.009 0.011 0.015 0.017 0.018 0.010 0.013

Sector 19 0.015 0.017 0.013 0.013 0.016 0.018 0.014 0.013 0.015

Sector 20 0.020 0.041 0.022 0.040 0.055 0.042 0.026 0.021 0.041

Sector 21 0.009 0.015 0.009 0.011 0.013 0.016 0.011 0.010 0.012

Sector 22 0.010 0.017 0.012 0.012 0.014 0.017 0.011 0.010 0.013

Sector 23 0.021 0.026 0.019 0.025 0.032 0.026 0.022 0.020 0.025

Sector 24 0.012 0.031 0.015 0.029 0.039 0.032 0.024 0.017 0.030
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Table 7: Volatility - standard deviations of observable variables (continued)

Variable Data Baseline (1) (2) (3) (4) (5) (6) (7)

Sector 25 0.013 0.021 0.013 0.019 0.024 0.022 0.016 0.013 0.020

Sector 26 0.006 0.015 0.008 0.010 0.013 0.016 0.008 0.008 0.012

Sector 27 0.007 0.014 0.008 0.009 0.012 0.015 0.009 0.009 0.011

Sectoral inflation

Sector 1 0.005 0.009 0.006 0.007 0.010 0.009 0.006 0.008 0.006

Sector 2 0.020 0.020 0.022 0.019 0.020 0.020 0.022 0.019 0.019

Sector 3 0.005 0.009 0.006 0.007 0.010 0.009 0.009 0.009 0.005

Sector 4 0.011 0.011 0.009 0.010 0.013 0.011 0.011 0.011 0.009

Sector 5 0.005 0.009 0.008 0.007 0.011 0.009 0.007 0.009 0.006

Sector 6 0.009 0.010 0.009 0.009 0.012 0.010 0.012 0.010 0.008

Sector 7 0.006 0.009 0.007 0.008 0.011 0.009 0.011 0.009 0.006

Sector 8 0.009 0.010 0.008 0.009 0.013 0.010 0.012 0.011 0.008

Sector 9 0.008 0.010 0.008 0.009 0.012 0.010 0.013 0.011 0.008

Sector 10 0.007 0.010 0.008 0.009 0.012 0.010 0.013 0.010 0.007

Sector 11 0.063 NA

Sector 12 0.006 0.009 0.006 0.006 0.010 0.009 0.008 0.008 0.005

Sector 13 0.006 0.009 0.006 0.006 0.010 0.009 0.009 0.008 0.005

Sector 14 0.005 0.008 0.005 0.006 0.010 0.008 0.009 0.008 0.005

Sector 15 0.021 0.018 0.017 0.017 0.023 0.018 0.021 0.022 0.016

Sector 16 0.003 0.008 0.004 0.004 0.009 0.008 0.005 0.006 0.003

Sector 17 0.014 0.014 0.015 0.013 0.017 0.014 0.017 0.015 0.012

Sector 18 0.006 0.008 0.004 0.004 0.010 0.008 0.006 0.007 0.004

Sector 19 0.003 0.008 0.005 0.005 0.010 0.008 0.007 0.007 0.004

Sector 20 0.021 0.018 0.018 0.018 0.022 0.018 0.023 0.022 0.017

Sector 21 0.003 0.008 0.005 0.005 0.009 0.008 0.007 0.008 0.004

Sector 22 0.002 0.008 0.004 0.003 0.008 0.008 0.005 0.006 0.003

Sector 23 0.010 0.012 0.013 0.011 0.014 0.012 0.017 0.013 0.010

Sector 24 0.013 0.013 0.013 0.013 0.016 0.013 0.018 0.015 0.012

Sector 25 0.008 0.010 0.009 0.009 0.012 0.010 0.013 0.011 0.008

Sector 26 0.004 0.008 0.004 0.004 0.010 0.008 0.006 0.006 0.004

Sector 27 0.002 0.008 0.004 0.004 0.009 0.008 0.006 0.006 0.004

Aggregate consumption growth rates 0.007 0.013 0.006 0.006 0.009 0.014 0.007 0.007 0.010

Aggregate inflation 0.003 0.007 0.003 0.005 0.009 0.007 0.007 0.006 0.003

Note: Specifications are: (1) a specification where δ = 0 and thus intermediate inputs are not used; (2) a specification where nominal

aggregate consumption is exogenous (Mt = PtCt); (3) a specification without labor market segmentation where there is a common labor

market across the economy; (4) a specification where the labor market is firm-specific; (5) a specification that features habit formation in

sectoral consumption; (6) a specification that features habit formation in sectoral consumption and where η and δ are estimated; and (7) a

specification where monetary policy follows an alternative monetary policy rule. Note that estimation did not use aggregate consumption

growth and aggregate inflation data. We aggregate sectoral data and compute the statistics for aggregated data.

The root mean squared error between model-predicted volatility and volatility in the data is computed for sectoral

consumption growth and sectoral inflation across sectors and reported in Table 8. The baseline specification tends to
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overpredict volatility of sectoral consumption growth. Habit formation in sectoral consumption (specifications 5 and

6) however reduces sectoral consumption volatility predicted by the baseline specification so that it is close to that in

the data.

Table 8: Root mean squared error of the model-implied volatility against the volatility in the data

Specifications Baseline (1) (2) (3) (4) (5) (6) (7)

Sectoral consumption growth 0.010 0.002 0.008 0.015 0.011 0.005 0.002 0.009

Sectoral inflation 0.003 0.002 0.002 0.005 0.003 0.004 0.003 0.002

Note: See the note in Table 7.

7.2 Persistence

To assess the fit of the models in terms of persistence, we estimate a univariate AR(4) model for each of the observ-

able variables and report the sum of the four AR coefficients. The baseline specification fits persistence of sectoral

consumption growth and sectoral inflation reasonably well. Specifications (5) and (6) that allow for habit formation

in sectoral consumption further improve the fit in terms of persistence.

Table 9: Persistence - sum of AR coefficients for observable variables

Variable Data Baseline (1) (2) (3) (4) (5) (6) (7)

Nominal interest rates 0.955 0.975 0.931 0.945 0.979 0.974 0.884 0.924 0.946

Sectoral consumption growth rates

Sector 1 -0.511 -0.429 -0.482 -0.415 -0.288 -0.385 -0.411 -0.382 -0.435

Sector 2 -0.584 -0.152 -0.265 -0.163 0.008 -0.170 -0.151 -0.192 -0.151

Sector 3 0.506 0.016 0.095 0.002 0.010 -0.015 0.284 0.361 0.054

Sector 4 0.609 0.178 0.217 0.296 0.337 0.200 0.348 0.340 0.242

Sector 5 0.012 -0.085 -0.060 -0.131 -0.068 -0.097 -0.107 -0.050 -0.050

Sector 6 0.201 0.101 0.158 0.120 0.205 0.145 0.214 0.223 0.137

Sector 7 -0.132 -0.050 -0.074 -0.027 0.098 -0.037 0.163 0.393 0.034

Sector 8 0.443 -0.068 -0.019 -0.083 0.092 -0.061 0.336 0.458 -0.027

Sector 9 -0.291 -0.052 -0.268 -0.085 -0.006 -0.047 0.049 0.158 -0.032

Sector 10 0.040 -0.070 -0.235 -0.147 -0.048 -0.060 -0.060 0.085 -0.070

Sector 11 NA

Sector 12 0.358 0.029 0.169 0.099 0.172 0.024 0.100 0.090 0.106

Sector 13 0.236 0.012 0.010 0.160 0.168 0.074 0.234 0.264 0.147

Sector 14 0.384 -0.102 -0.013 -0.008 -0.047 -0.074 0.227 0.485 0.077

Sector 15 0.193 -0.103 -0.105 -0.106 -0.007 -0.099 0.131 0.238 -0.089

Sector 16 0.652 0.003 0.036 0.238 0.087 0.018 0.880 0.844 0.266

Sector 17 -1.295 -0.011 -0.163 0.032 0.086 0.022 -0.078 -0.292 0.011

Sector 18 0.350 0.018 -0.036 0.278 0.398 0.066 0.883 0.757 0.225

Sector 19 0.801 0.038 0.202 0.162 0.040 0.034 0.730 0.770 0.129

Sector 20 0.011 -0.089 -0.089 -0.072 -0.085 -0.109 0.054 0.145 -0.100

Sector 21 0.470 0.003 0.189 0.280 -0.045 0.009 0.533 0.586 0.203

Sector 22 -0.027 0.052 0.256 0.251 0.152 0.026 0.194 0.248 0.218

Sector 23 -0.152 -0.216 -0.199 -0.195 -0.217 -0.234 -0.016 0.078 -0.211
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Table 9: Persistence - sum of AR coefficients for observable variables (continued)

Variable Data Baseline (1) (2) (3) (4) (5) (6) (7)

Sector 24 0.249 -0.270 -0.190 -0.317 -0.388 -0.255 0.687 0.130 -0.285

Sector 25 0.468 -0.023 -0.014 -0.075 0.014 -0.015 0.277 0.378 0.007

Sector 26 0.698 0.057 0.100 0.322 0.300 0.091 0.487 0.618 0.265

Sector 27 0.612 0.013 0.139 0.251 0.063 0.018 0.587 0.737 0.236

Sectoral inflation

Sector 1 0.781 0.857 0.599 0.544 0.897 0.857 0.705 0.787 0.601

Sector 2 0.439 0.329 0.420 0.025 0.592 0.339 0.497 0.429 -0.001

Sector 3 0.620 0.892 0.524 0.271 0.889 0.886 0.522 0.759 0.442

Sector 4 0.861 0.788 0.529 0.502 0.813 0.793 0.643 0.722 0.506

Sector 5 0.624 0.842 0.543 0.344 0.865 0.843 0.619 0.745 0.434

Sector 6 0.779 0.797 0.477 0.338 0.813 0.792 0.537 0.692 0.423

Sector 7 0.514 0.864 0.391 0.126 0.844 0.858 0.404 0.697 0.295

Sector 8 0.399 0.764 0.303 0.118 0.756 0.760 0.345 0.579 0.200

Sector 9 0.434 0.790 0.244 0.060 0.789 0.790 0.318 0.607 0.152

Sector 10 0.517 0.791 0.244 0.044 0.799 0.783 0.313 0.610 0.199

Sector 11 NA

Sector 12 0.845 0.910 0.703 0.542 0.919 0.905 0.748 0.841 0.647

Sector 13 0.806 0.899 0.570 0.367 0.893 0.895 0.611 0.788 0.511

Sector 14 0.659 0.908 0.569 0.273 0.905 0.904 0.525 0.782 0.460

Sector 15 0.431 0.404 -0.024 0.007 0.391 0.404 0.079 0.298 0.010

Sector 16 0.824 0.959 0.794 0.700 0.971 0.958 0.857 0.924 0.763

Sector 17 0.240 0.607 0.254 0.180 0.652 0.628 0.380 0.472 0.210

Sector 18 0.935 0.949 0.744 0.658 0.954 0.949 0.823 0.912 0.735

Sector 19 0.647 0.935 0.757 0.564 0.940 0.933 0.699 0.857 0.672

Sector 20 -0.022 0.395 -0.053 0.005 0.380 0.390 0.034 0.239 0.024

Sector 21 0.607 0.932 0.694 0.538 0.961 0.929 0.732 0.857 0.635

Sector 22 0.871 0.967 0.882 0.806 0.983 0.966 0.905 0.948 0.848

Sector 23 0.080 0.647 0.088 -0.107 0.667 0.655 0.106 0.392 -0.062

Sector 24 0.142 0.597 0.010 -0.103 0.524 0.567 -0.070 0.303 -0.058

Sector 25 0.414 0.786 0.294 0.121 0.764 0.782 0.284 0.573 0.234

Sector 26 0.788 0.938 0.722 0.614 0.944 0.937 0.795 0.891 0.691

Sector 27 0.505 0.958 0.792 0.622 0.976 0.954 0.780 0.913 0.745

Aggregate consumption growth rates 0.604 -0.044 -0.074 0.173 -0.141 -0.040 0.412 0.624 0.155

Aggregate inflation 0.911 0.968 0.808 0.446 0.956 0.966 0.652 0.895 0.695

Note: Specifications are: (1) a specification where δ = 0 and thus intermediate inputs are not used; (2) a specification where nominal

aggregate consumption is exogenous (Mt = PtCt); (3) a specification without labor market segmentation where there is a common labor

market across the economy; (4) a specification where the labor market is firm-specific; (5) a specification that features habit formation in

sectoral consumption; (6) a specification that features habit formation in sectoral consumption and where η and δ are estimated; and (7) a

specification where monetary policy follows an alternative monetary policy rule. Note that estimation did not use aggregate consumption

growth and aggregate inflation data. We aggregate sectoral data and compute the statistics for aggregated data.

The root mean squared error between model-predicted persistence and persistence in the data is computed for
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sectoral consumption growth and sectoral inflation across sectors and reported in Table 10. The baseline specification

tends to overpredict persistence but as for volatility, habit formation in sectoral consumption (specifications 5 and 6)

improves the fit in terms of persistence.

Table 10: Root mean squared error of the model-implied persistence against the persistence in the data

Specifications Baseline (1) (2) (3) (4) (5) (6) (7)

Sectoral consumption growth 0.470 0.412 0.421 0.458 0.467 0.329 0.294 0.412

Sectoral inflation 0.284 0.181 0.297 0.286 0.282 0.149 0.172 0.229

Note: See the note in Table 9.

7.3 Comovement

This section reports the correlation of pairs of variables to assess the fit of the models in terms of comovement. To

save on space, we report correlations with aggregate variables only. Note that aggregate consumption growth and

inflation are not included in estimation but they are computed by aggregating their sectoral components. The results

are reported in Table 11.

In terms of the sign and magnitude of comovement, the baseline specification fits the data well. It predicts negative

comovement between nominal interest rates and aggregate consumption growth as opposed to positive comovement

estimated in the data. However, habit formation in sectoral consumption (specification 6) helps fit positive comovement

between nominal interest rates and aggregate consumption growth in the data without distorting comovement of the

other variables.

Table 11: Comovement - correlations of selected pairs of the observable variables

Variable pairs Data Baseline (1) (2) (3) (4) (5) (6) (7)

Nominal interest rates and

Agg. consumption growth 0.026 -0.050 0.037 0.011 -0.032 -0.061 -0.081 0.032 0.048

Agg. inflation 0.617 0.945 0.718 -0.034 0.936 0.942 0.414 0.714 0.420

Aggregate consumption growth and

Agg. inflation -0.226 -0.066 0.011 -0.514 -0.083 -0.088 -0.367 -0.317 -0.429

Sectoral consumption growth in Sector 1 0.680 0.423 0.535 0.457 0.389 0.428 0.528 0.443 0.416

Sector 2 0.117 0.208 0.150 0.159 0.151 0.223 0.160 0.138 0.190

Sector 3 0.663 0.682 0.305 0.365 0.396 0.694 0.505 0.442 0.560

Sector 4 0.728 0.703 0.535 0.550 0.588 0.706 0.599 0.586 0.653

Sector 5 0.500 0.491 0.228 0.189 0.273 0.503 0.225 0.228 0.371

Sector 6 0.568 0.523 0.220 0.218 0.278 0.530 0.335 0.313 0.406

Sector 7 0.299 0.711 0.338 0.437 0.490 0.725 0.596 0.568 0.630

Sector 8 0.296 0.532 0.199 0.267 0.258 0.548 0.453 0.409 0.409

Sector 9 0.528 0.614 0.290 0.370 0.373 0.638 0.514 0.449 0.529

Sector 10 0.395 0.567 0.213 0.279 0.280 0.581 0.415 0.327 0.450

Sector 11 NA

Sector 12 0.207 0.569 0.244 0.159 0.311 0.570 0.272 0.243 0.408

Sector 13 0.405 0.695 0.308 0.325 0.396 0.710 0.460 0.445 0.557

Sector 14 0.557 0.761 0.363 0.383 0.462 0.773 0.593 0.570 0.629

Sector 15 0.090 0.272 0.109 0.147 0.131 0.271 0.303 0.260 0.193
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Table 11: Comovement - correlations of selected pairs of the observable variables (continued)

Variable pairs Data Baseline (1) (2) (3) (4) (5) (6) (7)

Sector 16 0.249 0.834 0.533 0.288 0.600 0.852 0.154 0.653 0.689

Sector 17 0.142 0.399 0.217 0.261 0.265 0.401 0.331 0.270 0.337

Sector 18 0.012 0.770 0.455 0.288 0.532 0.785 0.287 0.572 0.614

Sector 19 0.487 0.676 0.310 0.217 0.412 0.702 0.435 0.506 0.529

Sector 20 0.188 0.304 0.126 0.180 0.141 0.318 0.328 0.264 0.244

Sector 21 0.343 0.754 0.372 0.290 0.505 0.766 0.462 0.532 0.619

Sector 22 0.255 0.742 0.377 0.125 0.475 0.756 0.346 0.392 0.540

Sector 23 -0.012 0.398 0.134 0.191 0.165 0.414 0.319 0.237 0.306

Sector 24 0.269 0.511 0.288 0.387 0.385 0.526 0.360 0.443 0.439

Sector 25 0.252 0.530 0.237 0.293 0.291 0.568 0.478 0.402 0.455

Sector 26 0.212 0.765 0.399 0.207 0.505 0.779 0.454 0.591 0.595

Sector 27 0.399 0.814 0.443 0.257 0.537 0.825 0.527 0.612 0.652

Aggregate inflation and

Sectoral inflation in Sector 1 0.540 0.788 0.412 0.492 0.883 0.788 0.579 0.753 0.437

Sector 2 0.208 0.400 0.181 0.336 0.464 0.391 0.362 0.370 0.224

Sector 3 0.469 0.863 0.524 0.770 0.889 0.857 0.820 0.801 0.596

Sector 4 0.840 0.734 0.479 0.775 0.780 0.728 0.672 0.670 0.566

Sector 5 0.522 0.789 0.382 0.608 0.847 0.785 0.616 0.738 0.457

Sector 6 0.653 0.714 0.366 0.563 0.748 0.706 0.656 0.623 0.391

Sector 7 0.325 0.849 0.619 0.789 0.855 0.845 0.840 0.780 0.626

Sector 8 0.297 0.721 0.431 0.607 0.724 0.717 0.686 0.604 0.422

Sector 9 0.524 0.767 0.515 0.707 0.797 0.760 0.760 0.693 0.539

Sector 10 0.440 0.747 0.416 0.651 0.784 0.738 0.738 0.668 0.445

Sector 11 NA

Sector 12 0.596 0.850 0.413 0.605 0.861 0.839 0.666 0.773 0.457

Sector 13 0.624 0.861 0.562 0.735 0.871 0.855 0.789 0.784 0.553

Sector 14 0.532 0.889 0.643 0.790 0.902 0.888 0.856 0.829 0.607

Sector 15 0.117 0.421 0.229 0.378 0.410 0.423 0.505 0.345 0.232

Sector 16 0.455 0.947 0.769 0.701 0.938 0.946 0.743 0.882 0.664

Sector 17 0.115 0.563 0.312 0.530 0.605 0.568 0.584 0.506 0.357

Sector 18 0.859 0.924 0.679 0.698 0.897 0.920 0.678 0.784 0.612

Sector 19 0.516 0.898 0.500 0.682 0.923 0.893 0.833 0.851 0.578

Sector 20 0.219 0.429 0.249 0.395 0.438 0.427 0.510 0.357 0.258

Sector 21 0.456 0.905 0.609 0.723 0.919 0.899 0.754 0.829 0.623

Sector 22 0.591 0.938 0.576 0.512 0.921 0.934 0.627 0.741 0.560

Sector 23 0.231 0.627 0.293 0.538 0.671 0.629 0.644 0.553 0.337

Sector 24 0.325 0.647 0.469 0.617 0.631 0.640 0.696 0.544 0.506

Sector 25 0.255 0.737 0.433 0.633 0.745 0.738 0.744 0.638 0.455

Sector 26 0.469 0.900 0.662 0.633 0.897 0.893 0.715 0.755 0.542

Sector 27 0.591 0.937 0.698 0.741 0.925 0.932 0.831 0.797 0.632
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Note: Specifications are: (1) a specification where δ = 0 and thus intermediate inputs are not used; (2) a specification where nominal

aggregate consumption is exogenous (Mt = PtCt); (3) a specification without labor market segmentation where there is a common labor

market across the economy; (4) a specification where the labor market is firm-specific; (5) a specification that features habit formation in

sectoral consumption; (6) a specification that features habit formation in sectoral consumption and where η and δ are estimated; and (7) a

specification where monetary policy follows an alternative monetary policy rule. Note that estimation did not use aggregate consumption

growth and aggregate inflation data. We aggregate sectoral data and compute the statistics for aggregated data.
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8 Number of latent common components in FAVAR

The baseline specification of FAVAR includes two latent common components (factors) in addition to an observable

common component (the Federal Funds rate). Here we present some evidence to support this specification of FAVAR.5

BGM specify five latent common factors in FAVAR but they use more disaggregated data (190 sectors) than us (27

sectors in the baseline specification). So a smaller number of latent common components in our FAVAR than theirs

would be desirable in order to prevent the common components from being contaminated by some sector-specific

components. On the other hand, Maćkowiak et al. (2009, MMW henceforth) use sectoral inflation data only and

include a single common factor (aggregate shock) in their baseline specification of DFM.

The principal component analysis (PCA) shows that the first two factors contribute relatively more to the variation

of sectoral consumption growth and sectoral inflation than the other factors, whether Sector 11 is included or not. We

also do PCA on the 15-sector quarterly data and draw similar conclusions. This is also the case for the simulated data

from the estimated baseline specification. Actually in this simulated data, the first two factors explain more than 50%

of the variance of sectoral consumption growth and sectoral inflation. The result is shown in Table 12.

Table 12: Contribution of the first ten factors to the variance of sectoral consumption growth and inflation

Factor Actual data: 27 sectors Actual data: 15 sectors Simulated data

All sectors included Sector 11 excluded

Proportion Cumulative Proportion Cumulative Proportion Cumulative Proportion Cumulative

1 15.40 15.40 15.97 15.97 18.46 18.46 32.10 32.10

2 10.69 26.09 10.73 26.70 13.12 31.58 19.80 51.90

3 5.50 31.59 5.59 32.29 6.87 38.45 2.49 54.39

4 5.00 36.59 4.88 37.18 5.91 44.36 2.41 56.80

5 4.73 41.32 4.60 41.78 5.54 49.90 1.97 58.77

6 4.12 45.44 4.05 45.83 5.13 55.03 1.94 60.71

7 3.60 49.04 3.68 49.51 4.35 59.38 1.90 62.61

8 3.49 52.53 3.54 53.05 3.85 63.23 1.83 64.43

9 3.16 55.69 3.12 56.17 3.57 66.80 1.81 66.24

10 2.94 58.63 2.96 59.12 3.45 70.25 1.75 68.00

Note: In percentage. The frequency of the data is quarterly. Results are shown only for the first ten factors in the descending order of the
proportion of the variance explained by each factor. PCA is done after standardization of the data, which includes sectoral consumption
growth, sectoral inflation and the Federal Funds rate. Simulated data is generated from the estimated baseline DSGE model at the posterior
mode. We draw 12,000 observations and discard the first 2,000.

We also report R2 produced by each of the factors to assess whether the latent common components are really

aggregate (common across sectors) or clustered only in a few sectors. To compute R2, we estimate the following

orthogonal factor model using PCA

yjit = βift + εjit,

for i = 1, · · · ,K, where yjit is sectoral consumption growth (j = dc), sectoral inflation (j = π), or the Federal Funds

rate (j = ffr) for sector i, ft = (f1t, · · · , fmt) includes m × 1 common factors that are orthogonal to each other,

βji =
(
βji1, · · · , β

j
im

)
is an m × 1 vector of factor loadings and εjit is the error term with var

(
εjit

)
=
(
σji

)2

and

cov
(
εji,t, fkt

)
= 0 for k = 1, · · · ,m. Then the variation of yjit explained by factor fkt can be computed as

(
βj
ij

)2

var (fjt)∑m
k=1

(
βj
ij

)2

var (fkt) +
(
σji

)2 .

5We thank a referee for suggesting us to do these exercises to decide on the number of latent common components in FAVAR.
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The results are reported in Table 13. Indeed the first two factors explain a large portion of the variation in the data

in most of the sectors as we hope for latent common factors in FAVAR. They are not clustered in a small number of

sectors. When we exclude Sector 11 as in the baseline specification, R2 by the first two factors is less than 0.2 only

in 4 sectors among 26 sectors and mostly greater than 0.5 for sectoral consumption growth and is less than 0.2 in 6

sectors among 26 sectors and mostly greater than 0.5 for sectoral inflation.

Table 13: R2 produced by the factors: actual data (27 sectors, quarterly)

All sectors included Sector 11 excluded

Data Sector Factor 1 2 3 4 (1 + 2) Factor 1 2 3 4 (1 + 2)

Federal Funds rates 0.63 0.19 0.00 0.00 0.81 0.62 0.19 0.01 0.15 0.80

Sectoral 1 0.52 0.21 0.03 0.21 0.73 0.47 0.16 0.03 0.08 0.64

consumption growth 2 0.12 0.57 0.02 0.01 0.69 0.09 0.46 0.01 0.29 0.56

3 0.56 0.36 0.03 0.05 0.92 0.50 0.31 0.03 0.02 0.81

4 0.81 0.05 0.03 0.00 0.86 0.81 0.05 0.05 0.09 0.86

5 0.79 0.00 0.11 0.02 0.79 0.82 0.00 0.08 0.10 0.82

6 0.88 0.00 0.00 0.12 0.88 0.90 0.00 0.00 0.00 0.90

7 0.12 0.02 0.29 0.51 0.14 0.13 0.01 0.25 0.18 0.14

8 0.27 0.16 0.29 0.14 0.43 0.27 0.18 0.31 0.13 0.45

9 0.76 0.04 0.12 0.03 0.80 0.78 0.04 0.11 0.05 0.82

10 0.62 0.00 0.16 0.03 0.62 0.62 0.00 0.12 0.15 0.62

11 0.00 0.18 0.04 0.73 0.18

12 0.89 0.04 0.02 0.04 0.92 0.88 0.03 0.03 0.01 0.91

13 0.97 0.02 0.00 0.01 0.99 0.96 0.02 0.00 0.00 0.98

14 0.67 0.10 0.01 0.02 0.77 0.68 0.10 0.02 0.20 0.78

15 0.09 0.00 0.07 0.01 0.09 0.08 0.00 0.05 0.87 0.08

16 0.60 0.14 0.01 0.12 0.73 0.67 0.12 0.02 0.08 0.79

17 0.01 0.13 0.18 0.63 0.14 0.01 0.11 0.23 0.00 0.12

18 0.90 0.06 0.02 0.00 0.95 0.90 0.05 0.03 0.01 0.95

19 0.91 0.01 0.00 0.05 0.93 0.82 0.01 0.00 0.01 0.83

20 0.04 0.03 0.03 0.81 0.07 0.04 0.08 0.02 0.01 0.12

21 0.74 0.04 0.03 0.04 0.78 0.74 0.03 0.02 0.20 0.77

22 0.71 0.00 0.11 0.02 0.72 0.69 0.00 0.08 0.20 0.69

23 0.25 0.48 0.10 0.01 0.73 0.20 0.40 0.06 0.10 0.59

24 0.19 0.14 0.02 0.01 0.33 0.19 0.12 0.02 0.60 0.31

25 0.22 0.01 0.27 0.39 0.23 0.22 0.00 0.32 0.17 0.22

26 0.37 0.01 0.12 0.06 0.38 0.38 0.00 0.22 0.40 0.39

27 0.77 0.03 0.10 0.08 0.80 0.73 0.04 0.07 0.06 0.77

Sectoral inflation 1 0.17 0.53 0.10 0.05 0.70 0.16 0.49 0.05 0.08 0.65

2 0.12 0.01 0.05 0.70 0.13 0.04 0.00 0.01 0.12 0.04

3 0.25 0.53 0.21 0.01 0.78 0.25 0.55 0.19 0.01 0.80

4 0.62 0.31 0.03 0.02 0.92 0.62 0.30 0.02 0.01 0.92

5 0.17 0.43 0.38 0.01 0.60 0.16 0.43 0.34 0.02 0.59

6 0.27 0.58 0.13 0.02 0.85 0.28 0.57 0.15 0.00 0.85
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Table 13: R2 produced by the factors: actual data (27 sectors, quarterly) (continued)

All sectors included Sector 11 excluded

Data Sector Factor 1 2 3 4 (1 + 2) Factor 1 2 3 4 (1 + 2)

7 0.00 0.82 0.11 0.06 0.82 0.00 0.89 0.07 0.02 0.89

8 0.18 0.19 0.30 0.31 0.38 0.20 0.27 0.38 0.02 0.47

9 0.10 0.59 0.26 0.00 0.70 0.10 0.59 0.24 0.06 0.69

10 0.11 0.48 0.26 0.09 0.58 0.11 0.55 0.21 0.11 0.66

11 0.00 0.38 0.13 0.47 0.38

12 0.28 0.23 0.11 0.03 0.52 0.28 0.18 0.10 0.38 0.46

13 0.06 0.46 0.23 0.24 0.52 0.06 0.53 0.23 0.00 0.58

14 0.17 0.61 0.14 0.00 0.78 0.17 0.61 0.15 0.05 0.77

15 0.05 0.28 0.18 0.01 0.33 0.04 0.25 0.17 0.51 0.29

16 0.05 0.66 0.23 0.01 0.72 0.05 0.64 0.21 0.07 0.70

17 0.01 0.06 0.65 0.28 0.07 0.01 0.04 0.71 0.00 0.05

18 0.01 0.01 0.90 0.01 0.02 0.01 0.01 0.61 0.05 0.02

19 0.00 0.83 0.14 0.00 0.83 0.00 0.78 0.14 0.05 0.78

20 0.08 0.75 0.15 0.02 0.83 0.06 0.59 0.12 0.01 0.65

21 0.03 0.77 0.09 0.05 0.80 0.03 0.76 0.09 0.07 0.79

22 0.00 0.47 0.19 0.21 0.47 0.00 0.38 0.14 0.04 0.38

23 0.00 0.07 0.02 0.66 0.07 0.00 0.13 0.01 0.12 0.13

24 0.00 0.13 0.14 0.23 0.13 0.00 0.09 0.08 0.25 0.09

25 0.10 0.06 0.38 0.05 0.16 0.10 0.07 0.46 0.36 0.17

26 0.03 0.27 0.12 0.17 0.29 0.03 0.29 0.19 0.46 0.32

27 0.01 0.78 0.18 0.01 0.80 0.02 0.77 0.21 0.01 0.78
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9 Robustness exercises for FAVAR

9.1 Number of latent common components and number of lags

We perform robustness checks for FAVAR with respect to the number of latent common components and the number

of lags in the VAR for the common components and report the results in Tables 14-16. Here we only present the price

facts in terms of the speed of sectoral price responses.

The price facts summarized in Section 2.3 of the main text are quite robust, either estimated on actual data or

estimated on the simulated data from the estimated baseline specification.

Table 14: Price facts in FAVAR with different numbers of the latent common components and different numbers of
lags in the VAR for the common components: Estimated on actual data that includes all sectors

Number Number Speed of sectoral price responses

of common of lags Mean Median Standard Correlation Correlation

factors deviation with 1−αk

1 4 To the common component 0.243 0.248 0.057 -0.108
-0.126

To the sector-specific component 0.769 0.757 0.271 0.339

2 4 To the common component 0.281 0.286 0.046 0.490
0.352

To the sector-specific component 0.861 0.915 0.237 0.441

3 4 To the common component 0.334 0.316 0.080 0.574
0.126

To the sector-specific component 0.863 0.912 0.251 0.323

2 3 To the common component 0.290 0.291 0.046 0.502
0.286

To the sector-specific component 0.855 0.851 0.237 0.336

2 5 To the common component 0.289 0.296 0.046 0.461
0.391

To the sector-specific component 0.845 0.818 0.253 0.444

Note: 1 − αk is the frequency of price changes in sector k. Sectoral frequencies of price changes are constructed by aggregating up from
the ELI-level price-setting statistics reported by Nakamura and Steinsson (2008), using time-averaged consumption expenditures shares as
weights.

64



Table 15: Price facts in FAVAR with different numbers of the common components and different numbers of lags in
the VAR for the common components: Estimated on actual data that includes all sectors but Sector 11

Number Number Speed of sectoral price responses

of common of lags Mean Median Standard Correlation Correlation

factors deviation with 1−αk

1 4 To the common component 0.243 0.248 0.057 -0.108
-0.126

To the sector-specific component 0.769 0.757 0.271 0.339

2 4 To the common component 0.281 0.283 0.046 0.460
0.363

(baseline) To the sector-specific component 0.852 0.884 0.241 0.435

3 4 To the common component 0.330 0.318 0.079 0.539
0.086

To the sector-specific component 0.858 0.905 0.251 0.316

2 3 To the common component 0.287 0.288 0.044 0.485
0.342

To the sector-specific component 0.853 0.875 0.242 0.377

2 5 To the common component 0.285 0.288 0.046 0.468
0.389

To the sector-specific component 0.830 0.806 0.252 0.385

Note: 1− αk is the price change probability estimated in Nakamura and Steinsson (2008).

Table 16: Price facts in the FAVAR with different numbers of the common components and different numbers of lags in
the VAR for the common components: Estimated on simulated data from the estimated baseline DSGE specification

Number Number Speed of sectoral price responses

of common of lags Mean Median Standard Correlation Correlation

factors deviation with 1−αk

1 4 To the common component 0.184 0.177 0.020 -0.128
0.001

To the sector-specific component 0.705 0.668 0.242 0.917

2 4 To the common component 0.251 0.244 0.019 0.726
0.702

(baseline) To the sector-specific component 0.853 0.874 0.229 0.947

3 4 To the common component 0.264 0.244 0.061 0.515
0.422

To the sector-specific component 0.854 0.874 0.229 0.947

2 3 To the common component 0.243 0.239 0.015 0.703
0.686

To the sector-specific component 0.831 0.849 0.212 0.964

2 5 To the common component 0.257 0.250 0.022 0.727
0.691

To the sector-specific component 0.875 0.891 0.250 0.934

Note: 1− αk is the frequency of price changes in sector k estimated in the baseline DSGE specification.

9.2 Other specifications

We now report the price facts estimated in FAVAR with different levels of disaggregation, different frequencies, and

different datasets. These other specifications of FAVAR include 1) a specification that is identical to BGM’s FAVAR;
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2) a specification estimated on 50-sector quarterly data; 3) a specification estimated on 15-sector quarterly data; 4) a

specification estimated on 27-sector quarterly data with hours worked data included as well; 5) a specification estimated

on 50-sector monthly data; 6) a specification estimated on 27-sector monthly data; 7) a specification estimated on

15-sector monthly data; 8) a specification that includes only sectoral inflation data and allows for a single latent

common component as in MMW; and 9) a specification that includes only sectoral inflation data as in MMW and

allows for two latent common components. Note that all these FAVAR specifications are estimated on actual data with

all sectors included. Specification (1) uses exactly the same specification as in BGM: five latent common components.

For specifications (2)-(7), we assume that there are two latent common components in the FAVAR and the common

components follows VAR(4) as in the baseline FAVAR specification. 15-sector data and 50-sector data uses the PCE

data at the 2nd and 3rd level of disaggregation of PCE, respectively. For specification (8), we assume that there is a

single latent common component in the FAVAR and the common component follow AR(4) while for specification (9),

we assume that there are two latent common components in the FAVAR and they follow VAR(4). In specification (5),

the first two factors are found to explain relatively more of the variation of data in PCA. Here we only present the

price facts in terms of the speed of sectoral price responses.

Again the main price facts are robust across these specifications.

Table 17: Price facts in the other FAVAR specifications: Estimated on actual data that includes all sectors

Specifications Speed of sectoral price responses

Mean Median Standard Correlation Correlation

deviation with 1−αk

(1) To the common component 0.274 0.261 0.066 0.422 0.306

To the sector-specific component 1.010 1.001 0.281 0.188

(2) To the common component 0.294 0.293 0.051 0.243 -0.020

To the sector-specific component 0.879 0.910 0.248 0.238

(3) To the common component 0.304 0.309 0.039 0.104 0.620

To the sector-specific component 0.827 0.837 0.212 0.107

(4) To the common component 0.277 0.281 0.046 0.541 0.298

To the sector-specific component 0.861 0.881 0.234 0.442

(5) To the common component 0.334 0.329 0.120 0.416 0.375

To the sector-specific component 0.862 0.875 0.278 0.286

(6) To the common component 0.313 0.337 0.071 0.359 0.185

To the sector-specific component 0.869 0.900 0.304 0.190

(7) To the common component 0.338 0.327 0.068 0.119 0.619

To the sector-specific component 0.847 0.813 0.296 0.024

(8) To the common component 0.286 0.286 NA -0.277 0.087
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Table 17: Price facts in the other FAVAR specifications: Estimated on actual data that includes all sectors (continued)

Specifications Speed of sectoral price responses

Mean Median Standard Correlation Correlation

deviation with 1−αk

To the sector-specific component 0.755 0.726 0.229 0.432

(9) To the common component 0.323 0.298 0.051 0.647 0.405

To the sector-specific component 0.814 0.810 0.237 0.585

Note: Specifications are 1) a specification that is identical to BGM’s FAVAR; 2) a specification estimated on 50-sector quarterly data;

3) a specification estimated on 15-sector quarterly data; 4) a specification estimated on 27-sector quarterly data with hours worked data

included as well; 5) a specification estimated on 50-sector monthly data; 6) a specification estimated on 27-sector monthly data; 7) a

specification estimated on 15-sector monthly data; 8) a specification that includes only sectoral inflation data and allows for a single latent

common component as in MMW; and 9) a specification that includes only sectoral inflation data as in MMW and allows for two latent

common components. 1−αk is the price change probability estimated in Nakamura and Steinsson (2008) except in (1) where the correlation

is based on a mapping between 108 (out of 192) PCE price series included in BGM’s FAVAR and Bils and Klenow (2004).
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10 Comparison of FAVAR and DFM regarding the dispersion of the

speeds of sectoral price responses

This section presents simulation studies to explain the discrepancy between Maćkowiak et al. (2009, MMW hence-

forth)’s DFM and our results regarding the cross-sectional dispersion of the speeds of sectoral price responses to

different shocks.

Simulations results indicate that MMW’s DFM tends to overestimate the cross-sectional dispersion of the speed of

sectoral price responses to shocks to the common component relatively more than to sector-specific components. To

show this, we simulate data from DFM at the posterior median of its parameters and estimating the same DFM again

on these simulated data. In MMW’s DFM, at the posterior median, the standard deviation of the speed of sectoral

price responses is 0.6670 to the common component and 0.1092 to the sector-specific component, respectively.

We simulate 100 samples with 245 observations (the same size as the actual dataset used in the baseline specification

of MMW) each, estimate DFM with the same specification as in MMW on each of these samples, and then compute

the cross-sectional standard deviation of the speeds of sectoral price responses to shocks to the common component

and to the sector-specific component, respectively.

We compute the cross-sectional standard deviation in two different ways and compare them: one that accounts

for both dispersion across sectors and parameter uncertainty as in MMW, by pooling all the speeds of sectoral price

responses across sectors obtained for all posterior draws and another that is computed across sectors for each of the

parameter draws from the posterior distribution. The second approach generates the correct posterior distribution of

the cross-sectional dispersion of the speeds of sectoral price responses. With negligible parameter uncertainty - i.e. in

a very large sample - the two approaches yield the same cross-sectional standard deviation. In finite samples, however,

the second approach delivers a smaller standard deviation of the speed of sectoral price responses across sectors than

the first approach.

Figure 1 presents the distribution of the cross-sectional standard deviation of the speed of sectoral price responses.

Panel (a) presents the histogram of the cross-sectional standard deviation across the 100 simulated samples. For

each sample, the cross-sectional standard deviation is computed by taking into account dispersion across sectors and

parameter uncertainty as in MMW. Panel (b) shows the histogram of the posterior median of the cross-sectional

standard deviation across the 100 simulated samples. For each sample, the posterior median of the standard deviation

of the speed is computed from the posterior distribution of the standard deviation of the speed.

Two results are noteworthy. First, the cross-sectional dispersion of the speed of sectoral price responses is more

exacerbated when both differences across sectors and parameter uncertainty are accounted for, as in MMW. Second,

even for the appropriate posterior distributions of the objects of interest (panel b), DFM overestimates the cross-

sectional dispersion to the common component substantially more than to the sector-specific component. In panel

(b), across the 100 simulated samples, the median and 90% probability interval of the standard deviation is 1.3575

and [0.7832, 2.6845] to the common component and 0.1420 and [0.1357, 0.1496] to the sector-specific component,

respectively. Note that in the data generating process, the standard deviation of the speed of sectoral price responses

is 0.6670 to the common component and 0.1092 to the sector-specific component, respectively.
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(a) Distribution when both uncertainty across sectors and parameter uncertainty are accounted for as in MMW
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(b) Distribution of the posterior median of the cross-sectional standard deviation

Figure 1: Distribution of the standard deviation of the speed of sectoral price responses across 100 simulated samples
Note: The standard deviation in the data generating process is marked in red vertical lines.

From here on, we use the second approach to compute the cross-sectional dispersion of the speed of sectoral price

responses.

We now do another simulation exercise varying sample sizes. As before, we simulate 100 samples at the posterior

median of MMW’s DFM, estimate DFM on each of the simulated samples, and compute the cross-sectional standard

deviation of the speed of sectoral price responses to the common component and to the sector-specific component,

respectively. We repeat this for different sample sizes. Table 18 reports the posterior median with 90% probability

intervals of the standard deviation of the speed of sectoral price responses. In small samples, the cross-sectional

dispersion is estimated to be larger than their data generating process (DGP) values and this overestimation is much

more severe when looking at shocks to the common component than when considering sector-specific shocks. In larger

samples, the difference becomes smaller. We conjecture that as the sample size increases, parameter uncertainty

becomes smaller, which works relatively more in favor of the common component so that the standard deviation of
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the speed of sectoral price responses to the common component shrinks more. This is because the speed of sectoral

price responses to the common component involves more coefficients than to the sector-specific component.6

Table 18: Standard deviation of the speed of sectoral price responses in DFM estimated on DFM-simulated data:
posterior median and 90% probability interval

Sample size To the common component To the sector-specific component

Median [5%, 95% quantiles] Median [5%, 95% quantiles]

100 1.7597 [0.9738, 3.3581] 0.1357 [0.1287, 0.1451]

245 1.3575 [0.7832, 2.6845] 0.1420 [0.1357, 0.1496]

500 1.1500 [0.6768, 2.3089] 0.1473 [0.1419, 0.1533]

1K 1.0487 [0.6272, 2.1147] 0.1502 [0.1461, 0.1548]

5K 0.8190 [0.5157, 1.5983] 0.1527 [0.1507, 0.1549]

DGP 0.6670 0.1092
Note: The numbers are the mean of the posterior median, 5% and 95% quantiles, which is computed across 100 simulated samples. DGP
is MMW’s DFM at the posterior median of the parameters. The posterior distribution is obtained by computing the standard deviation of
the speed of sectoral price responses across sectors conditional on each posterior draw of the parameters of DFM.

The posterior median of the parameters of DFM in MMW implies that the cross-sectional dispersion of the speed

of sectoral price responses is larger to the common component (0.6670) than to the sector-specific component (0.1092).

To show that DFM overestimates the cross-sectional dispersion to the common component more than to the sector-

specific component even if the speed of sectoral price responses is the same between to the common component and

to the sector-specific component, we set the parameter values of DFM so that the speed of sectoral price responses to

both components is identical and so is the cross-sectional dispersion of the speed.7 As before we simulate 100 samples

with 245 observations at these parameter values, estimate DFM on each of the simulated samples and compute the

posterior median of the cross-sectional standard deviation of the speed of sectoral price responses for each sample.

The histogram across the 100 samples is displayed in Figure 2. It shows that DFM still overestimates the cross-

sectional distribution of the speed of sectoral price responses to the common component more than to the sector-specific

component. Across the 100 simulated samples, the median and 90% probability interval of the standard deviation is

1.5244 and [0.7169, 3.2727] to the common component and 0.1426 and [0.1362, 0.1504] to the sector-specific component.

Interestingly, the cross-sectional standard deviation is more dispersed than at the posterior median of the parameters

reported above.

6The baseline specification has 24 coefficients on the common component and its lags and 6 AR coefficients on the sector-specific
component.

7We do this by setting the MA coefficients on the lags of the common component in each sector at the impulse response of sectoral
inflation to the sector-specific component of each sector in Equation (1) of MMW.
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Figure 2: Distribution of the posterior median of the cross-sectional standard deviation of the speed of sectoral price
responses across 100 simulated samples when DGP dispersion is identical
Note: The standard deviation in the data generating process is marked in red vertical lines.

We also did a simulation exercise with different sample sizes as above. The result is reported in Table 19. We can

observe a similar pattern across different sample sizes. The cross-sectional dispersion is much larger than their DGP

values in small samples and this difference becomes smaller as the sample size increases.

Table 19: Standard deviation of the speed of sectoral price responses in DFM estimated on DFM-simulated data when
DGP dispersion is identical: posterior median and 90% probability interval

Sample size To the common component To the sector-specific component

Median [5%, 95% quantiles] Median [5%, 95% quantiles]

100 2.2231 [1.0691, 4.2371] 0.1363 [0.1291, 0.1463]

245 1.5244 [0.7169, 3.2727] 0.1426 [0.1362, 0.1504]

500 0.7229 [0.3999, 1.8731] 0.1468 [0.1414, 0.1528]

1K 0.3683 [0.2773, 0.6519] 0.1496 [0.1454, 0.1541]

5K 0.2010 [0.1817, 0.2240] 0.1524 [0.1504, 0.1546]

DGP 0.1092 0.1092
Note: The numbers are the mean of the posterior median, 5% and 95% quantiles, which is computed across 100 simulated samples. The
posterior distribution is obtained by computing the standard deviation of the speed of price responses across sectors conditional on each
posterior draw of the parameters of DFM.

Now we repeat a similar simulation exercise using our estimated baseline DSGE model as DGP. We simulate

samples with different sizes, 100 samples for each sample size, from the baseline DSGE model at the posterior mode

and estimate DFM on each of these samples. Since the frequency of the baseline DSGE model is quarterly, we modify

DFM accordingly as described in MMW. Note that we include only sectoral inflation to estimate DFM as in MMW.

The posterior median and 90% probability interval of the standard deviation of the speed of sectoral price responses

across sectors are presented in Table 20. As for the cases where DFM is DGP, DFM overestimates the cross-sectional

dispersion of the speed of sectoral price responses more severely to the common component than to the sector-specific

component. And the overestimation becomes smaller as the sample size increases. Importantly, when the sample size

is large, the cross-sectional dispersion of speeds of price responsed is smaller when shocks to the common component

are considered, relative to when sector-specific shocks are considered.
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Table 20: Standard deviation of the speed of sectoral price responses in DFM estimated on DSGE-simulated data:
posterior median and 90% probability interval

Sample size To the common component To the sector-specific component

Median [5%, 95% quantiles] Median [5%, 95% quantiles]

100 0.5738 [0.2549, 5.4147] 0.2510 [0.2303, 0.2731]

245 0.3031 [0.1827, 1.1597] 0.2571 [0.2408, 0.2741]

500 0.2327 [0.1671, 0.3784] 0.2573 [0.2449, 0.2699]

1K 0.2053 [0.1619, 0.2758] 0.2585 [0.2491, 0.2678]

5K 0.1921 [0.1720, 0.2163] 0.2587 [0.2544, 0.2631]

10K 0.1879 [0.1742, 0.2030] 0.2586 [0.2554, 0.2618]
Note: The numbers are the mean of the posterior median, 5% and 95% quantiles, which is computed across 100 simulated samples. DGP
is the baseline sectoral DSGE model at the posterior mode. The posterior distribution is obtained by computing the standard deviation
of the speed of price responses across sectors conditional on each posterior draw of the parameters of DFM. We simulate 100 samples per
each size and estimate DFM on each sample.

Overestimation is less severe in FAVARs. We estimate a FAVAR on the same 100 simulated samples from the

baseline DSGE model at the posterior mode as above. The results regarding the cross-sectional dispersion are presented

in Table 21. Note that the cross-sectional dispersion of the speeds of price responses is smaller when shocks to the

common component are considered, relative to when sector-specific shocks are considered - and this holds even for a

small sample.

Table 21: Standard deviation of the speed of sectoral price responses in FAVAR estimated on DSGE-simulated data:
posterior median and 90% probability interval

Sample size To the common component To the sector-specific component

Median [5%, 95% quantiles] Median [5%, 95% quantiles]

100 0.1123 [0.0561, 0.1918] 0.2616 [0.2208, 0.3020]

245 0.0876 [0.0539, 0.1298] 0.2438 [0.2146, 0.2762]

500 0.0831 [0.0549, 0.1234] 0.2412 [0.2189, 0.2628]

1K 0.0756 [0.0543, 0.1107] 0.2367 [0.2208, 0.2540]

5K 0.0671 [0.0596, 0.0778] 0.2348 [0.2270, 0.2440]

10K 0.0641 [0.0590, 0.0697] 0.2340 [0.2278, 0.2410]
Note: The numbers are the median, 5% and 95% quantiles of the standard deviation of the speed of sectoral price responses that is
computed across 100 simulated samples. DGP is the baseline sectoral DSGE model at the posterior mode. We simulate 100 samples per
each sample size and estimate FAVAR on each sample.
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Part III

Bayesian estimation and convergence

11 Details of the estimation algorithm

We estimate the structural model as follows. For each specification, we first run numerical optimization routines in

order to find the posterior mode, which is used as a starting point of the Markov chain. We carry out an extensive search

for the posterior mode by starting the optimization routine at many different points. Specifically, we generate 20,000

draws from the prior distribution of the parameters, keep 20 draws with the highest posterior densities and 5 draws

randomly chosen among the 20,000 draws, and start the optimization routine at these 25 draws. Since some of the

parameters have a bounded support, the numerical optimization is executed in two different ways: one way where the

support of the prior distribution is directly imposed and another where it is imposed through usual reparameterization.

For each optimization run, we use two different numerical optimization routines sequentially. The first optimization

routine is csminwel by Chris Sims and the second is fminsearch from Matlab’s optimization toolbox which starts at

the point found by csminwel.

To characterize the posterior distribution of the parameters, we simulate their draws from the posterior distribution

using the random-walk Metropolis algorithm. The starting point of the algorithm is the posterior mode. The proposal

distribution of the algorithm is a student t-distribution. The mean of the proposal distribution is the previous draw.

The covariance matrix of the proposal distribution is found as follows. We first compute the inverse of −1 times the

Hessian of the log posterior density at the posterior mode, which provides a first crude estimate of the covariance

matrix of the proposal distribution. Then we run a so-called adaptive phase of the MCMC, with four sub-phases of

100, 200, 600, and 100 thousand iterations, respectively. At the end of each sub-phase we discard the first half of

the draws and compute a sample covariance matrix of the parameter draws to be used in the proposal distribution

in the next sub-phase. In each sub-phase we rescale the covariance matrix inherited from the previous sub-phase in

order to get a fine-tuned covariance matrix that yields the average acceptance rate as close as possible to 0.23. In the

adaptive phases, we did not find a point with a higher posterior density than the posterior mode numerically found

previously. Next, we run the so-called fixed phase of the MCMC. We take the estimate of the posterior mode and

the fine-tuned sample covariance matrix from the adaptive phase for the proposal distribution and run a chain of 1.5

million iterations. To initialize each chain we draw from a candidate normal distribution centered on the posterior

mode estimate, with three times the covariance matrix given by the fine-tuned covariance matrix found in the adaptive

phase. In each chain, we generate 1.5 million draws, discard the first one third, and keep the last out of every 5 draws

among the remaining 1 million draws for thinning of the chain. This gives us 0.2 million draws for every chain. We

generate 5 parallel chains, for a total of 1 million draws.

12 Estimation results

Moments of prior and posterior distributions of the parameters of the baseline specification are provided in Table 9 of

the main text. Among other specifications we estimate, we report prior and posterior distributions of the specification

that features habit formation in sectoral consumption in Table 22.
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Table 22: Prior and posterior distributions for the specification with sectoral habit formation

Parameters
Prior distribution Posterior distribution

Type Mean Std. deviation Mode Mean [5% Median 95%]

φπ Normal 1.5 0.25 2.127 2.238 1.896 2.237 2.580

φc Normal 0.5 0.05 0.483 0.466 0.385 0.466 0.547

τ1 Beta 0.5 0.2 0.042 0.063 0.017 0.058 0.128

τ2 Beta 0.5 0.2 0.054 0.085 0.022 0.077 0.176

τ3 Beta 0.5 0.2 0.307 0.357 0.229 0.354 0.493

τ4 Beta 0.5 0.2 0.278 0.386 0.255 0.389 0.508

τ5 Beta 0.5 0.2 0.179 0.249 0.096 0.240 0.435

τ6 Beta 0.5 0.2 0.173 0.192 0.085 0.189 0.308

τ7 Beta 0.5 0.2 0.067 0.101 0.031 0.094 0.193

τ8 Beta 0.5 0.2 0.368 0.379 0.257 0.379 0.500

τ9 Beta 0.5 0.2 0.117 0.128 0.050 0.125 0.216

τ10 Beta 0.5 0.2 0.062 0.097 0.029 0.091 0.186

τ11 Beta 0.5 0.2 0.872 0.871 0.850 0.871 0.890

τ12 Beta 0.5 0.2 0.045 0.072 0.018 0.064 0.153

τ13 Beta 0.5 0.2 0.120 0.144 0.051 0.139 0.255

τ14 Beta 0.5 0.2 0.139 0.169 0.082 0.166 0.268

τ15 Beta 0.5 0.2 0.223 0.241 0.089 0.236 0.413

τ16 Beta 0.5 0.2 0.965 0.963 0.948 0.964 0.976

τ17 Beta 0.5 0.2 0.044 0.065 0.017 0.059 0.134

τ18 Beta 0.5 0.2 0.911 0.870 0.744 0.886 0.937

τ19 Beta 0.5 0.2 0.758 0.777 0.718 0.778 0.829

τ20 Beta 0.5 0.2 0.184 0.205 0.082 0.201 0.340

τ21 Beta 0.5 0.2 0.414 0.530 0.329 0.539 0.702

τ22 Beta 0.5 0.2 0.065 0.085 0.024 0.079 0.165

τ23 Beta 0.5 0.2 0.157 0.182 0.064 0.176 0.321

τ24 Beta 0.5 0.2 0.933 0.930 0.907 0.931 0.950

τ25 Beta 0.5 0.2 0.326 0.360 0.201 0.356 0.535

τ26 Beta 0.5 0.2 0.267 0.297 0.191 0.297 0.403

τ27 Beta 0.5 0.2 0.511 0.545 0.434 0.546 0.651

α1 Beta 0.519 0.1 0.885 0.879 0.841 0.881 0.906

α2 Beta 0.12 0.1 0.563 0.578 0.460 0.583 0.683

α3 Beta 0.483 0.1 0.555 0.608 0.509 0.608 0.709

α4 Beta 0.463 0.1 0.648 0.687 0.603 0.688 0.765

α5 Beta 0.691 0.1 0.823 0.810 0.736 0.813 0.871

α6 Beta 0.551 0.1 0.583 0.617 0.520 0.617 0.712

α7 Beta 0.318 0.1 0.409 0.436 0.337 0.437 0.532

α8 Beta 0.492 0.1 0.489 0.562 0.433 0.557 0.711

α9 Beta 0.314 0.1 0.416 0.480 0.351 0.480 0.605

α10 Beta 0.409 0.1 0.405 0.493 0.350 0.489 0.653

α11 Beta 0.12 0.1 0.003 0.023 0.002 0.018 0.063
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Table 22: Prior and posterior distributions for the specification with sectoral habit formation (continued)

Parameters
Prior distribution Posterior distribution

Type Mean Std. deviation Mode Mean [5% Median 95%]

α12 Beta 0.613 0.1 0.760 0.774 0.700 0.775 0.841

α13 Beta 0.755 0.1 0.627 0.687 0.590 0.689 0.774

α14 Beta 0.582 0.1 0.538 0.592 0.499 0.591 0.687

α15 Beta 0.307 0.1 0.199 0.217 0.120 0.215 0.323

α16 Beta 0.722 0.1 0.929 0.929 0.911 0.931 0.943

α17 Beta 0.212 0.1 0.412 0.432 0.327 0.434 0.532

α18 Beta 0.857 0.1 0.886 0.853 0.726 0.870 0.924

α19 Beta 0.503 0.1 0.690 0.712 0.644 0.713 0.778

α20 Beta 0.181 0.1 0.155 0.176 0.067 0.171 0.299

α21 Beta 0.727 0.1 0.726 0.756 0.676 0.757 0.831

α22 Beta 0.85 0.1 0.900 0.903 0.843 0.907 0.951

α23 Beta 0.247 0.1 0.251 0.330 0.179 0.328 0.495

α24 Beta 0.78 0.1 0.107 0.118 0.074 0.117 0.167

α25 Beta 0.313 0.1 0.355 0.386 0.276 0.386 0.496

α26 Beta 0.822 0.1 0.795 0.840 0.757 0.842 0.914

α27 Beta 0.862 0.1 0.752 0.770 0.698 0.765 0.863

ρi Beta 0.7 0.15 0.815 0.823 0.769 0.826 0.866

ρµ Beta 0.7 0.15 0.728 0.633 0.372 0.644 0.857

ργ Beta 0.7 0.15 0.769 0.777 0.717 0.778 0.833

ρa Beta 0.7 0.15 0.478 0.513 0.336 0.514 0.689

ρA1
Beta 0.7 0.15 0.491 0.496 0.338 0.492 0.671

ρA2
Beta 0.7 0.15 0.974 0.893 0.711 0.948 0.986

ρA3
Beta 0.7 0.15 0.872 0.799 0.635 0.811 0.920

ρA4
Beta 0.7 0.15 0.975 0.961 0.933 0.963 0.983

ρA5
Beta 0.7 0.15 0.344 0.362 0.196 0.354 0.559

ρA6
Beta 0.7 0.15 0.945 0.931 0.872 0.935 0.975

ρA7
Beta 0.7 0.15 0.978 0.950 0.881 0.960 0.988

ρA8
Beta 0.7 0.15 0.807 0.716 0.509 0.731 0.869

ρA9
Beta 0.7 0.15 0.826 0.733 0.541 0.743 0.888

ρA10
Beta 0.7 0.15 0.814 0.707 0.487 0.719 0.885

ρA11
Beta 0.7 0.15 0.871 0.863 0.792 0.868 0.921

ρA12
Beta 0.7 0.15 0.961 0.943 0.879 0.950 0.983

ρA13
Beta 0.7 0.15 0.904 0.849 0.717 0.860 0.945

ρA14
Beta 0.7 0.15 0.898 0.826 0.686 0.834 0.939

ρA15
Beta 0.7 0.15 0.927 0.917 0.855 0.920 0.968

ρA16
Beta 0.7 0.15 0.819 0.819 0.759 0.821 0.872

ρA17
Beta 0.7 0.15 0.985 0.979 0.959 0.981 0.994

ρA18
Beta 0.7 0.15 0.896 0.915 0.848 0.918 0.973

ρA19
Beta 0.7 0.15 0.986 0.981 0.965 0.982 0.994

ρA20
Beta 0.7 0.15 0.912 0.907 0.840 0.910 0.963
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Table 22: Prior and posterior distributions for the specification with sectoral habit formation (continued)

Parameters
Prior distribution Posterior distribution

Type Mean Std. deviation Mode Mean [5% Median 95%]

ρA21
Beta 0.7 0.15 0.980 0.969 0.940 0.971 0.991

ρA22
Beta 0.7 0.15 0.967 0.955 0.907 0.960 0.986

ρA23
Beta 0.7 0.15 0.797 0.720 0.526 0.733 0.871

ρA24
Beta 0.7 0.15 0.817 0.831 0.734 0.836 0.914

ρA25
Beta 0.7 0.15 0.873 0.905 0.817 0.908 0.977

ρA26
Beta 0.7 0.15 0.953 0.914 0.823 0.923 0.974

ρA27
Beta 0.7 0.15 0.979 0.969 0.938 0.972 0.991

ρD1
Beta 0.7 0.15 0.777 0.763 0.682 0.764 0.838

ρD2
Beta 0.7 0.15 0.870 0.888 0.800 0.877 0.988

ρD3
Beta 0.7 0.15 0.951 0.945 0.901 0.948 0.981

ρD4
Beta 0.7 0.15 0.845 0.944 0.800 0.981 0.994

ρD5
Beta 0.7 0.15 0.862 0.822 0.701 0.831 0.912

ρD6
Beta 0.7 0.15 0.925 0.927 0.871 0.929 0.974

ρD7
Beta 0.7 0.15 0.979 0.969 0.936 0.972 0.992

ρD8
Beta 0.7 0.15 0.981 0.967 0.931 0.971 0.991

ρD9
Beta 0.7 0.15 0.888 0.891 0.832 0.893 0.941

ρD10
Beta 0.7 0.15 0.832 0.834 0.738 0.837 0.919

ρD12
Beta 0.7 0.15 0.964 0.960 0.921 0.963 0.991

ρD13
Beta 0.7 0.15 0.946 0.936 0.886 0.938 0.979

ρD14
Beta 0.7 0.15 0.936 0.924 0.870 0.927 0.970

ρD15
Beta 0.7 0.15 0.938 0.927 0.874 0.929 0.974

ρD16
Beta 0.7 0.15 0.984 0.980 0.959 0.982 0.994

ρD17
Beta 0.7 0.15 0.873 0.871 0.797 0.873 0.941

ρD18
Beta 0.7 0.15 0.988 0.986 0.974 0.987 0.996

ρD19
Beta 0.7 0.15 0.915 0.898 0.828 0.901 0.959

ρD20
Beta 0.7 0.15 0.873 0.872 0.793 0.875 0.943

ρD21
Beta 0.7 0.15 0.976 0.866 0.600 0.918 0.988

ρD22
Beta 0.7 0.15 0.943 0.933 0.882 0.935 0.979

ρD23
Beta 0.7 0.15 0.912 0.910 0.844 0.913 0.966

ρD24
Beta 0.7 0.15 0.727 0.709 0.598 0.709 0.820

ρD25
Beta 0.7 0.15 0.969 0.952 0.907 0.955 0.984

ρD26
Beta 0.7 0.15 0.969 0.907 0.782 0.922 0.982

ρD27
Beta 0.7 0.15 0.910 0.922 0.853 0.926 0.974

σµ Inverted Gamma 0.00125 0.005 0.001 0.001 0.000 0.001 0.001

σγ Inverted Gamma 0.02 0.5 0.015 0.017 0.013 0.017 0.022

σa Inverted Gamma 0.02 0.5 0.009 0.009 0.006 0.009 0.012

σA1
Inverted Gamma 0.02 0.5 0.132 0.132 0.065 0.127 0.215

σA2
Inverted Gamma 0.02 0.5 0.037 0.045 0.033 0.043 0.064

σA3
Inverted Gamma 0.02 0.5 0.011 0.015 0.010 0.014 0.024

σA4
Inverted Gamma 0.02 0.5 0.022 0.027 0.020 0.026 0.036
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Table 22: Prior and posterior distributions for the specification with sectoral habit formation (continued)

Parameters
Prior distribution Posterior distribution

Type Mean Std. deviation Mode Mean [5% Median 95%]

σA5
Inverted Gamma 0.02 0.5 0.086 0.087 0.038 0.077 0.166

σA6
Inverted Gamma 0.02 0.5 0.018 0.021 0.015 0.021 0.031

σA7
Inverted Gamma 0.02 0.5 0.009 0.011 0.008 0.010 0.013

σA8
Inverted Gamma 0.02 0.5 0.018 0.026 0.015 0.023 0.052

σA9
Inverted Gamma 0.02 0.5 0.014 0.018 0.012 0.017 0.028

σA10
Inverted Gamma 0.02 0.5 0.013 0.019 0.012 0.017 0.035

σA11
Inverted Gamma 0.02 0.5 0.040 0.041 0.033 0.041 0.051

σA12
Inverted Gamma 0.02 0.5 0.017 0.021 0.013 0.019 0.032

σA13
Inverted Gamma 0.02 0.5 0.012 0.019 0.011 0.017 0.031

σA14
Inverted Gamma 0.02 0.5 0.009 0.012 0.008 0.011 0.018

σA15
Inverted Gamma 0.02 0.5 0.022 0.024 0.020 0.023 0.028

σA16
Inverted Gamma 0.02 0.5 0.066 0.071 0.043 0.070 0.105

σA17
Inverted Gamma 0.02 0.5 0.021 0.022 0.018 0.022 0.027

σA18
Inverted Gamma 0.02 0.5 0.034 0.032 0.010 0.027 0.073

σA19
Inverted Gamma 0.02 0.5 0.010 0.011 0.008 0.011 0.014

σA20
Inverted Gamma 0.02 0.5 0.023 0.024 0.020 0.024 0.029

σA21
Inverted Gamma 0.02 0.5 0.012 0.015 0.010 0.015 0.023

σA22
Inverted Gamma 0.02 0.5 0.019 0.027 0.012 0.022 0.061

σA23
Inverted Gamma 0.02 0.5 0.015 0.019 0.013 0.018 0.028

σA24
Inverted Gamma 0.02 0.5 0.011 0.012 0.010 0.012 0.014

σA25
Inverted Gamma 0.02 0.5 0.012 0.013 0.010 0.013 0.017

σA26
Inverted Gamma 0.02 0.5 0.015 0.029 0.012 0.023 0.069

σA27
Inverted Gamma 0.02 0.5 0.009 0.011 0.007 0.010 0.020

σD1
Inverted Gamma 0.02 0.5 0.122 0.131 0.115 0.130 0.148

σD2
Inverted Gamma 0.02 0.5 0.132 0.143 0.125 0.142 0.163

σD3
Inverted Gamma 0.02 0.5 0.022 0.023 0.020 0.023 0.026

σD4
Inverted Gamma 0.02 0.5 0.032 0.035 0.031 0.035 0.040

σD5
Inverted Gamma 0.02 0.5 0.044 0.047 0.041 0.047 0.053

σD6
Inverted Gamma 0.02 0.5 0.033 0.035 0.031 0.035 0.040

σD7
Inverted Gamma 0.02 0.5 0.013 0.014 0.012 0.013 0.015

σD8
Inverted Gamma 0.02 0.5 0.019 0.021 0.018 0.021 0.024

σD9
Inverted Gamma 0.02 0.5 0.020 0.022 0.019 0.022 0.025

σD10
Inverted Gamma 0.02 0.5 0.022 0.024 0.021 0.024 0.027

σD12
Inverted Gamma 0.02 0.5 0.032 0.034 0.030 0.034 0.039

σD13
Inverted Gamma 0.02 0.5 0.017 0.018 0.016 0.018 0.020

σD14
Inverted Gamma 0.02 0.5 0.011 0.011 0.010 0.011 0.013

σD15
Inverted Gamma 0.02 0.5 0.039 0.041 0.036 0.040 0.046

σD16
Inverted Gamma 0.02 0.5 0.010 0.010 0.009 0.010 0.011

σD17
Inverted Gamma 0.02 0.5 0.059 0.062 0.055 0.062 0.070

σD18
Inverted Gamma 0.02 0.5 0.013 0.013 0.011 0.013 0.014
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Table 22: Prior and posterior distributions for the specification with sectoral habit formation (continued)

Parameters
Prior distribution Posterior distribution

Type Mean Std. deviation Mode Mean [5% Median 95%]

σD19
Inverted Gamma 0.02 0.5 0.014 0.015 0.013 0.015 0.017

σD20
Inverted Gamma 0.02 0.5 0.041 0.043 0.038 0.042 0.048

σD21
Inverted Gamma 0.02 0.5 0.014 0.015 0.013 0.015 0.017

σD22
Inverted Gamma 0.02 0.5 0.019 0.021 0.018 0.021 0.023

σD23
Inverted Gamma 0.02 0.5 0.041 0.044 0.038 0.043 0.049

σD24
Inverted Gamma 0.02 0.5 0.040 0.041 0.037 0.041 0.047

σD25
Inverted Gamma 0.02 0.5 0.024 0.026 0.023 0.026 0.029

σD26
Inverted Gamma 0.02 0.5 0.009 0.009 0.008 0.009 0.011

σD27
Inverted Gamma 0.02 0.5 0.010 0.010 0.009 0.010 0.012

Note: there are no parameters for d11,t because data for Sector 11 are used in the estimation.

13 Convergence statistics of Bayesian estimations

We check for convergence for the draws of all 5 chains per each estimation by calculating the potential scale reduction

factor (PSRF). The PSRF is the square root of the ratio of an estimate of the marginal posterior variance to the

mean of the marginal posterior variance within each chain. This factor expresses the potential reduction in the scaling

of the estimated marginal posterior variance relative to the true distribution expected when increasing the number

of iterations in the Markov-chain algorithm. Hence, as the PSRF for a parameter approaches unity, it is a sign of

convergence of the Markov-chain for the parameter. See Gelman and Rubin (1992) for more information.

The estimates of the baseline specification are presented in Table 23. For most of the parameters, the PSRF

estimates and the upper bound of their 95% confidence intervals are effectively 1. The PSRF estimates for all the

parameters but three are less than 1.1, which is the rule-of-thumb value commonly used in the literature as an upper

limit for good convergence. Parameters ρµ, σµ, and σA5
is estimated to have a relatively large PSRF. Comparative

statics analysis shows, however, that this parameter has little effect on overall model fit and on its ability to match

sectoral price facts.

Table 23: Potential scale reduction factor estimates of the baseline specification

Parameter PSRF Upper

CI

Parameter PSRF Upper

CI

Parameter PSRF Upper

CI

φπ 1.05 1.13 ρA16 1.00 1.01 σA8 1.00 1.01

φc 1.02 1.06 ρA17 1.00 1.01 σA9 1.00 1.01

α1 1.00 1.01 ρA18 1.01 1.01 σA10 1.00 1.00

α2 1.00 1.00 ρA19 1.00 1.00 σA11 1.06 1.14

α3 1.00 1.01 ρA20 1.00 1.00 σA12 1.01 1.02

α4 1.01 1.03 ρA21 1.00 1.01 σA13 1.00 1.01

α5 1.03 1.06 ρA22 1.00 1.01 σA14 1.00 1.01

α6 1.00 1.00 ρA23 1.00 1.01 σA15 1.00 1.00

α7 1.00 1.00 ρA24 1.00 1.01 σA16 1.02 1.05

α8 1.00 1.00 ρA25 1.00 1.00 σA17 1.00 1.00
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Table 23: Potential scale reduction factor estimates of the baseline specification (continued)

Parameter PSRF Upper

CI

Parameter PSRF Upper

CI

Parameter PSRF Upper

CI

α9 1.00 1.00 ρA26 1.01 1.02 σA18 1.01 1.01

α10 1.00 1.00 ρA27 1.00 1.01 σA19 1.00 1.01

α11 1.01 1.03 ρD1 1.00 1.00 σA20 1.00 1.00

α12 1.00 1.01 ρD2 1.00 1.00 σA21 1.00 1.00

α13 1.00 1.01 ρD3 1.00 1.00 σA22 1.01 1.03

α14 1.00 1.00 ρD4 1.00 1.00 σA23 1.00 1.00

α15 1.00 1.00 ρD5 1.00 1.00 σA24 1.00 1.00

α16 1.01 1.04 ρD6 1.00 1.00 σA25 1.00 1.00

α17 1.00 1.01 ρD7 1.00 1.00 σA26 1.01 1.02

α18 1.00 1.00 ρD8 1.00 1.00 σA27 1.01 1.02

α19 1.00 1.00 ρD9 1.00 1.00 σD1 1.00 1.00

α20 1.00 1.00 ρD10 1.00 1.00 σD2 1.00 1.00

α21 1.00 1.00 ρD12 1.00 1.01 σD3 1.00 1.00

α22 1.01 1.03 ρD13 1.00 1.00 σD4 1.00 1.00

α23 1.00 1.00 ρD14 1.00 1.00 σD5 1.00 1.01

α24 1.00 1.00 ρD15 1.00 1.00 σD6 1.00 1.00

α25 1.00 1.00 ρD16 1.00 1.00 σD7 1.00 1.00

α26 1.00 1.01 ρD17 1.00 1.00 σD8 1.00 1.00

α27 1.00 1.01 ρD18 1.00 1.00 σD9 1.00 1.00

ρi 1.01 1.04 ρD19 1.00 1.00 σD10 1.00 1.00

ρµ 1.12 1.31 ρD20 1.00 1.00 σD12 1.00 1.01

ργ 1.01 1.01 ρD21 1.00 1.00 σD13 1.00 1.00

ρa 1.00 1.00 ρD22 1.00 1.01 σD14 1.00 1.00

ρA1 1.00 1.00 ρD23 1.00 1.00 σD15 1.00 1.00

ρA2 1.00 1.00 ρD24 1.00 1.00 σD16 1.00 1.00

ρA3 1.00 1.00 ρD25 1.00 1.00 σD17 1.00 1.00

ρA4 1.01 1.01 ρD26 1.00 1.00 σD18 1.00 1.00

ρA5 1.06 1.14 ρD27 1.00 1.00 σD19 1.00 1.00

ρA6 1.00 1.00 σµ 1.10 1.24 σD20 1.00 1.01

ρA7 1.00 1.00 σγ 1.03 1.05 σD21 1.00 1.00

ρA8 1.00 1.00 σa 1.01 1.03 σD22 1.00 1.00

ρA9 1.00 1.00 σA1 1.00 1.01 σD23 1.00 1.00

ρA10 1.00 1.01 σA2 1.01 1.01 σD24 1.00 1.00

ρA11 1.07 1.17 σA3 1.00 1.01 σD25 1.00 1.00

ρA12 1.04 1.06 σA4 1.00 1.01 σD26 1.00 1.00

ρA13 1.00 1.00 σA5 1.14 1.29 σD27 1.00 1.01

ρA14 1.00 1.00 σA6 1.00 1.01

ρA15 1.00 1.00 σA7 1.00 1.00

Notes: PSRF columns report a point estimate of the potential scale reduction factor and Upper CI columns report the upper bound

of its 95% confidence interval.
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Then we compute the effective sample size of the posterior draws, which is the sample size adjusted for autocorre-

lations in the MCMC draws. The estimates of the effective sample sizes in the baseline specification are reported in

Table 24. Except for ρµ, ρA11 , σµ, and σA11 , all the parameters have more than 1,000 effective sample sizes and many

of them actually have more than 3,000 effective sample sizes, which is sufficiently large.

Table 24: Estimated effective sample sizes of the posterior draws in the baseline specification

Parameter Effective size Parameter Effective size Parameter Effective size

φπ 2854.8 ρA16 5459.9 σA8 5374.5

φc 2860.9 ρA17 5215.9 σA9 5038.7

α1 4867.5 ρA18 3075.5 σA10 5854.6

α2 2983.7 ρA19 3794.5 σA11 284.5

α3 5476.7 ρA20 7020.2 σA12 3602.9

α4 4722.1 ρA21 3079.9 σA13 3574.2

α5 3027.4 ρA22 4719.3 σA14 5506.2

α6 4901.9 ρA23 4720.1 σA15 5017.6

α7 4805.7 ρA24 5376.8 σA16 3746.2

α8 5454.4 ρA25 4498.3 σA17 5045.1

α9 5601.0 ρA26 4346.2 σA18 2684.1

α10 5361.5 ρA27 4526.3 σA19 3189.2

α11 2422.4 ρD1 5822.5 σA20 5277.7

α12 4501.6 ρD2 3867.1 σA21 2834.2

α13 4219.3 ρD3 5697.1 σA22 1435.6

α14 5422.9 ρD4 5477.2 σA23 5161.6

α15 5201.1 ρD5 5130.8 σA24 5147.9

α16 4564.0 ρD6 5499.3 σA25 4369.2

α17 5239.2 ρD7 5007.8 σA26 1887.0

α18 3617.5 ρD8 5495.2 σA27 2763.3

α19 4153.3 ρD9 5358.9 σD1 5641.5

α20 5559.2 ρD10 5860.6 σD2 4262.3

α21 4207.9 ρD12 5321.4 σD3 5713.8

α22 2635.6 ρD13 5631.9 σD4 6872.4

α23 4998.7 ρD14 5069.8 σD5 5467.1

α24 5890.3 ρD15 4967.4 σD6 5393.3

α25 4662.6 ρD16 6034.7 σD7 5779.0

α26 2879.4 ρD17 5734.2 σD8 5916.8

α27 3472.8 ρD18 5117.5 σD9 5262.1

ρi 3702.0 ρD19 4417.8 σD10 5445.7

ρµ 194.3 ρD20 5143.0 σD12 5468.5

ργ 2130.8 ρD21 3927.0 σD13 5654.2

ρa 6155.8 ρD22 5026.0 σD14 5433.3

ρA1 4516.6 ρD23 5679.8 σD15 6477.1

ρA2 4352.5 ρD24 5581.5 σD16 5239.2

ρA3 5205.5 ρD25 5535.1 σD17 5742.9
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Table 24: Estimated effective sample sizes of the posterior draws in the baseline specification (continued)

Parameter Effective size Parameter Effective size Parameter Effective size

ρA4 5198.9 ρD26 4963.9 σD18 5686.8

ρA5 2707.6 ρD27 5635.7 σD19 5246.9

ρA6 4847.8 σµ 96.4 σD20 5573.0

ρA7 5287.9 σγ 1305.4 σD21 5450.1

ρA8 5554.9 σa 3291.6 σD22 5401.8

ρA9 4762.4 σA1 6092.1 σD23 5333.5

ρA10 5287.1 σA2 3022.7 σD24 6106.3

ρA11 203.7 σA3 4532.0 σD25 5064.8

ρA12 2238.6 σA4 4420.9 σD26 6087.0

ρA13 3753.3 σA5 1731.1 σD27 5527.0

ρA14 5577.1 σA6 3672.3

ρA15 5841.8 σA7 4054.0

In addition to monitoring convergence using the PSRF and the effective sample size of the posterior draws, we also

visually inspect plots of the cumulative means of the Markov-chain draws for each parameter, which are not reported

for conciseness. Upon convergence, the draws of all 5 chains are combined to form a posterior sample of 1 million

draws per each estimation.
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